Skip to main content
Log in

In situ non-invasive characterization of pigments and alteration products on the masonry altar of S. Maria ad Undas (Idro, Italy)

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

A non-invasive characterization study has been performed and here presented for the first time on the masonry altar of S. Maria ad Undas, a parish medieval church on the Idro (Brescia, Italy) lakeshore. The determination of painting materials and of alteration products represent the one of the first steps, together with art history studies, of a wider project aimed to the valorization of the site. Images collected under UV light in fluorescence and reflectance mode provided useful information about the presence of organic residual materials attributable to the application of lost gilding details, while the readability of some particulars was greatly improved with respect to what observable in visible light. Moreover, near infrared (NIR) images led to hypothesize the presence of green earths in green painted areas. Raman and reflectance spectroscopy allowed the identification of the pigments and of several alteration products, such as plattnerite, which derived by the degradation of the lead-based ones, hydromagnesite, gypsum, and niter, as well as of carbon-based depositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aceto M, Agostino A, Fenoglio G, Idone A, Gulmini M, Picollo M, Ricciardi P, Delaney JK (2014) Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance spectrophotometry. Anal Methods 6:1488–1500

    Article  Google Scholar 

  • Aguayo T, Clavijo E, Eisner F, Ossa-Izquierdo C, Campos-Vallette MM (2011) Raman spectroscopy in the diagnosis of the wall painting History of Concepción, Chile. J Raman Spectrosc 42:2143–2148

    Article  Google Scholar 

  • Aibeo C, Castellucci EM, Matteini M, Sacchi B, Zoppi A, Lofrumento C (2008) A micro-Raman spectroscopy study of the formation of lead dioxide from lead white. In: Kroustallis S, Townsend JH, Bruquetas EC, Stijnman A, San Andres Moya M (eds) Art technology: sources and methods. Proceedings of the second symposium of the Art Technological Source Research Working Group. Archetype Publications, London, pp 138–140

    Google Scholar 

  • Aldrovandi A, Bertani D, Cetica M, Matteini M, Moles A, Poggi P, Tiano P (1988) Multispectral image processing of paintings. Stud Conserv 33:154–159

    Google Scholar 

  • Aliatis I, Bersani D, Campani E, Casoli A, Lottici PP, Mantovan S, Marino IG (2010) Pigments used in roman wall paintings in the Vesuvian area. J Raman Spectrosc 41:1537–1542

    Article  Google Scholar 

  • Angelini LG, Tozzi S, Bracci S, Quercioli F, Radicati B, Picollo M (2010) Characterization of traditional dyes of the Mediterranean area by non-invasive UV-vis-NIR reflectance spectroscopy. In: Conservation and the Eastern Mediterranean: contributions to the 2010 IIC Congress. The International Institute for Conservation of Historic and Artistic Works, Istanbul, pp.184–189

  • Bacci M, Baronti S, Casini A, Lotti F, Picollo M (1992) Non destructive spectroscopic investigations on paintings using optical fibers. In: Vandiver PB, Druzik JR, Wheeler GS, Freestone IC (eds) Materials issues in art and archaeology III. Materials Research Society symposium proceedings. Materials Research Society, Pittsburgh, pp 265–283

    Google Scholar 

  • Bacci M, Picollo M, Radicati B, Casini A, Lotti F, Stefani L (1998) Non-destructive investigation of wall painting pigments by means of fibre-optic reflectance spectroscopy. In: Science and technology for cultural heritage 7: 73–81

  • Bersani D, Berzioli M, Caglio S, Casoli A, Lottici PP, Medeghini L, Poldi G, Zannini P (2014) An integrated multi-analytical approach to the study of the dome wall paintings by Correggio in Parma cathedral. Microchem J 114:80–88

    Article  Google Scholar 

  • Bersani D, Lottici PP (2016) Raman spectroscopy of minerals and mineral pigments in archaeometry. J Raman Spectrosc 47:499–530

    Article  Google Scholar 

  • Bersani D, Lottici PP, Montenero A (1999) Micro-Raman investigation of iron oxide films and powders produced by sol–gel syntheses. J Raman Spectrosc 30:355–360

    Article  Google Scholar 

  • Best SP, Clark RJH, Daniels MAM, Porter CA, Withnall R (1995) Identification by Raman microscopy and visible reflectance spectroscopy of pigments on an Icelandic manuscript. Stud Conserv 40:31–40

    Google Scholar 

  • Bonneau A, Pearce DG, Pollard AM (2012) A multi-technique characterization and provenance study of the pigments used in San rock art, South Africa. J Archaeol Sci 39:287–294

    Article  Google Scholar 

  • Brooker MH, Sunder S, Taylor P, Lopata VJ (1983) Infrared and Raman spectra and X-ray diffraction studies of solid lead(II) carbonates. Can J Chem 61:494–502

    Article  Google Scholar 

  • Bruni S, Caglio S, Guglielmi V, Poldi G (2008) The joined use of n.i. spectroscopic analyses—FTIR, Raman, visible reflectance spectrometry and EDXRF—to study drawings and illuminated manuscripts. Appl Phys A-Mater 92:103–108

    Article  Google Scholar 

  • Bruni S, Cariati F, Consolandi L, Galli A, Guglielmi V, Ludwig N, Milazzo M (2002) Field and laboratory spectroscopic methods for the identification of pigments in a northern Italian eleventh century fresco cycle. Appl Spectrosc 57:827–833

    Article  Google Scholar 

  • Burgio L, Clark RJH, Firth S (2001) Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products. Analyst 126:222–227

    Article  Google Scholar 

  • Burgio L, Clark RJH, Hark RR (2010) Raman microscopy and x-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings. Proc Nat Acad Sci 107:5726–5731

    Article  Google Scholar 

  • Cañveras JC, Sanchez-Moral S, Sloer V, Saiz-Jimenez C (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J 18:223–240

    Article  Google Scholar 

  • Carcagnı P, Della Patria A, Fontana R, Greco M, Mastroianni M, Materazzi M, Pampaloni E, Pezzati L (2007) Multispectral imaging of paintings by optical scanning. Opt Laser Eng 45:360–367

    Article  Google Scholar 

  • Casadio F, Giangualano I, Pique F (2004) Organic materials in wall paintings: the historical and analytical literature. Stud Conserv 49:63–80

    Article  Google Scholar 

  • Cavaleri T, Giovagnolia A, Nervo M (2013) Pigments and mixtures identification by visible reflectance spectroscopy. Procedia Chem 8:45–54

    Article  Google Scholar 

  • Cheilakou E, Kartsonaki M, Koui M, Callet P (2009) A nondestructive study of the identification of pigments on monuments by colorimetry. Int J Microstruct Mat Prop 4:112–127

    Google Scholar 

  • Cheilakou E, Troullinos M, Koui M (2014) Identification of pigments on byzantine wall paintings from Crete (14th century AD) using non-invasive fiber optics diffuse reflectance spectroscopy (FORS). J Archaeol Sci 41:541–555

    Article  Google Scholar 

  • Clementi C, Nowik W, Romani A, Cibin F, Favaro G (2007) A spectrometric and chromatographic approach to the study of ageing of madder (Rubia tinctorum L.) dyestuff on wool. Anal Chim Acta 596:46–54

    Article  Google Scholar 

  • Correia AM, Clark RJH, Ribeiro MIM, Duarte MLTS (2007) Pigment study by Raman microscopy of 23 paintings by the Portuguese artist Henrique Pousão (1859–1884). J Raman Spectrosc 38:1390–1405

    Article  Google Scholar 

  • Cosentino A (2014a) Identification of pigments by multispectral imaging; a flowchart method. Herit Sci 2:8–20

    Article  Google Scholar 

  • Cosentino A (2014b) FORS spectral database of historical pigments in different binders. E-conserv J 2:53–65

    Google Scholar 

  • Cristini O, Kinowski C, Turrell S (2010) A detailed micro-Raman spectroscopic study of wall paintings of the period AD 100–200: effect of atmospheric conditions on the alteration of samples. J Raman Spectrosc 41:1410–1417

    Article  Google Scholar 

  • Cucci C, Picollo M, Vervat M (2012) Trans-illumination and trans-irradiation with digital cameras: potentials and limits of two imaging techniques used for the diagnostic investigation of paintings. J Cult Herit 13:83–88

    Article  Google Scholar 

  • Delaney JK, Walmsley E, Berrie BH, Fletcher CF (2003) Multispectral imaging of paintings in the infrared to detect and map blue pigments. In: Sackler AM (ed) Scientific examination of art: modern techniques in conservation and analysis. National Academy of Sciences, Washington, DC, pp 120–136

    Google Scholar 

  • Edwards HGM (2004) Probing history with Raman spectroscopy. Analyst 129:870–879

    Article  Google Scholar 

  • Edwards HGM, Farwell DW, Brooke CJ (2005) Raman spectroscopic study of a post-medieval wall painting in need of conservation. Anal Bioanal Chem 383:312–321

    Article  Google Scholar 

  • Elias M, Chartier C, Prévot G, Garay H, Vignaud C (2006) The colour of ochres explained by their composition. Sci Eng B-ADV 127:70–80

    Article  Google Scholar 

  • Frezzato F (2009) Ceninno Cennini: il libro dell’arte. Neri pozza editore, Vicenza

    Google Scholar 

  • Frost RL (2011) Raman spectroscopic study of the magnesium carbonate mineral hydromagnesite (Mg5[(CO3)4(OH)2]·4H2O). J Raman Spectrosc 42:1690–1694

    Article  Google Scholar 

  • Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates. Part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Min 20:1–18

    Google Scholar 

  • Giovannoni S, Matteini M, Moles A (1990) Studies and developments concerning the problem of altered lead pigments in WallPainting. Stud Conserv 35:21–25

    Google Scholar 

  • Gonçalves IG, Petter CO, Lepkoski Machado J (2012) Quantification of hematite and goethite concentrations in kaolin using diffuse reflectance spectroscopy: a new approach to Kubelka-Munk theory. Clay Clay Miner 60:473–483

    Article  Google Scholar 

  • Gonzalez V, Calligaro T, Wallez G, Eveno M, Toussaint K, Menu M (2016) Composition and microstructure of the lead white pigment in masters paintings using HR synchrotron XRD. Microchem J 125:43–49

    Article  Google Scholar 

  • Gonzalez V, Gourier D, Calligaro T, Toussaint K, Wallez G, Menu M (2017) Revealing the origin and history of lead-white pigments by their photoluminescence properties. Anal Chem 89:2909–2918

    Article  Google Scholar 

  • Gulmini M, Idone A, Diana E, Gastaldi D, Vaudan D, Aceto M (2013) Identification of dyestuffs in historical textiles: strong and weak points of a non-invasive approach. Dyes Pigments 98:136–145

    Article  Google Scholar 

  • Gunasekaran S, Anbalagan G, Pandi S (2006) Raman and infrared spectra of carbonates of calcite structure. J Raman Spectrosc 37:892–899

    Article  Google Scholar 

  • Heise HM, Kuckuk R, Ojha AK, Srivastava A, Srivastavad V, Asthanac BP (2009) Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite. J Raman Spectrosc 40:344–353

    Article  Google Scholar 

  • Hradil D, Grygar T, Hrušková M, Bezdička P, Lang K, Schneeweiss O, Chvátal M (2004) Green earth pigment from the Kadaň region, Czech Republic: use of rare Fe-rich smectite. Clays Clay Min 52:767–778

    Article  Google Scholar 

  • Irazola M, Olivares M, Castro K, Maguregui M, Martínez-Arkarazo I, Madariaga JM (2012) In situ Raman spectroscopy analysis combined with Raman and SEM-EDS imaging to assess the conservation state of 16th century wall paintings. J Raman Spectrosc 43:1676–1684

    Article  Google Scholar 

  • Irish DE, Davis AR (1968) Interactions in aqueous alkali metal nitrate solutions. Can J Chem 46:943–951

    Article  Google Scholar 

  • Jehlicka J, Vítek P, Edwards HGM, Hargreaves MD, Capoun T (2009) Fast detection of sulphateminerals (gypsum, anglesite, baryte) by a portable Raman spectrometer. J Raman Spectrosc 40:1082–1086

    Article  Google Scholar 

  • Kartsonaki M, Koui M, Callet P, Cheilakou E (2007) Non destructive identification of the colouring substances on the monuments studied by colorimetry. In: Proceedings of the 4th International Conference on NDT, Chania, 11th–14th October

  • Kotulanová E, Bezdicka P, Hradil D, Hradilová J, Svarcová S, Grygar T (2009) Degradation of lead-based pigments by salt solutions. J Cult Herit 10:367–378

    Article  Google Scholar 

  • Krishnamurti D (1956) Raman spectrum of magnesite. Proc Indian Acad Sc 43A:210–212

    Article  Google Scholar 

  • Lahlil S, Lebon M, Beck L, Rousselière H, Vignaud C, Reiche I, Menu M, Paillet P, Plassard F (2012) The first in situ micro-Raman spectroscopic analysis of prehistoric cave art of Rouffignac St-Cernin, France. J Raman Spectrosc 43:1637–1643

    Article  Google Scholar 

  • Laiz L, Recio D, Hennosin B, Saiz-Jimenez C (2000) Microbial communities in salt efflorescences. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. SpringerLink, New York, pp 77–88

    Chapter  Google Scholar 

  • Lauwers D, Hutado AG, Tanevska V, Moens L, Bersani D, Vandenabeele P (2014) Characterisation of a portable Raman spectrometer for in situ analysis of art objects. Spectrochim Acta A-M 118:294–301

    Article  Google Scholar 

  • Legnaioli S, Lorenzetti G, Cavalcanti GH, Grifoni E, Marras L, Tonazzini A, Salerno E, Pallecchi P, Giachi G, Palleschi V (2013) Recovery of archaeological wall paintings using novel multispectral imaging approaches. Herit Sci 1:33–42

    Article  Google Scholar 

  • Legodi MA, de Waal D (2007) The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes Pigments 74:161–168

    Article  Google Scholar 

  • Leona M, Winter J (2001) Fiber optics reflectance spectroscopy: a unique tool for the investigation of Japanese paintings. Stud. Conserv 46:153–162

    Google Scholar 

  • Liang H (2012) Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl Phys A-Mater 106:309–323

    Article  Google Scholar 

  • Liang H, Saunders D, Cupitt J, Lahanier C (2004) Multispectral imaging of easel wall paintings. In: Agnew N (ed) Conservation of ancient sites on the silk road: proceedings of the second international conference on the conservation of grotto sites. The Getty Conservation Institute, Los Angeles, pp 267–274

    Google Scholar 

  • Liu QS, Torrent J, Barrón V, Duan ZQ, Bloemendal J (2011) Quantification of hematite from the visible diffuse reflectance spectrum: effects of aluminium substitution and grain morphology. J Clay Miner 46:137–147

    Article  Google Scholar 

  • Maguregui M, Knutinen U, Castro K, Madariaga JM (2010) Raman spectroscopy as a tool to diagnose the impact and conservation state of Pompeian second and fourth style wall paintings exposed to diverse environments (House of Marcus Lucretius). J R Spectrosc 41:1400–1409

    Article  Google Scholar 

  • Martınez-Arkarazo I, Smith DC, Zuloaga O, Olazabal MA, Madariaga JM (2008) Evaluation of three different mobile Raman microscopes employed to study deteriorated civil building stones. J Raman Spectrosc 39:1018–1029

    Article  Google Scholar 

  • Mathew X, Enriquez JP, Mejía-García C, Contreras-Puente G, Cortes-Jacome MA, Toledo Antonio JA, Hays J, Punnoose A (2006) Structural modifications of SnO2 due to the incorporation of Fe into the lattice. J Appl Phys 100:073907-1–073907-7

    Google Scholar 

  • Mertes S, Dippel B, Schwarzenböck A (2004) Quantication of graphitic carbon in atmospheric aerosol particles by Raman spectroscopy and first application for the determination of mass absorption efficiencies. Aerosol Sci 35:347–361

    Article  Google Scholar 

  • Mestl G, Rosynek MP, Lunsford JH (1997) Decomposition of nitric oxide over barium oxide supported on magnesium oxide. 2. In situ Raman characterization of phases present during the catalytic reaction. J Phys Chem B 101:9321–9328

    Article  Google Scholar 

  • Montagnac G, Caracas R, Bobocioiu E, Vittoz F, Reynard B (2013) Anharmonicity of graphite from UV Raman spectroscopy to 2700 K. Carbon 54:68–75

    Article  Google Scholar 

  • Morris RV, Lauer HV Jr, Lawson CA, Gibson EK Jr, Nace GA, Stewart C (1985) Spectral and other physicochemical properties of submicron powders of hematite (−Fe2O3), Maghemite (7-Fe2O3), magnetite (Fe3O4), goethite (-FeOOH), and Lepidocrocite (7-FeOOH). J Geophys Res 90:3126–3144

    Article  Google Scholar 

  • Mosca S, Frizzi T, Pontone M, Alberti R, Bombelli L, Capogrosso V, Nevin A, Valentini G, Comelli D (2016) Identification of pigments in different layers of illuminated manuscripts by X-ray fluorescence mapping and Raman spectroscopy. Microchem J 124:775–784

    Article  Google Scholar 

  • Nakamura R, Tanaka Y, Ogata A, Naruse M (2009) Dye analysis of Shosoin textiles using excitation-emission matrix fluorescence and ultraviolet-visible reflectance spectroscopic techniques. Anal Chem 81:5691–5698

    Article  Google Scholar 

  • Nassau K (1996) The physics and chemistry of color: the fifteen causes of color. John Wiley & Sons, New York

    Google Scholar 

  • Pelagotti A, Del Mastio A, De Rosa A, Piva A (2008) Multispectral imaging of paintings. IEEE Signal Proc Mag 25:27–36

    Article  Google Scholar 

  • Perez-Rodriguez JL, Robador MD, Centeno MA, Siguenza B, Duran A (2014) Wall paintings studied using Raman spectroscopy: a comparative study between various assays of cross sections and external layers. Spectrochim Acta A-M 120:602–609

    Article  Google Scholar 

  • Petushkova JP, Lyalikova NN (1986) Microbiological degradation of lead-containing pigments in mural paintings. Stud Conserv 31:65–69

    Google Scholar 

  • Picollo M, Bacci M, Casini A, Lotti F, Porcinai S, Radicati B, L. Stefani (2002) Fiber optics reflectance spectroscopy: a non-destructive technique for the analysis of works of art. In: Optical sensors and microsystems: new concepts, materials, technologies, Martellucci S, Chester AN, Mignani AG (eds) Springer, pp. 259–265

  • Poldi G, Caglio S (2013) Phthalocyanine identification in paintings by reflectance spectroscopy. a laboratory and in situ study. Opt Spectrosc 114:929–935

    Article  Google Scholar 

  • Potgieter-Vermaak SS, RHM G, Van Grieken R, Potgieter JH, Oujja M, Castillejo M (2005) Micro-structural characterization of black crust and laser cleaning of building stones by micro-Raman and SEM techniques. Spectrochim Acta A-M 61:2460–2467

    Article  Google Scholar 

  • Ranalli G, Matteini M, Tosini I, Zanardini E, Sorlini C (2000) Bioremediation of cultural heritage: removal of sulphates, nitrates and organic substances. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. SpringerLink, New York, pp 231–245

    Chapter  Google Scholar 

  • Rosado T, Gil M, Mirao J, Candeias A, Caldeira AT (2016) Darkening on lead-based pigments: microbiological contribution. COLOR Res Appl 41:294–298

    Article  Google Scholar 

  • Salvadori B, Errico V, Mauro M, Melnik E, Dei L (2003) Evaluation of gypsum and calcium oxalates in deteriorated mural paintings by quantitative FTIR spectroscopy. Spectrosc Lett 36:501–513

    Article  Google Scholar 

  • Seccamani R (1982) Relazione sulle condizioni conservative della Pieve di Idro, Idro

  • Sidgwick NV (1950) The chemical elements and their compounds. Clarendon Press, Oxford

    Google Scholar 

  • Smith GD, Burgio L, Firth S, Clark RJH (2001) Laser-induced degradation of lead pigments with reference to Botticelli’s Trionfo d’Amore. Anal Chim Acta 440:185–188

    Article  Google Scholar 

  • Stanzani E, Bersani D, Lottici PP, Colomban PH (2016) Analysis of artist’s palette on a 16th century wood panel painting by portable and laboratory Raman instruments. Vib Spectrosc 85:62–70

    Article  Google Scholar 

  • Sun J, Wu Z, Cheng H, Zhang Z, Frost RL (2014) A Raman spectroscopic comparison of calcite and dolomite. Spectrochim Acta A-M 117:158–162

    Article  Google Scholar 

  • Sze SK, Siddique N, Sloan JJ, Escribano R (2001) Raman spectroscopic characterization of carbonaceous aerosols. Atm Envir 35:561–568

    Article  Google Scholar 

  • Tang IN, Fung KH (1989) Characterization of inorganic salt particles by Raman spectroscopy. J Aerosol Sci 20:609–617

    Article  Google Scholar 

  • Torrent J, Barrón V (2003) The visible diffuse reflectance Spectrum in relation to the color and crystal properties of hematite. Clay Clay Miner 51:309–317

    Article  Google Scholar 

  • Vandenabeele P, Edwards HGM, Jehlicka J (2014) The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem Soc Rev 43:2628–2649

    Article  Google Scholar 

  • Vandenabeele P, Tate J, Moens L (2007) Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy. Anal Bioanal Chem 387:813–819

    Article  Google Scholar 

  • Vandenabeele P, von Bohlen A, Moens L, Klockenkamper R, Joukes F, Dewispelaere G (2000) Spectroscopic examination of two Egyptian masks: a combined method approach. Anal Lett 33:3315–3332

    Article  Google Scholar 

  • Welcomme E, Walter P, Bleuet P, Hodeau JL, Dooryhee E, Martinetto P, Menu M (2007) Classification of lead white pigments using synchrotron radiation micro X-ray diffraction. Appl Phys A Mater Sci Process 89:825–832

    Article  Google Scholar 

  • Williams Q, Collerson B, Knittle E (1992) Vibrational spectra of magnesite (MgCO3) and calcite-ill at high pressures. Am Mineral 77:1158–1165

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to Mgr. F. Pellegrini (Diocese of Brescia) for allowing access and carrying out the investigation and to Dr. M. Vallotti (Catholic University of Brescia). Authors are also indebted to Prof. P.P. Lottici (Department of Mathematical, Physical and Computer Sciences, University of Parma, Italy) for providing the Plattnerite standard.

Funding

Authors gratefully acknowledge the financial support of Madatec srl (Pessano con Bornago, MI, Italy) in the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Pojana.

Additional information

Highlights

• Three never studied painted masonry altars exist in the Brescia province

• A non-invasive characterization of the S. Maria ad Undas altar is presented

• UV and NIR imaging allowed formulating hypothesis on pigment composition

• Raman and FORS data on pigment and alteration phase compositions are stated

Electronic supplementary material

Online resource 1.

S. Maria ad Undas, Idro: a West and South sides; b East side: semicircular apse and bell tower. (GIF 261 kb)

High-resolution image (TIFF 25226 kb)

Online resource 2.

S. Maria ad Undas, Idro, inner part: a single nave and transverse arches; b the abse and the altar (JPEG 333 KB)

Online resource 3.

S. Maria ad Undas Church 3D rendering (WMV 188104 kb)

Online resource 4.

Masonry altar in the S. Maria ad Undas church, Idro. Detail of the Christogram. (JPEG 1018 kb)

Online resource 5.

S. Maria ad Undas Altar and Saints attributed names. (GIF 333 kb)

High-resolution image (TIFF 28778 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Ferri, L., Mazzini, F., Vallotto, D. et al. In situ non-invasive characterization of pigments and alteration products on the masonry altar of S. Maria ad Undas (Idro, Italy). Archaeol Anthropol Sci 11, 609–625 (2019). https://doi.org/10.1007/s12520-017-0550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-017-0550-1

Keywords

Navigation