Skip to main content

Advertisement

Log in

Yeasts in the Era of Astrobiological Research

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Due to their extraordinary genetic and phenotypic plasticity, yeast and yeast-like fungi have been able to adapt and colonize a wide range of ecological niches. Pigmented and nonpigmented extremophilic yeasts have been discovered in areas on Earth characterized by physical and chemical conditions similar to those found in extraterrestrial environments. Thus, these "simple" eukaryotic life forms have evolved unique genetic, metabolic, and phenotypic characteristics for coping with extreme conditions, existing in both natural (polar continents, deep sea, stratosphere, etc.) and manmade environments such as the cleanrooms where spacecraft are built. This makes them ideal test organisms for astrobiology research. All of the results from the numerous experiments in which they have been tested are helping us to understand what to look for and where in space missions searching for signs of present and/or past life. Meanwhile, we must continue to explore the most inhospitable places on Earth to discover new promising extremophiles that could be used as model organisms for astrobiology research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Parnell J, Cullen D, Sims MR, Bowden S, Cockell CS, Court R, Ehrenfreund P, Gaubert F, Grant W, Parro V, Rohmer M, Sephton M, Stan-Lother H, Steele A, Toporski J, Vago J (2007) Searching for life on Mars: Selection of molecular targets for ESA’s Aurora ExoMars mission. Astrobiology 7:578–604. https://doi.org/10.1089/ast.2006.0110

    Article  CAS  Google Scholar 

  2. Carrier BL, Beaty DW, Meyer MA, Blank JG, Chou L, Dassarma S, des Marais DJ, Eigenbrode JL, Grefenstette N, Lanza NL, Schuerger AC, Schwendner P, Smith HD, Stoker CR, Tarnas JD, Webster KD, Bakermans C, Baxter BK, Bell MS, Benner SA, Bolivar Torres HH, Boston PJ, Bruner R, Clark BC, Dassarma P, Engelhart AE, Gallegos ZE, Garvin ZK, Gasda PJ, Green JH, Harris RL, Hoffman ME, Kieft T, Koeppel AHD, Lee PA, Li X, Lynch KL, MacKelprang R, Mahaffy PR, Matthies LH, Nellessen MA, Newsom HE, Northup DE, O’Connor BRW, Perl SM, Quinn RC, Rowe LA, Sauterey B, Schneegurt MA, Schulze-Makuch D, Scuderi LA, Spilde MN, Stamenković V, Torres Celis JA, Viola D, Wade BD, Walker CJ, Wiens RC, Williams AJ, Williams JM, Xu J, (2020) Mars Extant Life: What’s Next? Conference Report. Astrobiology 20:785–814. https://doi.org/10.1089/ast.2020.2237

    Article  CAS  Google Scholar 

  3. Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D (2019) Living at the extremes: Extremophiles and the limits of life in a planetary context. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00780

    Article  Google Scholar 

  4. Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156. https://doi.org/10.1128/mmbr.00016-09

    Article  CAS  Google Scholar 

  5. Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Article  Google Scholar 

  6. Onofri S, Pacelli C, Selbmann L, Zucconi L (2020) The Amazing Journey of Cryomyces antarcticus from Antarctica to Space . In: Extremophiles as Astrobiological Models. Wiley, pp 237–254

  7. Onofri S, de La Torre R, de Vera JP, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, Sánchez Iñigo FJ, Horneck G (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516. https://doi.org/10.1089/ast.2011.0736

    Article  Google Scholar 

  8. Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JPP, Hatton J, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud Mycol 61:99–109. https://doi.org/10.3114/sim.2008.61.10

    Article  CAS  Google Scholar 

  9. Onofri S, de Vera JP, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, de La Torre R, Horneck G (2015) Survival of antarctic cryptoendolithic fungi in simulated martian conditions on board the international space station. Astrobiology 15:1052–1059. https://doi.org/10.1089/ast.2015.1324

    Article  CAS  Google Scholar 

  10. Gevi F, Leo P, Cassaro A, Pacelli C, de Vera JPP, Rabbow E, Timperio AM, Onofri S (2022) Metabolomic profile of the fungus cryomyces antarcticus under simulated martian and space conditions as support for life-detection missions on mars. Front Microbiol. https://doi.org/10.3389/fmicb.2022.749396

    Article  Google Scholar 

  11. Cassaro A, Pacelli C, Onofri S (2022) Survival, metabolic activity, and ultrastructural damages of Antarctic black fungus in perchlorates media. Front Microbiol. https://doi.org/10.3389/fmicb.2022.992077

    Article  Google Scholar 

  12. Pacelli C, Alessia C, Siong LM, Lorenzo A, Moeller R, Fujimori A, Igor S, Silvano O (2021) Insights into the survival capabilities of cryomyces antarcticus hydrated colonies after exposure to fe particle radiation. J Fungi. https://doi.org/10.3390/jof7070495

    Article  Google Scholar 

  13. Pacelli C, Selbmann L, Zucconi L, Coleine C, de Vera JP, Rabbow E, Böttger U, Dadachova E, Onofri S (2019) Responses of the black fungus cryomyces antarcticus to simulated mars and space conditions on rock analogs. Astrobiology 19:209–220. https://doi.org/10.1089/ast.2016.1631

    Article  CAS  Google Scholar 

  14. Santa Maria SR, Marina DB, Massaro Tieze S, Liddell LC, Bhattacharya S (2020) BioSentinel: long-term saccharomyces cerevisiae preservation for a deep space biosensor mission. Astrobiology. https://doi.org/10.1089/ast.2019.2073

    Article  Google Scholar 

  15. Massaro Tieze S, Liddell LC, Santa Maria SR, Bhattacharya S (2020) Biosentinel: a biological cubesat for deep space exploration. Astrobiology. https://doi.org/10.1089/ast.2019.2068

    Article  Google Scholar 

  16. Buzzini P, Turchetti B, Yurkov A (2018) Extremophilic yeasts: the toughest yeasts around? Yeast 35:487–497

    Article  CAS  Google Scholar 

  17. Segal-Kischinevzky C, Romero-Aguilar L, Alcaraz LD, López-Ortiz G, Martínez-Castillo B, Torres-Ramírez N, Sandoval G, González J (2022) Yeasts inhabiting extreme environments and their biotechnological applications. Microorganisms. https://doi.org/10.3390/microorganisms10040794

    Article  Google Scholar 

  18. Noverr MC, Phare SM, Toews GB, Coffey MJ, Huffnagle GB (2001) Pathogenic yeasts cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect Immun 69:2957–2963. https://doi.org/10.1128/IAI.69.5.2957-2963.2001

    Article  CAS  Google Scholar 

  19. Karkowska-Kuleta J, Rapala-Kozik M, Kozik A (2009) Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus *

  20. Zupančič J, Babič MN, Zalar P, Gunde-Cimerman N (2016) The black yeast Exophiala dermatitidis and other selected opportunistic human fungal pathogens spread from dishwashers to kitchens. PLoS ONE. https://doi.org/10.1371/journal.pone.0148166

    Article  Google Scholar 

  21. Knop M (2011) Yeast cell morphology and sexual reproduction - A short overview and some considerations. C R Biol 334:599–606. https://doi.org/10.1016/j.crvi.2011.05.007

    Article  Google Scholar 

  22. O’shea DG, Walsh PK (1999) The effect of culture conditions on the morphology of the dimorphic yeast Kluyveromyces marxianus var. marxianus NRRLy2415: a study incorporating image analysis

  23. Chevin LM, Gallet R, Gomulkiewicz R, Holt RD, Fellous S (2013) Phenotypic plasticity in evolutionary rescue experiments. Philos Trans R Soc B: Biol Sci 368

  24. Alster CJ, Allison SD, Johnson NG, Glassman SI, Treseder KK (2021) Phenotypic plasticity of fungal traits in response to moisture and temperature. ISME Communications 1:. https://doi.org/10.1038/s43705-021-00045-9

  25. Todd R, Wikoff T, Forche A, Selmecki A (2019) Genome plasticity in Candida albicans is driven by long repeat sequences

  26. Pulschen AA, Guarany De Araujo G, Carolina A, Ramos De Carvalho S, Cerini MF, De L, Fonseca M, Galante D, Rodrigues F, Kelly RM (2018) Survival of Extremophilic Yeasts in the Stratospheric Environment during Balloon Flights and in Laboratory Simulations environmental microbiology crossm. aem.asm.org 1 Applied and Environmental Microbiology 84:1942–1960. https://doi.org/10.1128/AEM

  27. Bijlani S, Parker C, Singh NK, Sierra MA, Foox J, Wang CCC, Mason CE, Venkateswaran K (2022) Genomic characterization of the titan‐like cell producing naganishia tulchinskyi, the first novel eukaryote isolated from the international space station. J Fungi 8. https://doi.org/10.3390/jof8020165

  28. Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert

  29. Fotedar R, Kolecka A, Boekhout T, Fell JW, Anand A, al Malaki A, Zeyara A, al Marri M, (2018) Naganishia qatarensis sp. Nov., a novel basidiomycetous yeast species from a hypersaline marine environment in Qatar. Int J Syst Evol Microbiol 68:2924–2929. https://doi.org/10.1099/ijsem.0.002920

    Article  CAS  Google Scholar 

  30. Schmidt SK, Vimercati L, Darcy JL, Arán P, Gendron EMS, Solon AJ, Porazinska D, Dorador C (2017) A Naganishia in high places: functioning populations or dormant cells from the atmosphere? Mycology 8:153–163

    Article  CAS  Google Scholar 

  31. Selbmann L, Egidi E, Isola D, Onofri S, Zucconi L, de Hoog GS, Chinaglia S, Testa L, Tosi S, Balestrazzi A, Lantieri A, Compagno R, Tigini V, Varese GC (2013) Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosyst 147:237–246. https://doi.org/10.1080/11263504.2012.753134

    Article  Google Scholar 

  32. Yurkov AM, Kachalkin A, v., Daniel HM, Groenewald M, Libkind D, de Garcia V, Zalar P, Gouliamova DE, Boekhout T, Begerow D, (2015) Two yeast species Cystobasidium psychroaquaticum f.a. sp. nov. and Cystobasidium rietchieii f.a. sp. nov. isolated from natural environments, and the transfer of Rhodotorula minuta clade members to the genus Cystobasidium. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 107:173–185. https://doi.org/10.1007/s10482-014-0315-0

    Article  CAS  Google Scholar 

  33. Boruta T (2018) Uncovering the repertoire of fungal secondary metabolites: from fleming’s laboratory to the international space station. Bioengineered 9:12–16

    Article  CAS  Google Scholar 

  34. de Middeleer G, Leys N, Sas B, de Saeger S (2019) Fungi and mycotoxins in space - a review. Astrobiology 19:915–926

    Article  Google Scholar 

  35. Romsdahl J, Blachowicz A, Chiang YM, Venkateswaran K, Wang CCC (2020) Metabolomic analysis of aspergillus niger isolated from the international space station reveals enhanced production levels of the antioxidant Pyranonigrin A. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00931

    Article  Google Scholar 

  36. Zhang Y, Zhang X, Zhang J, Ali S, Wu J (2022) Spaceflight Changes the Production and Bioactivity of Secondary Metabolites in Beauveria bassiana. Toxins (Basel). https://doi.org/10.3390/toxins14080555

    Article  Google Scholar 

  37. Albanese D, Coleine C, Rota-Stabelli O, Onofri S, Tringe SG, Stajich JE, Selbmann L, Donati C (2021) Pre-Cambrian roots of novel Antarctic cryptoendolithic bacterial lineages. Microbiome. https://doi.org/10.1186/s40168-021-01021-0

    Article  Google Scholar 

  38. Newell SY, Hunter IL (1970) Rhodosporidium diobovatum sp. n., the Perfect Form of an Asporogenous Yeast (Rhodotorula sp.)’. American Society for Microbiology

  39. Beopoulos A, Nicaud JM, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90:1193–1206

    Article  CAS  Google Scholar 

  40. Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps-description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59. https://doi.org/10.1007/s00792-009-0286-7

    Article  CAS  Google Scholar 

  41. Tsuji M (2016) Cold-stress responses in the antarctic basidiomycetous yeast mrakia blollopis. R Soc Open Sci. https://doi.org/10.1098/rsos.160106

    Article  Google Scholar 

  42. Touchette D, Altshuler I, Gostinčar C, Zalar P, Raymond-Bouchard I, Zajc J, McKay CP, Gunde-Cimerman N, Whyte LG (2022) Novel Antarctic yeast adapts to cold by switching energy metabolism and increasing small RNA synthesis. ISME J 16:221–232. https://doi.org/10.1038/s41396-021-01030-9

    Article  CAS  Google Scholar 

  43. Cassaro A, Pacelli C, Aureli L, Catanzaro I, Leo P, Onofri S (2021) Antarctica as a reservoir of planetary analogue environments. Extremophiles 25:437–458

    Article  CAS  Google Scholar 

  44. Wentworth SJ, Gibson EK, Velbel MA, McKay DS (2005) Antarctic Dry Valleys and indigenous weathering in Mars meteorites: implications for water and life on Mars. Icarus 174:383–395. https://doi.org/10.1016/j.icarus.2004.08.026

    Article  CAS  Google Scholar 

  45. Selbmann L, Turchetti B, Yurkov A, Cecchini C, Zucconi L, Isola D, Buzzini P, Onofri S (2014) Description of Taphrina antarctica f.a. sp. nov., a new anamorphic ascomycetous yeast species associated with Antarctic endolithic microbial communities and transfer of four Lalaria species in the genus Taphrina. Extremophiles 18:707–721. https://doi.org/10.1007/s00792-014-0651-z

    Article  CAS  Google Scholar 

  46. Coleine C, Zucconi L, Onofri S, Pombubpa N, Stajich JE, Selbmann L (2018) Sun exposure shapes functional grouping of fungi in cryptoendolithic antarctic communities. Life. https://doi.org/10.3390/life8020019

  47. McCollom (2016) The habitability of mars: past and present

  48. Wierzchos J, Ascaso C (2002) Microbial fossil record of rocks from the Ross Desert, Antarctica: implications in the search for past life on Mars. Int J Astrobiol 1:51–59. https://doi.org/10.1017/S1473550402001052

    Article  Google Scholar 

  49. Imre Friedmann E, Koriem AM (1989) Life on mars: how it disappeared (if it was ever there)

  50. Friedmann EI (1986) The antarctic cold desert and the search for traces of life on mars

  51. Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R (2018) Radar evidence of subglacial liquid water on Mars

  52. Eicken H (1992) Salinity profiles of Antarctic sea ice: field data and model results. J Geophys Res. https://doi.org/10.1029/92jc01588

    Article  Google Scholar 

  53. Brass GW (1980) Stability of brines on mars

  54. Kogej T, Stein M, Volkmann M, Gorbushina AA, Galinski EA, Gunde-Cimerman N (2007) Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology (N Y) 153:4261–4273. https://doi.org/10.1099/mic.0.2007/010751-0

    Article  CAS  Google Scholar 

  55. Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological Basis for the High Salt Tolerance of Debaryomyces hansenii

  56. Prista C, Loureiro-Dias MC, Montiel V, García R, Ramos J (2005) Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res 5:693–701

    Article  CAS  Google Scholar 

  57. Breuer U, Harms H (2006) Debaryomyces hansenii - An extremophilic yeast with biotechnological potential. Yeast 23:415–437

    Article  CAS  Google Scholar 

  58. Antunes A, Olsson-Francis K, McGenity TJ (2020) Exploring deep-sea brines as potential terrestrial analogues of oceans in the icy moons of the outer solar system. Curr Issues Mol Biol 38:123–162. https://doi.org/10.21775/cimb.038.123

  59. Jørgensen BB, Boetius A (2007) Feast and famine - Microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781

    Article  Google Scholar 

  60. López-García P, Vereshchaka A, Moreira D (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ Microbiol 9:546–554. https://doi.org/10.1111/j.1462-2920.2006.01158.x

    Article  CAS  Google Scholar 

  61. Gadanho M, Sampaio JP (2005) Occurrence and diversity of yeasts in the mid-atlantic ridge hydrothermal fields near the Azores Archipelago. Microb Ecol 50:408–417. https://doi.org/10.1007/s00248-005-0195-y

    Article  CAS  Google Scholar 

  62. Burgaud G, le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600. https://doi.org/10.1111/j.1462-2920.2009.01886.x

    Article  Google Scholar 

  63. Ló pez-García P, Philippe H, Gail F, Moreira D, Marine B (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge

  64. le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421. https://doi.org/10.1128/AEM.00653-09

    Article  CAS  Google Scholar 

  65. Pulschen AA, Rodrigues F, Duarte RTD, Araujo GG, Santiago IF, Paulino-Lima IG, Rosa CA, Kato MJ, Pellizari VH, Galante D (2015) UV-resistant yeasts isolated from a high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology. Microbiologyopen 4:574–588. https://doi.org/10.1002/mbo3.262

    Article  CAS  Google Scholar 

  66. Navarro-González R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Cáceres L, Gomez-Silva B, McKay CP (1999) Mars-like soils in the atacama desert, chile, and the dry limit of microbial life. Oxford University Press, Oxford

    Google Scholar 

  67. Karentz D (1991) Ecological considerations of antarctic ozone depletion. Antarct Sci 3:3–11

    Article  Google Scholar 

  68. Selbmann L, Isola D, Zucconi L, Onofri S (2011) Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: detection by PCR assays. Fungal Biol 115:937–944. https://doi.org/10.1016/j.funbio.2011.02.016

    Article  CAS  Google Scholar 

  69. Nizovoy P, Bellora N, Haridas S, Sun H, Daum C, Barry K, Grigoriev IV, Libkind D, Connell LB, Moliné M (2021) Unique genomic traits for cold adaptation in Naganishia vishniacii, a polyextremophile yeast isolated from Antarctica. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foaa056

    Article  Google Scholar 

  70. Conley CA, Rummel JD (2010) Planetary protection for human exploration of Mars. Acta Astronaut 66:792–797. https://doi.org/10.1016/j.actaastro.2009.08.015

    Article  CAS  Google Scholar 

  71. Moissl C, Osman S, la Duc MT, Dekas A, Brodie E, DeSantis T, Venkateswaran K (2007) Molecular bacterial community analysis of clean rooms where spacecraft are assembled. FEMS Microbiol Ecol 61:509–521. https://doi.org/10.1111/j.1574-6941.2007.00360.x

    Article  CAS  Google Scholar 

  72. Checinska A, Probst AJ, Vaishampayan P, White JR, Kumar D, Stepanov VG, Fox GE, Nilsson HR, Pierson DL, Perry J, Venkateswaran K (2015) Microbiomes of the dust particles collected from the international space station and spacecraft assembly facilities. Microbiome 3:50. https://doi.org/10.1186/s40168-015-0116-3

    Article  Google Scholar 

  73. Chander AM, de Melo TM, Singh NK, Williams MP, Simpson AC, Damle N, Parker CW, Stajich JE, Mason CE, Torok T, Venkateswaran K (2022) Description and genome characterization of three novel fungal strains isolated from mars 2020 mission-associated spacecraft assembly facility surfaces-recommendations for two new genera and one species. J Fungi 2023:31. https://doi.org/10.3390/jof9010031

    Article  CAS  Google Scholar 

  74. la Duc MT, Vaishampayan P, Nilsson HR, Torok T, Venkateswaran K (2012) Pyrosequencing-derived bacterial, archaeal, and fungal diversity of spacecraft hardware destined for mars. Appl Environ Microbiol 78:5912–5922. https://doi.org/10.1128/AEM.01435-12

    Article  CAS  Google Scholar 

  75. Shin K-S, Shin YK, Yoon J-H, Park Y-H (2001) Candida thermophila

  76. Takashima M, Sugita T, Toriumi Y, Nakase T (2009) Cryptococcus tepidarius sp. nov., a thermotolerant yeast species isolated from a stream from a hotspring area in Japan. Int J Syst Evol Microbiol 59:181–185. https://doi.org/10.1099/ijs.0.004515-0

    Article  CAS  Google Scholar 

  77. Levin G, v., Straat PA, (2016) The case for extant life on mars and its possible detection by the viking labeled release experiment. Astrobiology 16:798–810. https://doi.org/10.1089/AST.2015.1464/FORMAT/EPUB

    Article  CAS  Google Scholar 

  78. Billi D, Staibano C, Verseux C, Fagliarone C, Mosca C, Baqué M, Rabbow E, Rettberg P (2019) Dried biofilms of desert strains of chroococcidiopsis survived prolonged exposure to space and mars-like conditions in Low Earth orbit. Astrobiology 19:1008–1017. https://doi.org/10.1089/ast.2018.1900

    Article  CAS  Google Scholar 

  79. Onofri S, Selbmann L, Barreca D, Isola D, Zucconi L (2010) Do fungi survive under actual space conditions? Searching for evidence in favour of lithopanspermia. https://doi.org/10.1080/11263500903208393

  80. Rabbow E, Rettberg P, Barczyk S, Bohmeier M, Parpart A, Panitz C, Horneck G, von Heise-Rotenburg R, Hoppenbrouwers T, Willnecker R, Baglioni P, Demets R, Dettmann J, Reitz G EXPOSE-E: An ESA Astrobiology Mission 1.5 Years in Space. https://doi.org/10.1089/ast.2011.0760

  81. Brandt A, de Vera JP, Onofri S, Ott S (2015) Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS. Int J Astrobiol 14:411–425. https://doi.org/10.1017/S1473550414000214

    Article  CAS  Google Scholar 

  82. Onofri S, Selbmann L, Pacelli C, Zucconi L, Rabbow E, de Vera JP (2019) Survival, DNA, and ultrastructural integrity of a cryptoendolithic antarctic fungus in mars and lunar rock analogs exposed outside the international space station. Astrobiology 19:170–182. https://doi.org/10.1089/ast.2017.1728

    Article  CAS  Google Scholar 

  83. van Mulders SE, Stassen C, Daenen L, Devreese B, Siewers V, van Eijsden RGE, Nielsen J, Delvaux FR, Willaert R (2011) The influence of microgravity on invasive growth in saccharomyces cerevisiae. Astrobiology 11:45–55. https://doi.org/10.1089/ast.2010.0518

    Article  Google Scholar 

  84. Taylor PW (2015) Impact of space flight on bacterial virulence and antibiotic susceptibility. Infect Drug Resist 8:249–262

    Article  CAS  Google Scholar 

  85. Roda A, Mirasoli M, Guardigli M, Zangheri M, Caliceti C, Calabria D, Simoni P (2018) Advanced biosensors for monitoring astronauts’ health during long-duration space missions. Biosens Bioelectron 111:18–26

    Article  CAS  Google Scholar 

  86. Searles SC, Woolley CM, Petersen RA, Hyman LE, Nielsen-Preiss SM (2011) Modeled microgravity increases filamentation, biofilm formation, phenotypic switching, and antimicrobial resistance in Candida albicans. Astrobiology 11:825–836. https://doi.org/10.1089/ast.2011.0664

    Article  CAS  Google Scholar 

  87. Sun Y, Kuang Y, Zuo Z (2021) The emerging role of macrophages in immune system dysfunction under real and simulated microgravity conditions. Int J Mol Sci 22:1–21

    Google Scholar 

  88. Seyedmousavi S, Guillot J, Arné P, de Hoog GS, Mouton JW, Melchers WJG, Verweij PE (2015) Aspergillus and aspergilloses in wild and domestic animals: a global health concern with parallels to human disease. Med Mycol 53:765–797. https://doi.org/10.1093/mmy/myv067

    Article  Google Scholar 

Download references

Funding

No funding was provided for the completion of this study.

Author information

Authors and Affiliations

Authors

Contributions

PL and SO conceived the ideas. PL prepared the manuscript with critical contribution and inputs from SO. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Patrick Leo.

Ethics declarations

Conflict of Interest

The author(s) declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leo, P., Onofri, S. Yeasts in the Era of Astrobiological Research. J Indian Inst Sci 103, 699–709 (2023). https://doi.org/10.1007/s41745-023-00378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-023-00378-5

Keywords

Navigation