Skip to main content
Log in

How to simulate patchy particles

  • Colloquium
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Patchy particles is the name given to a large class of systems of mesoscopic particles characterized by a repulsive core and a discrete number of short-range and highly directional interaction sites. Numerical simulations have contributed significantly to our understanding of the behaviour of patchy particles, but, although simple in principle, advanced simulation techniques are often required to sample the low temperatures and long time-scales associated with their self-assembly behaviour. In this work we review the most popular simulation techniques that have been used to study patchy particles, with a special focus on Monte Carlo methods. We cover many of the tools required to simulate patchy systems, from interaction potentials to biased moves, cluster moves, and free-energy methods. The review is complemented by an educationally oriented Monte Carlo computer code that implements all the techniques described in the text to simulate a well-known tetrahedral patchy particle model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Bianchi, B. Capone, I. Coluzza, L. Rovigatti, P.D.J. van Oostrum, Phys. Chem. Chem. Phys. 19, 19847 (2017)

    Article  Google Scholar 

  2. I. Coluzza, PLoS ONE 9, e112852 (2014) arXiv:1406.4373v1

    Article  ADS  Google Scholar 

  3. J.J. McManus, P. Charbonneau, E. Zaccarelli, N. Asherie, Curr. Opin. Colloid Interface Sci. 22, 73 (2016)

    Article  Google Scholar 

  4. J. Cai, J.P. Townsend, T.C. Dodson, P.A. Heiney, A.M. Sweeney, Science 357, 564 (2017)

    Article  ADS  Google Scholar 

  5. D.C. Rapaport, Phys. Rev. Lett. 101, 186101 (2008)

    Article  ADS  Google Scholar 

  6. J.A. Millan, D. Ortiz, S.C. Glotzer, Soft Matter 11, 1386 (2015)

    Article  ADS  Google Scholar 

  7. C. De Michele, T. Bellini, F. Sciortino, Macromolecules 45, 1090 (2012)

    Article  ADS  Google Scholar 

  8. S. Whitelam, I. Tamblyn, J.P. Garrahan, P.H. Beton, Phys. Rev. Lett. 114, 1 (2015)

    Article  Google Scholar 

  9. F. Sciortino, Eur. Phys. J. B 64, 505 (2008)

    Article  ADS  Google Scholar 

  10. Y. Wang, Y. Wang, D.R. Breed, V.N. Manoharan, L. Feng, A.D. Hollingsworth, M. Weck, D.J. Pine, Nature 491, 51 (2012)

    Article  ADS  Google Scholar 

  11. G.-R. Yi, D.J. Pine, S. Sacanna, J. Phys.: Condens. Matter 25, 193101 (2013)

    ADS  Google Scholar 

  12. W. Liu, M. Tagawa, H.L. Xin, T. Wang, H. Emamy, H. Li, K.G. Yager, F.W. Starr, A.V. Tkachenko, O. Gang, Science 351, 582 (2016)

    Article  ADS  Google Scholar 

  13. A. Striolo, J. Kim, L. Liz-Marzán, L. Tadiello, M. Pauly, C. Murphy, A. Roig, D. Gracias, Y. Xia, J. Reguera et al., Faraday Discuss. 191, 117 (2016)

    Article  ADS  Google Scholar 

  14. J. Zhang, B.A. Grzybowski, S. Granick, Langmuir 33, 6964 (2017)

    Article  Google Scholar 

  15. J. Diaz, D. Pine, Bull. Am. Phys. Soc. (2018) http://meetings.aps.org/Meeting/MAR18/Session/K54.6

  16. E. Bianchi, R. Blaak, C.N. Likos, Phys. Chem. Chem. Phys. 13, 6397 (2011)

    Article  Google Scholar 

  17. J. Tavares, N. Almarza, M.T. da Gama, Soft Matter 11, 5828 (2015)

    Article  ADS  Google Scholar 

  18. J.M. Tavares, C.S. Dias, N.A.M. Arajo, M.M. Telo da Gama, J. Phys. Chem. B 122, 3514 (2018)

    Article  Google Scholar 

  19. P.I.C. Teixeira, J. Tavares, Curr. Opin. Colloid Interface Sci. 30, 16 (2017)

    Article  Google Scholar 

  20. Q. Chen, S.C. Bae, S. Granick, Nature 469, 381 (2011)

    Article  ADS  Google Scholar 

  21. Y. Iwashita, Y. Kimura, Soft Matter 9, 10694 (2013)

    Article  ADS  Google Scholar 

  22. S. Biffi, R. Cerbino, F. Bomboi, E.M. Paraboschi, R. Asselta, F. Sciortino, T. Bellini, Proc. Natl. Acad. Sci. U.S.A. 110, 15633 (2013)

    Article  ADS  Google Scholar 

  23. F. Bomboi, F. Romano, M. Leo, J. Fernandez-Castanon, R. Cerbino, T. Bellini, F. Bordi, P. Filetici, F. Sciortino, Nat. Commun. 7, 13191 (2016)

    Article  ADS  Google Scholar 

  24. W. Liu, N.A. Mahynski, O. Gang, A.Z. Panagiotopoulos, S.K. Kumar, ACS Nano 11, 4950 (2017)

    Article  Google Scholar 

  25. N. Kern, D. Frenkel, J. Chem. Phys. 118, 9882 (2003)

    Article  ADS  Google Scholar 

  26. Zhang, A.S. Keys, T. Chen, S.C. Glotzer, Langmuir 21, 11547 (2005)

    Article  Google Scholar 

  27. E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli, F. Sciortino, Phys. Rev. Lett. 97, 168301 (2006)

    Article  ADS  Google Scholar 

  28. J.P.K. Doye, A.A. Louis, I.-C. Lin, L.R. Allen, E.G. Noya, A.W. Wilber, H.C. Kok, R. Lyus, Phys. Chem. Chem. Phys. 9, 2197 (2007)

    Article  Google Scholar 

  29. E.G. Noya, C. Vega, J.P.K. Doye, A.A. Louis, J. Chem. Phys. 132, 234511 (2010)

    Article  ADS  Google Scholar 

  30. E. Bianchi, G. Kahl, C.N. Likos, Soft Matter 7, 8313 (2011)

    Article  ADS  Google Scholar 

  31. A.B. Pawar, I. Kretzschmar, Langmuir 25, 9057 (2009)

    Article  Google Scholar 

  32. D.J. Kraft, J. Hilhorst, M.A.P. Heinen, M.J. Hoogenraad, B. Luigjes, W.K. Kegel, J. Phys. Chem. B 115, 7175 (2011)

    Article  Google Scholar 

  33. P.D.J. van Oostrum, M. Hejazifar, C. Niedermayer, E. Reimhult, J. Phys.: Condens. Matter 27, 234105 (2015)

    ADS  Google Scholar 

  34. T. Tigges, D. Hoenders, A. Walther, Small 11, 4540 (2015)

    Article  ADS  Google Scholar 

  35. S. Roldán-Vargas, F. Smallenburg, W. Kob, F. Sciortino, Sci. Rep. 3, 2451 (2013)

    Article  ADS  Google Scholar 

  36. L. Rovigatti, V. Bianco, J.M. Tavares, F. Sciortino, J. Chem. Phys. 146, 041103 (2017)

    Article  ADS  Google Scholar 

  37. F. Smallenburg, F. Sciortino, Nat. Phys. 9, 554 (2013)

    Article  Google Scholar 

  38. L. Rovigatti, F. Smallenburg, F. Romano, F. Sciortino, ACS Nano 8, 3567 (2014)

    Article  Google Scholar 

  39. S. Biffi, R. Cerbino, G. Nava, F. Bomboi, F. Sciortino, T. Bellini, Soft Matter 11, 3132 (2015)

    Article  ADS  Google Scholar 

  40. L. Rovigatti, J. Russo, F. Romano, PatchyParticles: an educational Monte Carlo code to simulate patchy particles http://dx.doi.org/10.5281/zenodo.1153959 (2018)

  41. E. Bianchi, P. Tartaglia, E. Zaccarelli, F. Sciortino, J. Chem. Phys. 128, 144504 (2008)

    Article  ADS  Google Scholar 

  42. L. Rovigatti, D. de las Heras, J.M. Tavares, M.M. Telo da Gama, F. Sciortino, J. Chem. Phys. 138, 164904 (2013)

    Article  ADS  Google Scholar 

  43. F. Romano, J. Russo, H. Tanaka, Phys. Rev. Lett. 113, 138303 (2014)

    Article  ADS  Google Scholar 

  44. C. Ggelein, G. Ngele, R. Tuinier, T. Gibaud, A. Stradner, P. Schurtenberger, J. Chem. Phys. 129, 085102 (2008)

    Article  ADS  Google Scholar 

  45. F. Sciortino, Eur. Phys. J. E 40, 3 (2017)

    Article  Google Scholar 

  46. J. Russo, P. Tartaglia, F. Sciortino, J. Chem. Phys. 131, 014504 (2009)

    Article  ADS  Google Scholar 

  47. S. Roldan-Vargas, L. Rovigatti, F. Sciortino, Soft Matter 13, 514 (2017)

    Article  ADS  Google Scholar 

  48. D.J. Audus, F. Starr, J. Douglas, Soft Matter 14, 1622 (2018)

    Article  ADS  Google Scholar 

  49. F. Romano, E. Sanz, F. Sciortino, J. Chem. Phys. 134, 174502 (2011)

    Article  ADS  Google Scholar 

  50. F. Romano, F. Sciortino, Soft Matter 7, 5799 (2011)

    Article  ADS  Google Scholar 

  51. W.L. Miller, A. Cacciuto, Phys. Rev. E 80, 021404 (2009)

    Article  ADS  Google Scholar 

  52. H. Rezvantalab, D.J. Beltran-Villegas, R.G. Larson, Phys. Rev. Lett. 117, 128001 (2016)

    Article  ADS  Google Scholar 

  53. N.A. Mahynski, L. Rovigatti, C.N. Likos, A.Z. Panagiotopoulos, ACS Nano 10, 5459 (2016)

    Article  Google Scholar 

  54. M.S. Fernández, V.R. Misko, F.M. Peeters, Phys. Rev. E 92, 042309 (2015)

    Article  ADS  Google Scholar 

  55. I. Coluzza, P.D. van Oostrum, B. Capone, E. Reimhult, C. Dellago, Phys. Rev. Lett. 110, 075501 (2013)

    Article  ADS  Google Scholar 

  56. F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985)

    Article  ADS  Google Scholar 

  57. V. Molinero, E.B. Moore, J. Phys. Chem. B 113, 4008 (2008)

    Article  Google Scholar 

  58. C. Vega, J.L.F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011)

    Article  Google Scholar 

  59. J. Russo, J.M. Tavares, P.I.C. Teixeira, M.M. Telo da Gama, F. Sciortino, Phys. Rev. Lett. 106, 085703 (2011)

    Article  ADS  Google Scholar 

  60. R.J. Speedy, P.G. Debenedetti, Mol. Phys. 81, 237 (1994)

    Article  ADS  Google Scholar 

  61. E. Zaccarelli, S.V. Buldyrev, E. La Nave, A.J. Moreno, I. Saika-Voivod, F. Sciortino, P. Tartaglia, Phys. Rev. Lett. 94, 218301 (2005)

    Article  ADS  Google Scholar 

  62. N. Gnan, L. Rovigatti, M. Bergman, E. Zaccarelli, Macromolecules 50, 8777 (2017)

    Article  ADS  Google Scholar 

  63. L. Rovigatti, G. Nava, T. Bellini, F. Sciortino, Macromolecules 51, 1232 (2018)

    Article  ADS  Google Scholar 

  64. B. Smit, D. Frenkel, Understanding Molecular Simulations (Academic, New York, 1996)

  65. R.D. Mountain, D. Thirumalai, Physica A 210, 453 (1994)

    Article  ADS  Google Scholar 

  66. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2004)

  67. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987)

  68. M.P. Allen, G. Germano, Mol. Phys. 104, 3225 (2006)

    Article  ADS  Google Scholar 

  69. G. Ciccotti, J. Ryckaert, Comput. Phys. Rep. 4, 346 (1986)

    Article  ADS  Google Scholar 

  70. V. Krutler, W.F. van Gunsteren, P.H. Hnenberger, J. Comput. Chem. 22, 501 (2001)

    Article  Google Scholar 

  71. B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, J. Comput. Chem. 18, 1463 (1997)

    Article  Google Scholar 

  72. A. Dullweber, B. Leimkuhler, R. McLachlan, J. Chem. Phys. 107, 5840 (1997)

    Article  ADS  Google Scholar 

  73. J.F. Brady, G. Bossis, Ann. Rev. Fluid Mech. 20, 111 (1988)

    Article  ADS  Google Scholar 

  74. R.L. Davidchack, R. Handel, M.V. Tretyakov, J. Chem. Phys. 130, 234101 (2009)

    Article  ADS  Google Scholar 

  75. R.L. Davidchack, T.E. Ouldridge, M.V. Tretyakov, J. Chem. Phys. 147, 224103 (2017)

    Article  ADS  Google Scholar 

  76. W.M. Brown, A. Kohlmeyer, S.J. Plimpton, A.N. Tharrington, Comput. Phys. Commun. 183, 449 (2012)

    Article  ADS  Google Scholar 

  77. M.J. Abraham, T. Murtola, R. Schulz, S. Pll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1-2, 19 (2015)

    Article  ADS  Google Scholar 

  78. N.B. Wilding, J. Phys.: Condens. Matter 9, 585 (1997)

    ADS  Google Scholar 

  79. J.J. Potoff, A.Z. Panagiotopoulos, J. Chem. Phys. 109, 10914 (1998)

    Article  ADS  Google Scholar 

  80. R.L.C. Vink, J. Horbach, J. Chem. Phys. 121, 3253 (2004)

    Article  ADS  Google Scholar 

  81. F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)

    Article  ADS  Google Scholar 

  82. B. Chen, J.I. Siepmann, J. Phys. Chem. B 104, 8725 (2000)

    Article  Google Scholar 

  83. B. Chen, J.I. Siepmann, J. Phys. Chem. B 105, 11275 (2001)

    Article  Google Scholar 

  84. S. Whitelam, P.L. Geissler, J. Chem. Phys. 127, 154101 (2007)

    Article  ADS  Google Scholar 

  85. A. Morriss-Andrews, J. Rottler, S.S. Plotkin, J. Chem. Phys. 132, 035105 (2010)

    Article  ADS  Google Scholar 

  86. P. Sulc, F. Romano, T.E. Ouldridge, L. Rovigatti, J.P.K. Doye, A.A. Louis, J. Chem. Phys. 137, 135101 (2012)

    Article  ADS  Google Scholar 

  87. S. Whitelam, E.H. Feng, M.F. Hagan, P.L. Geissler, Soft Matter 5, 1251 (2009)

    Article  ADS  Google Scholar 

  88. S. Ruzicka, M.P. Allen, Phys. Rev. E 89, 033307 (2014)

    Article  ADS  Google Scholar 

  89. Z. Zhang, S.C. Glotzer, Nano Lett. 4, 1407 (2004)

    Article  ADS  Google Scholar 

  90. S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007)

    Article  Google Scholar 

  91. F. Sciortino, in Proceedings of the International School of Physics “Enrico Fermi”, Course 193, Soft Matter Self-Assembly, edited by C.N. Likos (IOS Press, Amsterdam and SIF, Bologna, 2016) pp. 1--17

  92. F. Sciortino, E. Bianchi, J.F. Douglas, P. Tartaglia, J. Chem. Phys. 126, 194903 (2007)

    Article  ADS  Google Scholar 

  93. I. Saika-Voivod, F. Romano, F. Sciortino, J. Chem. Phys. 135, 124506 (2011)

    Article  ADS  Google Scholar 

  94. F. Romano, E. Sanz, P. Tartaglia, F. Sciortino, J. Phys.: Condens. Matter 24, 064113 (2012)

    ADS  Google Scholar 

  95. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, 2014)

  96. P. Virnau, M. Müller, J. Chem. Phys. 120, 10925 (2004)

    Article  ADS  Google Scholar 

  97. L. Filion, M. Marechal, B. van Oorschot, D. Pelt, F. Smallenburg, M. Dijkstra, Phys. Rev. Lett. 103, 188302 (2009)

    Article  ADS  Google Scholar 

  98. J. de Graaf, R. van Roij, M. Dijkstra, Phys. Rev. Lett. 107, 155501 (2011)

    Article  ADS  Google Scholar 

  99. M. Marechal, R.J. Kortschot, A.F. Demirrs, A. Imhof, M. Dijkstra, Nano Lett. 10, 1907 (2010)

    Article  ADS  Google Scholar 

  100. T. Vissers, Z. Preisler, F. Smallenburg, M. Dijkstra, F. Sciortino, J. Chem. Phys. 138, 164505 (2013)

    Article  ADS  Google Scholar 

  101. G. Doppelbauer, E. Bianchi, G. Kahl, J. Phys.: Condens. Matter 22, 104105 (2010)

    ADS  Google Scholar 

  102. G. Doppelbauer, E.G. Noya, E. Bianchi, G. Kahl, Soft Matter 8, 7768 (2012)

    Article  ADS  Google Scholar 

  103. E. Bianchi, G. Doppelbauer, L. Filion, M. Dijkstra, G. Kahl, J. Chem. Phys. 136, 214102 (2012)

    Article  ADS  Google Scholar 

  104. D. Frenkel, A.J.C. Ladd, J. Chem. Phys. 81, 3188 (1984)

    Article  ADS  Google Scholar 

  105. E.G. Noya, M.M. Conde, C. Vega, J. Chem. Phys. 129, 104704 (2008)

    Article  ADS  Google Scholar 

  106. C. Vega, E. Sanz, J. Abascal, E. Noya, J. Phys.: Condens. Matter 20, 153101 (2008)

    ADS  Google Scholar 

  107. A. Laio, F.L. Gervasio, Rep. Prog. Phys. 71, 126601 (2008)

    Article  ADS  Google Scholar 

  108. A. Barducci, G. Bussi, M. Parrinello, Phys. Rev. Lett. 100, 020603 (2008)

    Article  ADS  Google Scholar 

  109. G.M. Torrie, J.P. Valleau, J. Comput. Phys. 23, 187 (1977)

    Article  ADS  Google Scholar 

  110. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Vol. 1 (Elsevier, 2001)

  111. A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988)

    Article  ADS  Google Scholar 

  112. S. Prestipino, J. Chem. Phys. 148, 124505 (2018)

    Article  ADS  Google Scholar 

  113. D. Richard, T. Speck, J. Chem. Phys. 148, 124110 (2018)

    Article  ADS  Google Scholar 

  114. J. Russo, F. Romano, H. Tanaka, Nat. Mater. 13, 733 (2014)

    Article  ADS  Google Scholar 

  115. L. Rovigatti, J. Russo, F. Sciortino, Phys. Rev. Lett. 107, 237801 (2011)

    Article  ADS  Google Scholar 

  116. K.T. Nguyen, F. Sciortino, C. De Michele, Langmuir 30, 4814 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Rovigatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rovigatti, L., Russo, J. & Romano, F. How to simulate patchy particles. Eur. Phys. J. E 41, 59 (2018). https://doi.org/10.1140/epje/i2018-11667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11667-x

Keywords

Navigation