Synthesis 2019; 51(08): 1770-1778
DOI: 10.1055/s-0037-1611710
feature
© Georg Thieme Verlag Stuttgart · New York

Benzo-Fused 1,4-Heterocycles via Dialkyl Carbonate Chemistry

,
Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University, Via Torino 155, 30172 Venezia Mestre, Italy   Email: Fabio.arico@unive.it
› Author Affiliations
Further Information

Publication History

Received: 17 October 2018

Accepted after revision: 10 December 2018

Publication Date:
18 February 2019 (online)


Abstract

A novel halogen-free synthesis of benzo-fused six-membered 1,4-heterocycles through the chemistry of dialkyl carbonates is reported. Commercially available catechol, 2-aminophenol, and 2-amino­thiophenol were reacted first with ethylene carbonate in an autoclave to give O-hydroxyethyl, N-hydroxyethyl, and S-hydroxyethyl derivatives respectively, through a BAl2 mechanism. Then 2-(2-hydroxyethoxy)phenol and 2-(2-hydroxyethylamino)phenol were cyclized in excellent yields by reaction with dimethyl carbonate (DMC) and DABCO as a bi­cyclic organic base to give the corresponding benzodioxine and benzoxazine derivative, respectively. Moreover, 2-(2-aminophenylthio)ethanol afforded the benzothiazine derivative in good yield by reaction with DMC with an excess of a strong base such as NaH. The investigation on the cyclization reaction has highlighted that several equilibria are involved leading to the formation of carbonate and carbamate intermediates through BAc2 mechanisms. Depending on the reaction conditions employed, these intermediates may undergo either kinetic-controlled ring closure by a BAl2 mechanism or by-product formation.

Supporting Information

 
  • References

  • 1 Eicher T, Hauptmann S, Speicher A. In The Chemistry of Heterocycles . Wiley-VCH; Weinheim: 2012. 3rd ed. 297
    • 2a Bagnoli L, Casini S, Marini F, Santi C, Testaferri L. Tetrahedron 2013; 69: 481
    • 2b Bao W, Liu Y, Lv X, Qian W. Org. Lett. 2008; 10: 3899
    • 2c Naidu AB, Ganapathy D, Sekar G. Synthesis 2010; 3509
    • 2d Arnoldi A, Bassoli A, Merlini L, Ragg E. J. Chem. Soc., Perkin Trans. 2 1991; 1399

      Some examples on biologically active 1,4-benzoxazine derivatives:
    • 3a Ellis GP. In Synthesis of Fused Heterocycles . Wiley; New York: 1987: 55
    • 3b Achari B, Mandal SB, Dutta PK, Chowdhury C. Synlett 2004; 2449
    • 3c Rybczynski PJ, Zeck RE, Dudash J, Combs DW, Burris TP, Yang M, Osborne MC, Chen X, Demarest KT. J. Med. Chem. 2004; 47: 196
    • 3d Alapour S, Ramjugernath D, Koorbanally NA. RSC Adv. 2015; 5: 83576
    • 3e Yang W, Wang Y, Ma Z, Golla R, Stouch T, Seethala R, Johnson S, Zhou R, Güngör T, Feyen JH. M, Dickson JK. Bioorg. Med. Chem. Lett. 2004; 14: 2327
    • 3f Thomas A, Ross RA, Saha B, Mahadevan A, Razdan RK, Pertwee RG. Eur. J. Pharmacol. 2004; 487: 213
    • 3g Caliendo G, Perissutti E, Santagada V, Fiorino F, Severino B, Cirillo D, d’Emmanuele di Villa Bianca R, Lippolis L, Pinto A, Sorrentino R. Eur. J. Med. Chem. 2004; 39: 815
    • 3h Dougherty KJ, Bannatyne BA, Jankowska E, Krutki P, Maxwell DJ. J. Neurosci. 2005; 25: 584
    • 3i Ilaš J, Anderluh PS, Dolenc MS, Kikelj D. Tetrahedron 2005; 61: 7325
    • 4a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 4b Komnatnyy VV, Chiang W.-C, Tolker-Nielsen T, Givskov M, Nielsen TE. Angew. Chem. Int. Ed. 2014; 53: 439
    • 4c Atarashi S, Yokohama S, Yamazaki KI, Sakano KI, Imamura M, Hayakawa I. Chem. Pharm. Bull. 1987; 35: 1896
  • 5 Ebner C, Pfaltz A. Tetrahedron 2011; 67: 10287
    • 6a Bichler P, Love J. Top. Organomet. Chem. 2010; 31: 39
    • 6b Cecchetti V, Fravolini A, Fringuelli R, Mascellari G, Pagella P, Palmioli M, Segre G, Terni P. J. Med. Chem. 1987; 30: 465
    • 6c Schiaffella F, Macchiarulo A, Milanese L, Vecchierelli A, Costantino G, Pietrella D, Fringuelli R. J. Med. Chem. 2005; 48: 7658
    • 6d Tawada H, Sugiyama Y, Ikeda H, Yamamoto Y, Meguro K. Chem. Pharm. Bull. 1990; 38: 1238
    • 6e Matsumoto Y, Tsuzuki R, Matsuhisa A, Yamagiwa Y, Yanagisawa I, Shibanuma T, Nohira H. Bioorg. Med. Chem. 2000; 8: 393
    • 6f Coughlin SA, Danz DW, Robinson RG, Klingbeil KM, Wentland MP, Corbett TH, Waud WR, Zwelling LA, Altsschuler E. Biochem. Pharmacol. 1995; 50: 111
    • 6g Okuyama K, Kiuchi S, Okamoto M, Narita H, Kudo Y. Eur. J. Pharmacol. 2000; 398: 209
    • 7a Omar-Amrani R, Schneider R, Fort Y. Synthesis 2004; 2527
    • 7b Wang C, Chen C, Zhang I, Han J, Wang Q, Guo K, Liu P, Guan M, Yao Y, Zhao Y. Angew. Chem. Int. Ed. 2014; 53: 9884
    • 7c Thansandote P, Chong E, Feldmann K.-O, Lautens M. J. Org. Chem. 2010; 75: 3495
    • 7d Tays K, Atkinson JK. Synth. Commun. 1998; 28: 903
    • 7e Qiao Z, Liu H, Xiao X, Fu Y, Wei J, Li Y, Jiang X. Org. Lett. 2013; 15: 2594
    • 7f Mincione E, Sima A, Covini D. J. Org. Chem. 1981; 46: 1010
    • 7g Kuwabe S.-I, Torraca KE, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 12202
    • 7h Jing X, Shi Y, Liu Y, Han Y, Yan C, Wang L. Synth. Commun. 2004; 34: 1723
  • 8 Jangili P, Kashanna J, Das B. Tetrahedron Lett. 2013; 54: 3453
    • 9a Mizar P, Myrboh B. Tetrahedron Lett. 2006; 47: 7823
    • 9b Buon C, Chacun-Lefèvre L, Rabot R, Bouyssou P, Coudert G. Tetrahedron 2000; 56: 605
    • 9c Huang W, Zhang P, Zuckett JF, Wang L, Woolfrey J, Song Y, Jia ZJ, Clizbe LA, Su T, Tran K, Huang B, Wong P, Sinha U, Park G, Reed A, Malinowski J, Hollenbach SJ, Scarborough RM, Zhu BY. Bioorg. Med. Chem. Lett. 2003; 13: 561
    • 9d Kuroita T, Ikebe T, Murakami S, Takehara S, Kawakita T. Bioorg. Med. Chem. Lett. 1995; 5: 1245
    • 9e Mayer S, Arrault A, Guillaumet G, Mèrour JY. J. Heterocycl. Chem. 2001; 38: 221
    • 9f Lu GP, Cai C. RSC Adv. 2014; 4: 59990
    • 9g Vanden Eynde JJ, Mailleux I. Synth. Commun. 2001; 31: 1
  • 10 Tundo P, Musolino M, Aricò F. Green Chem. 2018; 20: 28
    • 11a Musolino M, Andraos J, Aricò F. ChemistrySelect 2018; 3: 2359
    • 11b Aricò F, Aldoshin AS, Musolino M, Crisma M, Tundo P. J. Org. Chem. 2018; 83: 236
    • 11c Aricò F, Tundo P. Beilstein J. Org. Chem. 2016; 12: 2256
    • 11d Grego S, Aricò F, Tundo P. Pure Appl. Chem. 2012; 84: 695
    • 11e Aricò F, Chiurato M, Peltier J, Tundo P. Eur. J. Org. Chem. 2012; 3223
    • 12a Aricò F, Maranzana A, Musolino M, Tundo P. Pure Appl. Chem. 2018; 90: 93
    • 12b Aricò F, Bravo S, Crisma M, Tundo P. Pure Appl. Chem. 2016; 88: 227
    • 12c Aricò F, Evaristo S, Tundo P. Green Chem. 2015; 17: 1176
    • 12d Aricò F, Tundo P. J. Chin. Chem. Soc. 2012; 59: 1375
    • 12e Aricò F, Tundo P, Maranzana A, Tonachini G. ChemSusChem 2012; 5: 1578
    • 12f Aricò F, Toniolo U, Tundo P. Green Chem. 2012; 14: 58
    • 13a Aricò F, Aldoshin AS, Tundo P. ChemSusChem 2017; 10: 53
    • 13b Aricò F, Udrea I, Crisma M, Tundo P. ChemPlusChem 2015; 80: 471
    • 13c Toniolo S, Aricò F, Tundo P. ACS Sustainable Chem. Eng. 2014; 2: 1056
    • 13d McElroy CR, Aricò F, Tundo P. Synlett 2012; 23: 1809
    • 13e McElroy CR, Aricò F, Benetollo F, Tundo P. Pure Appl. Chem. 2012; 84: 707
  • 14 Hirano Y, Yamamoto H, Kubo T, Nagano H, Kitajima M, Yamaguchi H. US Patent US2004/181099, 2004
    • 15a Krieger J.-P, Ricci G, Lesuisse D, Meyer C, Cossy J. Chem. Eur. J. 2016; 22: 13469
    • 15b Valderrama JA, Leiva H, Tapia R. Synth. Commun. 2000; 30: 737
    • 16a Kazuo Y, Shigeto N, Shohei K, Roichi N, Hitoshi K, Akira H, Seiichi N, Noboru Y. Bull. Chem. Soc. Jpn. 1988; 61: 2047
    • 16b Elworthy TR, Ford AP. D. W, Bantle GW, Morgans DJ, Ozer RS, Palmer WS, Repke DB, Romero M, Sandoval L, Sjogren EB, Talamás FX, Vazquez A, Wu H, Arredondo NF, Blue DR, DeSousa A, Gross LM, Kava MS, Lesnick JD, Vimont RL, Williams TJ, Zhu Q.-M, Pfister JR, Clarke DE. J. Med. Chem. 1997; 40: 2674
  • 17 Selva M, Tundo P, Foccardi T. J. Org. Chem. 2005; 70: 2476
    • 18a Farbenind IG. German Patent DE744758, 1942
    • 18b Huerta G, Contreras-Ordoñez G, Alvarez-Toledano C, Santes V, Gómez E, Toscano RA. Synth. Commun. 2004; 34: 2393
  • 19 Velikorodov AV, Imasheva NM. Russ. J. Org. Chem. 2008; 44: 375
    • 20a Sridhar R, Perumal PT. Synth. Commun. 2004; 34: 735
    • 20b Lespagnol A, Lefebvre M. Bull. Soc. Chim. Fr. 1945; 12: 386
    • 20c Gokhan N, Erdogan H, Durlu NT, Demirdamar R. Farmaco 1999; 54: 112
  • 21 Zou Y, Wang Y, Wang F, Luo M, Li Y, Liu W, Huang Z, Zhang Y, Guo W, Xu Q, Lai Y. Eur. J. Med. Chem. 2017; 138: 199
  • 22 The disulfide dimer was formed in 47% when 2-aminothiophenol was reacted with EC (1.0 mol equiv) in the presence of faujasite (NaY, 1:1 w:w) at 120 °C for 5 h. This by-product was identified by GC-MS spectrometry and NMR spectroscopy.
  • 23 Naghipur A, Reszka K, Sapse AM, Lown JW. J. Am. Chem. Soc. 1989; 111: 258
    • 24a Duprat de Paule S, Jeulin S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Dellis P. Eur. J. Org. Chem. 2003; 10: 1931
    • 24b Huang Z, Yang Y, Xiao Q, Zhang Y, Wang J. Eur. J. Org. Chem. 2012; 33: 6586
    • 24c Panchenko PA, Fedorov YV, Fedorova OA, Perevalov VP, Jonusauskas G. Russ. Chem. Bull., Int. Ed. 2009; 58: 1233
    • 24d Li D, Gao N, Zhu N, Lin YLi Y, Chen M, You X, Lu Y, Wan K, Jiang J.-D, Jiang W, Si S. Bioorg. Med. Chem. Lett. 2015; 25: 5178