Skip to main content

Advertisement

Log in

Vegetated Habitats Trophically Support Early Development Stages of a Marine Migrant Fish in a Coastal Lagoon

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Understanding the trophic ecology of early developmental stages of commercial fish species migrating between sea and coastal lagoons is crucial to effective management of nursery habitats and resulting resources. While most information on diet shift of the gilthead seabream Sparus aurata comes from studies in experimental conditions, here we investigated the trophic niche dynamics of post-larvae, juveniles and sub-adults in natural environment, hypothesising that habitat and resources use of marine and lagoonal sites will exhibit strong relationship with ontogeny of the species. Carbon and nitrogen stable isotopes showed evidence of a clear shift in the trophic niche features, trophic position and trophic pathways supporting S. aurata during growth. Main differences occurred between post-larvae and juveniles/sub-adults, perfectly matching their diet shift from zooplanktivorous to zoobenthivorous habits. The wider trophic niche of juveniles exploiting the variety of resources within the lagoon, compared to the narrower niche of marine post-larvae demonstrates the importance of the trophic role of the lagoon as nursey ground, where aquatic macrophytes (seagrasses and macroalgae) provide the main trophic support as sources of organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Able, K.W. 2005. A re-examination of fish estuarine dependence: Evidence for connectivity between estuarine and ocean habitats. Estuarine, Coastal and Shelf Science 64: 5–17. https://doi.org/10.1016/j.ecss.2005.02.002.

    Article  Google Scholar 

  • Anderson, M.J., R.N. Gorley, and K.R. Clarke. 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. In PRIMER-E, 1–214. Plymouth. https://doi.org/10.13564/j.cnki.issn.1672-9382.2013.01.010.

  • Badalamenti, F., G. D’Anna, J.K. Pinnegar, and N.V.C. Polunin. 2002. Size-related trophodynamic changes in three target fish species recovering from intensive trawling. Marine Biology 141: 561–570. https://doi.org/10.1007/s00227-002-0844-3.

    Article  Google Scholar 

  • Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Kock, A.C. Stier, and B.R. Sillman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193. https://doi.org/10.1890/10-1510.1.

    Article  Google Scholar 

  • Bauchot, M.L., and J.C. Hureau. 1986. Sparidae. In Fishes of the North-eastern Atlantic and the Mediterranean, ed. P.J.P. Whitehead, M.L. Bauchot, J.C. Hureau, J. Nielsen, and E. Tortonese, vol. 2, 883–907. Paris: UNESCO.

    Google Scholar 

  • Bearhop, S., C.E. Adams, S. Waldron, R.A. Fuller, and H. Macleod. 2004. Determining trophic niche width: A novel approach using stable isotope analysis. Journal of Animal Ecology 73: 1007–1012. https://doi.org/10.1111/j.0021-8790.2004.00861.x.

    Article  Google Scholar 

  • Beck, M.W., K.L. Heck Jr., K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders, B. Halpern, et al. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51: 633–641. https://doi.org/10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2.

    Article  Google Scholar 

  • Bellafiore, D., M. Ghezzo, D. Tagliapietra, and G. Umgiesser. 2014. Climate change and artificial barrier effects on the Venice Lagoon: Inundation dynamics of salt marshes and implications for halophytes distribution. Ocean & Coastal Management 100: 101–115. https://doi.org/10.1016/j.ocecoaman.2014.08.002.

    Article  Google Scholar 

  • Berto, D., F. Rampazzo, S. Noventa, F. Cacciatore, M. Gabellini, F. Bernardi Aubry, A. Girolimetto, and R. Boscolo Brusà. 2013. Stable carbon and nitrogen isotope ratios as tools to evaluate the nature of particulate organic matter in the Venice lagoon. Estuarine, Coastal and Shelf Science 135: 66–76. https://doi.org/10.1016/j.ecss.2013.06.021.

    Article  CAS  Google Scholar 

  • Bodinier, C., E. Sucré, L. Lecurieux-Belfond, E. Blondeau-Bidet, and G. Charmantier. 2010. Ontogeny of osmoregulation and salinity tolerance in the gilthead sea bream Sparus aurata. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 157: 220–228. https://doi.org/10.1016/j.cbpa.2010.06.185.

    Article  CAS  Google Scholar 

  • Bonfà, A., F. Busetti, A. Gomiero, G. Poiana, and A. Marcomini. 2004. Exposure levels to estrogenic compounds in the Venice Lagoon. In Scientific research and safeguarding of Venice, Corila Research Programme 2001-2003, Volume II, 2002 results, 259–272.

    Google Scholar 

  • Bosley, K.L., D.A. Witting, R.C. Chambers, and S.C. Wainright. 2002. Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotopes. Marine Ecology Progress Series 236: 233–240. https://doi.org/10.3354/meps236233.

    Article  Google Scholar 

  • Carlisle, A.B., S.L. Kim, B.X. Semmens, D.J. Madigan, S.J. Jorgensen, C.R. Perle, S.D. Anderson, T.K. Chapple, P.E. Kanive, and B.A. Block. 2012. Using stable isotope analysis to understand the migration and trophic ecology of northeastern Pacific white sharks (Carcharodon carcharias). PLoS One 7 (2): e30492–e30492. https://doi.org/10.1371/journal.pone.0030492.

    Article  CAS  Google Scholar 

  • Cataldi, E., S. Cataudella, G. Monaco, A. Rossi, and L. Tancioni. 1987. A study of the histology and morphology of the digestive tract of the sea bream, Sparus aurata. Journal of Fish Biology 30: 135–145.

    Article  Google Scholar 

  • Caut, S., E. Angulo, and F. Courchamp. 2009. Variation in discrimination factors (Δ15N and Δ13C): The effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46: 443–453.

    Article  CAS  Google Scholar 

  • Cummings, D.O., J. Buhl, R.W. Lee, S.J. Simpson, and S.P. Holmes. 2012. Estimating niche width using stable isotopes in the face of habitat variability: A modelling case study in the marine environment. PLoS One 7 (8): e40539. https://doi.org/10.1371/journal.pone.0040539.

    Article  CAS  Google Scholar 

  • Elbal, M.T., M.P. García Hernández, M.T. Lozano, and B. Agulleiro. 2004. Development of the digestive tract of gilthead sea bream (Sparus aurata L.). Light and electron microscopic studies. Aquaculture 234: 215–238. https://doi.org/10.1016/j.aquaculture.2003.11.028.

    Article  Google Scholar 

  • Elgendy, S.A.A., M.A.M. Alsafy, and M. Tanekhy. 2016. Morphological characterization of the oral cavity of the gilthead seabream (Sparus aurata) with emphasis on the teeth-age adaptation. Microscopy Research and Technique 79 (3): 227–236. https://doi.org/10.1002/jemt.22622.

    Article  Google Scholar 

  • Elliott, M., A.K. Whitfield, I.C. Potter, S.J.M. Blaber, D.P. Cyrus, F.G. Nordlie, and T.D. Harrison. 2007. The guild approach to categorizing estuarine fish assemblages: A global review. Fish and Fisheries 8: 241–268. https://doi.org/10.1111/j.1467-2679.2007.00253.x.

    Article  Google Scholar 

  • Escalas, A., F. Ferraton, C. Paillon, G. Vidy, F. Carcaillet, C. Salen-Picard, F. Le Loc’h, P. Richard, and A.M. Darnaude. 2015. Spatial variations in dietary organic matter sources modulate the size and condition of fish juveniles in temperate lagoon nursery sites. Estuarine, Coastal and Shelf Science 152: 78–90. https://doi.org/10.1016/j.ecss.2014.11.021.

    Article  CAS  Google Scholar 

  • FAO. 2016. The state of world fisheries and aquaculture 2016. Rome: Contributing to food security and nutrition for all.

    Google Scholar 

  • Ferrari, I., and A.R. Chieregato. 1981. Feeding habits of juvenile stages of Sparus auratus L., Dicentrarchus labrax L. and Mugilidae in a brackish embayment of the Po River Delta. Aquaculture 25: 243–257. https://doi.org/10.1016/0044-8486(81)90186-1.

    Article  Google Scholar 

  • Francescon, A., A. Barbaro, A. La Rocca, and R. Bartaggia. 1987. Stima quantitativa della dieta naturale dell’orata (Sparus aurata) in ambiente salmastro. Archivio di Oceanografia e Limnologia 21: 45–61.

    Google Scholar 

  • Franco, A., M. Elliott, P. Franzoi, and P. Torricelli. 2008a. Life strategies of fishes in European estuaries: The functional guild approach. Marine Ecology Progress Series 354: 219–228. https://doi.org/10.3354/meps07203.

    Article  Google Scholar 

  • Franco, A., P. Franzoi, and P. Torricelli. 2008b. Structure and functioning of Mediterranean lagoon fish assemblages: A key for the identification of water body types. Estuarine, Coastal and Shelf Science 79: 549–558. https://doi.org/10.1016/j.ecss.2008.05.011.

    Article  Google Scholar 

  • Franzoi, P., P. Penzo, and M. Pellizzato. 2002. La pesca del pesce novello da semina in laguna di Venezia nel periodo 1999-2001. Lavori – Società Veneziana di Scienze Naturali 27: 57–68.

    Google Scholar 

  • Fry, B., P.L. Mumford, F. Tam, D.D. Fox, G.L. Warren, K.E. Havens, and A.D. Steinman. 1999. Trophic position and individual feeding histories of fish from Lake Okeechobee, Florida. Canadian Journal of Fisheries and Aquatic Sciences 56: 590–600. https://doi.org/10.1139/f98-204.

    Article  Google Scholar 

  • Graham, B.S., P.L. Koch, S.D. Newsome, K.W. McMahon, and D. Aurioles. 2010. Isoscapes: Understanding movement, pattern, and process on earth through isotope mapping. In Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping, 1–487. https://doi.org/10.1007/978-90-481-3354-3.

    Chapter  Google Scholar 

  • Hadj Taieb, A., A. Sley, M. Ghorbel, and O. Jarboui. 2013. Feeding habits of Sparus aurata (Sparidae) from the Gulf of Gabes (central Mediterranean). Cahiers de Biologie Marine 54: 263–270.

    Google Scholar 

  • Hammerschlag-Peyer, C.M., L.A. Yeager, M.S. Araújo, and C.A. Layman. 2011. A hypothesis-testing framework for studies investigating ontogenetic niche shifts using stable isotope ratios. PLoS One 6 (11): e27104. https://doi.org/10.1371/journal.pone.0027104.

    Article  CAS  Google Scholar 

  • Heady, W.N., and J.W. Moore. 2013. Tissue turnover and stable isotope clocks to quantify resource shifts in anadromous rainbow trout. Oecologia 172 (1): 21–34. https://doi.org/10.1007/s00442-012-2483-9.

    Article  Google Scholar 

  • Hobson, K.A., and L.I. Wassenaar. 2008. Tracking animal migration with stable isotopes. Terrestrial Ecology 2. https://doi.org/10.1016/S1936-7961(07)00005-X.

    Chapter  Google Scholar 

  • Isnard, E., J. Tournois, D.J. Mckenzie, F. Ferraton, N. Bodin, C. Aliaume, and A.M. Darnaude. 2015. Getting a good start in life? A comparative analysis of the quality of lagoons as juvenile habitats for the gilthead seabream Sparus aurata in the Gulf of lions. Estuaries and Coasts 38 (6): 1937–1950. https://doi.org/10.1007/s12237-014-9939-6.

    Article  CAS  Google Scholar 

  • Jackson, A.L., R. Inger, A.C. Parnell, and S. Bearhop. 2011. Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80 (3): 595–602.

    Article  Google Scholar 

  • Jackson, M.C., I. Donohue, A.L. Jackson, J.R. Britton, D.M. Harper, and J. Grey. 2012. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS One 7 (2): e31757. https://doi.org/10.1371/journal.pone.0031757.

    Article  CAS  Google Scholar 

  • Kreitzer, J.D., M.C. Belk, D.B. Gonzalez, R.C. Tuckfield, D.K. Shiozawa, and J.E. Rasmussen. 2010. Ontogenetic diet shift in the June sucker Chasmistes liorus (Cypriniformes, Catostomidae) in the early juvenile stage. Ecology of Freshwater Fish 19: 433–438. https://doi.org/10.1111/j.1600-0633.2010.00427.x.

    Article  Google Scholar 

  • Layman, C.A., D.A. Arrington, C.G. Montana, and D.M. Post. 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88 (1): 42–48.

    Article  Google Scholar 

  • Layman, C.A., M.S. Araujo, R. Boucek, C.M. Hammerschlag-Peyer, E. Harrison, Z.R. Jud, P. Matich, A.E. Rosenblatt, J.J. Vaudo, L.A. Yeager, D.M. Post, and S. Bearhop. 2012. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biological Reviews of the Cambridge Philosophical Society 87 (3): 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x.

    Article  Google Scholar 

  • Martínez Del Rio, C., N. Wolf, S.A. Carleton, and L.Z. Gannes. 2009. Isotopic ecology ten years after a call for more laboratory experiments. Biological Reviews 84: 91–111. https://doi.org/10.1111/j.1469-185X.2008.00064.x.

    Article  Google Scholar 

  • Matthews, B., and A. Mazumder. 2004. A critical evaluation of intrapopulation variation of δ13C and isotopic evidence of individual specialization. Oecologia 140 (2): 361–371. https://doi.org/10.1007/s00442-004-1579-2.

    Article  Google Scholar 

  • Muller, C., and N.A. Strydom. 2017. Evidence for habitat residency and isotopic niche partitioning in a marine-estuarine-dependent species associated with mangrove habitats from the east coast of South Africa. Estuaries and Coasts 40: 1642–1652. https://doi.org/10.1007/s12237-017-0240-3.

    Article  CAS  Google Scholar 

  • Oliveira, F., K. Erzini, and J.M.S. Gonçalves. 2007. Feeding habits of the deep-snouted pipefish Syngnathus typhle in a temperate coastal lagoon. Estuarine, Coastal and Shelf Science 72: 337–347. https://doi.org/10.1016/j.ecss.2006.11.003.

    Article  Google Scholar 

  • Parnell, A.C., R. Inger, S. Bearhop, and A.L. Jackson. 2010. Source partitioning using stable isotopes: Coping with too much variation. PLoS One 5 (3): e9672. https://doi.org/10.1371/journal.pone.0009672.

    Article  CAS  Google Scholar 

  • Post, D.M. 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 3: 703–718.

    Article  Google Scholar 

  • Post, D.M. 2003. Indiuvidual variation in the timing of the onogenic niche shifts in largemouth bass. Biological Invasions 84: 1298–1310. https://doi.org/10.1890/0012-9658(2003)084.

    Article  Google Scholar 

  • Provincia di Venezia. 2009. Piano per la gestione delle risorse alieutiche delle lagune della provincia di Venezia. Arti Grafiche Zoppelli dal 1853 srl, Dosson di Casier (TV), pp. 1-202.

  • Rubenstein, D.R., and K.A. Hobson. 2004. From birds to butterflies: Animal movement patterns and stable isotopes. Trends in Ecology & Evolution 19: 256–263. https://doi.org/10.1016/j.tree.2004.03.017.

    Article  Google Scholar 

  • Russo, T., C. Costa, and S. Cataudella. 2007. Correspondence between shape and feeding habit changes throughout ontogeny of gilthead sea bream Sparus aurata L., 1758. Journal of Fish Biology 71: 629–656. https://doi.org/10.1111/j.1095-8649.2007.01528.x.

    Article  Google Scholar 

  • Sheaves, M., R. Baker, I. Nagelkerken, and R.M. Connolly. 2015. True value of estuarine and coastal nurseries for fish: Incorporating complexity and dynamics. Estuaries and Coasts 38: 401–414. https://doi.org/10.1007/s12237-014-9846-x.

    Article  Google Scholar 

  • Solidoro, C., D. Melaku Canu, A. Cucco, and G. Umgiesser. 2004. A partition of the Venice Lagoon based on physical properties and analysis of general circulation. Journal of Marine Systems 51: 147–160. https://doi.org/10.1016/j.jmarsys.2004.05.010.

    Article  Google Scholar 

  • Solidoro, C., V. Bandelj, F.A. Bernardi, E. Camatti, S. Ciavatta, G. Cossarini, C. Facca, et al. 2010. Response of the Venice Lagoon ecosystem to natural and anthropogenic pressures over the last 50 years. In Coastal lagoons: Critical habitats of environmental change, 483–512. Boca Raton: CRC Press. https://doi.org/10.1201/EBK1420088304-c19.

    Chapter  Google Scholar 

  • Sweeting, C.J., J. Barry, C. Barnes, N.V.C. Polunin, and S. Jennings. 2007. Effects of body size and environment on diet-tissue δ15N fractionation in fishes. Journal of Experimental Marine Biology and Ecology 340: 1–10. https://doi.org/10.1016/j.jembe.2006.07.023.

    Article  CAS  Google Scholar 

  • Tagliapietra, D., P. Magni, A. Basset, and P. Viaroli. 2014. Ecosistemi costieri di transizione: trasformazioni recenti, pressioni antropiche dirette e possibili impatti del cambiamento climatico. Biologia Ambientale 28: 101–111.

    Google Scholar 

  • Tancioni, L., S. Mariani, A. Maccaroni, A. Mariani, F. Massa, M. Scardi, and S. Cataudella. 2003. Locality-specific variation in the feeding of Sparus aurata L.: Evidence from two Mediterranean lagoon systems. Estuarine. Coastal and Shelf Science 57: 469–474. https://doi.org/10.1016/S0272-7714(02)00376-1.

    Article  Google Scholar 

  • Tournois, J., A.M. Darnaude, F. Ferraton, C. Aliaume, and D.J. Mckenzie. 2017. Lagoon nurseries make a major contribution to adult populations of a highly prized coastal fish. Limnology and Oceanography 62: 1219–1233. https://doi.org/10.1002/lno.10496.

    Article  Google Scholar 

  • Trueman, C.N., R.A.R. McGill, and P.H. Guyard. 2005. The effect of growth rate on tissue-diet isotopic spacing in rapidly growing animals. An experimental study with Atlantic salmon (Salmo salar). Rapid Communications in Mass Spectrometry 19 (22): 3239–3247. https://doi.org/10.1002/rcm.2199.

    Article  CAS  Google Scholar 

  • Vander Zanden, M.J., B.J. Shuter, N.P. Lester, and J.B. Rasmussen. 2000. Within- and among-population variation in the trophic position of a pelagic predator, lake trout (Salvelinus namaycush). Canadian Journal of Fisheries and Aquatic Sciences 57: 725–731. https://doi.org/10.1139/cjfas-57-4-725.

    Article  Google Scholar 

  • Varela, J.L., A. Ortega, F. De La Gándara, and A. Medina. 2015. Effects of starvation on δ15N and δ13C in Atlantic bonito, Sarda sarda (Bloch, 1793). Aquaculture Research 46: 2043–2047. https://doi.org/10.1111/are.12351.

    Article  Google Scholar 

  • Vasconcelos, R.P., P. Reis-Santos, A. Maia, V. Fonseca, S. França, N. Wouters, M.J. Costa, and H.N. Cabral. 2010. Nursery use patterns of commercially important marine fish species in estuarine systems along the Portuguese coast. Estuarine, Coastal and Shelf Science 86: 613–624. https://doi.org/10.1016/j.ecss.2009.11.029.

    Article  Google Scholar 

  • Vaslet, A., C. France, D.L. Phillips, I.C. Feller, and C.C. Baldwin. 2011. Stable-isotope analyses reveal the importance of seagrass beds as feeding areas for juveniles of the speckled worm eel Myrophis punctatus (Teleostei: Ophichthidae) in Florida. Journal of Fish Biology 79: 692–706. https://doi.org/10.1111/j.1095-8649.2011.03052.x.

    Article  CAS  Google Scholar 

  • Vizzini, S. 2009. Analysis of the trophic role of Mediterranean seagrasses in marine coastal ecosystems: A review. Botanica Marina 52: 383–393. https://doi.org/10.1515/BOT.2009.056.

    Article  Google Scholar 

  • Vizzini, S., and A. Mazzola. 2008. The fate of organic matter sources in coastal environments: A comparison of three Mediterranean lagoons. Hydrobiologia 611 (1): 67–79. https://doi.org/10.1007/s10750-008-9458-1.

    Article  CAS  Google Scholar 

  • Vizzini, S., B. Savona, T. Do Chi, and A. Mazzola. 2005. Spatial variability of stable carbon and nitrogen isotope ratios in a Mediterranean coastal lagoon. Hydrobiologia 550: 73–82. https://doi.org/10.1007/s10750-005-4364-2.

    Article  CAS  Google Scholar 

  • Vizzini, S., G. Signa, and A. Mazzola. 2016. Guano-derived nutrient subsidies drive food web structure in coastal ponds. PLoS One 11: 1–15. https://doi.org/10.1371/journal.pone.0151018.

    Article  CAS  Google Scholar 

  • Vizzini, S., B. Martínez-Crego, C. Andolina, A. Massa-Gallucci, S.D. Connell, and M.C. Gambi. 2017. Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers. Scientific Reports 7 (1): 1–10. https://doi.org/10.1038/s41598-017-03802-w.

    Article  CAS  Google Scholar 

  • Zohar, Y., M. Abraham, and H. Gordin. 1978. The gonadal cycle of the captivity-reared hermaphroditic teleost Sparus aurata (L.) during the first two years of life. Annales de Biologie Animale, Biochimie, Biophysique 4: 877–882.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Matteo Zucchetta, Riccardo Fiorin and Federico Riccato for the assistance provided during sampling activities and also Elisa A. Aleo for help with laboratory analyses. Research permits for conducting fieldwork were provided by Provincia di Venezia (licence number 3541/2013 for samplings carried out in 2014 and number 2/2015 for samplings carried out in 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Andolina.

Additional information

Communicated by Laure Carassou

Electronic Supplementary Material

ESM 1

(DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andolina, C., Franzoi, P., Jackson, A.L. et al. Vegetated Habitats Trophically Support Early Development Stages of a Marine Migrant Fish in a Coastal Lagoon. Estuaries and Coasts 43, 424–437 (2020). https://doi.org/10.1007/s12237-019-00683-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00683-2

Keywords

Navigation