Skip to main content

Detection of DNA Hybridization by Methylene Blue Electrochemistry at Activated Nanoelectrode Ensembles

Buy Article:

$107.14 + tax (Refund Policy)

Nanoelectrode ensembles (NEEs) obtained by electroless gold deposition in track-etched polycarbonate (PC) membranes are functionalized and applied for DNA hybridization detection, using methylene blue (MB) as electroactive probe. To this aim, an amine terminated ss DNA probe is immobilized on the PC surface of the NEE by reaction via carbodiimide and N-hydroxysulfosuccinimide. In order to increase the number of carboxylic groups present on PC and suitable for the functionalization, the surface of NEEs is oxidized with potassium permanganate. The presence of carboxylic functionalities is verified by spectrochemical titration with thionin acetate (THA) and the effect of the activation treatment on the electrode performances is evaluated by cyclic voltammetry (CV). After activation and functionalization with the probes, the NEE-based sensor is hybridized with complementary target sequences. The effect of the functionalization of the NEEs both with the ss DNA probe alone and after hybridization with the target, is studied by measuring the changes in the MB reduction signal by square wave voltammetry (SWV), after incubation in a suitable MB solution, rinsing and transfer to the measurement cell. It was observed that this peak signal decreases significantly after hybridization of the probe with the complementary target. Experimental evidences suggest that the interaction between MB and the guanines of ss DNA and ds DNA is at the basis of the development of the here observed analytical signal. The proposed approach allows the easy preparation and testing of NEE-based sensors for the electrochemical DNA hybridization detection.

Document Type: Research Article

Publication date: 01 May 2015

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content