Skip to main content
Log in

Control of Fractional Diffusion Problems via Dynamic Programming Equations

  • Research
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

We explore the approximation of feedback control of integro-differential equations containing a fractional Laplacian term. To obtain feedback control for the state variable of this nonlocal equation, we use the Hamilton–Jacobi–Bellman equation. It is well known that this approach suffers from the curse of dimensionality, and to mitigate this problem we couple semi-Lagrangian schemes for the discretization of the dynamic programming principle with the use of Shepard approximation. This coupling enables approximation of high-dimensional problems. Numerical convergence toward the solution of the continuous problem is provided together with linear and nonlinear examples. The robustness of the method with respect to disturbances of the system is illustrated by comparisons with an open-loop control approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ha YD, Bobaru F (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78(6):1156–1168

    Article  Google Scholar 

  2. Silling S (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209. https://doi.org/10.1016/S0022-5096(99)00029-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Benson D, Wheatcraft S, Meerschaert M (2000) Application of a fractional advection-dispersion equation. Water Resour Res 36(6):1403–1412

    Article  Google Scholar 

  4. D’Elia M, Gulian M (2021) Analysis of anisotropic nonlocal diffusion models: well-posedness of fractional problems for anomalous transport. arXiv preprint http://arxiv.org/abs/2101.04289

  5. Schumer R, Benson D, Meerschaert M, Wheatcraft S (2001) Eulerian derivation of the fractional advection-dispersion equation. J Contam Hydrol 48:69–88

    Article  Google Scholar 

  6. Schumer R, Benson D, Meerschaert M, Baeumer B (2003) Multiscaling fractional advection-dispersion equations and their solutions. Water Resour Res 39(1):1022–1032

    Article  Google Scholar 

  7. Suzuki J, Gulian M, Zayernouri M, D’Elia M (2022) Fractional modeling in action: a survey of nonlocal models for subsurface transport, turbulent flows, and anomalous materials. J Peridyn Nonlocal Model

  8. Burkovska O, Gunzburger M (2021) On a nonlocal Cahn-Hilliard model permitting sharp interfaces. Math Models Methods Appl Sci 31(09):1749–1786

    Article  MathSciNet  MATH  Google Scholar 

  9. Delgoshaie A, Meyer D, Jenny P, Tchelepi H (2015) Non-local formulation for multiscale flow in porous media. J Hydrol 531(1):649–654

    Article  Google Scholar 

  10. Fife P (2003) Some nonclassical trends in parabolic and parabolic-like evolutions, Springer-Verlag, New York, chap Vehicular Ad Hoc Networks, pp. 153–191

  11. Buades AA, Coll B, Morel J (2010) Image denoising methods. A new nonlocal principle. SIAM Review 52:113–147

  12. D’Elia M, los Reyes JD, Trujillo A (2021) Bilevel parameter optimization for nonlocal image denoising model. J Math Imaging Vision

  13. Gilboa G, Osher S (2007) Nonlocal linear image regularization and supervised segmentation. Multiscale Model Simul 6:595–630

    Article  MathSciNet  MATH  Google Scholar 

  14. Schekochihin A, Cowley S, Yousef T (2008) MHD turbulence: nonlocal, anisotropic, nonuniversal? In IUTAM Symposium on computational physics and new perspectives in turbulence. Springer, Dordrecht, pp 347–354

    Chapter  MATH  Google Scholar 

  15. Burch N, D’Elia M, Lehoucq R (2014) The exit-time problem for a Markov jump process. The European Physical Journal Special Topics 223:3257–3271

    Article  Google Scholar 

  16. D’Elia M, Du Q, Gunzburger M, Lehoucq R (2017) Nonlocal convection-diffusion problems on bounded domains and finite-range jump processes. Computational Methods in Applied Mathematics 29:71–103

    MathSciNet  MATH  Google Scholar 

  17. Meerschaert M, Sikorskii A (2012) Stochastic models for fractional calculus. Studies in mathematics, Gruyter

  18. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    Article  MathSciNet  MATH  Google Scholar 

  19. Clark Di Leoni P, Zaki TA, Karniadakis G, Meneveau C (2021) Two-point stress’ strain-rate correlation structure and non-local eddy viscosity in turbulent flows. J Fluid Mech 914:A6

  20. Pang G, Lu L, Karniadakis GE (2019) fPINNs: fractional physics-informed neural networks. SIAM J Sci Comput 41:A2603–A2626

    Article  MathSciNet  MATH  Google Scholar 

  21. Pang G, D’Elia M, Parks M, Karniadakis GE (2020) nPINNs: nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and Applications. J Comput Phys

  22. Defterli O, D’Elia M, Du Q, Gunzburger M, Lehoucq R, Meerschaert MM (2015) Fractional diffusion on bounded domains. Fractional Calculus and Applied Analysis 18(2):342–360

    Article  MathSciNet  MATH  Google Scholar 

  23. D’Elia M, Gulian M, Olson H, Karniadakis GE (2021) Towards a unified theory of fractional and nonlocal vector calculus. Fractional Calculus, Analysis and Applications

  24. D’Elia M, Gulian M, Mengesha T, Scott JM (2022) Connections between nonlocal operators: from vector calculus identities to a fractional Helmholtz decomposition. Fractional Calculus, Analysis, and Applications

  25. Capodaglio G, D’Elia M, Bochev P, Gunzburger M (2019) An energy-based coupling approach to nonlocal interface problems. Comput Fluids 207

    Article  MathSciNet  MATH  Google Scholar 

  26. Seleson P, Gunzburger M, Parks ML (2013) Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains. Comput Methods Appl Mech Eng 266:185–204

    Article  MathSciNet  MATH  Google Scholar 

  27. You H, Yu Y, Kamensky D (2020) An asymptotically compatible formulation for local-to-nonlocal coupling problems without overlapping regions. Comput Methods Appl Mech Eng 366

    Article  MathSciNet  MATH  Google Scholar 

  28. Yu Y, Bargos FF, You H, Parks ML, Bittencourt ML, Karniadakis GE (2018) A partitioned coupling framework for peridynamics and classical theory: analysis and simulations. Comput Methods Appl Mech Eng 340:905–931

    Article  MathSciNet  MATH  Google Scholar 

  29. D’Elia M, Tian X, Yu Y (2020) A physically-consistent, flexible and efficient strategy to convert local boundary conditions into nonlocal volume constraints. SIAM J Sci Comput 42(4):A1935–A1949

    Article  MathSciNet  MATH  Google Scholar 

  30. Foss M, Radu P, Yu Y (2022) Convergence analysis and numerical studies for linearly elastic peridynamics with Dirichlet-type boundary conditions. J Peridyn Nonlocal Model pp. 1–36

  31. You H, Lu X, Trask N, Yu Y (2020a) An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems. ESAIM: Mathematical Modelling and Numerical Analysis 54(4):1373–1413

  32. Yu Y, You H, Trask N (2021) An asymptotically compatible treatment of traction loading in linearly elastic peridynamic fracture. Comput Methods Appl Mech Eng 377

    Article  MathSciNet  MATH  Google Scholar 

  33. Ainsworth M, Glusa C (2017) Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2017.08.019’www.sciencedirect.com/science/article/pii/S0045782517305996’

    Article  MathSciNet  MATH  Google Scholar 

  34. D’Elia M, Du Q, Glusa C, Gunzburger M, Tian X, Zhou Z (2020a) Numerical methods for nonlocal and fractional models. Acta Numerica 29:1124. https://doi.org/10.1017/S096249292000001X

  35. D’Elia M, Gunzburger M, Vollmann C (2021) A cookbook for approximating euclidean balls and for quadrature rules in finite element methods for nonlocal problems. Math Models Methods Appl Sci 31(08):1505–1567

  36. Gorenflo R, Mainardi F (1997) Fractional calculus: integral and differential equations of fractional order. Fractals and Fractional Calculus in Continuum Mechanics pp. 223–276

  37. Valdinoci E (2009) From the long jump random walk to the fractional Laplacian. Bol Soc Esp Mat Apl SeMA 49:33–44

    MathSciNet  MATH  Google Scholar 

  38. Stinga PR (2019) User’s guide to the fractional laplacian and the method of semigroups. Fractional Differential Equations. De Gruyter, Berlin, pp 235–266

    Chapter  Google Scholar 

  39. Antil H, Otarola E (2015) A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J Control Optim 53(6):3432–3456

    Article  MathSciNet  MATH  Google Scholar 

  40. Antil H, Khatri R, Warma M (2019) External optimal control of nonlocal PDEs. Inverse Problems 35(8)

  41. D’Elia M, Gunzburger M (2014) Optimal distributed control of nonlocal steady diffusion problems. SIAM J Control Optim 55:667–696

    MathSciNet  MATH  Google Scholar 

  42. D’Elia M, Gunzburger M (2016) Identification of the diffusion parameter in nonlocal steady diffusion problems. Appl Math Optim 73:227–249

    Article  MathSciNet  MATH  Google Scholar 

  43. D’Elia M, Glusa C, Otárola E (2019) A priori error estimates for the optimal control of the integral fractional Laplacian. SIAM J Control Optim 57(4):2775–2798

    Article  MathSciNet  MATH  Google Scholar 

  44. Burkovska O, Glusa C, D’Elia M (2020) An optimization-based approach to parameter learning for fractional type nonlocal models

  45. Glusa C, Otárola E (2021) Error estimates for the optimal control of a parabolic fractional PDE. SIAM J Numer Anal 59(2):1140–1165

    Article  MathSciNet  MATH  Google Scholar 

  46. Bardi M, Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  47. Falcone M, Ferretti R (2013) Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations. SIAM, Philadelphia, PA

    Book  MATH  Google Scholar 

  48. Alla A, Falcone M, Volkwein S (2017) Error analysis for pod approximations of infinite horizon problems via the dynamic programming approach. SIAM J Control Optim 55(5):3091–3115

    Article  MathSciNet  MATH  Google Scholar 

  49. Kunisch K, Volkwein S, Xie L (2004) HJB-POD-based feedback design for the optimal control of evolution problems. SIAM J Appl Dyn Syst 3(4):701–722

    Article  MathSciNet  MATH  Google Scholar 

  50. Alla A, Saluzzi L (2020) A HJB-POD approach for the control of nonlinear PDEs on a tree structure. Appl Numer Math 155:192–207. https://doi.org/10.1016/j.apnum.2019.11.023

    Article  MathSciNet  MATH  Google Scholar 

  51. Alla A, Falcone M, Saluzzi L (2019) An efficient DP algorithm on a tree-structure for finite horizon optimal control problems. SIAM J Sci Comput 41(4):A2384–A2406

    Article  MathSciNet  MATH  Google Scholar 

  52. Kalise D, Kunisch K (2018) Polynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEs. SIAM J Sci Comput 40(2):A629–A652

    Article  MathSciNet  MATH  Google Scholar 

  53. McEneaney WM (2007) A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs. SIAM J Control Optim 46(4):1239–1276

    Article  MathSciNet  MATH  Google Scholar 

  54. McEneaney WM (2009) Convergence rate for a curse-of-dimensionality-free method for Hamilton-Jacobi-Bellman PDEs represented as maxima of quadratic forms. SIAM J Control Optim 48(4):2651–2685

    Article  MathSciNet  MATH  Google Scholar 

  55. Darbon J, Meng T (2021) On some neural network architectures that can represent viscosity solutions of certain high dimensional Hamilton-Jacobi partial differential equations. J Comput Phys 425

    Article  MathSciNet  MATH  Google Scholar 

  56. Darbon J, Langlois GP, Meng T (2020) Overcoming the curse of dimensionality for some Hamilton-Jacobi partial differential equations via neural network architectures. Research in the Mathematical Sciences 7(3):1–50

    Article  MathSciNet  MATH  Google Scholar 

  57. Dolgov S, Kalise D, Kunisch KK (2021) Tensor decomposition methods for high-dimensional Hamilton-Jacobi-Bellman equations. SIAM J Sci Comput 43(3):A1625–A1650

    Article  MathSciNet  MATH  Google Scholar 

  58. Oster M, Sallandt L, Schneider R (2022) Approximating optimal feedback controllers of finite horizon control problems using hierarchical tensor formats. SIAM J Sci Comput 44(3):B746–B770

  59. Bokanowski O, Garcke J, Griebel M, Klompmaker I (2013) An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations. J Sci Comput 55(3):575–605

    Article  MathSciNet  MATH  Google Scholar 

  60. Alla A, Oliveira H, Santin G (2021) HJB-RBF based approach for the control of PDEs. https://arxiv.org/abs/2108.02987

  61. Fasshauer G, McCourt M (2015) Kernel-based approximation methods using MATLAB. Interdisciplinary Mathematical Sciences

  62. Fasshauer GE (2007) Meshfree approximation methods with Matlab. WORLD Scientific. https://doi.org/10.1142/6437’www.worldscientific.com/doi/pdf/10.1142/6437’

  63. Junge O, Schreiber A (2015) Dynamic programming using radial basis functions. Discrete and Continuous Dynamical Systems- Series A 35:4439–4453

    Article  MathSciNet  MATH  Google Scholar 

  64. McLean W, McLean WCH (2000) Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  65. Ern A, Guermond JL (2004) Theory and practice of finite elements. Applied Mathematical Sciences 159. New York, NY: Springer. https://doi.org/10.1007/978-1-4757-4355-5

  66. Benner P, Stoll M (2013) Optimal control for Allen-Cahn equations enhanced by model predictive control. IFAC Proceedings Volumes 46(26):139–143

  67. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396

    Article  MathSciNet  MATH  Google Scholar 

  68. Fasshauer GE (1998) On smoothing for multilevel approximation with radial basis functions. Approximation theory IX 2:55–62

    MathSciNet  MATH  Google Scholar 

  69. Grüne L, Panneck J (2017) Nonlinear model predictive control. Theory and algorithms, Springer, London

    Book  Google Scholar 

Download references

Acknowledgements

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the US Department of Energy or the US government. The work of M. D’Elia and C. Glusa is supported by the Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program. M. D’Elia is also partially supported by the US Department of Energy, Office of Advanced Scientific Computing Research under the Collaboratory on Mathematics and Physics-Informed Learning Machines for Multiscale and Multiphysics Problems (PhILMs) project. A. Alla is a member of the INdAM-GNCS activity group. The work of H. Oliveira was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brasil (CAPES) — Finance Code 001.

Funding

MD and CG were financed by LDRD. HO by CAPES.

Author information

Authors and Affiliations

Authors

Contributions

A.A: idea of applying to nonlocal, writing, numerical tests. M.D.: writing, funding. C.G.: FEM simulations, writing. H.O.: numerical tests, figures.

Corresponding author

Correspondence to Alessandro Alla.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Derivation of example with analytic solution

Appendix A: Derivation of example with analytic solution

Let \(q\) and \(\tilde{b}\) be the exact solution and corresponding right-hand side of the fractional Poisson problem

$$\begin{aligned} \left\{ \begin{array}{rcll} (-\Delta )^{s}q({\varvec{\xi }}) &{}=&{} \tilde{b}({\varvec{\xi }}) &{}{\varvec{\xi }}\in D, \\ q({\varvec{\xi }})&{}=&{}0 &{}{\varvec{\xi }}\in D^{c}, \\ \end{array} \right. \end{aligned}$$

with \(\Vert q\Vert _{L^{2}(D)}=1\). An example of such a pair when \(D=(-1,1)\) is given by

$$\begin{aligned} \begin{aligned}&\tilde{b}({\varvec{\xi }}) = 2^{2s}\Gamma \left( 1+s\right) \frac{\Gamma (s+1/2)}{\Gamma (1/2)} \sqrt{\frac{\Gamma (2s+3/2)}{\Gamma (2s+1)\Gamma (1/2)}}, \\ {}&q({\varvec{\xi }}) = \sqrt{\frac{\Gamma (2s+3/2)}{\Gamma (2s+1)\Gamma (1/2)}} \left( 1-{\varvec{\xi }}^{2}\right) ^{s}_{+}. \end{aligned} \end{aligned}$$

Now, let \(\phi ,\kappa :(0,T)\rightarrow \mathbb {R}\) such that \(\phi (0)=1\), \(\kappa (T)=0\). Let \(U:=[a,b]\) with \(a<0<b\) and let \(\gamma ,\lambda >0\). Consider the following functions that will be used in the construction of the cost functional and the state equation

$$\begin{aligned} \begin{aligned}&y_{d}({\varvec{\xi }},t) :=\phi (t)q({\varvec{\xi }}) - \gamma \kappa '(t)q({\varvec{\xi }}) + \gamma \kappa (t) \tilde{b}({\varvec{\xi }}) + \lambda \gamma \kappa (t)q({\varvec{\xi }}), \\ {}&u_{d}(t) := {\text {proj}}_{U}(\kappa (t)) ,\\ {}&b({\varvec{\xi }},t) := \phi '(t)q({\varvec{\xi }}) + \phi (t)\tilde{b}({\varvec{\xi }}) - u_{d}(t)q({\varvec{\xi }}). \end{aligned} \end{aligned}$$

We first aim to minimize the finite time horizon cost functional

$$\begin{aligned} \begin{aligned} \mathcal {J}_{q}^{T}(y, u)&:= \frac{1}{2} \int _0^{T} (\Vert y(\cdot ,\eta )-y_{d}(\cdot ,\eta )\Vert _{L^{2}(D)}^{2} + \gamma \Vert u(\cdot , \eta )\Vert _{L^{2}(D)}^2) e^{-\lambda \eta } d\eta \\ {}&= \frac{1}{2} \Vert y-y_{d}\Vert _{L_{\nu }^{2}(0,T;D)}^{2} + \frac{\gamma }{2} \Vert u\Vert _{L_{\nu }^{2}(0,T;D)}^{2}, \end{aligned} \end{aligned}$$

where we have set \(\nu (t):=e^{-\lambda t}\), subject to

$$\begin{aligned} \left\{ \begin{array}{rll} \partial _t y({\varvec{\xi }},t) + (-\Delta )^{s}y({\varvec{\xi }},t) &{}= b({\varvec{\xi }},t) + u(t)q({\varvec{\xi }}) &{}({\varvec{\xi }},t) \in D\times (0,T){,} \\ y({\varvec{\xi }},t)&{}=0 &{}({\varvec{\xi }},t)\in D^{c} \times (0,T) , \\ y({\varvec{\xi }},0)&{}=q({\varvec{\xi }}) &{}{\varvec{\xi }}\in D. \end{array} \right. \end{aligned}$$
(42)

For fixed initial condition \(q\), we can write the first order optimality conditions. Let \(j(u):=\mathcal {J}_{q}^{T}(\mathcal {S}u,u)\), where \(\mathcal {S}\) is the solution operator of the state equation Eq. (42) above. The operator \(\mathcal {S}\) is also called the fractional control-to-state operator

$$\mathcal {S}: L^{2}(0,T;D) \rightarrow \mathbb {V}$$

and \(\mathcal {S}u=z(u)\), where z(u) solves Eq. (42).

Then, the optimal control must satisfy the variational inequality

$$\begin{aligned} \overline{u}={\text {argmin}} j(u) \Leftrightarrow ( j'(\overline{u}), u-\overline{u})\ge 0 \quad \forall u \in \mathcal {U}_{ad}. \end{aligned}$$

The inequality can be written in the equivalent form

$$\begin{aligned} (\mathcal {S}^{*}(\mathcal {S}\kern0.1500em\overline{u}-y_{d}) + \gamma q\overline{u},qu-q\overline{u})_{L_{\nu }^{2}((0,T);D)}\ge 0, \end{aligned}$$

where \(\mathcal {S}^{*}\) is the adjoint solution operator. Hence, \(\overline{p}:=\mathcal {S}^{*}(\mathcal {S}\kern0.1500em\overline{u}-y_{d})\) is the solution to

$$\begin{aligned} \left\{ \begin{array}{rll} -\partial _t \overline{p}({\varvec{\xi }},t) +\lambda \overline{p} + (-\Delta )^{s}\overline{p}({\varvec{\xi }},t) &{}= \overline{y}({\varvec{\xi }},t)-y_{d}({\varvec{\xi }},t) &{}({\varvec{\xi }},t) \in D\times (0,T), \\ \overline{p}({\varvec{\xi }},t)&{}=0 &{}({\varvec{\xi }},t)\in D^{c} \times (0,T), \\ \overline{p}({\varvec{\xi }},T)&{}=0 &{}\text {for all }{\varvec{\xi }}\in D. \end{array} \right. \end{aligned}$$

with \(\overline{z} = \mathcal{S}\kern0.1500em\overline{u}\). Then, the following inequality

$$\begin{aligned} 0\le (\overline{p} + \gamma q\overline{u},qu-q\overline{u})_{L_{\nu }^{2}(0,T;D)} = ((\overline{p},q)_{L^{2}(D)}q + \gamma q\overline{u},qu-q\overline{u})_{L_{\nu }^{2}(0,T;D)} \end{aligned}$$

implies that \(\overline{u} = {\text {proj}}_{U}\left( -\frac{1}{\gamma }(\overline{p},q)_{L^{2}(D)}\right)\). If we set

$$\begin{aligned} y^{*}({\varvec{\xi }},t):=\phi (t)q({\varvec{\xi }}), \quad p^{*}({\varvec{\xi }},t):=-\gamma \kappa (t)q({\varvec{\xi }}), \quad u^{*}(t):=u_{d}(t), \end{aligned}$$

we obtain

$$\begin{aligned} \begin{aligned} y^{*}({\varvec{\xi }},0)&= q({\varvec{\xi }}), \\ \partial _t y^{*}({\varvec{\xi }},t) + (-\Delta )^{s}y^{*}({\varvec{\xi }},t)&= \phi '(t)q({\varvec{\xi }}) + \phi (t)\tilde{b}({\varvec{\xi }}) = b({\varvec{\xi }},t)+u^{*}({\varvec{\xi }},t), \end{aligned} \end{aligned}$$

where we have used that q is the solution of the fractional Poisson equation. Hence, \(y^{*}\) is the state corresponding to the control \(u^{*}\) and the initial condition \(q\). Moreover,

$$\begin{aligned} \begin{aligned} p^{*}({\varvec{\xi }},T)&=0,\\ -\partial _t p^{*}({\varvec{\xi }},t) + \lambda p^{*}({\varvec{\xi }},t) + (-\Delta )^{s}p^{*}({\varvec{\xi }},t)&= \gamma \kappa '(t)q({\varvec{\xi }}) -\lambda \gamma \kappa (t)q({\varvec{\xi }}) -\gamma \kappa (t)\tilde{b}({\varvec{\xi }}) \\&= y^{*}({\varvec{\xi }},t)-y_{d}({\varvec{\xi }},t). \end{aligned} \end{aligned}$$

and hence \(p^{*}\) solves the adjoint equation with right-hand side \(y^{*}-y_{d}\). Finally, \({\text {proj}}_{U}\left( -\frac{1}{\gamma }(p^{*},q)_{L^{2}}\right) = {\text {proj}}_{U}\left( \kappa (t)\right) = u^{*}(t).\) Therefore, for the initial condition \(q\), the optimal control is \(u^{*}\), and the optimal state is \(y^{*}\).

Let us now link the problem to the infinite time horizon framework. In order to do so, let us choose \(T_{0}>0\) and \(\kappa\) such that \(\kappa (t)=0\) for \(t\ge T_{0}\). For \(T>T_{0}\), the previous construction gives the solution of the optimal control problem on \((0,T)\). On the other hand, we have

$$\begin{aligned} \begin{aligned} \mathcal {J}_{q}^{\infty }(y^{*},u^{*})&= \mathcal {J}_{q}^{T}(y^{*},u^{*}) + \frac{1}{2} \Vert y^{*}-y_{d}\Vert _{L_{\nu }^{2}(T,\infty ;D)}^{2} + \frac{\gamma }{2} \Vert u^{*}\Vert _{L_{\nu }^{2}(T,\infty ;D)}^{2} \\&= \mathcal {J}_{q}^{T}(y^{*},u^{*}) + \frac{\gamma ^{2}}{2} \left[ \Vert \kappa '\Vert _{L_{\nu }^{2}(T,\infty )}^{2} + \Vert \kappa \Vert _{L_{\nu }^{2}(T,\infty )}^{2}\Vert \tilde{b}\Vert _{L^{2}(D)}^{2}\right. -\lambda (\kappa ',\kappa )_{L_{\nu }^{2}(T,\infty )}\\&-\left. 2(\kappa ',\kappa )_{L_{\nu }^{2}(T,\infty )} (q,\tilde{b})_{L^{2}(D)} +2\frac{\lambda }{\gamma }\Vert \kappa \Vert _{L_{\nu }^{2}(T,\infty )}^{2}(q,\tilde{b})_{L^{2}(D)} + \lambda ^2 \Vert \kappa \Vert _{L_{\nu }^{2}(T,\infty )}\right] \\ {}&\qquad + \frac{\gamma }{2} \Vert {\text {proj}}_{U}(\kappa )\Vert _{L_{\nu }^{2}(T,\infty )}^{2} \\&= \mathcal {J}_{q}^{T}(y^{*},u^{*}), \end{aligned} \end{aligned}$$

where we have used that \(\kappa\) and \(\kappa '\) are zero on \((T,\infty )\). Therefore,

$$\begin{aligned} \min \mathcal {J}_{q}^{\infty }(y,u) \le \min \mathcal {J}_{q}^{T}(y,u), \end{aligned}$$

but the inverse inequality also holds, since \(\mathcal {J}_{q}^{T}(y,u)\le \mathcal {J}_{q}^{\infty }(y,u)\). Hence, the pair \((y^{*},u^{*})\) is also optimal for the infinite time horizon case.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alla, A., D’Elia, M., Glusa, C. et al. Control of Fractional Diffusion Problems via Dynamic Programming Equations. J Peridyn Nonlocal Model (2023). https://doi.org/10.1007/s42102-023-00101-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42102-023-00101-z

Keywords

Navigation