Skip to main content
Log in

Balanced acidity by microwave-assisted ion-exchange of ZSM-5 zeolite as a catalyst for transformation of glucose to levulinic acid

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Levulinic acid (LA) is a worthwhile biochemical usable as a building-block for the formation of wide variety of chemicals and fuels. In the present work, a series of ion-exchanged ZSM-5-type zeolites were formulated in order to obtain a bifunctional catalyst with modulated acidity in the aspect of amount, strength, and type (Lewis and Brønsted) for the transformation of glucose as a bio-based model component to LA. In particular, ion-exchanged ZSM-5 were prepared by an aqueous ion-exchange method using NH4Cl and CuCl2 salts and a microwave-assisted solid-state ion-exchange technique using solid transition metal (Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(II)) chlorides. Morphological features and acidity of the catalysts were assessed using XRD, SEM, EDX, TG–DTA, N2-physisorption, NH3-TPD, and FTIR both as such and by adsorbing/desorbing 2,6-dimethylpyridine (2,6-DMP) as a probe molecule. Microwave has been selected as the best ion-exchange technique which led to the improvement of Lewis acidity of ZSM-5 and obtaining a balanced acid catalyst with a high Lewis to Brønsted acid ratio (L/B) and mostly weak and medium acid sites. Among several metal ions used for ion-exchange process, Cu(II) with high charge transfer and by introduction of low amount of acid sites acted as the best option for desired reaction pathway. Therefore, CuZSM5-M prepared by microwave technique with a balanced L/B ratio has shown the best performance in the conversion of glucose to LA with 37% yield.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Raspolli Galletti A, Antonetti C, De Luise V et al (2012) Levulinic acid production from waste biomass 7:1824–1835

  2. Yan W, Hastings JT, Acharjee TC et al (2010) Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuels 24:4738–4742. https://doi.org/10.1021/ef901273n

    Article  CAS  Google Scholar 

  3. Yu Y, Lou X, Wu H (2008) Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuels 22(1):46–60. https://doi.org/10.1021/ef700292p

    Article  CAS  Google Scholar 

  4. Yan W, Acharjee TC, Coronella CJ, Va VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustainable Energy 28:435–440. https://doi.org/10.1002/ep.10385

    Article  CAS  Google Scholar 

  5. Xu Y, Liu G, Fu J et al (2019) Catalytic hydrolysis of cellulose to levulinic acid by partly replacing sulfuric acid with Nafion® NR50 catalyst. Biomass Convers Biorefin 9:609–616. https://doi.org/10.1007/s13399-019-00373-w

    Article  CAS  Google Scholar 

  6. Asghari FS, Yoshida H (2007) Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water : formation of 5-hydroxymethylfurfural, levulinic, and formic acids. Ind Eng Chem Res 46:7703–7710. https://doi.org/10.1021/ie061673e

    Article  CAS  Google Scholar 

  7. Chen SS, Maneerung T, Tsang DCW et al (2017) Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chem Eng J 328:246–273. https://doi.org/10.1016/j.cej.2017.07.020

    Article  CAS  Google Scholar 

  8. Werpy T, Petersen G (2004) Top value added chemicals from biomass volume I — results of screening for potential candidates from sugars and synthesis gas top value added chemicals from biomass. U.S. Department of Energy. https://doi.org/10.2172/15008859

  9. Weingarten R, Cho J, Xing R et al (2012) Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions. Chemsuschem 5:1280–1290. https://doi.org/10.1002/cssc.201100717

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Murria P, Jiang Y et al (2016) Maleic acid and aluminum chloride catalyzed conversion of glucose to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media. Green Chem 18:5219–5229. https://doi.org/10.1039/c6gc01395c

    Article  CAS  Google Scholar 

  11. Nikolakis V, Vlachos DG (2015) Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(III) chloride and hydrochloric acid solution. Green Chem 17:4725–4735. https://doi.org/10.1039/c5gc01257k

    Article  Google Scholar 

  12. Swift TD, Nguyen H, Erdman Z et al (2016) Tandem Lewis acid / Brønsted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite beta. J Catal 333:149–161. https://doi.org/10.1016/j.jcat.2015.10.009

    Article  CAS  Google Scholar 

  13. Advances RSC, Hu L, Zhao G et al (2012) RSC Advances Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Adv 2:11184–11206. https://doi.org/10.1039/c2ra21811a

    Article  CAS  Google Scholar 

  14. Daorattanachai P, Khemthong P, Viriya-empikul N (2012) Conversion of fructose, glucose, and cellulose to 5-hydroxymethylfurfural by alkaline earth phosphate catalysts in hot compressed water. Carbohyd Res 363:58–61. https://doi.org/10.1016/j.carres.2012.09.022

    Article  CAS  Google Scholar 

  15. Grande PM, Bergs C, Domínguez P, María D (2012) Chemo-enzymatic conversion of glucose into 5-hydroxymethylfurfural in seawater. Chemsuschem 5:1203–1206. https://doi.org/10.1002/cssc.201200065

    Article  CAS  PubMed  Google Scholar 

  16. Qi X, Watanabe M, Aida TM, Smith RL (2008) Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating. Catal Commun 9:2244–2249. https://doi.org/10.1016/j.catcom.2008.04.025

    Article  CAS  Google Scholar 

  17. Watanabe M, Aizawa Y, Iida T et al (2005) Catalytic glucose and fructose conversions with TiO 2 and ZrO 2 in water at 473 K : relationship between reactivity and acid – base property determined by TPD measurement. Appl Catal A 295:150–156. https://doi.org/10.1016/j.apcata.2005.08.007

    Article  CAS  Google Scholar 

  18. Jung D, Körner P, Kruse A (2021) Kinetic study on the impact of acidity and acid concentration on the formation of 5-hydroxymethylfurfural (HMF), humins, and levulinic acid in the hydrothermal conversion of fructose. Biomass Convers Biorefin 11:1155–1170. https://doi.org/10.1007/s13399-019-00507-0

    Article  CAS  Google Scholar 

  19. Zhuang J, Li X, Liu Y (2012) Optimal process conditions for levulinic acid synthesis from glucose. Adv Mat Res 541:2256–2259. https://doi.org/10.4028/www.scientific.net/AMR.538-541.2256

    Article  CAS  Google Scholar 

  20. Mukherjee A, Raghavan V (2014) ScienceDirect Review : sustainable production of hydroxymethylfurfural and levulinic acid : challenges and opportunities. Biomass Bioenerg 72:143–183. https://doi.org/10.1016/j.biombioe.2014.11.007

    Article  CAS  Google Scholar 

  21. Heeres H, Handana R, Chunai D et al (2009) Combined dehydration /( transfer ) -hydrogenation of C6-sugars ( D-glucose and D-fructose ) to c -valerolactone using ruthenium catalysts. Green Chem 11:1247–1255. https://doi.org/10.1039/b904693c

    Article  CAS  Google Scholar 

  22. Signoretto M, Taghavi S, Ghedini E, Menegazzo F (2019) Catalytic production of levulinic acid (LA) from actual biomass. Molecules 24:1–20. https://doi.org/10.3390/molecules24152760

    Article  Google Scholar 

  23. Peng L, Lin L, Zhang J et al (2010) Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15:5258–5272. https://doi.org/10.3390/molecules15085258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lappalainen K, Vogeler N, Kärkkäinen J et al (2018) Microwave-assisted conversion of novel biomass materials into levulinic acid. Biomass Convers Biorefin 8:965–970. https://doi.org/10.1007/s13399-018-0334-6

    Article  CAS  Google Scholar 

  25. Di Menno Di Bucchianico D, Buvat JC, Mignot M et al (2022) Role of solvent the production of butyl levulinate from fructose. Fuel 318:123703. https://doi.org/10.1016/j.fuel.2022.123703

  26. Ramírez E, Bringué R, Fité C et al (2021) Assessment of ion exchange resins as catalysts for the direct transformation of fructose into butyl levulinate. Appl Catal A 612:117988. https://doi.org/10.1016/j.apcata.2021.117988

    Article  CAS  Google Scholar 

  27. Kumar P, Shayesteh Zeraati A, Roy S et al (2022) Metal-free sulfonate/sulfate-functionalized carbon nitride for direct conversion of glucose to levulinic acid. ACS Sustain Chem Eng 10(19):6230–6243. https://doi.org/10.1021/acssuschemeng.2c00309

    Article  CAS  Google Scholar 

  28. Liang M, Luo B, Zhi L (2009) Application of graphene and graphene-based materials in clean energy-related devices. Int J Energy Res 33:1161–1170. https://doi.org/10.1002/er.1598

    Article  CAS  Google Scholar 

  29. Taghavi S, Ghedini E, Menegazzo F et al (2020) MCM-41 supported co-based bimetallic catalysts for aqueous phase transformation of glucose to biochemicals. Processes 8:843. https://doi.org/10.3390/pr8070843

    Article  CAS  Google Scholar 

  30. Pizzolitto C, Ghedini E, Menegazzo F et al (2020) Effect of grafting solvent in the optimisation of Sba-15 acidity for levulinic acid production. Catal Today 345:183–189. https://doi.org/10.1016/j.cattod.2019.11.012

    Article  CAS  Google Scholar 

  31. Lam E, Luong JHT (2014) Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal 4:3393–3410. https://doi.org/10.1021/cs5008393

    Article  CAS  Google Scholar 

  32. Pizzolitto C, Ghedini E, Taghavi S et al (2021) Acid sites modulation of siliceous-based mesoporous material by post synthesis methods. Microporous Mesoporous Mater 328:111459. https://doi.org/10.1016/j.micromeso.2021.111459

    Article  CAS  Google Scholar 

  33. Taghavi S, Pizzolitto C, Ghedini E et al (2022) Levulinic acid production: comparative assessment of Al-rich ordered mesoporous silica and microporous zeolite. Catal Lett 1-13. https://doi.org/10.1007/s10562-022-03955-y

  34. Chen SS, Yu IKM, Tsang DCW et al (2017) Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: temperature and solvent effects. Chem Eng J 327:328–335. https://doi.org/10.1016/j.cej.2017.06.108

    Article  CAS  Google Scholar 

  35. Ma C, Cai B, Zhang L et al (2021) Acid-catalyzed conversion of cellulose into levulinic acid with biphasic solvent system. Front Plant Sci 12:630807. https://doi.org/10.3389/fpls.2021.630807

    Article  PubMed  PubMed Central  Google Scholar 

  36. He J, Liu M, Huang K et al (2017) Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent-water mixtures. Green Chem 19:3642–3653. https://doi.org/10.1039/c7gc01688c

    Article  CAS  Google Scholar 

  37. Alonso DM, Gallo JMR, Mellmer MA et al (2013) Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts. Catal Sci Technol 3:927–931. https://doi.org/10.1039/c2cy20689g

    Article  CAS  Google Scholar 

  38. Brasholz M, Von Känel K, Hornung CH et al (2011) Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing. Green Chem 13:1114–1117. https://doi.org/10.1039/c1gc15107j

    Article  CAS  Google Scholar 

  39. Wang J, Cui H, Wang Y et al (2020) Efficient catalytic conversion of cellulose to levulinic acid in the biphasic system of molten salt hydrate and methyl isobutyl ketone. Green Chem 22:4240–4251. https://doi.org/10.1039/d0gc00897d

    Article  CAS  Google Scholar 

  40. Zeng W, Huanhuan DC (2010) Dehydration of glucose to levulinic acid over MFI-type zeolite in subcritical water at moderate conditions 100:377–384. https://doi.org/10.1007/s11144-010-0187-x

  41. Jae J, Tompsett GA, Foster AJ et al (2011) Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal 279:257–268. https://doi.org/10.1016/j.jcat.2011.01.019

    Article  CAS  Google Scholar 

  42. Asgari A (2008) Zeolite an efficient catalyst for the Biginelli condensation reaction. J Incl Phenom Macrocycl Chem 60:353–357. https://doi.org/10.1007/s10847-007-9384-2

    Article  CAS  Google Scholar 

  43. Garces AD, Faba L, Diaz E et al (2019) Aqueous-phase transformation of glucose into hydroxymethylfurfural and levulinic acid by combining homogeneous and heterogeneous catalysis. Chemsuschem 12:924–934. https://doi.org/10.1002/cssc.201802315

    Article  CAS  PubMed  Google Scholar 

  44. Acharjee TC, Lee YY (2018) Production of levulinic acid from glucose by dual solid-acid catalysts. Environ Prog Sustainable Energy 37:471–480. https://doi.org/10.1002/ep.12659

    Article  CAS  Google Scholar 

  45. Zendehdel M, Far NF, Gaykani Z (2005) Diels-Alder reaction with transition metal / zeolites. J Incl Phenom Macrocycl Chem 53:47–49. https://doi.org/10.1007/s10847-005-0935-0

    Article  CAS  Google Scholar 

  46. Wang Z, Wang L, Jiang Y et al (2014) Cooperativity of Brønsted and Lewis acid sites on zeolite for glycerol dehydration. ACS Catal 4:1144–1147. https://doi.org/10.1021/cs401225k

    Article  CAS  Google Scholar 

  47. Zheng A (2018) Brønsted/Lewis acid sites synergistically promote the initial C-C bond formation in the MTO reaction. Chem Sci 9:6470–6479. https://doi.org/10.1039/c8sc02302f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng Z, Everhart J, Tsilomelekis G et al (2018) As featured in : Green chemistry 20:997-1006. https://doi.org/10.1039/c7gc03054a

  49. Zendehdel M, Cruciani G, Dondi M (2012) Appraisal of microwave-assisted ion-exchange in mordenite by crystal structure analysis. J Porous Mater 19:361–368. https://doi.org/10.1007/s10934-011-9482-9

    Article  CAS  Google Scholar 

  50. Zendehdel M, Mobinikhaledi A, Hasanvand Jamshidi F (2007) Conversion of acids to benzimidazoles with transition metal / zeolites. J Incl Phenom Macrocycl Chem 59:41–44. https://doi.org/10.1007/s10847-007-9292-5

    Article  CAS  Google Scholar 

  51. Zendehdel M (2020) Micro-meso structure zeolites: synthesis strategies, characterization and application. In: Annet M (ed) Zeolites, advances in research and applications. Geology and Mineralogy Research Developments, Nova Science, New York PP: 1–51.

  52. Mazaheri O, Kalbasi RJ (2015) Preparation and characterization of Ni/mZSM-5 zeolite with a hierarchical pore structure by using KIT-6 as silica template: an efficient bi-functional catalyst for the reduction of nitro aromatic compounds. RSC Adv 5:34398–34414. https://doi.org/10.1039/C5RA02349A

    Article  CAS  Google Scholar 

  53. Emmett BPH (1937) The use of low temperature van der Waals adsorption isotherms in determining the surface area of iron synthetic ammonia catalysts. J Am Chem Soc 59:1553–1564. https://doi.org/10.1021/ja01287a041

    Article  CAS  Google Scholar 

  54. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  55. Zhang H, Han L, Duan A et al (2017) FDU-12 and the performance of dibenzothiophene. RSC Adv 7:28038–28047. https://doi.org/10.1039/C7RA03679E

    Article  CAS  Google Scholar 

  56. Fahmy A, El-nasser KS, Ali IO et al (2017) Tuned interactions of silver nanoparticles with ZSM-5 zeolite by adhesion-promoting poly ( acrylic acid ) deposited by electrospray ionization ( ESI ). J Adhes Sci Technol 31:2641–2656. https://doi.org/10.1080/01694243.2017.1315910

    Article  CAS  Google Scholar 

  57. Stella C, Soundararajan N, Ramachandran K (2014) Structural, optical, dielectric and magnetic properties of Mn 1-xCoxO2 nanowires. Superlattices Microstruct 71:203–210. https://doi.org/10.1016/j.spmi.2014.03.044

    Article  CAS  Google Scholar 

  58. Cai H, Wei Q, Xiao H et al (2020) Preparation and microwave absorption properties of petal CoO/CNFs composites. J Mater Sci: Mater Electron 31:7606–7615. https://doi.org/10.1007/s10854-020-03231-y

    Article  CAS  Google Scholar 

  59. Veneranda M, Aramendia J, Bellot-Gurlet L et al (2018) FTIR spectroscopic semi-quantification of iron phases: a new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems. Corros Sci 133:68–77. https://doi.org/10.1016/j.corsci.2018.01.016

    Article  CAS  Google Scholar 

  60. Monnieri B, Kiranmayi P, Venkata r K (2019) Nanometal oxides as antimicrobial agents (Al2O3, CuO, Fe3O4 and ZnO): comparative study. Indo Am J Pharm Res 8:1852–1859

    Google Scholar 

  61. Sahai A, Goswami N, Kaushik SD, Tripathi S (2016) Cu/Cu 2 O/CuO nanoparticles: novel synthesis by exploding wire technique and extensive characterization. Appl Surf Sci 390:974–983. https://doi.org/10.1016/j.apsusc.2016.09.005

    Article  CAS  Google Scholar 

  62. Gotić M, Musić S (2007) Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. J Mol Struct 834–836:445–453. https://doi.org/10.1016/j.molstruc.2006.10.059

    Article  CAS  Google Scholar 

  63. Karimi R, Bayati B, Aghdam NC et al (2012) Studies of the effect of synthesis parameters on ZSM-5 nanocrystalline material during template-hydrothermal synthesis in the presence of chelating agent. Powder Technol 229:229–236. https://doi.org/10.1016/j.powtec.2012.06.037

    Article  CAS  Google Scholar 

  64. Hamidzadeh M, Ghassemzadeh M, Tarlani A, Sahebdel Far S (2016) Effect of supported transition metal catalysts in NO removal reaction. Orient J Chem 32:481–490. https://doi.org/10.13005/ojc/320155

  65. Zhu Z, Liu Z, Liu S, Niu H (2001) Catalytic NO reduction with ammonia at low temperatures on V 2 O 5 / AC catalysts : effect of metal oxides addition and SO2. Appl Catal B 30:267–276

    Article  CAS  Google Scholar 

  66. Zhukov YM, Yu AE, Shelyapina MG et al (2016) Effect of preparation method on the valence state and encirclement of copper exchange ions in mordenites. Microporous Mesoporous Mater 224:415–419. https://doi.org/10.1016/j.micromeso.2015.12.058

    Article  CAS  Google Scholar 

  67. He D, Zhang H, Yan Y (2018) Subject category : subject areas : preparation of Cu-ZSM-5 catalysts by chemical vapour deposition for catalytic wet peroxide oxidation of phenol in a fixed bed reactor. R Soc Open Sci 5:172364. https://doi.org/10.1098/rsos.172364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fx I, Xu W, Qiu S, Xu R (1994) The high dispersion of CuC12 in NaZSM-5 by using microwave technique. MRS Online Proc Libr 26:209–215. https://doi.org/10.1557/PROC-344-139

    Article  Google Scholar 

  69. Xing J, Zhu Y, Jiao Q (2014) Rapid synthesis of water-soluble NiCl 2 nanorods via recrystallization for super capacitors applications. J New Mater Electrochem Syst 211:209–211. https://doi.org/10.14447/jnmes.v17i4.391

  70. Vorotyntsev AV, Petukhov AN, Vorotyntsev IV (2018) Low-temperature catalytic hydrogenation of silicon and germanium tetrachlorides on the modified nickel chloride. Appl Catal B 198:334–346. https://doi.org/10.1016/j.apcatb.2016.06.017

    Article  CAS  Google Scholar 

  71. Ibrahim FA (2018) Synthesis, structural and electrical properties of FeCl3-doped molybdenum and vanadium oxides films. SILICON 10:131–136. https://doi.org/10.1007/s12633-017-9627-9

    Article  CAS  Google Scholar 

  72. Moreno-Recio M, Santamaría-González J, Maireles-Torres P (2016) Brönsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural. Chem Eng J 303:22–30. https://doi.org/10.1016/j.cej.2016.05.120

    Article  CAS  Google Scholar 

  73. Chen Y, Cong S, Wang Q et al (2018) Optimization of crystal growth of sub-micron ZSM-5 zeolite prepared by using Al ( OH ) 3 extracted from fly ash as an aluminum source. J Hazard Mater 349:18–26. https://doi.org/10.1016/j.jhazmat.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  74. Giraldo L, Camargo G, Tirano J (2015) Synthesis of fatty alcohols from oil palm using a catalyst of Ni-Cu supported onto zeolite synthesis of fatty alcohols from oil palm using a catalyst of Ni-Cu supported onto zeolite. https://doi.org/10.1155/2010/439801

  75. Megarajan SK, Technology B, Rayalu S et al (2016) Metal exchanged ZSM-5 zeolite based catalysts for direct decomposition of metal exchanged ZSM-5 zeolite based catalysts for direct decomposition of N 2 O. https://doi.org/10.1007/s10562-009-0092-y

  76. Farouk E, Awad G, Zaitan H et al (2017) Transition metals-incorporated zeolites as environmental catalysts for indoor air ozone decomposition. Environ Technol, Taylor & Francis: STM, Behavioural Science and Public Health Titles 39:878–886. https://doi.org/10.1080/09593330.2017.1315457

  77. Sakai R, Murakami K, Mizutani Y et al (2020) Agglomeration suppression of a Fe-supported catalyst and its utilization for low-temperature ammonia synthesis in an electric field. ACS Omega 5:6846–6851. https://doi.org/10.1021/acsomega.0c00170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wan Z, Wu W, Chen W et al (2014) Direct synthesis of hierarchical ZSM - 5 zeolite and its performance in catalyzing methanol to gasoline conversion. Ind Eng Chem Res 53:19471–19478. https://doi.org/10.1021/ie5036308

    Article  CAS  Google Scholar 

  79. Díaz E, Ordóñez S, Vega José Coca A (2005) Catalytic combustion of hexane over transition metal modified zeolites NaX and CaA. Appl Catal B 56:313–322. https://doi.org/10.1016/j.apcatb.2004.09.016

    Article  CAS  Google Scholar 

  80. Tarach KA, Pyra K, Góra-Marek K (2020) Opening up ZSM-5 hierarchical zeolite’s porosity through sequential treatments for improved low-density polyethylene cracking. Molecules 25:2878. https://doi.org/10.3390/molecules25122878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Santos JR, Sarmento LRA, Silva DCM et al (2019) Synthesis of high-silica ZSM-5 with seeds in the presence of ethanol and amine. Cerâmica 65:378–387

    Article  Google Scholar 

  82. Joong Kim G, Seung Ahn W (1991) Synthesis and characterization of iron-modified ZSM-5. Appl Catal 71:55–68. https://doi.org/10.1016/0166-9834(91)85005-G

    Article  Google Scholar 

  83. Dallas Swift T, Bagia C, Choudhary V et al (2014) Kinetics of homogeneous Brønsted acid catalyzed fructose dehydration and 5-hydroxymethyl furfural rehydration: a combined experimental and computational study. ACS Catal 4:259–267. https://doi.org/10.1021/cs4009495

    Article  CAS  Google Scholar 

  84. Yang L, Tsilomelekis G, Caratzoulas S et al (2015) Mechanism of Brønsted acid-catalyzed glucose dehydration. Chemsuschem 7:1334–1341. https://doi.org/10.1002/cssc.201403264

    Article  CAS  Google Scholar 

  85. Ahlkvist J, Wärnå J, Salmi T, Mikkola JP (2016) Heterogeneously catalyzed conversion of Nordic pulp to levulinic and formic acids. React Kinet Mech Catal. https://doi.org/10.1007/s11144-016-1069-7

  86. Kang S, Fu J, Zhang G (2018) From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis. Renew Sustain Energy Rev 94:340–362. https://doi.org/10.1016/j.rser.2018.06.016

    Article  CAS  Google Scholar 

  87. Taghavi S, Ghedini E, Menegazzo F et al (2021) CuZSM-5@ HMS composite as an efficient micro-mesoporous catalyst for conversion of sugars into levulinic acid. Catalysis Today In Press, Corrected Proof. https://doi.org/10.1016/j.cattod.2021.11.03888

  88. Catalysis OF (1981) Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites. 52:41–52

  89. Jouini H, Mejri I, Petitto C et al (2018) Characterization and NH 3 -SCR reactivity of Cu-Fe-ZSM-5 catalysts prepared by solid state ion exchange : the metal exchange order effect. Microporous Mesoporous Mater 260:217–226. https://doi.org/10.1016/j.micromeso.2017.10.051

    Article  CAS  Google Scholar 

  90. Vinícius PSC, Anne GDS, Sibele BCP et al (2016) Use of a low-cost template-free ZSM-5 for atmospheric petroleum residue pyrolysis. Quim Nova 39:292–297. https://doi.org/10.5935/0100-4042.20160019

    Article  CAS  Google Scholar 

  91. Han X, Ouyang K, Xiong C et al (2017) Transition-metal incorporated heteropolyacid-ionic liquid composite catalysts with tunable Brønsted/Lewis acidity for acetalization of benzaldehyde with ethylene glycol. Appl Catal A 543:115–124. https://doi.org/10.1016/j.apcata.2017.06.024

    Article  CAS  Google Scholar 

  92. Bernardon C, Ben Osman M, Laugel G et al (2017) Acidity versus metal-induced Lewis acidity in zeolites for Friedel-Crafts acylation. C R Chim 20:20–29. https://doi.org/10.1016/j.crci.2016.03.008

    Article  CAS  Google Scholar 

  93. Woolery GL, Kuehl GH, Timken HC et al (1997) On the nature of framework Brønsted and Lewis acid sites in ZSM-5. Zeolites 2449:288–296. https://doi.org/10.1016/S0144-2449(97)00086-9

    Article  Google Scholar 

  94. Martins L, Pablo R, Peguin S et al (2006) Cu and Co exchanged ZSM-5 zeolites – activity towards no reduction and hydrocarbon oxidation. Quim Nova 29:223–229. https://doi.org/10.1590/S0100-40422006000200009

    Article  CAS  Google Scholar 

  95. Yumura T, Yamashita H, Torigoe H (2010) Site-specific Xe additions into Cu–ZSM-5 zeolite. Phys Chem Chem Phys 12:2392–2400. https://doi.org/10.1039/b919032e

    Article  CAS  PubMed  Google Scholar 

  96. Mccue AJ, Mutch GA, Mcnab AI et al (2015) Quantitative determination of surface species and adsorption sites using infrared spectroscopy. Catal Today 259:19–26. https://doi.org/10.1016/j.cattod.2015.03.039

    Article  CAS  Google Scholar 

  97. Onfroy T, Clet G, Houalla M (2005) Quantitative IR characterization of the acidity of various oxide catalysts. Microporous Mesoporous Mater 82:99–104. https://doi.org/10.1016/j.micromeso.2005.02.020

    Article  CAS  Google Scholar 

  98. Otomo R, Yokoi T, Kondo JN, Tatsumi T (2014) Dealuminated Beta zeolite as effective bifunctional catalyst for direct transformation of glucose to 5-hydroxymethylfurfural. “Applied Catalysis A, General” 470:318–326. https://doi.org/10.1016/j.apcata.2013.11.012

  99. Swift TD, Nguyen H, Erdman Z et al (2016) Tandem Lewis acid/Brønsted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite beta. J Catal 333:149–161. https://doi.org/10.1016/j.jcat.2015.10.009

    Article  CAS  Google Scholar 

  100. Lohse U, Bertram R, Jancke K et al (1995) Acidity of aluminophosphate structures. Part 2. —Incorporation of cobalt into CHA and AFI by microwave synthesis. J Chem Soc Faraday Trans 91:1163–1172. https://doi.org/10.1039/FT9959101163

    Article  CAS  Google Scholar 

  101. Salciccioli M, Stamatakis M, Caratzoulas S, Vlachos DG (2011) A review of multiscale modeling of metal-catalyzed reactions : mechanism development for complexity and emergent behavior. Chem Eng Sci 66:4319–4355. https://doi.org/10.1016/j.ces.2011.05.050

    Article  CAS  Google Scholar 

  102. C APPENDIX 2 (1976) Charge densities of selected ions. 13–15

  103. Girisuta B, Janssen LPBM, Heeres HJ (2006) Green chemicals: a kinetic study on the conversion of glucose to levulinic acid. Chem Eng Res Des 84:339–349. https://doi.org/10.1205/cherd05038

    Article  CAS  Google Scholar 

  104. Kuster BFM (1977) The influence of water concentration on the dehydration of d-fructose. Carbohyd Res 54:177–183. https://doi.org/10.1016/S0008-6215(00)84807-7

    Article  CAS  Google Scholar 

  105. Sumerskii IV, Krutov SM, Zarubin MY (2010) Humin-like substances formed under the conditions of industrial hydrolysis of wood. Russ J Appl Chem 83:320–327. https://doi.org/10.1134/S1070427210020266

    Article  CAS  Google Scholar 

  106. Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5:7559–7574. https://doi.org/10.1039/c2ee21593d

    Article  CAS  Google Scholar 

  107. Zeng W, Cheng DG, Chen F, Zhan X (2009) Catalytic conversion of glucose on Al-Zr mixed oxides in hot compressed water. Catal Lett 133:221–226. https://doi.org/10.1007/s10562-009-0160-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Michela Signoretto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Brønsted and Lewis acid site modification of NaZSM-5 using aqueous ion-exchange.

• Lewis acid modification of NaZSM-5 using microwave-assisted solid ion-exchange.

• Solid transition metals of the fourth period of the periodic table as the exchanged ions.

• Microwave ion-exchanged NaZSM-5 as the best catalyst for glucose to levulinic acid.

• Cu(II) as the best exchanged ion in NaZSM-5 for glucose conversion to levulinic acid.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 897 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghavi, S., Ghedini, E., Menegazzo, F. et al. Balanced acidity by microwave-assisted ion-exchange of ZSM-5 zeolite as a catalyst for transformation of glucose to levulinic acid. Biomass Conv. Bioref. 14, 8251–8269 (2024). https://doi.org/10.1007/s13399-022-03026-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03026-7

Keyword

Navigation