Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 22, 2016

New heteroscorpionate lanthanide complexes for ring-opening polymerisation of ɛ-caprolactone and rac-lactide

  • Alberto Scrivanti EMAIL logo , Marco Bortoluzzi and Mattia Gatto
From the journal Chemical Papers

Yttrium and lanthanum amido-complexes with bis(pyrazol-1-yl)acetates in their coordination spheres were studied as the catalysts in ɛ-caprolactone and lactide ring-opening polymerisation. A high molecular mass poly(ɛ-caprolactone) (PCL) was obtained in almost quantitative yield under mild conditions. rac-Lactide polymerisations were less efficient and required quite harsh experimental conditions to obtain atactic PLA samples with moderate yields. The average chain-length of PCL was dependent upon the choice of the metal centre and the presence of substituents on the pyrazole rings of the ancillary ligand. The ground-state geometries of the complexes and the first stages of ɛ-caprolactone polymerisation were computationally modelled by means of DFT calculations.


Presented at the XXV. International Conference on Coordination and Bioinorganic Chemistry, Smolenice, Slovakia, 31 May–5 June 2015.


References

Amgoune, A., Thomas, C. M., & Carpentier, J. F. (2007). Controlled ring-opening polymerization of lactide by group 3 metal complexes. Pure and Applied Chemistry, 79, 2013–2030. DOI: 10.1351/pac200779112013.10.1351/pac200779112013Search in Google Scholar

Arnold, P. L., Buffet, J. C., Blaudeck, R. P., Sujecki, S., Blake, A. J., & Wilson, C. (2008). C3-symmetric lanthanide tris(alkoxide) complexes formed by preferential complexation and their stereoselective polymerization of rac-lactide. Angewandte Chemie International Edition, 47, 6033–6036. DOI: 10.1002/anie.200801279.10.1002/anie.200801279Search in Google Scholar

Beck, A., Weibert, B., & Burzlaff, N. (2001). Monoanionic N,N,O-scorpionate ligands and their iron(II) and zinc(II) complexes: Models for mononuclear active sites of nonheme iron oxidases and zinc enzymes. European Journal of Inorganic Chemistry, 2001, 521–527. DOI: 10.1002/10990682(200102)2001:2<521::AID-EJIC521>3.0.CO;2-Q.10.1002/10990682(200102)2001:2<521::AID-EJIC521>3.0.CO;2-QSearch in Google Scholar

Bortoluzzi, M., Paolucci, G., Fregona, D., Dalla Via, L., & Enrichi, F. (2012). Group 3 and lanthanide triflate-complexes with [N,N,O]-donor ligands: synthesis, characterization, and cytotoxic activity. Journal of Coordination Chemistry, 65, 3903–3916. DOI: 10.1080/00958972.2012.728591.10.1080/00958972.2012.728591Search in Google Scholar

Bradley, D. C., Ghotra, J. S., & Hart, F. A. (1973). Low co-ordination numbers in lanthanide and actinide compounds. Part I. The preparation and characterization of tris{bis(trimethylsilyl)amido}lanthanides. Journal of the Chemical Society, Dalton Transactions, 1973, 1021–1023. DOI: 10.1039/dt9730001021.10.1039/dt9730001021Search in Google Scholar

Brandolini, A. J., & Hills, D. D. (2000). NMR spectra of polymers and polymer additives. New York, NY, USA: Marcel Dekker.10.1201/9781482293425Search in Google Scholar

Burzlaff, N., Hegelmann, I., & Weibert, B. (2001a). Bis(pyrazol1-yl)acetates as tripodal “scorpionate” ligands in transition metal carbonyl chemistry: syntheses, structures and reactivity of manganese and rhenium carbonyl complexes of the type [LM(CO)3] (L = bpza, bdmpza). Journal of Organometallic Chemistry, 626, 16–23. DOI: 10.1016/s0022-328x(01)00648-9.10.1016/s0022-328x(01)00648-9Search in Google Scholar

Chamberlain, B. M., Sun, Y., Hagadorn, J. R., Hemmesch, E. W., Young, V. G., Jr., Pink, M., Hillmyer, M. A., & Tolman, W. B. (1999). Discrete yttrium(III) complexes as lactide polymerization catalysts. Macromolecules, 32, 2400–2402. DOI: 10.1021/ma990005k.10.1021/ma990005kSearch in Google Scholar

Claridge, T. D. W. (2009). Diffusion NMR spectroscopy. In T. D. W. Claridge (Ed.), High-resolution NMR techniques in organic chemistry (Tetrahedron organic chemistry series, Vol. 27, Chapter 9, pp. 303–334). Amsterdam, The Netherlands: Elsevier.Search in Google Scholar

Cramer, C. J. (2004). Essentials of computational chemistry: Theories and models (2nd ed.). Chichester, UK: Wiley.Search in Google Scholar

Darensbourg, D. J., Choi, W., Karroonnirun, O., & Bhuvanesh, N. (2008). Ring-opening polymerization of cyclic monomers by complexes derived from biocompatible metals. Production of poly(lactide), poly(trimethylene carbonate), and their copolymers. Macromolecules, 41, 3493–3502. DOI: 10.1021/ma800078t.10.1021/ma800078tSearch in Google Scholar

Dash, T. K., & Konkimalla, B. (2012). Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158, 15–33. DOI: 10.1016/j.jconrel.2011.09.064.10.1016/j.jconrel.2011.09.064Search in Google Scholar

Dolg, M. (2000). Effective core potentials. In J. Grotendorst (Ed.), Modern methods and algorithms of quantum chemistry (NIC series, Vol. 1, pp. 479–508). Jülich, Germany: John von Neumann Institute for Computing.Search in Google Scholar

Dove, A. P., Gibson, V. C., Marshall, E. L., Rzepa, H. S., White, A. J. P., & Williams, D. J. (2006). Synthetic, structural, mechanistic, and computational studies on single-site β-diketiminate tin(II) initiators for the polymerization of rac-lactide. Journal of the American Chemical Society, 128, 9834–9843. DOI: 10.1021/ja061400a.10.1021/ja061400aSearch in Google Scholar

Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Polylactic acid technology. Advanced Materials, 12, 1841–1846. DOI: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E.10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-ESearch in Google Scholar

Evans, W. J., Shreeve, J. L., & Doedens, R. J. (1993). Isolation and crystal structure of a six coordinate yttrium trichloride complex of ε-caprolactone, YCl3(C6H10O2)3. Inorganic Chemistry, 32, 245–246. DOI: 10.1021/ic00055a001.10.1021/ic00055a001Search in Google Scholar

Ha, C. S., & Gardella, J. A., Jr. (2005). Surface chemistry of biodegradable polymers for drug delivery systems. Chemical Reviews, 105, 4205–4232. DOI: 10.1021/cr040419y.10.1021/cr040419ySearch in Google Scholar

Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82, 299–310. DOI: 10.1063/1.448975.10.1063/1.448975Search in Google Scholar

Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self-consistent molecular orbital methods. XII. Further extensions of Gaussian–type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 56, 2257–2261. DOI: 10.1063/1.1677527.10.1063/1.1677527Search in Google Scholar

Hirano, S., & Suzuki, K. T. (1996). Exposure, metabolism, and toxicity of rare earths and related compounds. Environmental Health Perspectives, 104 (Suppl. 1), 85–95.Search in Google Scholar

Labet, M., & Thielemans, W. (2009). Synthesis of polycaprolactone: a review. Chemical Society Reviews, 38, 3484–3504. DOI: 10.1039/b820162p.10.1039/b820162pSearch in Google Scholar

Lin, C. Y., George, M. W., & Gill, P. M. W. (2004). EDF2: A density functional for predicting molecular vibrational frequencies. Australian Journal of Chemistry, 57, 365–370. DOI: 10.1071/ch03263.10.1071/ch03263Search in Google Scholar

Mehta, R., Kumar, V., Bhunia, H., & Upadhyay, S. N. (2005). Synthesis of poly(lactic acid): A review. Journal of Macromolecular Science, Part C: Polymer Reviews, 45, 325–349. DOI: 10.1080/15321790500304148.10.1080/15321790500304148Search in Google Scholar

Milione, S., Bertolasi, V., Cuenca, T., & Grassi, A. (2005). Titanium complexes bearing a hemilabile heteroscorpionate ligand: Synthesis, reactivity, and olefin polymerization activity. Organometallics, 24, 4915–4925. DOI: 10.1021/om050063w.10.1021/om050063wSearch in Google Scholar

O”Keefe, B. J., Breyfogle, L. E., Hillmyer, M. A., & Tolman, W. B. (2002). Mechanistic comparison of cyclic ester polymerizations by novel iron(III)–alkoxide complexes: Single vs multiple site catalysis. Journal of the American Chemical Society, 124, 4384–4393. DOI: 10.1021/ja012689t.10.1021/ja012689tSearch in Google Scholar PubMed

Otero, A., Fernández-Baeza, J., Antiñolo, A., Tejeda, J., LaraSánchez, A., Sánchez-Barba, L., Martínez-Caballero, E., Rodríguez, A. M., & López-Solera, I. (2005). First complexes of scandium and yttrium with NNO and NNS heteroscorpionate ligands. Inorganic Chemistry, 44, 5336–5344. DOI: 10.1021/ic050525y.10.1021/ic050525ySearch in Google Scholar PubMed

Otero, A., Fernández-Baeza, J., Lara-Sánchez, A., & SánchezBarba, L. F. (2013). Metal complexes with heteroscorpionate ligands based on the bis(pyrazol-1-yl)methane moiety: Catalytic chemistry. Coordination Chemistry Reviews, 257, 1806–1868. DOI: 10.1016/j.ccr.2013.01.027.10.1016/j.ccr.2013.01.027Search in Google Scholar

Palard, I., Soum, A., & Guillaume, S. M. (2004). Unprecedented polymerization of ε-caprolactone initiated by a single-site lanthanide borohydride complex, [Sm(η-C5Me5)2(BH4)(thf)]: Mechanistic insights. Chemistry –A European Journal, 10, 4054–4062. DOI: 10.1002/chem.200400319.10.1002/chem.200400319Search in Google Scholar PubMed

Sutar, A. K., Maharana, T., Dutta, S., Chen, C. T., & Lin, C. C. (2010). Ring-opening polymerization by lithium catalysts: an overview. Chemical Society Reviews, 39, 1724–1746. DOI: 10.1039/B912806a.10.1039/B912806aSearch in Google Scholar PubMed

Wahit, M. U., Akos, N. I., & Laftah, W. A. (2012). Influence of natural fibers on the mechanical properties and biodegradation of poly(lactic acid) and poly(ε-caprolactone) composites: A review. Polymer Composites, 33, 1045–1053. DOI: 10.1002/pc.22249.10.1002/pc.22249Search in Google Scholar

Williams, C. K., Breyfogle, L. E., Choi, S. K., Nam, W., Young, W. G., Jr., Hillmyer, M. A., & Tolman, W. B. (2003). A highly active zinc catalyst for the controlled polymerization of lactide. Journal of the American Chemical Society, 125, 11350–11359. DOI: 10.1021/ja0359512.10.1021/ja0359512Search in Google Scholar PubMed

Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer–Polycaprolactone in the 21st century. Progress in Polymer Science, 35, 1217–1256. DOI: 10.1016/j.progpolymsci.2010.04.002.10.1016/j.progpolymsci.2010.04.002Search in Google Scholar

Zell, M. T., Padden, B. E., Paterick, A. J., Thakur, K. A. M., Kean, R. T., Hillmyer, M. A., & Munson, E. J. (2002). Unambiguous determination of the 13C and 1H NMR stereosequence assignments of polylactide using high-resolution solution NMR spectroscopy. Macromolecules, 35, 7700–7707. DOI: 10.1021/ma0204148.10.1021/ma0204148Search in Google Scholar

Zhang, L., Niu, Y., Wang, Y., Wang, P., & Shen, L. (2008). Ring-opening polymerization of ε-caprolactone by lanthanide tris(2,4,6-tri-tert-butylphenolate)s: Characteristics, kinetics and mechanism. Journal of Molecular Catalysis A: Chemical, 287, 1–4. DOI: 10.1016/j.molcata.2008.02.017.10.1016/j.molcata.2008.02.017Search in Google Scholar

Received: 2015-3-11
Revised: 2015-4-15
Accepted: 2015-4-20
Published Online: 2016-1-22
Published in Print: 2016-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0144/html
Scroll to top button