Skip to main content
Log in

Dielectric relaxation and microwave loss in the La(Mg1/2Ti1/2)O3–(Na1/2Bi1/2)TiO3 perovskite ceramics

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Dielectric response of the perovskite ceramics (1–x)La(Mg1/2Ti1/2)O3x(Na1/2Bi1/2)TiO3 [(1–x)LMT–xNBT] (0 ⩽ x ⩽ 0.6) has been characterized at radio, microwave, and far infrared frequency ranges. Temperature variations of the dielectric permittivity and loss estimated by different methods were compared and analyzed. It was revealed that the low temperature dielectric response of the compositions with x ⩾ 0.2 is frequency-dependent over a wide range (102–109 Hz) below the resonant frequencies of the polar phonon modes. Contributions of different factors (both extrinsic and intrinsic) to the microwave dielectric loss of the ceramics were considered. The dielectric relaxation has been associated with the amount of bismuth in the system. The relaxation in LMT–NBT was considered in the context of similar effects observed in other Bi-containing, A-site disordered oxygen-octahedral compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
TABLE I.
FIG. 3
FIG. 4
TABLE II.
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. T.A. Vanderah: Talking ceramics. Science 298, 1182 2002

    Article  CAS  Google Scholar 

  2. A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh N. Setter: Ferroelectric materials for microwave tunable applications. J. Electroceram. 11, 5 2003

    Article  CAS  Google Scholar 

  3. A.S. Bhalla, R. Guo R. Roy: The perovskite structure–A review of its role in ceramic science and technology. Mater. Res. Innovat. 4, 3 2000

    Article  CAS  Google Scholar 

  4. J.B. Goodenough: Electronic and ionic-transport properties and other physical properties of perovskites. Rep. Prog. Phys. 67, 1915 2004

    Article  CAS  Google Scholar 

  5. W. Wersing: High frequency ceramic dielectrics and their application for microwave components in Electronic Ceramics edited by B.C.H. Steele Elsevier Science Publishing Co., Inc. London and New York 1991 99–100

    Google Scholar 

  6. M. Valant, D. Suvorov, C. Hoffmann H. Sommariva: Ag(Nb,Ta)O3-based ceramics with suppressed temperature dependence of permittivity. J. Eur. Ceram. Soc. 21, 2647 2001

    Article  CAS  Google Scholar 

  7. P.J. Harrop: Temperature coefficients of capacitance of solids. J. Mater. Sci. 4, 370 1969

    Article  CAS  Google Scholar 

  8. J. Petzelt N. Setter: Far infrared spectroscopy and origin of microwave losses in low-loss ceramics. Ferroelectrics 150, 89 1993

    Article  Google Scholar 

  9. I.M. Reaney, P. Wise, R. Ubic, J. Breeze, N.McN. Alford, D. Iddles, D. Cannel T. Price: On the temperature coefficient of resonant frequency in microwave dielectrics. Philos. Mag. A 81, 501 2001

    Article  CAS  Google Scholar 

  10. A.N. Salak, M.P. Seabra, V.M. Ferreira, J.L. Ribeiro L.G. Vieira: Dielectric characterization of the (1–x)La(Mg1/2Ti1/2) O3xBaTiO3 microwave ceramics. J. Phys. D: Appl. Phys. 37, 914 2004

    Article  CAS  Google Scholar 

  11. A.N. Salak, N.P. Vyshatko, A.L. Kholkin, V.M. Ferreira, N.M. Olekhnovich, Yu.V. Radyush A.V. Pushkarev: Processing and characterization of (1–x)(Na1/2Bi1/2)TiO3xLa (Mg1/2Ti1/2)O3 ceramics. Mater. Sci. Forum 514–516, 250 2006

    Article  Google Scholar 

  12. A.N. Salak V.M. Ferreira: Structure and dielectric properties of the (1–x)La(Mg1/2Ti1/2)O3x(Na1/2Bi1/2)TiO3 microwave ceramics. J. Phys.: Condens. Matter 18, 5703 2006

    CAS  Google Scholar 

  13. J. Suchanicz, A. Jezowski R. Poprawski: Low-temperature thermal and dielectric properties of Na1/2Bi1/2TiO3. Phys. Status Solidi A 169, 209 1998

    Article  CAS  Google Scholar 

  14. K. Roleder, I. Franke, A.M. Glazer, P.A. Thomas, S. Miga J. Suchanicz: The piezoelectric effect in Na1/2Bi1/2TiO3 ceramics. J. Phys.: Condens. Matter 14, 5399 2002

    CAS  Google Scholar 

  15. J. Petzelt, S. Kamba, J. Fabry, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, R. Klein G.E. Kugel: Infrared, Raman and high-frequency dielectric spectroscopy and phase transitions in Na1/2Bi1/2TiO3. J. Phys.: Condens. Matter 16, 2719 2004

    CAS  Google Scholar 

  16. B.W. Hakki P.D. Coleman: A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microwave Theory Tech. 8, 402 1960

    Article  Google Scholar 

  17. Y. Kobayashi M. Katoh: Microwave measurements of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Trans. Microwave Theory Tech. 33, 586 1985

    Article  Google Scholar 

  18. D.W. Berreman F.C. Unterwald: Adjusting poles and zeros of dielectric dispersion to fit reststrahlen of PrCl3 and LaCl3. Phys. Rev. 174, 791 1968

    Article  CAS  Google Scholar 

  19. S.J. Penn, N.McN. Alford, A. Templeton, X. Wang, M. Xu, M. Reece K. Schrapel: Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 1885 1997

    Article  CAS  Google Scholar 

  20. V.M. Ferreira, F. Azough, J.L. Baptista R. Freer: Magnesium titanate microwave dielectric ceramics. Ferroelectrics 133, 127 1992

    Article  CAS  Google Scholar 

  21. R.C. Pullar, J.D. Breeze N.McN. Alford: Characterization and microwave dielectric properties of M2+Nb2O6 ceramics. J. Am. Ceram. Soc. 88, 2466 2005

    Article  CAS  Google Scholar 

  22. D.L. Rousseau, R.P. Bauman S.P.S. Porto: Normal mode determination in crystals. J. Raman Spectrosc. 10, 253 1981

    Article  CAS  Google Scholar 

  23. M.P. Seabra, A.N. Salak, V.M. Ferreira, L.G. Vieira J.L. Ribeiro: Dielectric properties of the (1–x)La(Mg1/2Ti1/2) O3xSrTiO3 ceramics. J. Eur. Ceram. Soc. 24, 2995 2004

    Article  CAS  Google Scholar 

  24. P.L. Wise, I.M. Reaney, W.E. Lee, D.M. Iddles, D.S. Cannell T.J. Price: Tunability of τf in perovskites and related compounds. J. Mater. Res. 17, 2033 2002

    Article  CAS  Google Scholar 

  25. D. Viehland, J.F. Li, S.J. Jang, L.E. Cross M. Wuttig: Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 66, 2916 1990

    Article  Google Scholar 

  26. A.N. Salak V.M. Ferreira: Microwave dielectric properties of Bi-substituted La(Mg1/2Ti1/2)O3. J. Eur. Ceram. Soc. 27, 2887 2007

    Article  CAS  Google Scholar 

  27. G.I. Skanavi E.N. Matveeva: New nonpiezoelectric dielectrics with very high dielectric permeability and small conductivity. Sov. Phys. JETP 3, 905 1957

    CAS  Google Scholar 

  28. C. Ang Z. Yu: Dielectric relaxor and ferroelectric relaxor: Bi-doped paraelectric SrTiO3. J. Appl. Phys. 91, 1487 2002

    Article  Google Scholar 

  29. J.R. Gomah-Pettry, A.N. Salak, P. Marchet, V.M. Ferreira J.P. Mercurio: Ferroelectric relaxor behaviour of Na0.5Bi0.5TiO3–SrTiO3 ceramics. Phys. Status Solidi B 241, 1949 2004

    Article  CAS  Google Scholar 

  30. G.A. Samara: Relaxor properties of compositionally disordered perovskites: Ba- and Bi-substituted Pb(Zr1−xTix)O3. Phys. Rev. B 71, 224108 2005

    Article  Google Scholar 

  31. J.C. Nino, M.T. Lanagan C.A. Randall: Dielectric relaxation inBi2O3-ZnO-Nb2O5 cubic pyrochlore. J. Appl. Phys. 89, 4512 2001

    Article  CAS  Google Scholar 

  32. S. Kamba, V. Porokhonskyy, A. Pashkin, V. Bovtun, J. Petzelt, J.C. Nino, S. Trolier-McKinstry, M.T. Lanagan C.A. Randall: Anomalous broad dielectric relaxation in Bi1.5Zn1.0Nb1.5O7 pyrochlore. Phys. Rev. B 66, 054106 2002

    Article  Google Scholar 

  33. J.C. Nino, M.T. Lanagan, C.A. Randall S. Kamba: Correlation between infrared phonon modes and dielectric relaxation in inBi2O3-ZnO-Nb2O5 cubic pyrochlore. Appl. Phys. Lett. 81, 4404 2002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the Foundation for Science and Technology (FCT-Portugal, Grant SFRH/BPD/14988/2004). This work was also supported in part by the Treaty of Windsor (Anglo-Portuguese) Programme (Action B-24/06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Salak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salak, A.N., Ferreira, V.M., Vieira, L.G. et al. Dielectric relaxation and microwave loss in the La(Mg1/2Ti1/2)O3–(Na1/2Bi1/2)TiO3 perovskite ceramics. Journal of Materials Research 22, 2676–2684 (2007). https://doi.org/10.1557/JMR.2007.0365

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2007.0365

Navigation