Skip to main content
Log in

A matrix factorization approach to graph compression with partial information

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

We address the problem of encoding a graph of order \(\mathsf {n}\) into a graph of order \(\mathsf {k}<\mathsf {n}\) in a way to minimize reconstruction error. This encoding is characterized in terms of a particular factorization of the adjacency matrix of the original graph. The factorization is determined as the solution of a discrete optimization problem, which is for convenience relaxed into a continuous, but equivalent, one. Our formulation does not require to have the full graph, but it can factorize the graph also in the presence of partial information. We propose a multiplicative update rule for the optimization task resembling the ones introduced for nonnegative matrix factorization, and convergence properties are proven. Experiments are conducted to assess the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. There is no explicit update rule in the paper to find the specific relaxed factorization, but it could be obtained by using Theorem 1.

  2. This however should not be taken as a truth holding in general, for it depends also on the structure of the input graph.

  3. For NMF and GNMF this coincides with the number of latent dimensions.

References

  1. Airoldi EM, Blei DM, Fienberg SE, Xing EP (2008) Mixed membership stochastic blockmodels. J Mach Learn Res 9:1981–2014

    MATH  Google Scholar 

  2. Baum LE, Eagon JA (1967) An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull Am Math Soc 73:360–363

    Article  MathSciNet  MATH  Google Scholar 

  3. Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J. Mach Learn Res 3:993–1022

    Google Scholar 

  4. Cai D, He X, Han J, Huang TS (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560

    Article  Google Scholar 

  5. Choi Y, Szpankowski W (2012) Compression of graphical structures: fundamental limits, algorithms, and experiments. IEEE Trans Inf Theory 58(2):620–638

    Article  MathSciNet  Google Scholar 

  6. Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) Indexing by latent semantic analysis. J Am Soc Inf Sci 41(6):391–407

    Article  Google Scholar 

  7. Dhillon IS, Guan Y, Kulis B (2004) Kernel k-means: spectral clustering and normalized cuts. Int Conf Knowl Discov Data Min 10:551–556

    Google Scholar 

  8. Ding C, He, X, Simon HD (2005) On the equivalence of nonnegative matrix factorization and spectral clustering. In: SIAM data mining conference, pp 606–610

  9. Ding C, Li, T, Jordan MI (2008) Nonnegative matrix factorization for combinatorial optimization: spectral clustering, graph matching and clique finding. In: IEEE international conference on data mining, pp 183–192

  10. Ding C, Li T, Peng W (2008) On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing. Comput Stat Data Anal 52(8):3913–3927

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldenberg A, Zheng AX, Fienberg SE, Airoldi EM (2010) A survey of statistical network models. Found Trends Mach Learn 2(2):129–233

    Article  Google Scholar 

  12. Hofmann T (2000) Learning the similarity of documents: an information-geometric approach to document retrieval and categorization. Adv Neural Inf Process Syst 12:914–920

    Google Scholar 

  13. Holland PW, Laskey KB, Leinhardt S (1983) Stochastic blockmodels: first steps. Soc Netw 5(2):109–137

    Article  MathSciNet  Google Scholar 

  14. Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  15. Hubbard TJP, Murzin AG, Brenner SE, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    Google Scholar 

  16. Jolliffe I (1987) Principal component analysis. Springer, New York

    Google Scholar 

  17. Kuang D, Park H, Ding C (2012) Symmetric nonnegative matrix factorization for graph clustering. In: SIAM international conference data mining, pp 106–117

  18. Lakshminarayanan B, Raich R (2010) Non-negative matrix factorization for parameter estimation in hidden Markov models. In: IEEE international workshop on machine learning for signal processing, pp 89–94

  19. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791

    Article  Google Scholar 

  20. Lee DD, Seung HS (2000) Algorithms for non-negative matrix factorization. In: Advances in neural information processing systems, pp 556–562

  21. Li P, Bu J, Yang Y, Ji R, Chen C, Cai D (2014) Discriminative orthogonal nonnegative matrix factorization with flexibility for data representation. Exp Syst Appl 41(4):1283–1293

    Article  Google Scholar 

  22. Li P, Chen C, Bu J (2012) Clustering analysis using manifold kernel concept factorization. Neural Comput 87:120–131

    Google Scholar 

  23. Lorrain F, White HC (1971) Structural equivalence of individuals in social networks. J Math Sociol 1:49–80

    Article  Google Scholar 

  24. Mørup M, Schmidt M (2012) Bayesian community detection. Neural Comput 24(9):2434–2456

    Article  MathSciNet  Google Scholar 

  25. Navlakha S, Rastogi R, Shrivastava N (2008) Graph summarization with bounded error. In: ACM SIGMOD international conference on management of data, pp 419–432

  26. Nepusz T, Petróczi A, Négyessy L, Bazsó F (2008) Fuzzy communities and the concept of bridgeness in complex networks. Phys Rev E 77(1):016107

    Article  MathSciNet  Google Scholar 

  27. Nourbakhsh F, Rota Bulò, S, Pelillo M (2014) A matrix factorization approach to graph compression. In: 22nd international conference on pattern recognition. IEEE, Stockholm, Sweden, 24–28 Aug 2014

  28. Paatero P, Tapper AU (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

    Article  Google Scholar 

  29. Psorakis I, Roberts S, Ebden M, Sheldon B (2011) Overlapping community detection using nonnegative matrix factorization. Phys Rev E 83(6):066114

    Article  Google Scholar 

  30. Rota Bulò S, Lourenço A, Fred, ALN, Pelillo M (2010) Pairwise probabilistic clustering using evidence accumulation. In: International workshop on structure and synthesis pattern recognition, pp 395–404

  31. Rota Bulò S, Pelillo M (2010) Probabilistic clustering using the baum-eagon inequality. In: International conference on pattern recognition, pp 1429–1432

  32. Schölkopf B, Smola A, M\(\ddot{\rm l}\)ler KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

  33. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888–905

    Article  Google Scholar 

  34. Sperotto A, Pelillo M (2007) Szemerédis regularity lemma and its applications to pairwise clustering and segmentation. In: Energy minimization methods in computer vision and pattern recognition, pp 13–27

  35. Szemerédi, E (1978) Regular partitions of graphs. In: Problèmes combinatoires et thorie des graphes. CNRS, Paris, pp 399–401

  36. Toivonen H, Zhou F, Hartikainen A, Hinkka A (2011) Compression of weighted graphs. In: International conference on knowledge discovery and data mining, pp 965–973

  37. Verma D, Meila M (2003) Comparison of spectral clustering methods, Technical report. University of Washington

  38. Xu W, Gong, Y (2004) Document clustering by concept factorization. In: Proceedings of 27th annual international ACM SIGIR conference on Research and development in information retrieval, pp 202–209

  39. Yang Z, Oja E (2012) Quadratic nonnegative matrix factorization. Pattern Recognit 45(4):1500–1510

    Article  MATH  Google Scholar 

  40. Zhang H, Yang Z, Oja E (2014) Adaptive multiplicative updates for quadratic nonnegative matrix factorization. Neural Comput 134:206–213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Rota Bulò.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourbakhsh, F., Rota Bulò, S. & Pelillo, M. A matrix factorization approach to graph compression with partial information. Int. J. Mach. Learn. & Cyber. 6, 523–536 (2015). https://doi.org/10.1007/s13042-014-0286-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-014-0286-5

Keywords

Navigation