Skip to main content

Advertisement

Log in

Valorization of Biomass Gasification Char as Filler in Polymers and Comparison with Carbon Black

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Char, the solid residue produced during biomass gasification, is usually treated as a waste with high environmental and economic costs associated to its disposal. However, char shows remarkable properties that make it suitable for a plethora of different applications. In particular, this study aims at investigating the feasibility of using char as filler in polymers for boosting polymer thermal stability and electrical conductivity, and comparing its performances with carbon black (CB), a more traditional carbonaceous filler. Char residues were collected from a commercial biomass gasifier, thoroughly characterized, and compared with CB. Both materials were used in combination with a styrene–ethylene–butylene–styrene (SEBS) matrix for the production of two different compounds, deeply characterized as well. An addition of 44 wt% of char increases the thermal stability of the compound and its electrical conductivity up to 2 × 10−3 S cm−1, without interfering with its structure and mechanical properties. Less CB (20 wt%) was needed for obtaining composites with the same electrical conductivity. The findings of this study pave the way for new valorization routes for large amounts of char in cutting-edge applications and present the opportunity to the polymer manufacturing to use a high-available and low-cost substitute for carbon-based fillers.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Basu, P.: Biomass gasification and pyrolysis practical design and theory. Elsevier, Oxford (2010). https://doi.org/10.1016/B978-0-12-374988-8.00001-5

    Book  Google Scholar 

  2. Benedetti, V., Patuzzi, F., Baratieri, M.: Gasification char as a potential substitute of activated carbon in adsorption applications. Energy Procedia (2017). https://doi.org/10.1016/j.egypro.2017.03.380

    Article  Google Scholar 

  3. Basso, D., Patuzzi, F., Antolini, D., Ail, S.S., Cordioli, E., Benedetti, V., Tirler, W., Dal Savio, S., Rizzo, A.M., Chiaramonti, D., Gasparella, A., Baratieri, M.: Novel extension of biomass poly-generation to small scale gasification systems in South-Tyrol. In: Proceedings of the 26th Eur. Biomass Conf. Exhib., ETA-Florence Renewable Energies, Copenhagen, Denmark (2018)

  4. Benedetti, V., Patuzzi, F., Baratieri, M.: Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. Appl. Energy. 227, 92–99 (2018). https://doi.org/10.1016/j.apenergy.2017.08.076

    Article  Google Scholar 

  5. Nanda, S., Dalai, A.K., Berruti, F., Kozinski, J.A.: Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valorization. 7, 201–235 (2016). https://doi.org/10.1007/s12649-015-9459-z

    Article  Google Scholar 

  6. Xin, H.H.: Development of biochar filled high density polyethilene composite. Universiti Tunku Abdul Rahman (2016).

  7. Byrne, M.T., Guin’Ko, Y.K.: Recent advances in research on carbon nanotube–polymer composites. Adv. Mater. 22, 1672–1688 (2010). https://doi.org/10.1002/adma.200901545

    Article  Google Scholar 

  8. Spahr, M.E., Gilardi, R., Bonacchi, D.: Carbon black for electrically conductive polymer applications. Encycl. Polym. Compos. (2014). https://doi.org/10.1007/978-3-642-37179-0_32-1

    Article  Google Scholar 

  9. Kasgoz, A., Akın, D., Durmus, A.: Rheological and electrical properties of carbon black and carbon fiber filled cyclic olefin copolymer composites. Compos. Part B Eng. 62, 113–120 (2014). https://doi.org/10.1016/J.COMPOSITESB.2014.02.017

    Article  Google Scholar 

  10. Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., Bhowmick, A.K.: A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36, 638–670 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.003

    Article  Google Scholar 

  11. Chen, Y., Gao, J., Yan, Q., Hou, X., Shu, S., Wu, M., Jiang, N., Li, X., Xu, J., Lin, C., Yu, J.: Advances in graphene-based polymer composites with high thermal conductivity. Versucript Funct. Nanomater. 2, 1–17 (2018). https://doi.org/10.22261/OOSB06

    Article  Google Scholar 

  12. Das, O., Sarmah, A.K., Bhattacharyya, D.: A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites. Waste Manage. 38, 132–140 (2015). https://doi.org/10.1016/j.wasman.2015.01.015

    Article  Google Scholar 

  13. Das, O., Sarmah, A.K., Zujovic, Z., Bhattacharyya, D.: Characterisation of waste derived biochar added biocomposites: chemical and thermal modifications. Sci. Total Environ. 550, 133–142 (2016). https://doi.org/10.1016/j.scitotenv.2016.01.062

    Article  Google Scholar 

  14. Peterson, S.C., Chandrasekaran, S.R., Sharma, B.K.: Birchwood biochar as partial carbon black replacement in styrene-butadiene rubber composites. J. Elastomers Plast. 48, 305–316 (2015). https://doi.org/10.1177/0095244315576241

    Article  Google Scholar 

  15. Nan, N., DeVallance, D.B., Xie, X., Wang, J.: The effect of bio-carbon addition on the electrical, mechanical, and thermal properties of polyvinyl alcohol/biochar composites. J. Compos. Mater. 50, 1161–1168 (2016). https://doi.org/10.1177/0021998315589770

    Article  Google Scholar 

  16. Thines, K.R., Abdullah, E.C., Mubarak, N.M., Ruthiraan, M.: Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: s review. Renew. Sustain. Energy Rev. 67, 257–276 (2017). https://doi.org/10.1016/j.rser.2016.09.057

    Article  Google Scholar 

  17. Zaverl, M.J., Misra, M., Mohanty, A.K.: Using factorial statistical method for optimising co-injected biochar composites. In: Proc. 19th Int. Conf. Compos. Mater., Montreal, Quebec, Canada, pp. 7802–7809 (2013)

  18. Ahmetli, G., Kocaman, S., Ozaytekin, I., Bozkurt, P.: Epoxy composites based on inexpensive char filler obtained from plastic waste and natural resources. Polym. Compos. (2013)

  19. Giorcelli, M, Khan, A.A., Tagliaferro, A., Savi, P., Berruti, F.: Microwave characterization of polymer composite based on Biochar: a comparison of composite behaviour for Biochar and MWCNTs. In: Proc. Int. Nanoelectron. Conf. INEC. 2016-Octob (2016). https://doi.org/10.1109/INEC.2016.7589387

  20. Giorcelli, M., Khan, A., Pugno, N.M., Rosso, C., Tagliaferro, A.: Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties. Biomass Bioenergy 120, 219–223 (2019). https://doi.org/10.1016/j.biombioe.2018.11.036

    Article  Google Scholar 

  21. Poulose, A.M., Elnour, A.Y., Anis, A., Shaikh, H., Al-Zahrani, S.M., George, J., Al-Wabel, M.I., Usman, A.R., Ok, Y.S., Tsang, D.C.W., Sarmah, A.K.: Date palm biochar-polymer composites: an investigation of electrical, mechanical, thermal and rheological characteristics. Sci. Total Environ. 619–620, 311–318 (2018). https://doi.org/10.1016/j.scitotenv.2017.11.076

    Article  Google Scholar 

  22. Zhang, Q., Yi, W., Li, Z., Wang, L., Cai, H.: Mechanical properties of rice husk biochar reinforced high density polyethylene composites. Polymers (Basel). 10, 1–10 (2018). https://doi.org/10.3390/polym10030286

    Article  Google Scholar 

  23. Ho, M.P., Lau, K.T., Wang, H., Hui, D.: Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Compos. Part B Eng. 81, 14–25 (2015). https://doi.org/10.1016/j.compositesb.2015.05.048

    Article  Google Scholar 

  24. Richard, S., Rajadurai, J.S., Manikandan, V.: Influence of particle size and particle loading on mechanical and dielectric properties of biochar particulate-reinforced polymer nanocomposites. Int. J. Polym. Anal. Charact. 21, 462–477 (2016). https://doi.org/10.1080/1023666X.2016.1168602

    Article  Google Scholar 

  25. Myllytie, P., Misra, M., Mohanty, A.K.: Carbonized lignin as sustainable filler in biobased poly(trimethylene terephthalate) polymer for injection molding applications. ACS Sustain. Chem. Eng. 4, 102–110 (2016). https://doi.org/10.1021/acssuschemeng.5b00796

    Article  Google Scholar 

  26. Nagarajan, V., Mohanty, A.K., Misra, M.: Biocomposites with size-fractionated biocarbon: Influence of the microstructure on macroscopic Properties. ACS Omega 1, 636–647 (2016). https://doi.org/10.1021/acsomega.6b00175

    Article  Google Scholar 

  27. Nizamuddin, S., Jadhav, A., Qureshi, S.S., Baloch, H.A., Siddiqui, M.T.H., Mubarak, N.M., Griffin, G., Madapusi, S., Tanksale, A., Ahamed, M.I.: Synthesis and characterization of polylactide/rice husk hydrochar composite. Sci. Rep. 9, 1–11 (2019). https://doi.org/10.1038/s41598-019-41960-1

    Article  Google Scholar 

  28. Patel, V., Mahajan, Y.: Polymer nanocomposites: emerging growth driver for the global automotive industry. In: Handb. Polym. Process. Perform. Appl. Springer, Berlin Heidelberg (2014)

  29. van Grootel, A., Chang, J., Wardle, B.L., Olivetti, E.: Manufacturing variability drives significant environmental and economic impact: ahe case of carbon fiber reinforced polymer composites in the aerospace industry. J. Clean. Prod. 261, 121087 (2020). https://doi.org/10.1016/J.JCLEPRO.2020.121087

    Article  Google Scholar 

  30. Joshi, M., Chatterjee, U.: Polymer nanocomposite: an advanced material for aerospace applications. Adv. Compos. Mater. Aerosp. Eng. (2016). https://doi.org/10.1016/B978-0-08-100037-3.00008-0

    Article  Google Scholar 

  31. Kaur, G., Adhikari, R., Cass, P., Bown, M., Gunatillake, P.: Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5, 37553–37567 (2015)

    Article  Google Scholar 

  32. Kumar, D., Sharma, R.C.: Advances in conductive polymers. Eur. Polym. J. 34, 1053–1060 (1998). https://doi.org/10.1016/S0014-3057(97)00204-8

    Article  Google Scholar 

  33. Thines, K.R., Abdullah, E.C., Mubarak, N.M., Ruthiraan, M.: In-situ polymerization of magnetic biochar–polypyrrole composite: a novel application in supercapacitor. Biomass Bioenerg. 98, 95–111 (2017). https://doi.org/10.1016/j.biombioe.2017.01.019

    Article  Google Scholar 

  34. Thines, K.R., Abdullah, E.C., Ruthiraan, M., Mubarak, N.M., Tripathi, M.: A new route of magnetic biochar based polyaniline composites for supercapacitor electrode materials. J. Anal. Appl. Pyrol. 121, 240–257 (2016). https://doi.org/10.1016/j.jaap.2016.08.004

    Article  Google Scholar 

  35. Shi, Y., Peng, L., Ding, Y., Zhao, Y., Yu, G.: Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44, 6684–6696 (2015)

    Article  Google Scholar 

  36. Rollinson, A.N.: Gasification reactor engineering approach to understanding the formation of biochar properties. In: Proc. R. Soc. A Math. Phys. Eng. Sci. (2016). https://doi.org/10.1098/rspa.2015.0841

  37. European Commission. Migration of Polycyclic Aromatic Hydrocarbons (PAHs) from plastic and rubber articles (2018). https://doi.org/10.2760/41492

  38. Benedetti, V., Ail, S.S., Patuzzi, F., Baratieri, M.: Valorization of char from biomass gasification as catalyst support in dry reforming of methane. Front. Chem. 7, 1–12 (2019). https://doi.org/10.3389/fchem.2019.00119

    Article  Google Scholar 

  39. Bastianini, M., Scatto, M., Sisani, M., Scopece, P., Patelli, A., Petracci, A.: Innovative composites based on organic modified zirconium phosphate and PEOT/PBT copolymer. J. Compos. Sci. 2, 31 (2018). https://doi.org/10.3390/jcs2020031

    Article  Google Scholar 

  40. Brunauer, S., Emmett, P.H., Teller, E.: Gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  Google Scholar 

  41. Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951). https://doi.org/10.1021/ja01145a126

    Article  Google Scholar 

  42. Brunauer, S., Deming, L.S., Edwards Deming, W., Teller, E.: On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 7, 1723–1732 (1940). https://doi.org/10.1021/ja01864a025

    Article  Google Scholar 

  43. Rajkishore, N.: Polypropylene Nanofibre, Melt Electrospinning Versus Meltblowing. Springer International Publishing, New York (2011)

    Google Scholar 

  44. Bansal, R.C., Meenakshi, G.: Activated Carbon Adsorption. Taylor & Francis Group, Boca Raton (2005)

    Book  Google Scholar 

  45. Saengsuwan, S., Saikrasun, S.: Thermal stability of styrene-(ethylene butylene)-styrene-based elastomer composites modified by liquid crystalline polymer, clay, and carbon nanotube. J. Therm. Anal. Calorim. 110, 1395–1406 (2012). https://doi.org/10.1007/s10973-011-2096-2

    Article  Google Scholar 

  46. Kuang, T., Ju, J., Yang, Z., Geng, L., Peng, X.: A facile approach towards fabrication of lightweight biodegradable poly (butylene succinate)/carbon fiber composite foams with high electrical conductivity and strength. Compos. Sci. Technol. 159, 171–179 (2018). https://doi.org/10.1016/j.compscitech.2018.02.021

    Article  Google Scholar 

  47. Das, O., Sarmah, A.K., Bhattacharyya, D.: Biocomposites from waste derived biochars: mechanical, thermal, chemical, and morphological properties. Waste Manage. 49, 560–570 (2016). https://doi.org/10.1016/j.wasman.2015.12.007

    Article  Google Scholar 

  48. Li, S., Li, X., Deng, Q., Li, D.: Three kinds of charcoal powder reinforced ultra-high molecular weight polyethylene composites with excellent mechanical and electrical properties. Mater. Des. 85, 54–59 (2015). https://doi.org/10.1016/j.matdes.2015.06.163

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. Baliana Shani from Ca’ Foscari University of Venice for the contribution provided during the development of her thesis project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Benedetti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedetti, V., Scatto, M., Baratieri, M. et al. Valorization of Biomass Gasification Char as Filler in Polymers and Comparison with Carbon Black. Waste Biomass Valor 12, 3485–3496 (2021). https://doi.org/10.1007/s12649-020-01243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01243-7

Keywords

Navigation