Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

New metastable form of ice and its role in the homogeneous crystallization of water

Abstract

The homogeneous crystallization of water at low temperature is believed to occur through the direct nucleation of cubic (Ic) and hexagonal (Ih) ices. Here, we provide evidence from molecular simulations that the nucleation of ice proceeds through the formation of a new metastable phase, which we name Ice 0. We find that Ice 0 is structurally similar to the supercooled liquid, and that on growth it gradually converts into a stacking of Ice Ic and Ih. We suggest that this mechanism provides a thermodynamic explanation for the location and pressure dependence of the homogeneous nucleation temperature, and that Ice 0 controls the homogeneous nucleation of low-pressure ices, acting as a precursor to crystallization in accordance with Ostwald’s step rule of phases. Our findings show that metastable crystalline phases of water may play roles that have been largely overlooked.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A new metastable ice phase and its role in the mW phase diagram.
Figure 2: Microscopic pathway of ice crystallization.
Figure 3: Snapshots from a crystallization trajectory at T = 206 K and ambient pressure.

Similar content being viewed by others

References

  1. Eisenberg, D. & Kauzmann, W. The Structure and Properties of Water (Oxford Univ. Press, 1969).

    Google Scholar 

  2. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  CAS  Google Scholar 

  3. Mishima, O. & Stanley, H. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998).

    Article  CAS  Google Scholar 

  4. Debenedetti, P. Supercooled and glassy water. J. Phys. Condens. Matter 15, R1669–R1726 (2003).

    Article  CAS  Google Scholar 

  5. Pruppacher, H. R. A new look at homogeneous ice nucleation in supercooled water drops. J. Atmos. Sci. 52, 1924–1933 (1995).

    Article  Google Scholar 

  6. Rosenfeld, D. & Woodley, W. L. Deep convective clouds with sustained supercooled liquid water down to −37.5 °C. Nature 405, 440–442 (2000).

    Article  CAS  Google Scholar 

  7. Koop, T., Luo, B., Tsias, A. & Peter, T. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406, 611–614 (2000).

    Article  CAS  Google Scholar 

  8. Soper, A. K. Structural transformations in amorphous ice and supercooled water and their relevance to the phase diagram of water. Mol. Phys. 106, 2053–2076 (2008).

    Article  CAS  Google Scholar 

  9. Morishige, K. & Nobuoka, K. X-ray diffraction studies of freezing and melting of water confined in a mesoporous adsorbent (MCM-41). J. Chem. Phys. 107, 6965–6969 (1997).

    Article  CAS  Google Scholar 

  10. Jelassi, J. et al. Studies of water and ice in hydrophilic and hydrophobic mesoporous silicas: pore characterisation and phase transformations. Phys. Chem. Chem. Phys. 12, 2838–2849 (2010).

    Article  CAS  Google Scholar 

  11. Hansen, T., Koza, M. & Kuhs, W. Formation and annealing of cubic ice: I. Modelling of stacking faults. J. Phys. Condens. Matter 20, 285104 (2008).

    Article  Google Scholar 

  12. Shilling, J. et al. Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds. Geophys. Res. Lett. 33, L17801 (2006).

    Article  Google Scholar 

  13. Kobayashi, M. & Tanaka, H. Relationship between the phase diagram, the glass-forming ability, and the fragility of a water/salt mixture. J. Phys. Chem. B 115, 14077–14090 (2011).

    Article  CAS  Google Scholar 

  14. Mayer, E. & Hallbrucker, A. Cubic ice from liquid water. Nature 325, 601–602 (1987).

    Article  CAS  Google Scholar 

  15. Kohl, I., Mayer, E. & Hallbrucker, A. The glassy water–cubic ice system: A comparative study by X-ray diffraction and differential scanning calorimetry. Phys. Chem. Chem. Phys. 2, 1579–1586 (2000).

    Article  CAS  Google Scholar 

  16. Murray, B. J. & Bertram, A. K. Formation and stability of cubic ice in water droplets. Phys. Chem. Chem. Phys. 8, 186–192 (2006).

    Article  CAS  Google Scholar 

  17. Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J. & Salzmann, C. G. Structure of ice crystallized from supercooled water. Proc. Natl Acad. Sci. USA 109, 1041–1045 (2012).

    Article  CAS  Google Scholar 

  18. Svishchev, I. M. & Kusalik, P. G. Crystallization of liquid water in a molecular dynamics simulation. Phys. Rev. Lett. 73, 975–978 (1994).

    Article  CAS  Google Scholar 

  19. Matsumoto, M., Saito, S. & Ohmine, I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416, 409–413 (2002).

    Article  CAS  Google Scholar 

  20. Moore, E. B. & Molinero, V. Is it cubic? Ice crystallization from deeply supercooled water. Phys. Chem. Chem. Phys. 13, 20008–20016 (2011).

    Article  CAS  Google Scholar 

  21. Li, T., Donadio, D., Russo, G. & Galli, G. Homogeneous ice nucleation from supercooled water. Phys. Chem. Chem. Phys. 13, 19807–19813 (2011).

    Article  CAS  Google Scholar 

  22. Reinhardt, A., Doye, J. P., Noya, E. G. & Vega, C. Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water. J. Chem. Phys. 137, 194504–194504 (2012).

    Article  Google Scholar 

  23. Moore, E. & Molinero, V. Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479, 506–508 (2011).

    Article  CAS  Google Scholar 

  24. Zhao, Z. et al. Tetragonal allotrope of group 14 elements. J. Am. Chem. Soc. 134, 12362–12365 (2012).

    Article  CAS  Google Scholar 

  25. Abascal, J. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005).

    Article  CAS  Google Scholar 

  26. Sanz, E., Vega, C., Abascal, J. & MacDowell, L. Phase diagram of water from computer simulation. Phys. Rev. Lett. 92, 255701 (2004).

    Article  CAS  Google Scholar 

  27. Jacobson, L. C., Hujo, W. & Molinero, V. Thermodynamic stability and growth of guest-free clathrate hydrates: a low-density crystal phase of water. J. Phys. Chem. B 113, 10298–10307 (2009).

    Article  CAS  Google Scholar 

  28. Romano, F., Sanz, E. & Sciortino, F. Crystallization of tetrahedral patchy particles in silico. J. Chem. Phys. 134, 174502 (2011).

    Article  Google Scholar 

  29. Ghiringhelli, L. M. et al. State-of-the-art models for the phase diagram of carbon and diamond nucleation. Mol. Phys. 106, 2011–2038 (2008).

    Article  CAS  Google Scholar 

  30. Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, 2714–2717 (1995).

    Article  CAS  Google Scholar 

  31. Santra, M., Singh, R. S. & Bagchi, B. Nucleation of a stable solid from melt in the presence of multiple metastable intermediate phases: Wetting, Ostwald step rule and vanishing polymorphs. J. Phys. Chem. B 117, 13154–13163 (2013).

    Article  CAS  Google Scholar 

  32. Lundrigan, S. E. & Saika-Voivod, I. Test of classical nucleation theory and mean first-passage time formalism on crystallization in the Lennard-Jones liquid. J. Chem. Phys. 131, 104503 (2009).

    Article  Google Scholar 

  33. Sanz, E. et al. Homogeneous ice nucleation at moderate supercooling from molecular simulation. J. Am. Chem. Soc. 135, 15008–15017 (2013).

    Article  CAS  Google Scholar 

  34. Stillinger, F. H. Water revisited. Science 209, 451–457 (1980).

    Article  CAS  Google Scholar 

  35. Russo, J. & Tanaka, H. Understanding water’s anomalies with locally favored structures. Nature Commun. 5, 3556 (2014).

    Article  Google Scholar 

  36. Ghiringhelli, L. M., Valeriani, C., Meijer, E. & Frenkel, D. Local structure of liquid carbon controls diamond nucleation. Phys. Rev. Lett. 99, 055702 (2007).

    Article  CAS  Google Scholar 

  37. Kawasaki, T. & Tanaka, H. Formation of crystal nucleus from liquid. Proc. Natl Acad. Sci. USA 107, 14036–14041 (2010).

    Article  CAS  Google Scholar 

  38. Russo, J. & Tanaka, H. The microscopic pathway to crystallization in supercooled liquids. Sci. Rep. 2, 505 (2012).

    Article  Google Scholar 

  39. Russo, J. & Tanaka, H. Selection mechanism of polymorphs in the crystal nucleation of the Gaussian core model. Soft Matter 8, 4206–4215 (2012).

    Article  CAS  Google Scholar 

  40. Tanaka, H. Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid–liquid transition, glass transition, and crystallization. Eur. Phys. J. E 35, 1–84 (2012).

    Article  CAS  Google Scholar 

  41. Seidl, M., Amann-Winkel, K., Handle, P. H., Zifferer, G. & Loerting, T. From parallel to single crystallization kinetics in high-density amorphous ice. Phys. Rev. B 88, 174105 (2013).

    Article  Google Scholar 

  42. Marchand, D. J., Hsiao, E. & Kim, S. H. Non-contact AFM imaging in water using electrically-driven cantilever vibration. Langmuir 29, 6762–6769 (2013).

    Article  CAS  Google Scholar 

  43. Lied, A., Dosch, H. & Bilgram, J. H. Surface melting of ice Ih single crystals revealed by glancing angle X-ray scattering. Phys. Rev. Lett. 72, 3554–3557 (1994).

    Article  CAS  Google Scholar 

  44. Vega, C., Sanz, E., Abascal, J. & Noya, E. Determination of phase diagrams via computer simulation: Methodology and applications to water, electrolytes and proteins. J. Phys. Condens. Matter 20, 153101 (2008).

    Article  Google Scholar 

  45. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    Article  CAS  Google Scholar 

  46. Lechner, W. & Dellago, C. Accurate determination of crystal structures based on averaged local bond order parameters. J. Chem. Phys. 129, 114707 (2008).

    Article  Google Scholar 

  47. Auer, S. & Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to F. Sciortino for a critical reading of the manuscript and to J. Doye and A. Reinhardt for useful discussions. This study was partly supported by Grants-in-Aid for Scientific Research (S) and Specially Promoted Research from the Japan Society for the Promotion of Science (JSPS), the Aihara Project, the FIRST programme from JSPS, initiated by the Council for Science and Technology Policy (CSTP), a JSPS short-term fellowship for F.R., and a JSPS Postdoctoral Fellowship for J.R.

Author information

Authors and Affiliations

Authors

Contributions

J.R. and F.R. performed the numerical simulations and the data analysis. H.T. proposed and supervised the study. All authors discussed the results and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Hajime Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russo, J., Romano, F. & Tanaka, H. New metastable form of ice and its role in the homogeneous crystallization of water. Nature Mater 13, 733–739 (2014). https://doi.org/10.1038/nmat3977

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3977

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing