Skip to main content
Log in

Laser generation of iron-doped silver nanotruffles with magnetic and plasmonic properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A frontier topic in nanotechnology is the realization of multifunctional nanoparticles (NPs) via the appropriate combination of different elements of the periodic table. The coexistence of Fe and Ag in the same nanostructure, for instance, is interesting for nanophotonics, nanomedicine, and catalysis. However, alloying of Fe and Ag is inhibited for thermodynamic reasons. Here, we describe the synthesis of Fe-doped Ag NPs via laser ablation in liquid solution, bypassing thermodynamics constraints. These NPs have an innovative structure consisting of a scaffold of face-centered cubic metal Ag alternating with disordered Ag–Fe alloy domains, all arranged in a truffle-like morphology. The Fe–Ag NPs exhibit the plasmonic properties of Ag and the magnetic response of Fe-containing phases, and the surface of the Fe–Ag NPs can be functionalized in one step with thiolated molecules. Taking advantage of the multiple properties of Fe–Ag NPs, the magnetophoretic amplification of plasmonic properties is demonstrated with proof-of-concept surface-enhanced Raman scattering and photothermal heating experiments. The synthetic approach is of general applicability and virtually permits the preparation of a large variety of multi-element NPs in one step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, D. E.; Koo, H.; Sun, I. C.; Ryu, J. H.; Kim, K.; Kwon, I. C. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 2012, 41, 2656–2672.

    Article  Google Scholar 

  2. Cheng, Z. L.; Al Zaki, A.; Hui, J. Z.; Muzykantov, V. R.; Tsourkas, A. Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science 2012, 338, 903–910.

    Article  Google Scholar 

  3. Liu, K. S.; Jiang, L. Multifunctional integration: From biological to bio-inspired materials. ACS Nano 2011, 5, 6786–6790.

    Article  Google Scholar 

  4. Sun, Y. H.; Jiang, L.; Zhong, L. B.; Jiang, Y. Y.; Chen, X. D. Towards active plasmonic response devices. Nano Res. 2015, 8, 406–417.

    Article  Google Scholar 

  5. Armelles, G.; Cebollada, A.; García-Martí n, A.; Gonzá lez, M. U. Magnetoplasmonics: Combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 2013, 1, 2.

    Article  Google Scholar 

  6. Hao, R.; Xing, R. J.; Xu, Z. C.; Hou, Y. L.; Gao, S.; Sun, S. H. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22, 2729–2742.

    Article  Google Scholar 

  7. Peng, S.; Lei, C. H.; Ren, Y.; Cook, R. E.; Sun, Y. G. Plasmonic/magnetic bifunctional nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 3158–3163.

    Article  Google Scholar 

  8. Jin, R. C.; Nobusada, K. Doping and alloying in atomically precise gold nanoparticles. Nano Res. 2014, 7, 285–300.

    Article  Google Scholar 

  9. Shen, J. L.; Su, J.; Yan, J.; Zhao, B.; Wang, D. F.; Wang, S. Y.; Li, K.; Liu, M. M.; He, Y.; Mathur, S. et al. Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification. Nano Res. 2015, 8, 731–742.

    Article  Google Scholar 

  10. García, S.; Zhang, L.; Piburn, G. W.; Henkelman, G.; Humphrey, S. M. Microwave synthesis of classically immiscible rhodium–silver and rhodium–gold alloy nanoparticles: Highly active hydrogenation catalysts. ACS Nano 2014, 8, 11512–11521.

    Article  Google Scholar 

  11. González-Díaz, J. B.; García-Martín, A.; García-Martín, J. M.; Cebollada, A.; Armelles, G.; Sepúlveda, B.; Alaverdyan, Y.; Käll, M. Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. Small 2008, 4, 202–205.

    Article  Google Scholar 

  12. Bonanni, V.; Bonetti, S.; Pakizeh, T.; Pirzadeh, Z.; Chen, J. N.; Nogués, J.; Vavassori, P.; Hillenbrand, R.; Åkerman, J.; Dmitriev, A. Designer magnetoplasmonics with nickel nanoferromagnets. Nano Lett. 2011, 11, 5333–5338.

    Article  Google Scholar 

  13. Pineider, F.; Campo, G.; Bonanni, V.; de Julián Ferná ndez, C.; Mattei, G.; Caneschi, A.; Gatteschi, D.; Sangregorio, C. Circular magnetoplasmonic modes in gold nanoparticles. Nano Lett. 2013, 13, 4785–4789.

    Article  Google Scholar 

  14. Suntivich, J.; Xu, Z. C.; Carlton, C. E.; Kim, J.; Han, B.; Lee, S. W.; Bonnet, N.; Marzari, N.; Allard, L. F.; Gasteiger, H. A. et al. Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. J. Am. Chem. Soc. 2013, 135, 7985–7991.

    Article  Google Scholar 

  15. Amendola, V.; Scaramuzza, S.; Litti, L.; Meneghetti, M.; Zuccolotto, G.; Rosato, A.; Nicolato, E.; Marzola, P.; Fracasso, G.; Anselmi, C. et al. Magneto-plasmonic Au-Fe alloy nanoparticles designed for multimodal SERS-MRI-CT imaging. Small 2014, 10, 2476–2486.

    Article  Google Scholar 

  16. Xu, C. J.; Wang, B. D.; Sun, S. H. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 2009, 131, 4216–4217.

    Article  Google Scholar 

  17. Sotiriou, G. A.; Visbal-Onufrak, M. A.; Teleki, A.; Juan, E. J.; Hirt, A. M.; Pratsinis, S. E.; Rinaldi, C. Thermal energy dissipation by SiO2-coated plasmonic-superparamagnetic nanoparticles in alternating magnetic fields. Chem. Mater. 2013, 25, 4603–4612.

    Article  Google Scholar 

  18. Chudasama, B.; Vala, A. K.; Andhariya, N.; Upadhyay, R. V.; Mehta, R. V. Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res. 2009, 2, 955–965.

    Article  Google Scholar 

  19. Zhai, Y. M.; Han, L.; Wang, P.; Li, G. P.; Ren, W.; Liu, L.; Wang, E. K.; Dong, S. J. Superparamagnetic plasmonic nanohybrids: Shape-controlled synthesis, TEM-induced structure evolution, and efficient sunlight-driven inactivation of bacteria. ACS Nano 2011, 5, 8562–8570.

    Article  Google Scholar 

  20. Bogani, L.; Cavigli, L.; de Julián Ferná ndez, C.; Mazzoldi, P.; Mattei, G.; Gurioli, M.; Dressel, M.; Gatteschi, D. Photocoercivity of nano-stabilized Au:Fe superparamagnetic nanoparticles. Adv. Mater. 2010, 22, 4054–4058.

    Article  Google Scholar 

  21. Sarina, S.; Zhu, H. Y.; Jaatinen, E.; Xiao, Q.; Liu, H. W.; Jia, J. F.; Chen, C.; Zhao, J. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J. Am. Chem. Soc. 2013, 135, 5793–5801.

    Article  Google Scholar 

  22. Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A general approach to noble metal-metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem. Mater. 2010, 22, 3277–3282.

    Article  Google Scholar 

  23. Wang, C.; Chen, J. C.; Zhou, X. R.; Li, W.; Liu, Y.; Yue, Q.; Xue, Z. T.; Li, Y. H.; Elzatahry, A. A.; Deng, Y. H. et al. Magnetic yolk-shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Res. 2015, 8, 238–245.

    Article  Google Scholar 

  24. Araújo, J. E.; Lodeiro, C.; Capelo, J. L.; Rodríguez-González, B.; dos Santos, A. A.; Santos, H. M.; Fernández-Lodeiro, J. Novel nanocomposites based on a strawberry-like goldcoated magnetite (Fe@Au) for protein separation in multiple myeloma serum samples. Nano Res. 2015, 8, 1189–1198.

    Article  Google Scholar 

  25. Lou, L.; Yu, K.; Zhang, Z. L.; Huang, R.; Zhu, J. Z.; Wang, Y. T.; Zhu, Z. Q. Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles. Nano Res. 2012, 5, 272–282.

    Article  Google Scholar 

  26. Kadasala, N. R.; Wei, A. Trace detection of tetrabromobisphenol A by SERS with DMAP-modified magnetic gold nanoclusters. Nanoscale 2015, 7, 10931–10935.

    Article  Google Scholar 

  27. La Porta, A.; Sánchez-Iglesias, A.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L. M. Multifunctional selfassembled composite colloids and their application to SERS detection. Nanoscale 2015, 7, 10377–10381.

    Article  Google Scholar 

  28. Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910.

    Article  Google Scholar 

  29. LaGrow, A. P.; Knudsen, K. R.; AlYami, N. M.; Anjum, D. H.; Bakr, O. M. Effect of precursor ligands and oxidation state in the synthesis of bimetallic nano-alloys. Chem. Mater. 2015, 27, 4134–4141.

    Article  Google Scholar 

  30. Lin, F. H.; Chen, W.; Liao, Y. H.; Doong, R. A.; Li, Y. D. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 2011, 4, 1223–1232.

    Article  Google Scholar 

  31. Zeng, H. B.; Du, X. W.; Singh, S. C.; Kulinich, S. A.; Yang, S. K.; He, J. P.; Cai, W. P. Nanomaterials via laser ablation/irradiation in liquid: A review. Adv. Funct. Mater. 2012, 22, 1333–1353.

    Article  Google Scholar 

  32. Amendola, V.; Meneghetti, M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 2013, 15, 3027–3046.

    Article  Google Scholar 

  33. Amendola, V.; Meneghetti, M.; Bakr, O. M.; Riello, P.; Polizzi, S.; Anjum, D. H.; Fiameni, S.; Arosio, P.; Orlando, T.; de Julian Fernandez, C. et al. Coexistence of plasmonic and magnetic properties in Au89Fe11 nanoalloys. Nanoscale 2013, 5, 5611–5619.

    Article  Google Scholar 

  34. Amendola, V.; Scaramuzza, S.; Agnoli, S.; Polizzi, S.; Meneghetti, M. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys. Nanoscale 2014, 6, 1423–1433.

    Article  Google Scholar 

  35. Amendola, V.; Bakr, O. M.; Stellacci, F. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly. Plasmonics 2010, 5, 85–97.

    Article  Google Scholar 

  36. Swartzendruber, L. The Ag-Fe (silver-iron) system. J. Phase. Equilib. 1984, 5, 560–564.

    Google Scholar 

  37. Wan, H.; Tsoukatos, A.; Hadjipanayis, G. C.; Li, Z. G.; Liu, J. Direct evidence of phase separation in as-deposited Fe(Co)-Ag films with giant magnetoresistance. Phys. Rev. B 1994, 49, 1524–1527.

    Article  Google Scholar 

  38. Kataoka, N.; Sumiyama, K.; Nakamura, Y. Magnetic properties of high-concentration Fe-Ag alloys produced by vapour quenching. J. Phys. F: Met. Phys. 1985, 15, 1405–1411.

    Article  Google Scholar 

  39. Kataoka, N.; Sumiyama, K.; Nakamura, Y. Nonequilibrium crystalline Fe-Ag alloys vapour-quenched on liquid-nitrogencooled substrates. J. Phys. F: Met. Phys. 1988, 18, 1049–1056.

    Article  Google Scholar 

  40. Shi, Z. J.; Wang, T.; Lin, H. Y.; Wang, X. H.; Ding, J. J.; Shao, M. W. Excellent surface-enhanced Raman scattering (SERS) based on AgFeO2 semiconductor nanoparticles. Nanoscale 2013, 5, 10029–10033.

    Article  Google Scholar 

  41. Han, X. X.; Schmidt, A. M.; Marten, G.; Fischer, A.; Weidinger, I. M.; Hildebrandt, P. Magnetic silver hybrid nanoparticles for surface-enhanced resonance Raman spectroscopic detection and decontamination of small toxic molecules. ACS Nano 2013, 7, 3212–3220.

    Article  Google Scholar 

  42. Mahmoudi, M.; Serpooshan, V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 2012, 6, 2656–2664.

    Article  Google Scholar 

  43. Murphy, C. J. Sustainability as an emerging design criterion in nanoparticle synthesis and applications. J. Mater. Chem. 2008, 18, 2173–2176.

    Article  Google Scholar 

  44. Compagnini, G.; Scalisi, A. A.; Puglisi, O. Ablation of noble metals in liquids: A method to obtain nanoparticles in a thin polymeric film. Phys. Chem. Chem. Phys. 2002, 4, 2787–2791.

    Article  Google Scholar 

  45. Amendola, V.; Riello, P.; Meneghetti, M. Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents. J Phys. Chem. C 2011, 115, 5140–5146.

    Article  Google Scholar 

  46. Amendola, V.; Polizzi, S.; Meneghetti, M. Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir 2007, 23, 6766–6770.

    Article  Google Scholar 

  47. Amendola, V.; Riello, P.; Polizzi, S.; Fiameni, S.; Innocenti, C.; Sangregorio, C.; Meneghetti, M. Magnetic iron oxide nanoparticles with tunable size and free surface obtained via a “green” approach based on laser irradiation in water. J. Mater. Chem. 2011, 21, 18665–18673.

    Article  Google Scholar 

  48. Santillán, J. M. J.; van Raap, M. B. F.; Zélis, P. M.; Coral, D.; Muraca, D.; Schinca, D. C.; Scaffardi, L. B. Ag nanoparticles formed by femtosecond pulse laser ablation in water: Selfassembled fractal structures. J. Nanop. Res. 2015, 17, 86.

    Article  Google Scholar 

  49. Santillán, J. M. J.; Scaffardi, L. B.; Schinca, D. C. Quantitative optical extinction-based parametric method for sizing a single core–shell Ag–Ag2O nanoparticle. J. Phys. D 2011, 44, 105104.

    Article  Google Scholar 

  50. Lim, J.; Majetich, S. A. Composite magnetic–plasmonic nanoparticles for biomedicine: Manipulation and imaging. Nano Today 2013, 8, 98–113.

    Article  Google Scholar 

  51. Scaramuzza, S.; Agnoli, S.; Amendola, V. Metastable alloy nanoparticles, metal-oxide nanocrescents and nanoshells generated by laser ablation in liquid solution: Influence of the chemical environment on structure and composition. Phys. Chem. Chem. Phys., in press, DOI: 10.1039/C5CP00279F.

  52. Maenosono, S.; Lee, J.; Dao, A. T. N.; Mott, D. Peak shape analysis of Ag 3d core-level X-ray photoelectron spectra of Au@Ag core-shell nanoparticles using an asymmetric Gaussian-Lorentzian mixed function. Surf. Interface Anal. 2012, 44, 1611–1614.

    Article  Google Scholar 

  53. Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574.

    Article  Google Scholar 

  54. Naitabdi, A.; Ono, L. K.; Behafarid, F.; Cuenya, B. R. Thermal stability and segregation processes in self-assembled sizeselected AuxFe1-x nanoparticles deposited on TiO2 (110): Composition effects. J. Phys. Chem. C 2009, 113, 1433–1446.

    Article  Google Scholar 

  55. Santhi, K.; Thirumal, E.; Karthick, S. N.; Kim, H. J.; Narayanan, V.; Stephen, A. Structural and magnetic investigations on metastable Ag–Fe nanophase alloy. J. Alloys Compounds 2013, 557, 172–178.

    Article  Google Scholar 

  56. Lebugle, A.; Axelsson, U.; Nyholm, R.; Må rtensson, N. Experimental L and M core level binding energies for the metals 22Ti to 30Zn. Phys. Scripta 1981, 23, 825–827.

    Google Scholar 

  57. Alonso, J.; Fdez-Gubieda, M.; Svalov, A.; Meneghini, C.; Orue, I. Effects of thermal annealing on the magnetic interactions in nanogranular Fe–Ag thin films. J. Alloys Compounds 2012, 536, S271–S276.

  58. Wang, J. Q.; Xiao, G. Transition-metal granular solids: Microstructure, magnetic properties, and giant magnetoresistance. Phys. Rev. B 1994, 49, 3982–3996.

    Article  Google Scholar 

  59. Binns, C.; Maher, M. J.; Pankhurst, Q. A.; Kechrakos, D.; Trohidou, K. N. Magnetic behavior of nanostructured films assembled from preformed Fe clusters embedded in Ag. Phys. Rev. B 2002, 66, 184413.

    Article  Google Scholar 

  60. Malviya, K. D.; Chattopadhyay, K. Synthesis and mechanism of composition and size dependent morphology selection in nanoparticles of Ag-Cu alloys processed by laser ablation under liquid medium. J. Phys. Chem. C 2014, 118, 13228–13237.

    Article  Google Scholar 

  61. Yudanov, I. V.; Metzner, M.; Genest, A.; Ro?? sch, N. Sizedependence of adsorption properties of metal nanoparticles: A density functional study on palladium nanoclusters. J. Phys. Chem. C 2008, 112, 20269–20275.

    Article  Google Scholar 

  62. Panizon, E.; Bochicchio, D.; Rossi, G.; Ferrando, R. Tuning the structure of nanoparticles by small concentrations of impurities. Chem. Mater. 2014, 26, 3354–3356.

    Article  Google Scholar 

  63. Peng, Y.; Wang, F.; Wang, Z. R.; Alsayed, A. M.; Zhang, Z. X.; Yodh, A. G.; Han, Y. L. Two-step nucleation mechanism in solid-solid phase transitions. Nat. Mater. 2015, 14, 101–108.

    Article  Google Scholar 

  64. Wagener, P.; Ibrahimkutty, S.; Menzel, A.; Plech, A.; Barcikowski, S. Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid. Phys. Chem. Chem. Phys. 2013, 15, 3068–3074.

    Article  Google Scholar 

  65. Compagnini, G.; Messina, E.; Puglisi, O.; Nicolosi, V. Laser synthesis of Au/Ag colloidal nano-alloys: Optical properties, structure and composition. Appl. Surf. Sci. 2007, 254, 1007–1011.

    Article  Google Scholar 

  66. Tiedemann, D.; Taylor, U.; Rehbock, C.; Jakobi, J.; Klein, S.; Kues, W. A.; Barcikowski, S.; Rath, D. Reprotoxicity of gold, silver, and gold–silver alloy nanoparticles on mammalian gametes. Analyst 2014, 139, 931–942.

    Article  Google Scholar 

  67. Capelo, R. G.; Leppert, L.; Albuquerque, R. Q. The concept of localized atomic mobility: Unraveling properties of nanoparticles. J. Phys. Chem. C 2014, 118, 21647–21654.

    Article  Google Scholar 

  68. Link, S.; Burda, C.; Nikoobakht, B.; El-Sayed, M. A. Laserinduced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 2000, 104, 6152–6163.

    Article  Google Scholar 

  69. Andrews, M. P.; O'Brien, S. C. Gas-phase “molecular alloys” of bulk immiscible elements: Iron-silver (FexAgy). J. Phys. Chem. 1992, 96, 8233–8241.

    Article  Google Scholar 

  70. Amendola, V.; Meneghetti, M.; Granozzi, G.; Agnoli, S.; Polizzi, S.; Riello, P.; Boscaini, A.; Anselmi, C.; Fracasso, G.; Colombatti, M. et al. Top-down synthesis of multifunctional iron oxide nanoparticles for macrophage labelling and manipulation. J. Mater. Chem. 2011, 21, 3803–3813.

    Article  Google Scholar 

  71. McCarty, K. F.; Monti, M.; Nie, S.; Siegel, D. A.; Starodub, E.; El Gabaly, F.; McDaniel, A. H.; Shavorskiy, A.; Tyliszczak, T.; Bluhm, H. et al. Oxidation of magnetite(100) to hematite observed by in situ spectroscopy and microscopy. J. Phys. Chem. C 2014, 118, 19768–19777.

    Article  Google Scholar 

  72. Enzo, S.; Polizzi, S.; Benedetti, A. Applications of fitting techniques to the Warren-Averbach method for X-ray line broadening analysis. Z. Kristallogr. 1985, 170, 275–287.

    Article  Google Scholar 

  73. Riello, P.; Canton, P.; Fagherazzi, G. Quantitative phase analysis in semicrystalline materials using the Rietveld method. J. Appl. Crystallogr. 1998, 31, 78–82.

    Article  Google Scholar 

  74. D’Acapito, F.; Colonna, S.; Pascarelli, S.; Antonioli, G.; Balerna, A.; Bazzini, A.; Boscherini, F.; Campolungo, F.; Chini, G.; Dalba, G. et al. GILDA (Itlian Beamline) on Bu8. ESRF Newsletter 1998, 30, 42–44.

    Google Scholar 

  75. Draine, B. T.; Flatau, P. J. User Guide for the Discrete Dipole Approximation Code DDSCAT 7. 1, 2010. http.arxiv.org/abs/1002.1505v1 S (accessed Jun 15, 2014).

    Google Scholar 

  76. Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: New York, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Amendola.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amendola, V., Scaramuzza, S., Agnoli, S. et al. Laser generation of iron-doped silver nanotruffles with magnetic and plasmonic properties. Nano Res. 8, 4007–4023 (2015). https://doi.org/10.1007/s12274-015-0903-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0903-y

Keywords

Navigation