Skip to main content
Log in

Adhesive contact of rough surfaces: Comparison between numerical calculations and analytical theories

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The authors have employed a numerical procedure to analyse the adhesive contact between a soft elastic layer and a rough rigid substrate. The solution to the problem, which belongs to the class of the free boundary problems, is obtained by calculating Green’s function which links the pressure distribution to the normal displacements at the interface. The problem is then formulated in the form of a Fredholm integral equation of the first kind with a logarithmic kernel. The boundaries of the contact area are calculated by requiring the energy of the system to be stationary. This methodology has been employed to study the adhesive contact between an elastic semi-infinite solid and a randomly rough rigid profile with a self-affine fractal geometry. We show that, even in the presence of adhesion, the true contact area still linearly depends on the applied load. The numerical results are then critically compared with the predictions of an extended version of Persson’s contact mechanics theory, which is able to handle anisotropic surfaces, as 1D interfaces. It is shown that, for any given load, Persson’s theory underestimates the contact area by about 50% in comparison with our numerical calculations. We find that this discrepancy is larger than for 2D rough surfaces in the case of adhesionless contact. We argue that this increased difference might be explained, at least partially, by considering that Persson’s theory is a mean-field theory in spirit, so it should work better for 2D rough surfaces rather than for 1D rough surfaces. We also observe that the predicted value of separation is in agreement with our numerical results as well as the exponents of the power spectral density of the contact pressure distribution and of the elastic displacement of the solid. Therefore, we conclude that Persson’s theory captures almost exactly the main qualitative behaviour of the rough contact phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Yang, U. Tartaglino, B.N.J. Persson, Eur. Phys. J. E 19, 47 (2006).

    Article  Google Scholar 

  2. M. Borri-Brunetto, B. Chiaia, M. Ciavarella, Comput. Methods Appl. Mech. Eng. 190, 6053 (2001).

    Article  MATH  Google Scholar 

  3. S. Hyun, L. Pei, J.-F. Molinari, M.O. Robbins, Phys. Rev. E 70, 026117 (2004).

    Article  ADS  Google Scholar 

  4. C. Campañá, Phys. Rev. E 78, 026110 (2008).

    Article  ADS  Google Scholar 

  5. J.A. Greenwood, J.B.P. Williamson, Proc. R. Soc. London, Ser. A 295, 300 (1966).

    Article  ADS  Google Scholar 

  6. A.W. Bush, R.D. Gibson, T.R. Thomas, Wear 35, 87 (1975).

    Article  Google Scholar 

  7. T.R. Thomas, Rough Surfaces, Chapt. 8 (Longman Group Limited, New York, 1982).

    Google Scholar 

  8. J.A. Greenwood, Wear 261, 191 (2006).

    Article  Google Scholar 

  9. G. Carbone, J. Mech. Phys. Solids 57, 1093 (2009).

    Article  ADS  Google Scholar 

  10. B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001).

    Article  ADS  Google Scholar 

  11. B.N.J. Persson, Eur. Phys. J. E 8, 385 (2002).

    Google Scholar 

  12. G. Carbone, F. Bottiglione, J. Mech. Phys. Solids 56, 2555 (2008).

    Article  MATH  ADS  Google Scholar 

  13. C. Campañá, M.H. Müser, M.O. Robbins, J. Phys.: Condens. Matter 20, 354013 (2008).

    Article  Google Scholar 

  14. B.N.J. Persson, J. Phys.: Condens. Matter 20, 312001 (2008).

    Article  ADS  Google Scholar 

  15. C. Yang, B.N.J. Persson, Phys. Rev. Lett. 100, 024303 (2008).

    Article  ADS  Google Scholar 

  16. G. Carbone, B. Lorenz, B.N.J. Persson, A. Wohlers, Eur. Phys. J. E 29, 275 (2009).

    Article  Google Scholar 

  17. C. Campañá, M.H. Müser, Phys. Rev. B 74, 075420 (2006).

    Article  ADS  Google Scholar 

  18. G. Carbone, L. Mangialardi, J. Mech. Phys. Solids 56, 684 (2008).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. G. Carbone, L. Mangialardi, J. Mech. Phys. Solids 52, 1267 (2004).

    Article  MATH  ADS  Google Scholar 

  20. E. Polak, G. Ribière, Rev. Fr. Informat. Rech. Opér. 16, 35 (1969).

    Google Scholar 

  21. A.A. Griffith, Phil. Trans. R. Soc. A 221, 163 (1920).

    Article  ADS  Google Scholar 

  22. G. Carbone, L. Mangialardi, B.N.J. Persson, Phys. Rev. B 70, 125407 (2004).

    Article  ADS  Google Scholar 

  23. B.N.J. Persson, O. Albohr, U. Tartaglino, A.I. Volokitin, E. Tosatti, J. Phys.: Condens. Matter 17, R1 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Carbone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbone, G., Scaraggi, M. & Tartaglino, U. Adhesive contact of rough surfaces: Comparison between numerical calculations and analytical theories. Eur. Phys. J. E 30, 65–74 (2009). https://doi.org/10.1140/epje/i2009-10508-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2009-10508-5

PACS

Navigation