Skip to main content

Advertisement

Log in

Volatile fatty acid production from hydrolyzed sewage sludge: effect of hydraulic retention time and insight into thermophilic microbial community

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The disposal of sewage sludge potentially reaches 50–60% of the total operation cost of a wastewater treatment plant. Given its high content of organic material, adopting effective technologies for sewage sludge treatment minimizes its environmental impact and the parallel conversion of the organics into recovered bio-products. Hence, the such stream can be viewed as a renewable carbon source to produce high-value products such as volatile fatty acids (VFA). Short-time (8 h) alkaline (pH 9–11) and thermal (70–85 °C) hydrolysis were applied to enhance the acidogenic fermentability of thickened sewage sludge. Mild thermal hydrolysis (70 °C) was chosen as the best performing method to increase the soluble chemical oxygen demand (CODSOL) and boost the VFA production in the following dark fermentation process, designed at three different hydraulic retention times (4.0, 5.0, and 6.0 days). The highest acidification yield (0.30 g CODVFA/g VS) and CODVFA/CODSOL ratio (0.73) were obtained at 6.0 days as hydraulic retention time. Microbial community analysis performed at the end of semi-continuous tests showed the occurrence of several fermentative bacteria (i.e., Coprothermobacteraceae, Planococcaceae, Thermoanaerobacteraceae) responsible for the fermentation of complex organic matters mainly into acetic, propionic, and butyric acids, which dominated the VFA spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CSTR :

Continuous stirred tank reactor

DF :

Dark fermentation

FID :

Flame ionization detector

GC :

Gas chromatograph

HRT :

Hydraulic retention time

OLR :

Organic loading rate

SRT :

Sludge retention time

COD SOL :

Soluble chemical oxygen demand

VFA :

Volatile fatty acids

TKN :

Total Kjeldahl nitrogen

TS :

Total solids

VS :

Volatile solids

WWTP :

Wastewater treatment plant

References

  1. Li X, Liu G, Liu S, Ma K, Meng L (2018) The relationship between volatile fatty acids accumulation and microbial community succession triggered by excess sludge alkaline fermentation. J Environ Manag 223:85–91. https://doi.org/10.1016/j.jenvman.2018.06.002

    Article  Google Scholar 

  2. He Liu P, Han H, Liu G, Zhou B, Fu ZZ (2018) Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresour Technol 260:105–114. https://doi.org/10.1016/j.biortech.2018.03.105

    Article  Google Scholar 

  3. Da Ros C, Conca V, Eusebi AL, Frison N, Fatone F (2020) Sieving of municipal wastewater and recovery of bio-based volatile fatty acids at pilot scale. Wat Res 174:115633. https://doi.org/10.1016/j.watres.2020.115633

    Article  Google Scholar 

  4. Zhang D, Jiang H, Chang J, Sun J, Tu W, Wang H (2019) Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production. Bioresour Technol 279:92–100. https://doi.org/10.1016/j.biortech.2019.01.077

    Article  Google Scholar 

  5. Braguglia C, Gallipoli A, Gianico A, Pagliaccia P (2018) Anaerobic bioconversion of food waste into energy: a critical review. Bioresour Technol 248:37–56. https://doi.org/10.1016/j.biortech.2017.06.145

    Article  Google Scholar 

  6. Moretto G, Russo I, Bolzonella D, Pavan P, Majone M, Valentino F (2020) An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Wat Res 170:115371. https://doi.org/10.1016/j.watres.2019.115371

    Article  Google Scholar 

  7. APHA/AWWA/WEF, Stand. Methods Exam. Water Wastewater (2012)

  8. Moretto G, Valentino F, Pavan P, Majone M, Bolzonella D (2019) Optimization of urban waste fermentation for volatile fatty acids production. Waste Manag 92:21–29. https://doi.org/10.1016/j.wasman.2019.05.010

    Article  Google Scholar 

  9. Lanfranchi A, Tassinato G, Valentino F, Martinez GA, Jones E, Gioia C, Bertin L, Cavinato C (2022) Hydrodynamic cavitation pre-treatment of urban waste: integration with acidogenic fermentation, PHAs synthesis and anaerobic digestion processes. Chemosphere 301:134624. https://doi.org/10.1016/j.chemosphere.2022.134624

    Article  Google Scholar 

  10. Crognale S, Casentini B, Amalfitano A, Fazi S, Petruccioli M, Rossetti S (2019) Biological As(III) oxidation in biofilters by using native groundwater microorganisms. Sci Total Environ 651:93–102. https://doi.org/10.1016/j.scitotenv.2018.09.176

    Article  Google Scholar 

  11. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    Article  Google Scholar 

  12. Crognale S, Braguglia CM, Gallipoli A, Gianico A, Rossetti S, Montecchio D (2021) Direct conversion of food waste extract into caproate: metagenomics assessment of chain elongation process. Microorganisms 9:327. https://doi.org/10.3390/microrganisms9020327

    Article  Google Scholar 

  13. Morgan-Sagastume F, Karlsson A, Johansson P, Pratt S, Boon N, Lant P, Werker A (2010) Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus. Wat Res 44:5196–5211. https://doi.org/10.1016/j.watres.2010.06.043

    Article  Google Scholar 

  14. Liang T, Elmaadawy K, Liu B, Hu J, Hou H, Yang J (2021) Anaerobic fermentation of waste activated sludge for volatile fatty acid production: recent updates of pretreatment methods and the potential effect of humic and nutrients substances. Process Saf Environ Prot 145:321–339. https://doi.org/10.1016/j.psep.2020.08.010

    Article  Google Scholar 

  15. Li X, Guo S, Peng Y, He Y, Wang S, Li L, Zhao M (2018) Anaerobic digestion using ultrasound as pretreatment approach: changes in waste activated sludge, anaerobic digestion performances and digestive microbial populations. Biochem Eng J 139:139–145. https://doi.org/10.1016/j.bej.2017.11.009

    Article  Google Scholar 

  16. Danso-Boateng E, Shama G, Wheatley AD, Martin SJ, Holdich RG (2015) Hydrothermal carbonisation of sewage sludge: effect of process conditions on product characteristics and methane production. Bioresour Technol 177:318–327. https://doi.org/10.1016/j.biortech.2014.11.096

    Article  Google Scholar 

  17. Carrere H, Antonopoulou G, Affes R, Passos F, Battimelli A, Lyberatos G, Ferrer I (2016) Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour Technol 199:386–397. https://doi.org/10.1016/j.biortech.2015.09.007

    Article  Google Scholar 

  18. Morgan-Sagastume F, Hjort M, Cirne D, Gérardin F, Lacroix S, Gaval G, Karabegovic L, Alexandersson T, Johansson P, Karlsson A, Bengtsson S, Arcos-Hernández MV, Magnusson P, Werker A (2015) Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresour Technol 181:78–89. https://doi.org/10.1016/j.biortech.2015.01.046

    Article  Google Scholar 

  19. Villano M, Lampis S, Valentino F, Vallini G, Majone M, Beccari M (2010) Effect of hydraulic and organic loads in Sequencing Batch Reactor on microbial ecology of activated sludge and storage of polyhydroxyalkanoates. Chem Eng Trans 20:187–192. https://doi.org/10.3303/CET1020032

    Article  Google Scholar 

  20. Garcia-Aguirre J, Aymerich E, González-Mtnez de Goñi J, Esteban-Gutiérrez M (2017) Selective VFA production potential from organic waste streams: assessing temperature and pH influence. Bioresour Technol 244:1081–1088. https://doi.org/10.1016/j.biortech.2017.07.187

    Article  Google Scholar 

  21. Chen Y, Jiang X, Xiao K, Shen N, Zeng RJ, Zhou Y (2017) Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase – investigation on dissolved organic matter transformation and microbial community shift. Wat Res 112:261–268. https://doi.org/10.1016/j.watres.2017.01.067

    Article  Google Scholar 

  22. Iglesias-Iglesias R, Campanaro S, Treu L, Kennes C, Veiga MC (2019) Valorization of sewage sludge for volatile fatty acids production and role of T microbiome on acidogenic fermentation. Bioresour Technol 291:121817. https://doi.org/10.1016/j.biortech.2019.121817

    Article  Google Scholar 

  23. Mineo A, Cosenza A, Mannina G (2023) Sewage sludge acidogenic fermentation for organic resource recovery towards carbon neutrality: an experimental survey testing the headspace influence. Bioresour Technol 367:128217. https://doi.org/10.1016/j.biortech.2022.128217

    Article  Google Scholar 

  24. Nguemna Tayou L, Lauri R, Incocciati E, Pietrangeli B, Majone M, Micolucci F, Gottardo M, Valentino F (2022) Acidogenic fermentation of food waste and sewage sludge mixture: effect of operating parameters on process performance and safety aspects. Process Saf Environ Prot 163:158–166. https://doi.org/10.1016/j.psep.2022.05.011

    Article  Google Scholar 

  25. Valentino F, Munarin G, Biasiolo M, Cavinato C, Bolzonella D, Pavan P (2021) Enhancing volatile fatty acids (VFA) production from food waste in a two-phases pilot-scale anaerobic digestion process. J Environ Chem Eng 9:106062. https://doi.org/10.1016/j.jece.2021.106062

    Article  Google Scholar 

  26. Niero L, Morgan-Sagastume F, Lagerkvist A (2021) Accelerating acidogenic fermentation of sewage sludge with ash addition. J Environ Chem Eng 9:106564. https://doi.org/10.1016/j.jece.2021.106564

    Article  Google Scholar 

  27. Presti D, Cosenza A, Capri FC, Gallo G, Alduina R, Mannina G (2021) Influence of volatile solids and pH for the production of volatile fatty acids: batch fermentation tests using sewage sludge. Bioresour Technol 342:125853. https://doi.org/10.1016/j.biortech.2021.125853

    Article  Google Scholar 

  28. Sahu AK, Mitra I, Hans HK, Holte R, Svensson K, Cambi (2022) Thermal Hydrolysis Process (CambiTHP) for sewage sludge treatment. Wastewater Treat Plants Biorefin 2:405–422

    Google Scholar 

  29. Hosseini Koupaie E, Lin L, Bazyar Lakeh AA, Azizi A, Dhar BR, Hafez H, Elbeshbishy E (2021) Performance evaluation and microbial community analysis of mesophilic and thermophilic sludge fermentation processes coupled with thermal hydrolysis. Renew Sustain Energy Rev 141:110832. https://doi.org/10.1016/j.rser.2021.110832

    Article  Google Scholar 

  30. Wiegel J, Tanner R, Rainey FA (2006) An introduction to the family Clostridiaceae. Prokaryote 4:654–678

    Article  Google Scholar 

  31. Levén L, Eriksson ARB, Schnürer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693. https://doi.org/10.1111/j.1574-6941.2006.00263.x

    Article  Google Scholar 

  32. Shivaji S, Srinivas TNR, Reddy GSN (2014) The Family Planococcaceae. In Rosenberg E et al (eds) The Prokaryotes – Firmicutes and Tenericutes

  33. Balk M, Heilig HGHJ, van Eekert MHA, Stams AJM, Rijpistra IC, Sinninghe-Damsté JS, de Vos WM, Kengen SWM (2009) Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey. Extremophiles 13:885–894. https://doi.org/10.1007/s00792-009-0276-9

    Article  Google Scholar 

  34. Gagliano MC, Braguglia CM, Petruccioli M, Rossetti S (2015) Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp. FEMS Microbiol Ecol 91. https://doi.org/10.1093/femsec/fiv018

Download references

Acknowledgements

The hospitality of Alto Trevigiano Servizi (ATS) S.r.l. is gratefully acknowledged.

Funding

This work was partially supported by DAIS—Ca’ Foscari University of Venice, within the IRIDE program.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, writing—original draft preparation, resources, supervision: Marco Gottardo; methodology, formal analysis and investigation, writing—original draft preparation: Simona Crognale; formal analysis and investigation: Barbara Tonanzi; supervision, resources: Simona Rossetti; formal analysis and investigation: Ludovica D’Annibale; conceptualization: Joan Dosta; funding acquisition, writing—original draft preparation: Francesco Valentino.

Corresponding author

Correspondence to Marco Gottardo.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gottardo, M., Crognale, S., Tonanzi, B. et al. Volatile fatty acid production from hydrolyzed sewage sludge: effect of hydraulic retention time and insight into thermophilic microbial community. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03659-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03659-8

Keywords

Navigation