Skip to main content
Log in

Effects of polydispersity and anisotropy in colloidal and protein solutions: An integral equation approach

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Application of integral equation theory to complex fluids is reviewed, with particular emphasis to the effects of polydispersity and anisotropy on their structural and thermodynamic properties. Both analytical and numerical solutions of integral equations are discussed within the context of a set of minimal potential models that have been widely used in the literature. While other popular theoretical tools, such as numerical simulations and density functional theory, are superior for quantitative and accurate predictions, we argue that integral equation theory still provides, as in simple fluids, an invaluable technique that is able to capture the main essential features of a complex system, at a much lower computational cost. In addition, it can provide a detailed description of the angular dependence in arbitrary frame, unlike numerical simulations where this information is frequently hampered by insufficient statistics. Applications to colloidal mixtures, globular proteins and patchy colloids are discussed, within a unified framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldini, G., Beretta, S., Chirico, G., Franz, H., Maccioni, E., Mariani, P., Spinozzi, F. 1999. Salt induced association of β-lactoglobulin studied by salt light and X-ray scattering. Macromolecules 32, 6128–6138.

    Article  CAS  Google Scholar 

  2. Baxter, R.J. 1978. Percus-Yevick equation for hard spheres with surface adhesion. J Chem Phys 49, 2770–2774.

    Article  Google Scholar 

  3. Blum, L. 1975. Mean spherical model for asymmetric electrolytes. I. Method of solution. Mol Phys 30, 1529–1535.

    Article  CAS  Google Scholar 

  4. Blum, L., Høye, J.S. 1978. Solution of the Ornstein-Zernike equation with Yukawa closure for a mixture. J Stat Phys 19, 317–324.

    Article  Google Scholar 

  5. Blum, L., Stell, G. 1979. Polydisperse systems. I. Scattering function for polydisperse fluids of hard or permeable spheres. J Chem Phys 71, 42–46.

    Article  CAS  Google Scholar 

  6. Carsughi, F., Giacometti, A., Gazzillo, D. 2000. Small Angle Scattering data analysis for dense polydisperse systems: The FLAC program. Comput Phys Commun 133, 66–75.

    Article  CAS  Google Scholar 

  7. Ciccariello, S., Gazzillo, D. 1982. A new form of the correction to the Coulombic contribution in the McMillan-Mayer ion-ion potential. Chem Phys Letts 93, 31–34.

    Article  CAS  Google Scholar 

  8. Ciccariello, S., Gazzillo, D. 1983. Thermodynamical behaviour and radial distribution functions of dilute systems of charged rigid spheres. Mol Phys 48, 1369–1381.

    Article  CAS  Google Scholar 

  9. Ciccariello, S., Gazzillo, D. 1985. A reasonable candidate for the McMillan-Mayer ion-ion potential of strong 1-1 electrolytes. J Chem Soc, Faraday Trans 2,81, 1163–1177.

    Google Scholar 

  10. Ciccariello, S., Gazzillo, D., Dejak, C. 1982. “Effective” dipolar forces in electrolytic solutions of structure-breaking salts. J Phys Chem 86, 2986–2994.

    Article  CAS  Google Scholar 

  11. Debye, P., Hückel, E. 1923. Zur Theorie der Elektrolyten. I. Gefrierpunktserniedrigung und verwandte Erscheinungen (On the Theory of Electrolytes. I. Freezing Point Depression and Related Phenomena). Physicalische Zeit 24, 185–206.

    CAS  Google Scholar 

  12. El Mendoub, E.B., Wax, J.F., Charpentier, I., Jakse, N. 2008. Integral equation study of the square-well fluid for varying attraction range. Mol Phys 106, 2667–2675.

    Article  Google Scholar 

  13. Fantoni, R., Gazzillo, D., Giacometti, A. 2005a. Stability boundaries, percolation threshold, and two-phase coexistence for polydisperse fluids of adhesive colloidal particles. J Chem Phys 122, 034901-1–15.

    Article  Google Scholar 

  14. Fantoni, R., Gazzillo, D., Giacometti, A. 2005b. Thermodynamic instabilities of a binary mixture of sticky hard spheres. Phys Rev E 72, 011503-1–15.

    Google Scholar 

  15. Fantoni, R., Gazzillo, D., Giacometti, A., Sollich, P. 2006. Phase behaviour of weakly polydisperse sticky hard spheres. Perturbation theory for the Percus-Yevick solution. J Chem Phys 125, 164504-1–16.

    Article  Google Scholar 

  16. Fantoni, R., Gazzillo, D., Giacometti, A., Miller, M.A., Pastore, G. 2007. Patchy sticky hard spheres: Analytical study and Monte Carlo simulations. J Chem Phys 127, 234507-1–16.

    Article  Google Scholar 

  17. Gazzillo, D. 2010. Dipolar sticky hard spheres within the Percus-Yevick approximation plus orientational linearization. J Chem Phys 133, 034511-1–13.

    Google Scholar 

  18. Gazzillo, D. 2011. Fluids of hard spheres with dipolarlike patch interactions and effect of adding an isotropic adhesion. Mol Phys 109, 55–64.

    Article  CAS  Google Scholar 

  19. Gazzillo, D., Giacometti, A. 2000. Structure factors for the simplest solvable model of polydisperse colloidal fluids with surface adhesion. J Chem Phys 113, 9837–9848.

    Article  CAS  Google Scholar 

  20. Gazzillo, D., Giacometti, A. 2002. Polydisperse fluid mixtures of adhesive colloidal particles. Physica A 304, 202–210.

    Article  CAS  Google Scholar 

  21. Gazzillo, D., Giacometti, A. 2003a. Pathologies in the sticky limit of hard sphere Yukawa models for colloidal fluids: A possible correction. Mol Phys 101, 2171–2179.

    Article  CAS  Google Scholar 

  22. Gazzillo, D., Giacometti, A. 2003b. Structure factor for polydisperse fluids of particles with surface adhesion. J Appl Cryst 36, 832–835.

    Article  CAS  Google Scholar 

  23. Gazzillo, D., Giacometti, A. 2004. Analytic solutions for Baxter’s model of sticky hard sphere fluids within closures different from the Percus-Yevick approximation. J Chem Phys 120, 4742–4754.

    Article  PubMed  CAS  Google Scholar 

  24. Gazzillo, D., Giacometti, A., Carsughi, F. 1997. Scattering functions for multicomponent mixtures of charged hard spheres, including the polydisperse limit. Analytic expressions in the Mean Spherical Approximation. J Chem Phys 107, 10141–10153.

    Article  CAS  Google Scholar 

  25. Gazzillo, D., Giacometti, A., Della Valle, R.G., Venuti, E., Carsughi, F. 1999a. A scaling approximation for structure factors in the integral equation theory of polydisperse nonionic colloidal fluids. J Chem Phys 111, 7636–7645.

    Article  CAS  Google Scholar 

  26. Gazzillo, D., Giacometti, A., Carsughi, F. 1999b. Corresponding-states approach to small-angle scattering from polydisperse ionic colloidal fluids. Phys Rev E 60, 6722–6733.

    Article  CAS  Google Scholar 

  27. Gazzillo, D., Giacometti, A., Fantoni, R., Sollich, P. 2006a. Multicomponent adhesive hard sphere models and short-ranged attractive interactions in colloidal or micellar solutions. Phys Rev E 74, 051407-1–14.

    Article  Google Scholar 

  28. Gazzillo, D., Giacometti, A., Fantoni, R. 2006b. Phase behaviour of polydisperse sticky-hard-sphere fluids: Analytical solutions and perturbation theory. Mol Phys 104, 3451–3459.

    Article  CAS  Google Scholar 

  29. Gazzillo, D., Fantoni, R., Giacometti, A. 2008. Fluids of spherical molecules with dipolarlike nonuniform adhesion: An analyitically solvable anisotropic model. Phys Rev E 78, 0212010-1–20.

    Article  Google Scholar 

  30. Gazzillo, D., Fantoni, R., Giacometti, A. 2009. Local orientational ordering in fluids of spherical molecules with dipolarlike anisotropic adhesion. Phys Rev E 80, 061207-1–7.

    Article  Google Scholar 

  31. Giacometti, A., Gazzillo, D., Pastore, G., Kanti Das, T. 2005. Numerical study of a binary Yukawa model in regimes characteristic of globular proteins in solutions. Phys Rev E 71, 031108-1–10.

    Article  Google Scholar 

  32. Giacometti, A., Lado, F., Largo, J., Pastore, G., Sciortino, F. 2009a. Phase diagram and structural properties for one-patch particles. J Chem Phys 131, 174114-1–14.

    Article  Google Scholar 

  33. Giacometti, A., Pastore, G., Lado, F. 2009b. Liquidvapor coexistence in square-well fluids: A RHNC study. Mol Phys 107, 555–562.

    Article  CAS  Google Scholar 

  34. Giacometti, A., Lado, F., Largo, J., Pastore, G., Sciortino, F. 2010. Effect of patch size and number within a simple model of patchy particles. J Chem Phys 132, 174110-1–15.

    Article  Google Scholar 

  35. Ginoza, M. 1990. Simple MSA solution and thermodynamic theory in a hard-sphere Yukawa system. Mol Phys 71, 145–156.

    Article  CAS  Google Scholar 

  36. Ginoza, M., Yasutomi, M. 1997. Analytical model of the equation of state of the hard sphere Yukawa polydisperse fluid: Interaction polydispersity effect. Mol Phys 91, 59–63.

    Article  CAS  Google Scholar 

  37. Ginoza, M., Yasutomi, M. 1998a. Analytical model of the static structure factor of a colloidal dispersion: interaction polydispersity effect. Mol Phys 93, 399–404.

    Article  CAS  Google Scholar 

  38. Ginoza, M., Yasutomi, M. 1998b. Analytical structure factors for colloidal fluids with size and interaction polydispersities. Phys Rev E 58, 3329–3333.

    Article  CAS  Google Scholar 

  39. Ginoza, M., Yasutomi, M. 1998c. Analytical model for the thermodynamic properties of a colloidal dispersion with size and’ charge’ polidispersities. Mol Phys 95, 163–167.

    Article  CAS  Google Scholar 

  40. Gray, C.G., Gubbins K.E. 1984. Theory of Molecular Fluids, Vol. I. Clarendon Press, Oxford.

    Google Scholar 

  41. Hansen, J.P., McDonald, I.R. 2006. Theory of Simple Liquids, 3rd Edition. Academic Press, Amsterdam.

    Google Scholar 

  42. Hong, L., Cacciuto, A., Luijten, E., Granick, S. 2008. Cluster of amphiphilic colloidal spheres. Langmuir 24, 621–625.

    Article  PubMed  CAS  Google Scholar 

  43. Høye, J.S., Stell, G. 1977. New self-consistent approximations for ionic and polar fluids. J Chem Phys 67, 524–529.

    Article  Google Scholar 

  44. Jackson, G., Chapman, W.G., Gubbins, K.E. 1988. Phase equilibra of associating fluids: Chain molecules with multiple bonding sites. Mol Phys 65, 1057–1079.

    Article  Google Scholar 

  45. Kahl, G., Schöll-Paschinger, E., Stell, G. 2002. Phase transition and critical behavior of simple fluids and their mixtures. J Phys: Condens Mat 14, 9153–9169.

    Article  CAS  Google Scholar 

  46. Kern, N., Frenkel, D. 2003. Fluid-fluid coexistence in colloidal systems with short-ranged strongly directional attractions. J Chem Phys 118, 9882–9889.

    Article  CAS  Google Scholar 

  47. Lado, F. 1982a. A local thermodynamic criterion for the Reference-Hypernetted Chain equation. Phys Lett A 89, 196–198.

    Article  Google Scholar 

  48. Lado, F. 1982b. Integral equations for fluids of linear molecules. I. General formulation. Mol Phys 47, 283–298.

    Article  CAS  Google Scholar 

  49. Lado, F. 1982c. Integral equations for fluids of linear molecules. II. Hard dumbell solution. Mol Phys 47, 299–312.

    Article  CAS  Google Scholar 

  50. Morita, T. 1960. Theory of classical fluids: Hypernetted chain approximation III. Prog Theor Phys 23, 829–845.

    Article  Google Scholar 

  51. Pawar, A.B., Kretzchmar, I. 2010. Fabrication, assembly, and application of patchy particles. Macromol Rapid Commun 31, 150–168.

    Article  PubMed  CAS  Google Scholar 

  52. Pini, D., Stell, G., Wilding, N.B. 1998. A liquid-state theory that remains successful in the critical region. Mol Phys 95, 483–494.

    Article  CAS  Google Scholar 

  53. Santos, A., Fantoni, R., Giacometti, A. 2009. Thermodynamic consistency of energy and virial routes: An exact proof within the linearized Debye-Hückel theory. J Chem Phys 131, 181105-1–3.

    Article  Google Scholar 

  54. Schöll-Paschinger, E., Levesque, D., Weiss, J.J., Kahl, G. 2005. Phase diagram of a binary symmetric hardcore Yukawa mixtures. J Chem Phys 122, 024507-1–7.

    Article  Google Scholar 

  55. Sciortino, F., Giacometti, A., Pastore, G. 2009. Phase diagram of Janus particles. Phys Rev Lett 103, 237801-1–4.

    Article  Google Scholar 

  56. Sciortino, F., Giacometti, A., Pastore, G. 2010. A numerical study of one-patch colloidal particles: from square-well to Janus. Phys Chem Chem Phys 12, 11869–11877.

    Article  PubMed  CAS  Google Scholar 

  57. Spinozzi, F., Gazzillo, D., Giacometti, A., Mariani, P., Carsughi, F. 2002. Interaction of proteins in solution from smallangle scattering: a perturbative approach. Biophys J 82, 2165–2175.

    Article  PubMed  CAS  Google Scholar 

  58. Stell, G. 1991. Sticky spheres and related systems. J Stat Phys 63, 1203–1221.

    Article  Google Scholar 

  59. Triolo, R., Blum, L., Floriano, M.A. 1977. Simple electrolytes in the Mean Spherical Approximation. III. A workable model for aqueous solutions. J Chem Phys 67, 5956–5959.

    Article  CAS  Google Scholar 

  60. Triolo, R., Blum, L., Floriano, M.A. 1978. Simple electrolytes in the Mean Spherical Approximation. II. Study of a refined model. J Phys Chem 82, 1368–1370.

    Article  CAS  Google Scholar 

  61. Vervey, E.J., Overbeek, J.T.G. 1948. Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam.

    Google Scholar 

  62. Vrij, A. 1978. Light scattering of a concentrated multicomponent system of hard spheres in the Percus-Yevick approximation. J Chem Phys 69, 1742–1747.

    Article  CAS  Google Scholar 

  63. Walther, A., Müller, A.H. 2008. Janus particles. Soft Matter 4, 663–668.

    Article  CAS  Google Scholar 

  64. White, R.P., Lipson, J.E.G. 2007. Square-well mixtures: a study of their coexistence using theory and simulations. Mol Phys 105, 1983–1997.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Domenico Gazzillo or Achille Giacometti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gazzillo, D., Giacometti, A. Effects of polydispersity and anisotropy in colloidal and protein solutions: An integral equation approach. Interdiscip Sci Comput Life Sci 3, 251–265 (2011). https://doi.org/10.1007/s12539-011-0106-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-011-0106-5

Key words

Navigation