Issue 33, 2022

Chiral non-stoichiometric ternary silver indium sulfide quantum dots: investigation on the chirality transfer by cysteine

Abstract

Chiral semiconductor quantum dots have recently received broad attention due to their promising application in several fields such as sensing and photonics. The extensive work in the last few years was focused on the observation of the chiroptical properties in binary Cd based systems. Herein, we report on the first evidence of ligand-induced chirality in silver indium sulfide semiconductor quantum dots. Ternary disulfide quantum dots are of great interest due to their remarkable optical properties and low toxicity. Non-stoichiometric silver indium sulfide quantum dots were produced via a room temperature coprecipitation in water, in the presence of cysteine as a capping agent. The obtained nanocrystals show a notable photoluminescence quantum yield of 0.24 in water dispersions. Several critical aspects of the nanocrystal growth and chemico-physical characterization, and the optimisation of the surface passivation by the chiral ligand in order to optimize the nanoparticle chirality are thoroughly investigated. Optical spectroscopy methods such as circular dichroism and luminescence as well as nuclear magnetic resonance techniques are exploited to analyze the coordination processes leading to the formation of the ligand–nanocrystal chiral interface. This study highlights the dynamic nature of the interaction between the nanocrystal surface and the chiral ligand and clarifies some fundamental aspects for the transfer and optimization of the chiroptical properties.

Graphical abstract: Chiral non-stoichiometric ternary silver indium sulfide quantum dots: investigation on the chirality transfer by cysteine

Supplementary files

Article information

Article type
Paper
Submitted
16 Jun 2022
Accepted
29 Jul 2022
First published
01 Aug 2022
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2022,14, 12174-12182

Chiral non-stoichiometric ternary silver indium sulfide quantum dots: investigation on the chirality transfer by cysteine

L. Branzi, F. Purcell-Milton, C. Cressoni, M. Back, E. Cattaruzza, A. Speghini, Y. K. Gun'ko and A. Benedetti, Nanoscale, 2022, 14, 12174 DOI: 10.1039/D2NR03330E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements