Skip to main content

Advertisement

Log in

Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability

  • Decadal Predictability and Prediction (T Delworth, Section Editor)
  • Published:
Current Climate Change Reports Aims and scope Submit manuscript

Abstract

The expanding interest in decadal climate variability, predictability, and prediction highlights the importance of understanding the sources and mechanisms of decadal and interdecadal climate fluctuations. The purpose of this paper is to provide a critical review of our current understanding of externally forced decadal climate variability. In particular, proposed mechanisms determining decadal climate responses to variations in solar activity, stratospheric volcanic aerosols, and natural as well as anthropogenic tropospheric aerosols are discussed, both separately and in a unified framework. The review suggests that the excitation of internal modes of interdecadal climate variability, particularly centered in the Pacific and North Atlantic sectors, remains a paradigm to characterize externally forced decadal climate variability and to interpret the associated dynamics. Significant recent advancements are the improved understanding of the critical dependency of volcanically forced decadal climate variability on the relative phase of ongoing internal variability and on additional external perturbations, and the recognition that associated uncertainty may represent a serious obstacle to identifying the climatic consequences even of very strong eruptions. Particularly relevant is also the recent development of hypotheses about potential mechanisms (reemergence and synchronization) underlying solar forced decadal climate variability. Finally, outstanding issues and, hence, major opportunities for progress regarding externally forced decadal climate variability are discussed. Uncertain characterization of forcing and climate histories, imperfect implementation of complex forcings in climate models, limited understanding of the internal component of interdecadal climate variability, and poor quality of its simulation are some of the enduring critical obstacles on which to progress. It is suggested that much further understanding can be gained through identification and investigation of relevant periods of forced decadal climate variability during the preindustrial past millennium. Another upcoming opportunity for progress is the analysis of focused experiments with coupled ocean–atmosphere general circulation models within the umbrella of the next phase of the coupled model intercomparison project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Liu Z. Dynamics of interdecadal climate variability: a historical perspective. J Clim. 2012;25:1963–95. doi:10.1175/2011JCLI3980.1.

    Article  Google Scholar 

  2. Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, Di Lorenzo E, Mantua NJ, Miller AJ, Minobe S, Nakamura H, Schneider N, Vimont DJ, Phillips AS, Scott JD, Smith CA. The Pacific decadal oscillation, revisited. J Clim. 2016;29(12):4399–427.

    Article  Google Scholar 

  3. Farneti R. Modelling interdecadal climate variability and the role of the ocean. Wiley Int Rev: Cl Ch. 2017;8(1):e441.

    Google Scholar 

  4. Clement A, Bellomo K, Murphy LN, Cane MA, Mauritsen T, Rädel G, Stevens B. The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science. 2015;350(6258):320–4. doi:10.1126/science. aab3980.

    Article  CAS  Google Scholar 

  5. Clement A, Bellomo K, Murphy LN, Cane MA, Mauritsen T, Stevens B. Response to comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation”. Science. 2016;352(6293):1527. doi:10.1126/science.aaf2575.

    Article  CAS  Google Scholar 

  6. Zhang R, Sutton R, Danabasoglu G, Delworth TL, Kim WM, Robson J, Yeager SG. Comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation”. Science. 2016;352:1527. doi:10.1126/science.aaf1660.

    Article  CAS  Google Scholar 

  7. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H. Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York, NY: Cambridge University Press; 2013.

    Google Scholar 

  8. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen V-M, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY. Clouds and aerosols. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York, NY: Cambridge University Press; 2013.

    Google Scholar 

  9. Pincus R, Forster PM, Stevens B. The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6. Geosci Model Dev. 2016;9:3447–60. doi:10.5194/gmd-9-3447-2016.

    Article  Google Scholar 

  10. Bothe O, Jungclaus JH, Zanchettin D, Zorita E. Climate of the last millennium: ensemble consistency of simulations and reconstructions. Clim Past. 2013;9:1089–110. doi:10.5194/cp-9-1-2013.

    Article  Google Scholar 

  11. Zanchettin D, Bothe O, Lehner F, Ortega P, Raible CC, Swingedouw D. Reconciling reconstructed and simulated features of the winter Pacific/North American pattern in the early 19th century. Clim Past. 2015;11:939–58. doi:10.5194/cp-11-939-2015.

    Article  Google Scholar 

  12. PAGES 2k-PMIP3 group. Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium. Clim Past. 2015;11:1673–99. doi:10.5194/cp-11-1673-2015.

    Article  Google Scholar 

  13. Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev. 2016;9:1937–58. doi:10.5194/gmd-9-1937-2016.

    Article  Google Scholar 

  14. Boer GJ, Smith DM, Cassou C, Doblas-Reyes F, Danabasoglu G, Kirtman B, Kushnir Y, Kimoto M, Meehl GA, Msadek R, Mueller WA, Taylor KE, Zwiers F, Rixen M, Ruprich-Robert Y, Eade R. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci Model Dev. 2016;9:3751–77. doi:10.5194/gmd-9-3751-2016.

    Article  Google Scholar 

  15. Zanchettin D, Khodri M, Timmreck C, Toohey M, Schmidt A, Gerber EP, Hegerl G, Robock A, Pausata FSR, Ball WT, Bauer SE, Bekki S, Dhomse SS, LeGrande AN, Mann GW, Marshall L, Mills M, Marchand M, Niemeier U, Poulain V, Rozanov E, Rubino A, Stenke A, Tsigaridis K, Tummon F. The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6. Geosci Model Dev. 2016;9:2701–19. doi:10.5194/gmd-9-2701-2016.

    Google Scholar 

  16. Swingedouw D, Mignot J, Ortega P, Khodri M, Menegoz M, Cassou C, Hanquiez V. Impact of explosive volcanic eruptions on the main climate variability modes. Glob Plan Ch. 2017;150:24–45.

    Article  Google Scholar 

  17. Timmreck C. Modeling the climatic effects of large volcanic eruptions. WIREs Clim Change. 2012;3:545–64. doi:10.1002/wcc.192.

    Article  Google Scholar 

  18. Winter A, Zanchettin D, Miller T, Kushnir Y, Black D, Lohmann G, Burnett A, Haug GH, Estrella-Martínez J, Breitenbach SFM, Beaufort L, Rubino A, Cheng H. Persistent drying in the tropics linked to natural forcing. Nat Commun. 2015;6:7627. doi:10.1038/ncomms8627.

    Article  CAS  Google Scholar 

  19. Santer BD, Bonfils C, Painter JF, Zelinka MD, Mears C, Solomon S, Schmidt GA, Fyfe JC, Cole JNS, Nazarenko L, Taylor KE, Wentz FJ. Volcanic contribution to decadal changes in tropospheric temperature. Nat Geosci. 2014;7:185–9. doi:10.1038/ngeo2098.

    Article  CAS  Google Scholar 

  20. Takahashi C, Watanabe M. Pacific trade winds accelerated by aerosol forcing over the past two decades. Nature Cl Ch. 2016;6(8):768–72. doi:10.1038/nclimate2996.

    Article  Google Scholar 

  21. Zhang L. The roles of external forcing and natural variability in global warming hiatuses. Clim Dyn. 2016;47(9–10):3157–69. doi:10.1007/s00382-016-3018-6.

    Article  Google Scholar 

  22. Iles C, Hegerl GC. The global precipitation response to volcanic eruptions in the CMIP5 models. Environm Res Lett. 2014;9:104012. doi:10.1088/1748-9326/9/10/104012.

    Article  Google Scholar 

  23. Zanchettin D, Bothe O, Timmreck C, Bader J, Beitsch A, Graf H-F, Notz D, Jungclaus JH. Inter-hemispheric asymmetry in the sea-ice response to volcanic forcing simulated by MPI-ESM (COSMOS-Mill). Earth Syst Dynam. 2014b;5:223–42. doi:10.5194/esd-5-223-2014.

    Article  Google Scholar 

  24. Bittner M, Schmidt H, Timmreck C, Sienz F. Using a large ensemble of simulations to assess the Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its uncertainty. Geophys Res Lett. 2016;43(17):9324–32.

    Article  Google Scholar 

  25. Toohey M, Krüger K, Bittner M, Timmreck C, Schmidt H. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure. Atmos Chem Phys. 2014;14:13063–79. doi:10.5194/acp-14-13063-2014.

    Article  CAS  Google Scholar 

  26. Gillett NP, Fyfe JC. Annular mode changes in the CMIP5 simulations. Geophys Res Lett. 2013;40(6):1189–93.

    Article  Google Scholar 

  27. Otterå OH, Bentsen M, Drange H, Suo L. External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci. 2010; doi:10.1038/NGEO995.

    Google Scholar 

  28. Swingedouw D, Ortega P, Mignot E, Guilyardi E, Masson-Delmotte V, Butler PG, Khodri M, Seferian R. Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions. Nature Comm. 2015;6:6545. doi:10.1038/ncomms7545.

    Article  CAS  Google Scholar 

  29. Zanchettin D, Timmreck C, Graf H-F, Rubino A, Lorenz S, Lohmann K, Krueger K, Jungclaus JH. Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Clim Dyn. 2012;39(1–2):419–44. doi:10.1007/s00382-011-1167-1.

    Article  Google Scholar 

  30. Zanchettin D, Timmreck C, Bothe O, Lorenz SJ, Hegerl G, Graf H-F, Luterbacher J, Jungclaus JH. Delayed winter warming: a robust decadal response to strong tropical volcanic eruptions? Geophys Res Lett. 2013a;40:204–9. doi:10.1029/2012GL054403.

    Article  Google Scholar 

  31. Mignot J, Khodri M, Frankignoul C, Servonnat J. Volcanic impact on the Atlantic Ocean over the last millennium. Clim Past. 2011;7:1439–55. doi:10.5194/cp-7-1439-2011.

    Article  Google Scholar 

  32. Zhong Y, et al. Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism. Clim Dyn. 2010;23:5–7. doi:10.1007/s00382-010-0967-z.

    Article  Google Scholar 

  33. Ding Y, Carton JA, Chepurin GA, Stenchikov G, Robock A, Sentman LT, Krasting JP. Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 (CMIP5) simulations. J Geophys Res Ocean. 2014;119:5622–37. doi:10.1002/2013JC009780.

    Article  CAS  Google Scholar 

  34. Lohmann K, Mignot J, Langehaug HR, Jungclaus JH, Matei D, Otterå OH, Gao YQ, Mjell TL, Ninnemann US, Kleiven HF. Using simulations of the last millennium to understand climate variability seen in paleo-observations: similar variation of Iceland-Scotland overflow strength and Atlantic Multidecadal Oscillation. Clim Past. 2015;11:203–16.

    Article  Google Scholar 

  35. Menary MB, Hodson DLR, Robson JI, Sutton RT, Wood RA, Hunt JA. Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophys Res Lett. 2015;42(14):5926–34. doi:10.1002/2015GL064360.

    Article  Google Scholar 

  36. Zanchettin D, Bothe O, Graf HF, Lorenz SJ, Luterbacher J, Timmreck C, Jungclaus JH. Background conditions influence the decadal climate response to strong volcanic eruptions. J Geophys Res Atm. 2013b;118(10):4090–106. doi:10.1002/jgrd.50229.

    Article  Google Scholar 

  37. Pausata FSR, Chafik L, Caballero R, Battisti DS. Impacts of high-latitude volcanic eruptions on ENSO and AMOC. P Natl Acad Sci USA. 2015b;112:13784–8. doi:10.1073/pnas.1509153112.

    Article  CAS  Google Scholar 

  38. Pausata FSR, Grini A, Caballero R, Hannachi A, Seland Ø. High-latitude volcanic eruptions in the Norwegian Earth System Model: the effect of different initial conditions and of the ensemble size. Tellus B. 2015a;67:26728. doi:10.3402/tellusb.v67.26728.

    Article  CAS  Google Scholar 

  39. Pausata FSR, Karamperidou C, Caballero R, Battisti DS. ENSO response to high-latitude volcanic eruptions in the Northern Hemisphere: the role of initial conditions. Geophys Res Lett. 2016; doi:10.1002/2016GL069575.

    Google Scholar 

  40. Moreno-Chamarro E, Zanchettin D, Lohman K, Jungclaus JH. An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes. Clim Dyn. 2016; doi:10.1007/s00382-016-3106-7.

    Google Scholar 

  41. Wise EK. Tropical pacific and northern hemisphere influences on the coherence of pacific decadal oscillation reconstructions. Int J Climatol. 2015;35(1):154–60.

    Article  Google Scholar 

  42. Wang T, Otterå OH, Gao Y, Wang H. The response of the North Pacific decadal variability to strong tropical volcanic eruptions. Clim Dyn. 2012;39(12):2917–36. doi:10.1007/s00382-012-1373-5.

    Article  Google Scholar 

  43. Fleming LE, Anchukaitis KJ. North Pacific decadal variability in the CMIP5 last millennium simulations. Clim Dyn. 2015;47(12):3783–801.

    Article  Google Scholar 

  44. Zanchettin D, Rubino A, Matei D, Bothe O, Jungclaus JH. Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Clim Dyn. 2013c;40(5):1301–18. doi:10.1007/s00382-012-1361-9.

    Article  Google Scholar 

  45. Li J, Xie S-P, Cook ER, Morales MS, Christie DA, Johnson NC, Chen F, D’Arrigo R, Fowler AM, Gou X, Fang K. El Niño modulations over the past seven centuries. Nature Cl. Ch. 2013;3:822–6. doi:10.1038/NCLIMATE1936.

    Article  Google Scholar 

  46. Wahl ER, Diaz HF, Smerdon JE, Ammann CM. Late winter temperature response to large tropical volcanic eruptions in temperate western North America: Relationship to ENSO phases. Glob Planet Chang. 2014;122:238–50. doi:10.1016/j.gloplacha.2014.08.005.

    Article  Google Scholar 

  47. Wang C, Deser C, Yu J-Y, DiNezio P, Clement A. El Niño-Southern Oscillation (ENSO): a review. In: Glymn P, Manzello D, Enochs I, Editors. Coral Reefs of the Eastern Pacific. Springer Science Publisher; 2016a. p. 85–106.

  48. Maher N, McGregor S, England MH, Gupta AS. Effects of volcanism on tropical variability. Geophys Res Lett. 2015; doi:10.1002/2015GL064751.

    Google Scholar 

  49. Tierney JE, Abram NJ, Anchukaitis KJ, Evans MN, Giry C, Kilbourne KH, Saenger CP, Wu HC, Zinke J. Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography. 2015;30:226–52. doi:10.1002/2014pa002717.

    Article  Google Scholar 

  50. Ohba M, Shiogama H, Yokohata T, Watanabe M. Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM. J Clim. 2013;26:5169–82.

    Article  Google Scholar 

  51. Lehner F, Schurer AP, Hegerl GC, Deser C, Frölicher TL. The importance of ENSO phase during volcanic eruptions for detection and attribution. Geophys Res Lett. 2016;43:2851–8. doi:10.1002/2016GL067935.

    Article  Google Scholar 

  52. Stevenson S, Fasullo JT, Otto-Bliesner BL, Tomas RA, Gao C. Role of eruption season in reconciling model and proxy responses to tropical volcanism. PNAS. 2017; doi:10.1073/pnas.1612505114.

    Google Scholar 

  53. Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo J, Cravatte S, Masson S, Yamagata T. Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat Geosci. 2010;3:168–72.

    Article  CAS  Google Scholar 

  54. Fan J, Wang Y, Rosenfeld D, Liu X. Review of aerosol-cloud interactions: mechanisms, significance and challenges. J Atmos Sc. 2016;73(11) doi:10.1175/JAS-D-16-0037.1.

  55. Stevens B. Rethinking the lower bound on aerosol radiative forcing. J Clim. 2015;28:4794–819.

    Article  Google Scholar 

  56. Xie S-P, Lu B, Xiang B. Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nat Geosci. 2013;6:828–32.

    Article  CAS  Google Scholar 

  57. Wang H, Xie S-P, Liu Q. Comparison of climate response to anthropogenic aerosol versus greenhouse gas forcing: distinct patterns. J Clim. 2016b;29:5175–88. doi:10.1175/JCLI-D-16-0106.1.

    Article  Google Scholar 

  58. Wang H, Xie S-P, Tokinaga H, Liu Q, Kosaka Y. Detecting cross-equatorial wind change as a fingerprint of climate response to anthropogenic aerosol forcing. Geophys Res Lett. 2016c;43(7):3444–50. doi:10.1002/2016GL068521.

    Article  Google Scholar 

  59. Steptoe H, Wilcox LJ, Highwood EJ. Is there a robust effect of anthropogenic aerosols on the Southern Annular Mode? J Geophys Res Atmos. 2016;121(17):10029–42.

    Article  Google Scholar 

  60. Li X, Gerber EP, Holland DM, Yoo C. A Rossby wave bridge from the tropical Atlantic to West Antarctica. J Clim. 2015;28:2256–73. doi:10.1175/JCLI-D-14-00450.1.

    Article  Google Scholar 

  61. Booth BBB, Dunstone NJ, Halloran PR, Andrews Bellouin TN. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature. 2012;484:228–32.

    Article  CAS  Google Scholar 

  62. Zanchettin D, Bothe O, Müller W, Bader J, Jungclaus JH. Different flavors of the Atlantic multidecadal variability. Clim Dyn. 2014a;42(1–2):381–99. doi:10.1007/s00382-013-1669-0.

    Article  Google Scholar 

  63. Zhang R, et al. Have aerosols caused the observed Atlantic multidecadal variability? J Atm Sc. 2013;70(4):1135–44. doi:10.1175/JAS-D-12-0331.1.

    Article  Google Scholar 

  64. Boo K-O, Booth BBB, Byun Y-H, Lee J, Cho C, Shim S, Kim K-T. Influence of aerosols in multidecadal SST variability simulations over the North Pacific. J. Geophys. Res. Atm. 2015;120(2):517–31.

    Article  Google Scholar 

  65. Dong L, Zhou T, Chen X. Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols. Geophys Res Lett. 2014;41(23):8570–7.

    Article  Google Scholar 

  66. Smith DM, Booth BBB, Dunstone NJ, Eade R, Hermanson L, Jones GS, Scaife AA, Sheen KL, Thompson V. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nature Clim Ch. 2016;6(10):936–40. doi:10.1038/nclimate3058.

    Article  CAS  Google Scholar 

  67. Acosta Navarro JC, Varma V, Riipinen I, Seland Ø, Kirkevåg A, Struthers H, Iversen T, Hansson H-C, Ekman AML. Amplification of Arctic warming by past air pollution reductions in Europe. Nat Geosci. 2016;9:277–81. doi:10.1038/ngeo2673.

    Article  CAS  Google Scholar 

  68. Acosta Navarro JC, Ekman AML, Pausata FSR, Lewinschal A, Varma V, Seland Ø, Gauss M, Iversen T, Kirkevåg A, Riipinen I, Hansson H-C. Future response of temperature and precipitation to reduced aerosol emissions as compared with increased greenhouse gas concentrations. J Clim. 2017;30:939–54. doi:10.1175/JCLI-D-16-0466.1.

    Article  Google Scholar 

  69. Carslaw KS, Lee LA, Reddington CL, Pringle KJ, Rap A, Forster PM, Mann GW, Spracklen DV, Woodhouse MT, Regayre LA, Pierce JR. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature. 2013;503:7474. doi:10.1038/nature12674.

    Article  CAS  Google Scholar 

  70. Xu L, et al. Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1. J Geophys Res Atmos. 2015;120(4):1502–19. doi:10.1002/2014JD022888.

    Article  Google Scholar 

  71. Gray LJ, et al. Solar influences on climate. Rev Geophys. 2010;48:RG4001.

    Article  Google Scholar 

  72. Meehl GA, Arblaster JM, Marsh DR. Could a future “grand solar minimum” like the maunder minimum stop global warming? Geophys Res Lett. 2013a;40(9):1789–93. doi:10.1002/grl.50361.

    Article  Google Scholar 

  73. Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov II, Overland J, Perlwitz J, Sebbari R, Zhang X. Detection and attribution of climate change: From global to regional. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York, NY: Cambridge University Press; 2013.

    Google Scholar 

  74. Meehl GA, Arblaster JM, Matthes K, Sassi F, van Loon H. Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science. 2009;325(5944):1114–8.

    Article  CAS  Google Scholar 

  75. Misios S, Schmidt H. The role of the oceans in shaping the tropospheric response to the 11 year solar cycle. Geophys Res Lett. 2013;40(24):6373–7. doi:10.1002/2013GL058439.

    Article  Google Scholar 

  76. Chiodo G, García-Herrera R, Calvo N, Vaquero JM, Añel JA, Barriopedro D, Matthes K. The impact of a future solar minimum on climate change projections in the Northern Hemisphere. Environm. Res. Lett. 2016;11(3) doi:10.1088/1748-9326/11/3/034015.

  77. van Loon H, Meehl GA. Interactions between externally forced climate signals from sunspot peaks and the internally generated Pacific Decadal and North Atlantic Oscillations. Geophys Res Lett. 2014;41 doi:10.1002/2013GL058670.

  78. Gray LJ, Scaife AA, Mitchell D, Osprey S, Ineson S, Hardiman S, Butchart N, Knight J, Sutton R, Kodera K. A lagged response to the 11-year solar cycle in observed winter Atlantic/European weather patterns. J Geophys Res Atmos. 2013;118:13405–20.

    Article  Google Scholar 

  79. Gray LJ, Woollings TJ, Andrews M, Knight J. Eleven-year solar cycle signal in the NAO and Atlantic/European blocking. Q J Royal Met Soc. 2016;142(698):1890–903. doi:10.1002/qj.2782.

    Article  Google Scholar 

  80. Scaife AA, Ineson S, Knight JR, Gray L, Kodera K, Smith DM. A mechanism for lagged North Atlantic climate response to solar variability. Geophys Res Lett. 2013;40:434–9. doi:10.1002/grl.50099.

    Article  Google Scholar 

  81. Andrews MB, Knight JR, Gray LJ. A simulated lagged response of the North Atlantic Oscillation to the solar cycle over the period 1960-2009. Environ Res Lett. 2015;10:054022.

    Article  Google Scholar 

  82. Chen H, Ma H, Li X, Sun S. Solar influences on spatial patterns of Eurasian winter temperature and atmospheric general circulation anomalies. J Geophys Res Atmos. 2015;120(17):8642–57. doi:10.1002/2015JD023415.

    Article  Google Scholar 

  83. Katsuki K, Itaki T, Khim B-K, Uchida M, Tada R. Response of the Bering Sea to 11-year solar irradiance cycles during the Bølling-Allerød. Geophys Res Lett. 2014;41(8):2892–8. doi:10.1002/2014GL059509.

    Article  Google Scholar 

  84. Martínez-Asensio A, Tsimplis MN, Calafat FM. Decadal variability of European sea level extremes in relation to the solar activity. Geophys Res Lett. 2016; doi:10.1002/2016GL071355.

    Google Scholar 

  85. Chiodo G, Marsh DR, Garcia-Herrera R, Calvo N, García JA. On the detection of the solar signal in the tropical stratosphere. Atm Chem Phys. 2014;14(11):5251–69. doi:10.5194/acp-14-5251-2014.

    Article  CAS  Google Scholar 

  86. Muthers S, Raible CC, Rozanov E, Stocker TF. Response of the AMOC to reduced solar radiation—the modulating role of atmospheric chemistry. Earth Syst. Dynam. 2016;7(877–892):2016. doi:10.5194/esd-7-877-2016.

    Google Scholar 

  87. Previdi M, Polvani LM. Climate system response to stratospheric ozone depletion and recovery. Q J Roy Met Soc. 2014;140(685):2401–19.

    Article  Google Scholar 

  88. Thieblemont R, Matthes KM, Omrani NO, Kodera K, Hansen F. Solar forcing synchronizes decadal North Atlantic climate variability. Nat Commun. 2015;6:8268.

    Article  CAS  Google Scholar 

  89. Misios S, Mitchell DM, Gray LJ, Tourpali K, Matthes K, Hood L, Schmidt H, Chiodo G, Thiéblemont R, Rozanov E, Krivolutsky A. Solar signals in CMIP-5 simulations: effects of atmosphere-ocean coupling. Q. J. Royal Met. Soc. 2016;142(695):928–41. doi:10.1002/qj.2695.

    Article  Google Scholar 

  90. Mitchell DM, Misios S, Gray LJ, Tourpali K, Matthes K, Hood LL, Schmidt H, Chiodo G, Thiéblemont R, Rozanov E, Shindell D, Krivolutsky A. Solar signals in CMIP-5 simulations: the stratospheric pathway. Q J R Meteorol Soc. 2015a;141:2390–403. doi:10.1002/qj.2530.

    Article  Google Scholar 

  91. Collins WJ, Lamarque J-F, Schulz M, Boucher O, Eyring V, Hegglin MI, Maycock A, Myhre G, Prather M, Shindell D, Smith SJ. AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6. Geosci Model Dev. 2017;10:585–607. doi:10.5194/gmd-10-585-2017.

    Article  Google Scholar 

  92. Ermolli I, Matthes K, Dudok de Wit T, Krivova NA, Tourpali K, Weber M, Unruh YC, Gray L, Langematz U, Pilewskie P, Rozanov E, Schmutz W, Shapiro A, Solanki SK, Woods TN. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos Chem Phys. 2013;13:3945–77. doi:10.5194/acp-13-3945-2013.

    Article  CAS  Google Scholar 

  93. Matthes K, Funke B, Anderson ME, Barnard L, Beer J, Charbonneau P, Clilverd MA, Dudok de Wit T, Haberreiter M, Hendry A, Jackman CH, Kretschmar M, Kruschke T, Kunze M, Langematz U, Marsh DR, Maycock A, Misios S, Rodger CJ, Scaife AA, Seppälä A, Shangguan M, Sinnhuber M, Tourpali K, Usoskin I, van de Kamp M, Verronen PT, Versick S. Solar forcing for CMIP6 (v3.1). Geosci Model Dev Discuss. 2016; doi:10.5194/gmd-2016-91. in review

    Google Scholar 

  94. Ball WT, et al. High solar cycle spectral variations inconsistent with stratospheric ozone observations. Nature Geosc. 2016;9(3):206–9. doi:10.1038/ngeo2640.

    CAS  Google Scholar 

  95. Bossay S, Bekki S, Marchand M, Poulain V, Toumi R. Sensitivity of tropical stratospheric ozone to rotational UV variations estimated from UARS and Aura MLS observations during the declining phases of solar cycles 22 and 23. J Atm Sol-Terr Phys. 2015;130-131:96–111. doi:10.1016/j.jastp.2015.05.014.

    Article  CAS  Google Scholar 

  96. Dhomse SS, et al. On the ambiguous nature of the 11 year solar cycle signal in upper stratospheric ozone. Geophys Res Lett. 2016;43(13):7241–9. doi:10.1002/2016GL069958.

    Article  Google Scholar 

  97. Jungclaus JH, Bard E, Baroni M, Braconnot P, Cao J, Chini LP, Egorova T, Evans M, González-Rouco JF, Goosse H, Hurtt GC, Joos F, Kaplan JO, Khodri M, Klein Goldewijk K, Krivova N, LeGrande AN, Lorenz SJ, Luterbacher J, Man W, Meinshausen M, Moberg A, Nehrbass-Ahles C, Otto-Bliesner BI, Phipps SJ, Pongratz J, Rozanov E, Schmidt GA, Schmidt H, Schmutz W, Schurer A, Shapiro AI, Sigl M, Smerdon JE, Solanki SK, Timmreck C, Toohey M, Usoskin IG, Wagner S, Wu C-Y, Yeo KL, Zanchettin D, Zhang Q, Zorita E. The PMIP4 contribution to CMIP6—Part 3: the Last Millennium, Scientific Objective and Experimental Design for the PMIP4 past1000 simulations. Geosci Model Dev Discuss. 2016; doi:10.5194/gmd-2016-278. in review

    Google Scholar 

  98. Ridley DA, Solomon S, Barnes JE, Burlakov VD, Deshler T, Dolgii SI, Dolgii SI, Herber AB, Nagai T, Neely III RR, Nevzorov AV, Ritter C, Sakai T, Santer BD, Sato M, Schmidt A, Uchino O, Vernier JP. Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys Res Lett. 2014;41(22):7763–9. doi:10.1002/2014GL061541.

    Article  CAS  Google Scholar 

  99. Sigl M, Winstrup M, McConnell JR, Welten KC, Plunkett G, Ludlow F, Büntgen U, Caffee M, Chellman N, Dahl-Jensen D, Fischer H, Kipfstuhl S, Kostick C, Maselli OJ, Mekhaldi F, Mulvaney R, Muscheler R, Pasteris DR, Pilcher JR, Salzer M, Schüpbach S, Steffensen JP, Vinther BM, Woodruff TE. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature. 2015;523:543–9. doi:10.1038/nature14565.

    Article  CAS  Google Scholar 

  100. Zanchettin D, Rubino A, Jungclaus JH. Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium. Geophys Res Lett. 2010;37:L14702. doi:10.1029/2010GL043717.

    Article  Google Scholar 

  101. Asvestari E, Usoskin IG, Kovaltsov GA, Owens MJ, Krivova NA, Rubinetti S, Taricco C. Assessment of different sunspot number series using the cosmogenic isotope 44Ti in meteorites. Mon Not Royal Astronom Soc. 2017; doi:10.1093/mnras/stx190.

    Google Scholar 

  102. LeGrande AN, Tsigaridis K, Bauer SE. Role of atmospheric chemistry in the climate impacts of stratospheric volcanic injections. Nature Geosc. 2016;9:652–5. doi:10.1038/ngeo2771.

    Article  CAS  Google Scholar 

  103. Stoffel M, Khodri M, Corona C, Guillet S, Poulain V, Bekki S, Guiot J, Luckman BH, Oppenheimer C, Lebas N, Beniston M, Masson-Delmotte V. Estimates of volcanic induced cooling in the Northern Hemisphere over the past 1,500 years. Nat Geosci. 2015;8:784–8. doi:10.1038/ngeo2526.

    Article  CAS  Google Scholar 

  104. Zängl G, Reinert D, Rípodas P, Baldauf M. The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: description of the non-hydrostatic dynamical core. Qart J Roy Meteor Soc. 2015;141(687):563–79.

    Article  Google Scholar 

  105. Hood LL, Misios S, Mitchell DM, Rozanov E, Gray LJ, Tourpali K, Matthes K, Schmidt H, Chiodo G, Thiéblemont R, Shindell D, Krivolutsky A. Solar signals in CMIP-5 simulations: the ozone response. Q J R Meteorol Soc. 2015;141:2670–89. doi:10.1002/qj.2553.

    Article  Google Scholar 

  106. Colose CM, LeGrande AN, Vuille M. Hemispherically asymmetric volcanic forcing of tropical hydroclimate during the last millennium. Earth Sys Dyn. 2016;7(3):681–96. doi:10.5194/esd-7-681-2016.

    Article  Google Scholar 

  107. Seppälä A, Clilverd MA. Energetic particle forcing of the Northern Hemisphere winter stratosphere: comparison to solar irradiance forcing. Front Phys. 2014;2 doi:10.3389/fphy.2014.00025.

  108. Zou Y, Yu J-Y, Lee T, Lu M-M, Kim ST. CMIP5 model simulations of the impacts of the two types of El Niño on the U.S. winter temperature. J Geophys Res Atmos. 2014;119(6):3076–92. doi:10.1002/2013JD021064.

    Article  Google Scholar 

  109. Kavvada A, Ruiz-Barradas A, Nigam S. AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Clim Dyn. 2013; doi:10.1007/s00382-013-1712-1.

    Google Scholar 

  110. Lyu K, Zhang X, Church JA, Hu J. Evaluation of the interdecadal variability of sea surface temperature and sea level in the Pacific in CMIP3 and CMIP5 models. Int J Climatol. 2016;36(11):3723–40. doi:10.1002/joc.4587.

    Article  Google Scholar 

  111. Sheffield J, et al. North American climate in CMIP5 experiments. Part II: evaluation of historical simulations of intraseasonal to decadal variability. J Clim. 2013;26:9247–90. doi:10.1175/JCLI-D-12-00593.1.

    Article  Google Scholar 

  112. Omrani NE, Bader J, Keenlyside NS, Manzini E. Troposphere–stratosphere response to large-scale North Atlantic Ocean variability in an atmosphere/ocean coupled model. Clim Dyn. 2014; doi:10.1007/s00382-015-2654-6.

    Google Scholar 

  113. Maher N, Gupta AS, England MH. Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophys Res Lett. 2014;41(16):5978–86. doi:10.1002/2014GL060527.

    Article  Google Scholar 

  114. Meehl GA, Hu A, Arblaster JM, Fasullo J, Trenberth KE. Externally forced and internally generated decadal climate variability associated with the interdecadal pacific oscillation. J Clim. 2013b;26(18):7298–310. doi:10.1175/JCLI-D-12-00548.1.

    Article  Google Scholar 

  115. Rodríguez-Fonseca B, Suárez-Moreno R, Ayarzagüena B, López-Parages J, Gómara I, Villamayor J, Mohino E, Losada T, Castaño-Tierno A. A review of ENSO influence on the North Atlantic. A Non-Stationary Signal Atmosphere. 2016;7:87.

    Google Scholar 

  116. Sanchez-Gomez E, Cassou C, Ruprich-Robert Y, Fernandez E, Terray L. Drift dynamics in a coupled model initialized for decadal forecasts. Clim Dyn. 2015; doi:10.1007/s00382-015-2678-y.

    Google Scholar 

  117. Gergis J, Henley BJ. Southern hemisphere rainfall variability over the past 200 years. Clim Dyn. 2016; doi:10.1007/s00382-016-3191-7.

    Google Scholar 

  118. Smerdon JE. Climate models as a test bed for climate reconstruction methods: pseudoproxy experiments. WIREs, Climatic Change. 2012;3:63–77. doi:10.1002/wcc.149.

    Article  Google Scholar 

  119. Ortega P, Lehner F, Swingedouw D, Masson-Delmotte V, Raible CC, Casado M, Yiou P. A multi-proxy model tested NAO reconstruction for the last millennium. Nature. 2015;523:71–5.

    Article  CAS  Google Scholar 

  120. PAGES 2k Consortium. Continental-scale temperature variability during the past two millennia. Nature Geosc. 2013;6:339–46. doi:10.1038/NGEO1797.

    Article  CAS  Google Scholar 

  121. Butler PG, Schöne BR. New research in the methods and applications of sclerochronology. Palaeogeogr Palaeoclimatol Palaeoecol. 2017;465:295–9. doi:10.1016/j.palaeo.2016.11.013.

    Article  Google Scholar 

  122. Wang G, Dommenget D. The leading modes of decadal SST variability in the Southern Ocean in CMIP5 simulations. Clim Dyn. 2016;47:1775–92. doi:10.1007/s00382-015-2932-3.

    Article  Google Scholar 

  123. Yeo S-R, Kim KY. Decadal changes in the Southern Hemisphere sea surface temperature in association with El Niño–Southern Oscillation and Southern Annular Mode. Clim Dyn. 2015;45(11–12):3227–42.

    Article  Google Scholar 

  124. Kohyama T, Hartman DL. Antarctic sea ice response to weather and climate modes of variability. J Clim. 2016;29(2):721–41.

    Article  Google Scholar 

  125. Schneider DP, Deser C, Fan T. Comparing the impacts of tropical SST variability and polar stratospheric ozone loss on the Southern Ocean westerly winds. J Clim. 2015;28(23):9350–72.

    Article  Google Scholar 

  126. Barnes EA, Solomon S, Polvani LM. Robust wind and precipitation responses to the Mount Pinatubo eruption, as simulated in the CMIP5 models. J Clim. 2016;29(13):4736–78.

    Article  Google Scholar 

  127. McGraw MC, Barnes EA, Deser C. Reconciling the observed and modeled Southern Hemisphere circulation response to volcanic eruptions. Geophys Res Lett. 2016;43(13):7259–66.

    Article  Google Scholar 

  128. Bellucci A, Haarsma R, Bellouin N, Booth B, Cagnazzo C, van den Hurk B, Keenlyside N, Koenigk T, Massonnet F, Materia S, Weiss M. Advancements in decadal climate predictability: the role of nonoceanic drivers. Rev Geophys. 2015;53(2):165–202. doi:10.1002/2014RG000473.

    Article  Google Scholar 

  129. Timmreck C, Pohlmann H, Illing S, Kadow C. The impact of stratospheric volcanic aerosol on decadal-scale climate predictions. Geophys Res Lett. 2016;43(2):834–42. doi:10.1002/2015GL067431.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Thomas Delworth for the invitation to write this contribution. I am also thankful to two anonymous reviewers and to the many colleagues who provided input and helpful discussions, in particular Myriam Khodri, Claudia Timmreck, Stergios Misios, Thomas Toniazzo, Odd-Helge Ottera, Angelo Rubino, and the CLIVAR-DCVP Research Focus group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Zanchettin.

Ethics declarations

Conflict of Interest

I declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human and animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Decadal Predictability and Prediction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanchettin, D. Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability. Curr Clim Change Rep 3, 150–162 (2017). https://doi.org/10.1007/s40641-017-0065-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-017-0065-y

Keywords

Navigation