Integrated modelling of social-ecological systems for climate change adaptation
Article Full Text (PDF)

Keywords

integrated modelling
social-ecological system
climate change adaptation
integrated assessment model
agent-based model

How to Cite

Integrated modelling of social-ecological systems for climate change adaptation. (2022). Socio-Environmental Systems Modelling, 3, 18161. https://doi.org/10.18174/sesmo.18161

Abstract

Analysis of climate change risks in support of policymakers to set effective adaptation policies requires an innovative yet rigorous approach towards integrated modelling (IM) of social-ecological systems (SES). Despite continuous advances, IM still faces various challenges that span through both unresolved methodological issues as well as data requirements. On the methodological side, significant improvements have been made for better understanding the dynamics of complex social and ecological systems, but still, the literature and proposed solutions are fragmented. This paper explores available modelling approaches suitable for long-term analysis of SES for supporting climate change adaptation (CCA). It proposes their classification into seven groups, identifies their main strengths and limitations, and lists current data sources of greatest interest. Upon that synthesis, the paper identifies directions for orienting the development of innovative IM, for improved analysis and management of socio-economic systems, thus providing better foundations for effective CCA.

Article Full Text (PDF)

References

Ackerman, F., De Canio, S.J., Howarth, R.B. Richard, & Sheeran, K. (2009). Limitations of integrated assessment models of climate change. Climatic Change, 95, 297–315. https://doi.org/10.1007/s10584-009-9570-x

Adams, S. (2021) The pragmatic holism of social–ecological systems theory: Explaining adaptive capacity in a changing climate. Progress in Human Geography, 03091325211016072.

Adger, W.N. (2000). Social and Ecological Resilience: Are They Related? Progress in Human Geography, 24 (3), 347–64. https://doi.org/10.1191/030913200701540465.

An, L. (2012). Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecological Modelling, 229, 25 – 36, https://doi.org/10.1016/j.ecolmodel.2011.07.010.

An, L., Grimm, V., & Turner II, B.L. (2020). Editorial: Meeting Grand Challenges in Agent Based Models. Journal of Artificial Societies and Social Simulation (JASSS), 23(1), 13. doi:10.18564/jasss.4012.

Arigoni Ortiz, R. & Markandya, A. (2009). Literature Review of Integrated Impact Assessment Models of Climate Change with Emphasis on Damage Functions. BC3 Working Paper Series. 2009-06. http://hdl.handle.net/10810/14255

Arneth, A., Brown, C. & Rounsevell, M. (2014). Global models of human decision-making for land-based mitigation and adaptation assessment. Nature Climate Change, 4, 550–557. https://doi.org/10.1038/nclimate2250

Ausseil A.-G.E., Daigneault A., Frame B., & Teixeira E. (2019). Towards an integrated assessment of climate and socio-economic change impacts and implications in New Zealand. Environmental Modelling and Software, 119, 1-20.

Babatunde, K.A., Begum, R.A., & Said, F.F. (2017). Application of computable general equilibrium (CGE) to climate change mitigation policy: A systematic review. Renewable and Sustainable Energy Reviews, 78, 61-71.

Baggio, R. (2008). Symptoms of complexity in a tourism system. Tourism Analysis, 13, 1–20.

Balbi, S., & Giupponi, C. (2010). Agent-based modelling of socio-ecosystems: a methodology for the analysis of adaptation to climate change. International Journal of Agent Technologies and Systems (IJATS), 2(4), 17-38.

Bell, A.R., Robinson, D.T., Malik, A. & Dewal, S. (2015). Modular ABM Development for Improved Dissemination and Training. Environmental Modelling and Software, 73, 189–200. https://doi.org/10.1016/j.envsoft.2015.07.016.

Bell, A.R., Ward, P.S., Killilea, M.E., & Tamal, M.E.H. (2016). Real-time social data collection in rural Bangladesh via a 'Microtasks for Micropayments' platform on Android smartphones. PloS one, 11(11), p.e0165924.

Bell, A.R. (2017). Informing Decisions in Agent-Based Models: A Mobile Update. Environmental Modelling and Software, 93, 310–21. https://doi.org/10.1016/j.envsoft.2017.03.028.

Ben-Haim, Y. (2006). Info-gap decision theory: decisions under severe uncertainty. 384 p. Academic Press. https://doi.org/10.1016/B978-0-12-373552-2.X5000-0.

Berkes, F. & Folke, C. (2000). Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience. Cambridge U.P, Cambridge, UK, 476 p.

Bernstein, P.M., Montgomery, W.D., & Rutherford, T.F. (1999). Global impacts of the Kyoto agreement: results from the MS-MRT model. Resource and Energy Economics, 21(3-4), 375-413. https://doi.org/10.1016/S0928-7655(99)00009-3.

Black, R., Arnell, N.W., Adger, W.N., Thomas, D., & Geddes, A. (2013). Migration, immobility and displacement outcomes following extreme events. Environmental Science and Policy, 27, S32-S43. https://doi.org/10.1016/j.envsci.2012.09.001.

Blumenstock, J.G. Cadamuro, & On, R. (2015). Predicting Poverty and Wealth from Mobile Phone Metadata. Science 350 (6264), 1073–76. https://doi.org/10.1126/science.aac4420.

Bosomworth, K., & Gaillard, E. (2019). Engaging with uncertainty and ambiguity through participatory ‘Adaptive Pathways’ approaches: Scoping the literature. Environmental Research Letters, 14(9), 093007.

Bourne, A., Holness, S., Holden, P., Scorgie, S., Donatti, C.I., & Midgley, G. (2016) A Socio-Ecological Approach for Identifying and Contextualising Spatial Ecosystem-Based Adaptation Priorities at the Sub-National Level. Plos One, 11, e0155235.

Bradhurst, R.A., Roche, S.E., East, I.J., Kwan, P., & Garner, M.G. (2016). Improving the computational efficiency of an agent-based spatiotemporal model of livestock disease spread and control. Environmental Modelling and Software, 77, 1-12. https://doi.org/10.1016/j.envsoft.2015.11.015

Brown, C., & Rounsevell, M. (2021) How can social–ecological system models simulate the emergence of social–ecological crises? People and Nature, 3, 88-103.

Calzadilla, A., Rehdanz, K., Roson, R., Sartori, M., & Tol, R.S.J. (2016). Review of CGE Models of Water Issues. In: Calzadilla, A., Rehdanz, K., Roson, R., Sartori, M., Tol, R.S.J. (Eds.), The WSPC Reference on Natural Resources and Environmental Policy in the Era of Global Change. World Scientific, pp. 101–123. https://doi.org/doi:10.1142/9789813208179_0004.

Candia, J., González, Wang, P., Schoenharl, T., Madey, G., & Barabási, A.L. (2008). Uncovering Individual and Collective Human Dynamics from Mobile Phone Records. Journal of Physics A: Mathematical and Theoretical, 41, 224015. https://doi.org/10.1088/1751-8113/41/22/224015.

Cess, R.D., Potter, G.L., Blanchet, J.P., Boer, G.J., Del Genio, A.D., Déqué, M., Dymnikov, V., Galin, V., Gates, W.L., Ghan, S.J., Kiehl, J.T., Lacis, A.A., Le Treut, H., Li, Z.-X., Liang, X.-Z., McAvaney, B. J., Meleshko, V.P., Mitchell, J.F.B., Morcrette, J.-J., Randall, D.A., Rikus, L., Roeckner, E., Royer, J.F., Schlese, U., Sheinin, D.A., Slingo, A., Sokolov, A.P., Taylor, K.E. Washington, W.M., Wetherald, R.T., Yagai, I., Zha, M.-H., (1990). Intercomparison and Interpretation of Climate Feedback Processes in 19 Atmospheric General Circulation Models. Journal of Geophysical Research: Atmospheres, 95 (D10), 16601–16615. https://doi.org/10.1029/JD095iD10p16601.

Chen, X. and Nordhaus, W.D. (2011). Using luminosity data as a proxy for economic statistics, Proceedings of the National Academy of Sciences 108, 8589-8594. 10.1073/pnas.1017031108.

Choi, H., & Varian, H. (2012). Predicting the Present with Google Trends. Economic Record, 88 (SUPPL.1), 2–9. https://doi.org/10.1111/j.1475-4932.2012.00809.x.

Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre, M.F., Weber, S., Alcamo, J., Alexeev, V., Berger, A., Calov, R., Ganopolski, A., Goosse, H., Lohmann, G., Lunkeit, F., Mokhov, I., Petoukhov, V., Stone, P. and Wang, Z., (2002). Earth System Models of Intermediate Complexity: Closing the Gap in the Spectrum of Climate System Models. Climate Dynamics, 18 (7), 579–586. https://doi.org/10.1007/s00382-001-0200-1.

Cradock-Henry, N.A., Frame, B., Preston, B.L., Reisinger, A., & Rothman D.S. (2018). Dynamic adaptive pathways in downscaled climate change scenarios. Climatic Change, 150, 333–341. https://doi.org/10.1007/s10584-018-2270-7.

Crutzen, P.J. (2002). Geology of Mankind. Nature, 415, 23. https://doi.org/10.1038/415023a.

Daume, S., Albert, M. & von Gadow, K. (2014). Forest Monitoring and Social Media - Complementary Data Sources for Ecosystem Surveillance? Forest Ecology and Management, 316, 9–20. https://doi.org/10.1016/j.foreco.2013.09.004.

Dearing, J.A., Acma, B. , Bub, S., Chambers, F.M., Chen, X., Cooper, J., Crook, D., Dong, X.H., Dotterweich, M., Edwards, M.E., Foster, T.H., Gaillard, M.-J., Galop, D., Gell, P., Gil, A., Jeffers, E., Jones, R.T., Anupama, K., Langdon, P.G., Marchant, R., Mazier, F., McLean, C.E., Nunes, L.H., Sukumar, R., Suryaprakash, I., Umer, M., Yang, X.D., Wang, R., & Zhang. K. (2015). Social-Ecological Systems in the Anthropocene: The Need for Integrating Social and Biophysical Records at Regional Scales. The Anthropocene Review 2 (3), 220–246. https://doi.org/10.1177/2053019615579128.

Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F.R., Gaughan, A.E., Blondel, V.D., & Tatem, A.J. (2014). Dynamic Population Mapping Using Mobile Phone Data. Proceedings of the National Academy of Sciences, 111 (45), 15888–15893. https://doi.org/10.1073/pnas.1408439111.

de Jong, C.E., & Kok, K. (2021) Ambiguity in social ecological system understanding: Advancing modelling of stakeholder perceptions of climate change adaptation in Kenya. Environmental Modelling and Software, 141, 105054.

Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., & Blöschl, G. (2013). Socio‐hydrology: conceptualizing human‐flood interactions. Hydrology and Earth System Sciences, 17, 3295–3303. https://doi.org/10.5194/hess‐17‐3295‐2013

Di Minin, E., Tenkanen, H. &Toivonen, T. (2015). Prospects and challenges for social media data in conservation science. Frontiers in Environmental Science, 3:63. https://doi.org/10.3389/fenvs.2015.00063.

Dolan, R., Bullock, J.M., Jones, J.P.G., Athanasiadis, I.N., Martínez-López, J., & Willcock, S. (2021). The flows of nature to people, and of people to nature: Applying movement concepts to ecosystem services. Land, 10(6), 576. https://doi.org/10.3390/land10060576

Dowlatabadi, H., (1995). Integrated assessment models of climate change: An incomplete overview. Energy Policy, 23(4-5), 289-296. https://doi.org/10.1016/0301-4215(95)90155-Z

Duan, H., Zhang, G., Wang, S., & Fan, Y. (2019). Robust climate change research: a review on multi-model analysis. Environmental Research Letters, 14(3), 033001.

de Vries, B.J.M. (2001). Perceptions and Risks in the Search for a Sustainable World: A Model-Based Approach. International Journal of Sustainable Development, 4 (4), 434–53. https://doi.org/10.1504/IJSD.2001.001560.

de Vries, B.J.M. (2007). Scenarios: Guidance for an Uncertain and Complex World. In: Costanza, R., Graumlich, L.J., Steffen W. (eds.) Sustainability or collapse?, MIT Press, Cambridge, USA, , 378–398.

Eagle, N., Macy, M., & Claxton, R. (2010). Network Diversity and Economic Development. Science 328:1029–31. https://doi.org/10.1126/science.1186605.

Eakin, H., & Luers, A.L. (2006). Assessing the Vulnerability of Social-Environmental Systems. Annual Review of Environment and Resources, 31 (1),365–394. https://doi.org/10.1146/annurev.energy.30.050504.144352.

Ellis, E.C. & Ramankutty, N. (2008). Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6(8), 439-447. https://doi.org/10.1890/070062

Elsawah, S., Filatova, T., Jakeman, A.J., Kettner, A.J., Zellner, M.L., Athanasiadis,I.N., Hamilton, S.H., Axtell, R.L., Brown, D.G., Gilligan, J.M., Janssen, M.A., Robinson, D.T., Rozenberg, J., Ullah, I.I.T., & Lade, S.J. (2020) Eight grand challenges in socio-environmental systems modelling Socio-Environmental Systems Modelling, 2, 16226. doi:10.18174/sesmo.

Essenfelder, A.H., & Giupponi, C. (2020). A coupled hydrologic-machine learning modelling framework to support hydrologic modelling in river basins under Interbasin Water Transfer regimes. Environmental Modelling and Software, 131, 104779. https://doi.org/10.1016/j.envsoft.2020.104779.

Essenfelder, A.H., Pérez‐Blanco, C.D., & Mayer, A.S. (2018). Rationalizing systems analysis for the evaluation of adaptation strategies in complex human‐water systems. Earth's Future, 6, 1181– 1206. https://doi.org/10.1029/2018EF000826

Ewert, F., Rotter, R.P., Bindi, M. , Webber, H., Trnka, M., Kersebaum, K.C., Olesen, J.E. Ewert, F., Rötter, R.P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K.C., Olesen, J.E., van Ittersum, M.K., Janssen, S., Rivington, M., Semenov, M.A., Wallach, D., Porter, J.R., Stewart, D., Verhagen, J., Gaiser, T., Palosuo, T., Tao, F., Nendel, C., Roggero, P.P., Bartošová, L., & Asseng, S. (2015). Crop Modelling for Integrated Assessment of Risk to Food Production from Climate Change. Environmental Modelling and Software, 72, 287-303. https://doi.org/10.1016/j.envsoft.2014.12.003.

Fedele, G., Donatti, C.I., Harvey, C.A., Hannah, L., & Hole, D.G. (2019) Transformative adaptation to climate change for sustainable social-ecological systems. Environmental Science and Policy, 101, 116-125.

Filatova, T., Verburg, P.H., Parker, D.C., & Stannard, C.A. (2013). Spatial agent-based models for socio-ecological systems: Challenges and prospects. Environmental Modelling and Software, 45, 1-7. doi: 10.1016/j.envsoft.2013.03.017

Fisher, R.A., Koven, C.D., Anderegg, W.R.L., Christoffersen, B.O., Dietze, M.C., Farrior, C., Holm, J.A., Fisher, R.A., Koven, C.D., Anderegg, W.R. L., Christoffersen, B.O., Dietze, M. C., Farrior, C.E., Holm, J.A., Hurtt, G.C., Knox, R.G., Lawrence, P.J., Lichstein, J.W., Longo, M., Matheny, A.M., Medvigy, D., Muller-Landau, H.C., Powell, T.L., Serbin, S.P., Sato, H., Shuman, J.K., Smith, B., Trugman, A.T., Viskari, T., Verbeeck, H., Weng, E., Xu, C., Xu, X., Zhang, T., & Moorcroft, P.R., (2018). Vegetation Demographics in Earth System Models: A Review of Progress and Priorities. Global Change Biology. 24(1), 35-54. https://doi.org/10.1111/gcb.13910.

Folke, C. (2006). Resilience: The Emergence of a Perspective for Social-Ecological Systems Analyses. Global Environmental Change, 16 (3), 253–267. https://doi.org/10.1016/j.gloenvcha.2006.04.002.

Foure, J., Aguiar, A., Bibas, R., Chateau, J., Fujimori, S., Lefevre, J., Leimbach, M., Rey-Los-Santos, L., & Valin, H. (2020). Macroeconomic drivers of baseline scenarios in dynamic CGE models: review and guidelines proposal. Journal of Global Economic Analysis, 5 (1), 28-62. https://doi.org/10.21642/JGEA.050102AF.

Frame, B., Lawrence, J., Ausseil, A.G., Reisinger, A., & Daigneault, A. (2018). Climate Risk Management Adapting Global Shared Socio-Economic Pathways for National and Local Scenarios. Climate Risk Management, 21, 39-51, 1–13. https://doi.org/10.1016/j.crm.2018.05.001.

Gain, A.K., Giupponi, C., Renaud, F.G., & Vafeidis, A.T. (2020). Sustainability of complex social-ecological systems: methods, tools, and approaches. Regional Environmental Change, 20(3), 102. doi: 10.1007/s10113-020-01692-9

Gain, A.K., Hossain, S., Benson, D., Di Baldassarre, G., Giupponi, C., & Huq, N. (2021) Social-ecological system approaches for water resources management. International Journal of Sustainable Development and World Ecology, 28, 109-124.

Gawith, D., Hodge, I., Morgan, F., & Daigneault, A. (2020). Climate change costs more than we think because people adapt less than we assume, Ecological Economics, 173.

Giupponi, C., & Biscaro, C. (2015). Vulnerabilities—bibliometric analysis and literature review of evolving concepts. Environmental Research Letters, 10(12), 123002.

Giupponi, C., Borsuk, M.E., de Vries, B.J.M., & Hasselmann, K. (2013). Innovative Approaches to Integrated Global Change Modelling. Environmental Modelling and Software, 44, 1–9. https://doi.org/10.1016/j.envsoft.2013.01.013.

Giupponi, C., & Mojtahed, V. (2018). Spatial and temporal dynamics of adaptation in agricultural socio-ecosystems: an agent based approach applied to three Mediterranean cases. Paper presented at the XXXIV Giornata dell'Ambiente - Accademia Nazionale dei Lincei - Strategie di adattamento al cambiamento climatico, Rome, Italy.

González, M.C., & Hidalgo, C.A. (2008). Understanding Individual Human Mobility Patterns. Nature, 453, 1–12. https://doi.org/10.1038/nature06958.

Grace, J., Anderson, T., Seabloom, E.W., Borer, E.T., Adler, P.B., Harpole, W.S., Hautier, Y., Hillebrand, H., Lind, E.M., Pärtel, M., Bakker, J.D., Buckley, Y.M., Crawley, M.J., Damschen, E.I., Davies, K.F., Fay, P. A., Firn, J., Gruner, D.S., Hector, A., Knops, J.M.H., MacDougall, A.S., Melbourne, B.A., Morgan, J.W., Orrock, J.L., Prober, S.M., & Smith, M.D. (2016). Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529, 390–393. https://doi.org/10.1038/nature16524.

Grimm, V., Augusiak, J., Focks, A., Frank, B.M., Gabsi, F., Johnston, A.S.A., Liu, C., Martin, B.T., Meli, M., Radchuk, V., Thorbek, P. & Railsback, S.F. (2014). Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE. Ecological Modelling, 280, 129-139. https://doi.org/10.1016/j.ecolmodel.2014.01.018.

Groce, J.E., Farrelly, M.A., Jorgensen, B.S., & Cook, C.N. (2018). Using Social-Network Research to Improve Outcomes in Natural Resource Management. Conservation Biology. 33, 53-65https://doi.org/10.1111/cobi.13127.

Groves, D.G. & Lempert, R.J. (2007). A new analytic method for finding policy-relevant scenarios. Global Environmental Change, 17(1), 73-85. https://doi.org/10.1016/j.gloenvcha.2006.11.006.

Gupta, R., Sharma, L.K., 2019. The process-based forest growth model 3-PG for use in forest management: A review. Ecological. Modelling, 397, 55–73. https://doi.org/10.1016/j.ecolmodel.2019.01.007.

Hailegiorgis, A., Crooks, A. & Cioffi-Revilla, C. (2018). An agent-based model of rural households’ adaptation to climate change, Journal of Artificial Societies and Social Simulation 21 (4) 4. https://doi.org/10.18564/jasss.3812 .

Hall, J.W., Lempert, R.J., Keller, K., Hackbarth, A., Mijere, C. & McInerney, D.J. (2012). Robust climate policies under uncertainty: A comparison of robust decision making and info‐gap methods. Risk Analysis: An International Journal, 32(10), 1657-1672. https://doi.org/10.1111/j.1539-6924.2012.01802.x

Harris, G. (2002). Integrated Assessment and Modelling: An Essential Way of Doing Science. Environmental Modelling and Software, 17, 201–207. https://doi.org/10.1016/S1364-8152(01)00058-5.

Harrison, P.A., Dunford, R.W., Holman, I.P., & Rounsevell, M.D. (2016). Climate change impact modelling needs to include cross-sectoral interactions. Nature Climate Change, 6(9), 885-890. https://doi.org/10.1038/nclimate3039

Hausmann, A., Toivonen, T., Slotow, R., Tenkanen, H., Moilanen, A., Heikinheimo, V., & Di Minin, E. (2018). Social Media Data Can Be Used to Understand Tourists' Preferences for Nature-Based Experiences in Protected Areas. Conservation Letters. 11(1), 1–10 https://doi.org/10.1111/conl.12343.

Higuchi, T., Yamaguchi, H. & Higashino, T. (2015). Mobile devices as an infrastructure: A survey of opportunistic sensing technology. Journal of information processing, 23(2), pp.94-104. https://doi.org/10.2197/ipsjjip.23.94

Hertel, T.W., Rose, S., & Tol, R.S. (2009). Land use in computable general equilibrium models: An Overview. In: Economic Analysis of Land Use in Global Climate Change Policy. Hertel, T. W., Rose, S., & Tol, R.S.J. (eds.), Routledge, London, 3-30, https://doi.org/10.4324/9780203882962.

Holling, C.S., & L.H. Gunderson (2002). Resilience and adaptive cycles. In: Gunderson L.H., & Holling, C.S. (eds.) Panarchy: understanding transformations in human and natural systems. Island Press, Washington, D.C., USA. 25-62..

Hollowed, A.B., Holsman, K.K., Haynie, A.C., Hermann, A.J., Punt, A.E., Aydin, K., Ianelli, J.N., Kasperski, S., Cheng, W., Faig, A., Kearney, K.A., Reum, J.C.P., Spencer, P., Spies, I., Stockhausen, W., Szuwalski, C.S., Whitehouse, G.A., & Wilderbuer, T.K. (2020) Integrated Modeling to Evaluate Climate Change Impacts on Coupled Social-Ecological Systems in Alaska. Frontiers in Marine Science 6, 775.

Hsiang, S.M., Burke, M., & Miguel, E. (2013). Quantifying the influence of climate on human conflict. Science, 341(6151) 1-17. https://doi.org/10.1126/science.1235367

Innocenti, E., Detotto, C., Idda, C., Parker, D.C., & Prunetti, D. (2020). An iterative process to construct an interdisciplinary ABM using MR POTATOHEAD: An application to Housing Market Models in touristic areas. Ecological Complexity 44, 100882. doi: 10.1016/j.ecocom.2020.100882.

IPCC (2001a). Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2001: Impacts, Adaptation, and Vulnerability.

IPCC (2001b). Climate Change 2001: Mitigation, Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Edited by B. Metz, O. Davidson, R. Swart, and J. Pan. Cambridge, United Kingdom and New York, NY, USA.: Cambridge University Press.

IPCC (2013). What Is a GCM? IPCC Guidance on the Use of Data. 2013.

Izquierdo, L.R., Gotts, N.M., & Polhill, J.G. (2003). FEARLUS-W: an agent-based model of river basin land use and water management. Framing Land Use Dynamics: integrating knowledge on spatial dynamics in socio-economic and environmental systems for spatial planning in western urbanized countries, University, The Netherlands.

Jäger, J., Rounsevell, M.D.A., Omann, I., Harrison, P., Wesely, J., Pataki, G., Dunford, R., Kammerlander, M., & Pataki, G., (2015). Assessing policy robustness of climate change adaptation measures across sectors and scenarios, Climatic Change, 128, 395-407. 10.1007/s10584-014-1240-y.

Kalaugher, E., Bornman, J.F., Clark, A., & Beukes, P. (2013). An integrated biophysical and socio-economic framework for analysis of climate change adaptation strategies: The case of a New Zealand dairy farming system. Environmental Modelling and Software, 39, 176-187.

Kebede, A.S., Nicholls, R.J., Allan, A., Arto, I., Cazcarro, I., Fernandes, J.A., Hill, C.T., Hutton, C.W., Kay, S., Lázár, A.N., Macadam, I., Palmer, M., Suckall, N., Tompkins, E.L., Vincent, K., & Whitehead, P.W. (2018). Applying the Global RCP–SSP–SPA Scenario Framework at Sub-National Scale: A Multi-Scale and Participatory Scenario Approach. Science of The Total Environment, 635, 659–672. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.03.368.

Khan, N., Shahid, S., Ahmed, K., Ismail, T., Nawaz, N., & Son, M. (2018). Performance Assessment of General Circulation Model in Simulating Daily Precipitation and Temperature Using Multiple Gridded Datasets. Water, 10(12), 1793. https://doi.org/10.3390/w10121793.

Kling, C.L., Arritt, R.W., Calhoun, G., & Keiser, D.A. (2017). Integrated Assessment Models of the Food, Energy, and Water Nexus: A Review and an Outline of Research Needs. Annual Review of Resource Economics, 9, 143–163. https://doi.org/10.1146/annurev-resource-100516-033533.

Kniveton, D.R., Smith, C.D., & Black, R. (2012). Emerging migration flows in a changing climate in dryland Africa, Nature Climate Change, 2, 444-447.

Koenigstein, S., Ruth, M., & Gößling-Reisemann, S. (2016). Stakeholder-informed ecosystem modeling of ocean warming and acidification impacts in the barents sea region.Frontiers in Marine Science 3, 93, 13 p. doi: 10.3389/fmars.2016.00093

Kompas, T., Pham, V.H., & Che, T.N. (2018). The effects of climate change on GDP by country and the global economic gains from complying with the Paris Climate Accord. Earth’s Future, 6, 1153–1173. https://doi.org/10.1029/2018EF000922

Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., Prentice, I.C. (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles 19(1) 1-33. https://doi.org/10.1029/2003GB002199.

Lempert, R.J. & Collins, M.T. (2007). Managing the risk of uncertain threshold responses: comparison of robust, optimum, and precautionary approaches. Risk Analysis: An International Journal, 27(4), 1009-1026. https://doi.org/10.1111/j.1539-6924.2007.00940.x

Lenormand, M., Luque, S., Langemeyer, J., Tenerelli, P., Aalders, I., Chivulescu, S., Clemente, P., Dick, J., Dijk, J.V., van Eupen, M., Giuca, R.C., Kopperoinen, L., Lellei-Kovács, E., Leone, ;M., Lieskovský, J., Schirpke, U., Smith, A.C., Tappeiner, U., & Woods, E. (2018). Multiscale Socio-Ecological Networks in the Age of Information. PLoS ONE 13(11): e0206672., 1–16.

Lansing, J.s., & Kremer, J.F., (1993). Emergent properties of Balinese Water Temple Networks: coadaptation on a rugged fitness landscape. American Anthropologist 95( 1):97-114.

Lippe, M., M. Bithell, N. Gotts, D. Natalini, P. Barbrook-Johnson, C. Giupponi, M. Hallier, G.J. Hofstede, C. Le Page, R.B. Matthews, M. Schlüter, P. Smith, A. Teglio, & Thellmann, K. (2019). Using agent-based modelling to simulate social-ecological systems across scales. GeoInformatica, 23(2), 269–298. https://doi.org/10.1007/s10707-018-00337-8.

Liu, J., Mooney, H., Hull, V., Davis, S.J., Gaskell, J., Hertel, T., Lubchenco, J., Seto, K.C., Gleick, P., Kremen, C., & Li, S. (2015) Systems integration for global sustainability. Science, 347, 1258832.

Liu, Y., Zhang, T., Geng, X., He, L., & Pang, Z. (2013). Herdsmen's adaptation to climate changes and subsequent impacts in the ecologically fragile zone, China, Advances in Meteorology 748715, 8. http://dx.doi.org/10.1155/2013/748715.

Llorente, A., Garcia-Herranz, M., Cebrian, M., & Moro, E. (2015). Social Media Fingerprints of Unemployment. PLoS ONE, 10 (5), 1–13. https://doi.org/10.1371/journal.pone.0128692.

Lu, X., Wrathall, D.J., Sundsøy, P.R., Nadiruzzaman, M., Wetter, E., Iqbal, A., Qureshi, T., Tatem, A., Canright, G., Engø-Monsen, K., & Bengtsson, L. (2016). Unveiling hidden migration and mobility patterns in climate stressed regions: A longitudinal study of six million anonymous mobile phone users in Bangladesh. Global Environmental Change, 38, 1-7.

Lynam, T., Mathevet, R., Etienne, M., Stone-Jovicich, S., Leitch, A., Jones, N., Ross, H., Du Toit, D., Pollard, S., Biggs, H., & Perez, P. (2012). Waypoints on a journey of discovery: mental models in human-environment interactions. Ecology and Society, 17 (3), 23.

Martin, G., Martin-Clouaire, R. and Duru, M. (2013). Farming system design to feed the changing world. A review, Agronomy for Sustainable Development 33, pp 131-149. 10.1007/s13593-011-0075-4.

Martínez-López, J., Bergillos, R.J., Bonet, F.J. & de Vente, J. (2019). Connecting research infrastructures, scientific and sectorial networks to support integrated management of Mediterranean coastal and rural areas. Environmental Research Letters, 14(11), 115001. https://doi.org/10.1088/1748-9326/ab4b22.

Matsumoto, K.I. & Masui, T. (2011). Analyzing long-term impacts of carbon tax based on the imputed price, applying the AIM/CGE model. Management of Environmental Quality: An International Journal, 22(1), 33-47. https://doi.org/10.1108/14777831111098462

McDermid, S.S., Mearns, L.O. & Ruane, A.C. (2017). Representing Agriculture in Earth System Models: Approaches and Priorities for Development. Journal of Advances in Modeling Earth Systems, 9, 2230–2265.. https://doi.org/10.1002/2016MS000749.

Metcalf, G.E., & Stock, J.H. (2017). Integrated Assessment Models and the Social Cost of Carbon: A Review and Assessment of U.S. Experience. Review of Environmental Economics and Policy 11 (1), 80–99. https://doi.org/10.1093/reep/rew014.

Metcalf, G., & Stock., J. (2015). The Role of Integrated Assessment Models in Climate Policy: A User's Guide and Assessment, Discussion Paper 15-68, 29 pp. https://www.belfercenter.org/sites/default/files/legacy/files/dp68_metcalf-stock.pdf

Miralles-Wilhelm, F. (2016). Development and application of integrative modeling tools in support of food-energy-water nexus planning—a research agenda. Journal of Environmental Studies and Sciences, 6, 3–10. https://doi.org/10.1007/s13412-016-0361-1

Mitter, H., Techen, A.-K., Sinabell, F., Helming, K., Schmid, E., Bodirsky, B.L., Holman, I., Kok, K., Lehtonen, H., Leip, A., Le Mouël, C., Mathijs, E., Mehdi, B., Mittenzwei, K., Mora, O., Øistad, K., Øygarden, L., Priess, J.A., Reidsma, P., Schaldach, R., & Schönhart, M. (2020). Shared Socio-economic Pathways for European agriculture and food systems: The Eur-Agri-SSPs. Global Environmental Change, 65, 102159 https://doi.org/10.1016/j.gloenvcha.2020.102159.

Moore, R.V., & Tindall, C.I. (2005). An overview of the open modelling interface and environment (the OpenMI). Environmental Science & Policy, 8(3), 279-286. https://doi.org/10.1016/j.envsci.2005.03.009.

Müller, B., Balbi, S., Buchmann, C. M., De Sousa, L., Dressler, G., Groeneveld, J, Klassert, C.J., Le, Q.B., Millington, J.D.A.,

Nolzen, H., Parker, DC., Polhill J.G., Schlüter, M., Schulze, J., Schwarz, N., Sun, Z., Taillandier, P., & Weise, H. (2014). Standardised and transparent model descriptions for agent-based models: Current status and prospects. Environmental Modelling and Software, 55, 156-163

Naivinit, W., C. Le Page, G. Trébuil, & Gajaseni, N. (2010). Participatory agent-based modeling and simulation of rice production and labor migrations in Northeast Thailand. Environmental Modelling and Software, 25(11), 1345-1358. https://doi.org/10.1016/j.envsoft.2010.01.012.

Neumann, K., & Hilderink, H. (2015). Opportunities and challenges for investigating the environment-migration nexus. Human Ecology, 43(2), 309-322.

Nikas A., Doukas H., Papandreou A. (2019) A Detailed Overview and Consistent Classification of Climate-Economy Models. In: Doukas H., Flamos A., Lieu J. (eds) Understanding Risks and Uncertainties in Energy and Climate Policy. Springer, Cham.1-54. https://doi.org/10.1007/978-3-030-03152-7_1.

Noble, I.R., Huq, S., Anokhin, Y.A., Carmin, J., Goudou, D., Lansigan, F.P., Osman-Elasha, B. & Villamizar, A. (2014). Adaptation needs and options. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of theIntergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea,T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken,P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and NewYork, NY, USA, pp. 833-868.

O'Gorman, P.A. & Dwyer, J.G. (2018). Using machine learning to parameterize moist convection: Potential for modeling of climate, climate change, and extreme events. Journal of Advances in Modeling Earth Systems, 10(10), 2548-2563.

Onnela, J.P, Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., & Barabási, A.L. (2007). Structure and Tie Strengths in Mobile Communication Networks. Proceedings of the National Academy of Sciences of the United States of America, 104 (18),7332–7336. https://doi.org/10.1073/pnas.0610245104.

O’Neill, B.C., Kriegler, E., Riahi, K., Ebi, K.L., Hallegatte, S., Carter, T.R., Mathur, R., & van Vuuren, D.P. (2014). A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic change, 122(3), 387-400. https://doi.org/10.1007/s10584-013-0905-2

O’Sullivan, D. (2008). Geographical information science: agent-based models. Progress in Human Geography 32(4), 541-550.

Palla, G., Barabási, A.L. & Vicsek, T. (2007). Quantifying Social Group Evolution. Nature, 446 (7136), 664–67. https://doi.org/10.1038/nature05670.

Palmer, P., Smith, M. (2014). Earth systems: Model human adaptation to climate change. Nature 512, 365–366. https://doi.org/10.1038/512365a

Pande, S., & Sivapalan, M. (2017). Progress in socio‐hydrology: A meta‐analysis of challenges and opportunities. WIREs Water, 4, 1–18. https://doi.org/10.1002/wat2.1193.

Patt, A.G., van Vuuren, D.P., Berkhout, F., Aaheim, A., Hof, A.F., Isaac, M., & Mechler, R. (2010). Adaptation in integrated assessment modeling: where do we stand? Climatic Change, 99(3-4), 383-402. https://doi.org/10.1007/s10584-009-9687-y

Pearson, S.D. (2020) Encryption Methods in Protecting Cloud Data when Adopting Cloud Solutions: A Delphi Study. PhD Thesis, Capella University, MN., USA.

Pérez-Blanco, C.D., Essenfelder, A.H., & Gutiérrez-Martín, C. (2020). A tale of two rivers: Integrated hydro-economic modeling for the evaluation of trading opportunities and return flow externalities in inter-basin agricultural water markets. Journal of Hydrology, 584, 124676. https://doi.org/10.1016/j.jhydrol.2020.124676.

Pérez-Blanco, C.D., H. González-López, & Hrast-Essenfelder, A. (2021). Beyond piecewise methods: Modular integrated hydroeconomic modeling to assess the impacts of adaptation policies in irrigated agriculture. Environmental Modelling and Software, 136, 104943. https://doi.org/10.1016/j.envsoft.2020.104943

Phillips, N.A. (1956). The General Circulation of the Atmosphere: A Numerical Experiment. Quarterly Journal of the Royal Meteorological Society, 82 (352), 123–164. https://doi.org/10.1002/qj.49708235202.

Rashidi, T.H., Abbasi, A., Maghrebi, M., Hasan, S., & Waller, T.S. (2017). Exploring the Capacity of Social Media Data for Modelling Travel Behaviour: Opportunities and Challenges. Transportation Research Part C: Emerging Technologies, 75, 197–211. https://doi.org/10.1016/j.trc.2016.12.008.

Ratter, B.M.W. (2012). Complexity and Emergence Key Concepts in Non-Linear Dynamic Systems. In: Human-Nature Interactions in the Anthropocene: Potentials of Social-Ecological Systems Analysis, Glaser, M., Krause, G., Ratter, B.M.W., Welp, M. (eds.) pp. 90–104. https://doi.org/10.4324/9780203123195.

Reichler, T., & Kim, J., (2008). How Well Do Coupled Models Simulate Today's Climate? Bulletin of the American Meteorological Society, 89 (3), 303–311. https://doi.org/10.1175/BAMS-89-3-303.

Roberts, H., Sadler, J., & Chapman, L. (2017). Using Twitter to Investigate Seasonal Variation in Physical Activity in Urban Green Space. Geo: Geography and Environment, 4 (2). e00041. https://doi.org/10.1002/geo2.41.

Rolnick, D., Donti, P.L., Kaack, L.H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A.S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A. and Luccioni, A. (2019). Tackling climate change with machine learning. arXiv preprint arXiv:1906.05433.

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C. Müller, C., Arneth, A., Boote, K.J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T.A.M., Schmid, E., Stehfest, E., Yang, H., & Jones, J.W. (2014). Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111 (9), 3268–3273. https://doi.org/10.1073/pnas.1222463110.

Ruiz-Euler, A., Privitera, F., Giuffrida, D., Lake, B., & Zara, I. (2020). Mobility Patterns and Income Distribution in Times of Crisis: US Urban Centers During the COVID-19 Pandemic. Available at SSRN 3572324. https://dx.doi.org/10.2139/ssrn.3572324

Rutherford, T.F. (1999). Applied general equilibrium modeling with MPSGE as a GAMS subsystem: An overview of the modeling framework and syntax. Computational Economics, 14(1-2), 1-46. https://doi.org/10.1023/A:1008655831209

Sansilvestri, R., Cuccarollo, M., Frascaria-Lacoste, N., Benito-Garzon, M., & Fernandez-Manjarrés, J. (2020) Evaluating climate change adaptation pathways through capital assessment: five case studies of forest social-ecological systems in France. Sustainability Science, 15, 539-553.

Satterthwaite, D. (2009). The implications of population growth and urbanization for climate change. Environment and urbanization, 21(2), 545-567. https://doi.org/10.1177/0956247809344361

Scheiter, S., Langan, L., & Higgins, S.T. (2013). Next-Generation Dynamic Global Vegetation Models: Learning from Community Ecology. The New Phytologisthytologist, 198 (3), 957–969. https://doi.org/10.1111/nph.12210.

Shiraki, H., & Sugiyama, M. (2020). Back to the basic: toward improvement of technoeconomic representation in integrated assessment models. Climatic Change, 162, 13–24. https://doi.org/10.1007/s10584-020-02731-4.

Schlüter, M., Hinkel, J., Bots, P.W.G., & Arlinghaus, R. (2014). Application of the SES Framework for Model-Based Analysis of the Dynamics of Social-Ecological Systems. Ecology and Society, 19 (1) 36. https://doi.org/10.5751/ES-05782-190136.

Schlüter, M., Baeza, A., Dressler, G., Frank, K., Groeneveld, J., Jager, W., Janssen, M.A., McAllister, R.R., Müller, B., Orach, K., Schwarzh, N., & Wijermansa, N. (2017). A framework for mapping and comparing behavioral theories in models of social-ecological systems. Ecological Economics, 131, 21–35.

Schulze, J., Müller, B., Groeneveld, J., & Grimm, V. (2017). Agent-based modelling of social-ecological systems: achievements, challenges, and a way forward. Journal of Artificial Societies and Social Simulation, 20 (2), art. 8. https://doi.org/10.18564/jasss.3423.

Simon, H.A. (1978). Rationality as process and as product of thought. The American Economic Review, 68(2), 1–16.

Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., & Ludwig, C. (2015). The trajectory of the Anthropocene: The Great Acceleration. The Anthropocene Review, 2(1), 81-98. doi:10.1177/2053019614564785

Steffen, W., Grinevald, J., Crutzen, P., & McNeill, J. (2011). The Anthropocene: Conceptual and Historical Perspectives. Philosophical Transactions of the Royal Society. Series A, Mathematical, Physical, and Engineering Sciences, 369 (1938), 842–867. https://doi.org/10.1098/rsta.2010.0327.

Steger, C., S. Hirsch, C. Cosgrove, S. Inman, E. Nost, X. Shinbrot, J.P.R. Thorn, D.G. Brown, A. Grêt-Regamey, B. Müller, R.S. Reid, C. Tucker, B. Weibel, & Klein, J.A. (2021). Linking model design and application for transdisciplinary approaches in social-ecological systems. Global Environmental Change, 66, 102201.

Stehfest, E., van Vuuren, D., Kram, T., & Bouwman, L. (2014). Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model Description and Policy Applications. PBL Netherlands Environmental Assessment Agency, The Hague, NL, 366 p.

Stocker, T.F., Dahe, Q., Plattner, G.J., Alexander, L.V., Allen, S.K., Bindoff, N.L., Bréon, F.M., Church, J.A., Cubasch, U., Emori, S., Forster, P., Friedlingstein, P., Gillett, N., Gregory, J.M., Hartmann, D.L., Jansen, E., Kirtman, B., Knutti, R., Krishna Kumar, K., Lemke, P., Marotzke, J., Masson-Delmotte, V., Meehl, G.A., Mokhov, I.I., Piao, S., Ramaswamy, V., Randall, D., Rhein, M., Rojas, M., Sabine, C., Shindell, D., Talley, L.D., Vaughan, D.G., & Xie, S.-P.(2013). Technical Summary. In Climate Change 2013: The Physical Science Basis. In Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Bex, V., Xia, Y., & Midgley, P.M. (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA.: Cambridge University Press.

Topping, C.J., Høye, T.T., & Olesen, C.R. (2010). Opening the black box—Development, testing and documentation of a mechanistically rich agent-based model. Ecological Modelling, 221(2), 245-255. https://doi.org/10.1016/j.ecolmodel.2009.09.014.

Turner, K.G., Anderson, S., Gonzales-Chang, M., Costanza, R., Courville, S., Dalgaard, T., Dominati, E., Kubiszewski, I., Ogilvy, S., Porfirio, L., Ratna, N. Sandhu, H., Sutton, P.C., Svenning, J-C., Turner, G.M., Varennes, Y.-D., Voinov, A., Wratten, S. (2016). A Review of Methods, Data, and Models to Assess Changes in the Value of Ecosystem Services from Land Degradation and Restoration. Ecological Modelling 319, 190–207. https://doi.org/10.1016/j.ecolmodel.2015.07.017.

UNEP (2019) Frontiers 2018/19 Emerging Issues of Environmental Concern. United Nations Environment Programme, Nairobi. ISBN: 9789280737370 https://www.unep.org/resources/frontiers-201819-emerging-issues-environmental-concern.

Valbuena, D., Verburg, P.H., & Bregt, A.K. (2008). A method to define a typology for agent-based analysis in regional land-use research, Agriculture, Ecosystems & Environment 128, 27-36. https://doi.org/10.1016/j.agee.2008.04.015.

Van Asselt, M.B. and Rotmans, J. (2002). Uncertainty in integrated assessment modelling. Climatic change, 54(1-2), 75-105. https://doi.org/10.1023/A:1015783803445.

van der Hoog, S. (2017). Deep learning in (and of) agent-based models: A prospectus. arXiv preprint arXiv:1706.06302.

van Oijen, M., Bellocchi, G., Höglind, M. (2018). Effects of Climate Change on Grassland Biodiversity and Productivity: The Need for a Diversity of Models. Agronomy, 8(2), 14.

van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., Rose, S.K., 2011. The representative concentration pathways: an overview. Climatic Change 109(1) 6-31. https://doi.org/10.1007/s10584-011-0148-z.

Verburg, P.H., Dearing, J.A., Dyke, J.G., Leeuw, S.V.D., Seitzinger, S., Steffen, W., & Syvitski, J. (2016) Methods and approaches to modelling the Anthropocene. Global Environmental Change, 39, 328-340. https://doi.org/10.1016/j.gloenvcha.2015.08.007.

Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S.S. (2002). Modeling the spatial dynamics of regional land use: the CLUE-S model. Environmental Management, 30(3), 391-405. https://doi.org/10.1007/s00267-002-2630-x.

Voinov, A., & Shugart, H. H. (2013). ‘Integronsters’, integral and integrated modeling. Environmental Modelling & Software, 39, 149-158. https://doi.org/10.1016/j.envsoft.2012.05.014.

Wabnitz, C.C.C., Cisneros-Montemayor, A.M., Hanich, Q., & Ota, Y. (2018). Ecotourism, climate change and reef fish consumption in Palau: Benefits, trade-offs and adaptation strategies, Marine Policy, 88, 323-332. https://doi.org/10.1016/j.marpol.2017.07.022.

Walker, B., Carpenter, S.R., Anderies, J., Abel, N., Cumming, G., Janssen, M., Lebel, L., Norberg, J., Peterson, G.D., & Pritchard, R. (2002). Resilience Management in Social-Ecological Systems: A Working Hypothesis for a Participatory Approach. Conservation Ecology, 6 (1), 14.

Walker, B., Gunderson, L., Kinzig, A., Folke, C., Carpenter, S., & Schultz, L. (2006). A Handful of Heuristics and Some Propositions for Understanding Resilience in Social-Ecological Systems. Ecology and Society, 11, 1, Art.13. https://doi.org/10.5751/ES-01530-110113.

Wang, J., Brown, D.G., Riolo, R.L., Page, S.E., & Agrawal, A. (2013). Exploratory analyses of local institutions for climate change adaptation in the Mongolian grasslands: An agent-based modeling approach. Global Environmental Change, 23, 1266-1276.

Wang, W., Rothschild, D., Goel, S., & Gelman, A. (2014). Forecasting Elections with Non-Representative Polls. International Journal of Forecasting, 31 (3), 980–991. https://doi.org/10.1016/j.ijforecast.2014.06.001.

Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., & Schewe, J. (2014). The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project Framework. Proceedings of the National Academy of Sciences, 111 (9), 3228–3232. https://doi.org/10.1073/pnas.1312330110.

Weigel, K., Bock, L., Gier, B.K., Lauer, A., Righi, M., Schlund, M., Adeniyi, K., Andela, B., Arnone, E., Berg, P., Caron, L.-P., Cionni, I., Corti, S., Drost, N., Hunter, A., Lledó, L., Mohr, C.W., Paçal, A., Pérez-Zanón, N., Predoi, V., Sandstad, M., Sillmann, J., Sterl, A., Vegas-Regidor, J., von Hardenberg, J., & Eyring, V. (2021) Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for extreme events, regional and impact evaluation, and analysis of Earth system models in CMIP. Geoscientific Model Development, 14, 3159–3184. https://doi.org/10.5194/gmd-14-3159-2021.

Zhang, L., Ghader, S., Pack, M.L., Xiong, C., Darzi, A., Yang, M., Sun, Q., Kabiri, A., & Hu, S. (2020). An interactive COVID-19 mobility impact and social distancing analysis platform. medRxiv. https://doi.org/10.1101/2020.04.29.20085472.

Zhou, Y., Smith, S.J., Zhao, K., Imhoff, M., Thomson, A., Bond-Lamberty, B., Asrar, G.R., Zhang, X., He, C., & Elvidge, C.D. (2015). A global map of urban extent from nightlights. Environmental Research Letters, 10(5), 054011. https://doi.org/10.1088/1748-9326/10/5/054011.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Carlo Giupponi, Anne-Gaelle Ausseil, Stefano Balbi, Fabio Cian, Alexander Fekete, Animesh K. Gain, Arthur Hrast Essenfelder, Javier Martínez-López, Vahid Mojtahed, Celia Norf, Hélder Relvas, Ferdinando Villa