• Rapid Communication

Generation mechanism of terahertz coherent acoustic phonons in Fe

T. Henighan, M. Trigo, S. Bonetti, P. Granitzka, D. Higley, Z. Chen, M. P. Jiang, R. Kukreja, A. Gray, A. H. Reid, E. Jal, M. C. Hoffmann, M. Kozina, S. Song, M. Chollet, D. Zhu, P. F. Xu, J. Jeong, K. Carva, P. Maldonado, P. M. Oppeneer, M. G. Samant, S. S. P. Parkin, D. A. Reis, and H. A. Dürr
Phys. Rev. B 93, 220301(R) – Published 10 June 2016
PDFHTMLExport Citation

Abstract

We use femtosecond time-resolved hard x-ray scattering to detect coherent acoustic phonons generated during ultrafast laser excitation of ferromagnetic bcc Fe films grown on MgO(001). We observe the coherent longitudinal-acoustic phonons as a function of wave vector through analysis of the temporal oscillations in the x-ray scattering signal. The width of the extracted strain wave front associated with this coherent motion is 100 fs. An effective electronic Grüneisen parameter is extracted within a two-temperature model. However, ab initio calculations show that the phonons are nonthermal on the time scale of the experiment, which calls into question the validity of extracting physical constants by fitting such a two-temperature model.

  • Figure
  • Figure
  • Figure
  • Received 1 September 2015
  • Revised 11 May 2016

DOI:https://doi.org/10.1103/PhysRevB.93.220301

©2016 American Physical Society

Authors & Affiliations

T. Henighan1,2,*, M. Trigo1,3, S. Bonetti3, P. Granitzka3,4, D. Higley3,5,6, Z. Chen2,3, M. P. Jiang1,2, R. Kukreja3, A. Gray3, A. H. Reid3, E. Jal3, M. C. Hoffmann6, M. Kozina1,6, S. Song6, M. Chollet6, D. Zhu6, P. F. Xu7,8, J. Jeong7, K. Carva9,10, P. Maldonado10, P. M. Oppeneer10, M. G. Samant7, S. S. P. Parkin7,8, D. A. Reis1,3,5, and H. A. Dürr3,†

  • 1Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
  • 2Physics Department, Stanford University, Stanford, California 94305, USA
  • 3Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
  • 4Van der Waals-Zeeman Institute, University of Amsterdam, NL-1018 XE Amsterdam, The Netherlands
  • 5Departments of Photon Science and Applied Physics, Stanford University, Stanford, California 94305, USA
  • 6Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
  • 7IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA
  • 8Max-Planck Institute for Microstructure Physics, D-06120 Halle (Saale), Germany
  • 9Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Charles University in Prague, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
  • 10Department of Physics and Astronomy, Uppsala University, P. O. Box 516, S-75120 Uppsala, Sweden

  • *henighan@slac.stanford.edu
  • hdurr@slac.stanford.edu

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 93, Iss. 22 — 1 June 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×