Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 17, 2012

Self-assembly mechanism in colloids: perspectives from statistical physics

  • Achille Giacometti EMAIL logo
From the journal Open Physics

Abstract

Motivated by recent experimental findings in chemical synthesis of colloidal particles, we draw an analogy between self-assembly processes occurring in biological systems (e.g. protein folding) and a new exciting possibility in the field of material science. We consider a self-assembly process whose elementary building blocks are decorated patchy colloids of various types, that spontaneously drive the system toward a unique and predetermined targeted macroscopic structure. To this aim, we discuss a simple theoretical model — the Kern-Frenkel model — describing a fluid of colloidal spherical particles with a pre-defined number and distribution of solvophobic and solvophilic regions on their surface. The solvophobic and solvophilic regions are described via a short-range square-well and a hard-sphere potentials, respectively. Integral equation and perturbation theories are presented to discuss structural and thermodynamical properties, with particular emphasis on the computation of the fluid-fluid (or gas-liquid) transition in the temperaturedensity plane. The model allows the description of both one and two attractive caps, as a function of the fraction of covered attractive surface, thus interpolating between a square-well and a hard-sphere fluid, upon changing the coverage. By comparison with Monte Carlo simulations, we assess the pros and the cons of both integral equation and perturbation theories in the present context of patchy colloids, where the computational effort for numerical simulations is rather demanding.

[1] G. M. Whitesides, M. Boncheva, Proc. Natl. Acad. Sci. 99, 4769 (2002) http://dx.doi.org/10.1073/pnas.08206589910.1073/pnas.082065899Search in Google Scholar

[2] G. M. Whitesides, B. Grzybowski, Science 295, 2418 (2002) http://dx.doi.org/10.1126/science.107082110.1126/science.1070821Search in Google Scholar

[3] N.W. Ashcroft, N. D. Mermin, Solid State Physics (Thomson Learning 1976) Search in Google Scholar

[4] J. Lyklema, Fundamentals of Interface and Colloid Science, Vol. I: Fundamentals (Academic, London, 1991) 10.1016/0021-9797(91)90360-KSearch in Google Scholar

[5] A. V. Finkelstein, O. B. Ptitsyn, Protein Physics (Academic Press 2002) Search in Google Scholar

[6] S. C. Glotzer, Science 306, 419 (2004) http://dx.doi.org/10.1126/science.109998810.1126/science.1099988Search in Google Scholar PubMed

[7] S. C. Glotzer, M. J. Solomon, Nature Mater. 6, 557 (2007) http://dx.doi.org/10.1038/nmat194910.1038/nmat1949Search in Google Scholar PubMed

[8] A. Walther, A. H. E. Müller, Soft Matter 4, 663 (2008) http://dx.doi.org/10.1039/b718131k10.1039/b718131kSearch in Google Scholar PubMed

[9] A. B. Pawar, I. Kretzchmar, Macromol. Rapid Commun 31, 150 (2010) http://dx.doi.org/10.1002/marc.20109000010.1002/marc.201090000Search in Google Scholar PubMed

[10] A. J. Williamson, A. W. Wilber, J. P. K. Doyle, A. A. Louis, Soft Matter 7, 3423 (2011) http://dx.doi.org/10.1039/c0sm01377c10.1039/c0sm01377cSearch in Google Scholar

[11] L. Hong, A. Cacciuto, E. Luijten, S. Granick, Langmuir 24, 621 (2008) http://dx.doi.org/10.1021/la703081810.1021/la7030818Search in Google Scholar PubMed

[12] Q. Chen, S. C. Bae, S. Granick, Nature 469, 382 (2011) 10.1038/nature09713Search in Google Scholar PubMed

[13] F. Romano, F. Sciortino, Nature Materials 10, 171 (2011) http://dx.doi.org/10.1038/nmat297510.1038/nmat2975Search in Google Scholar

[14] F. Romano, F. Sciortino, Soft Matter 7, 5799 (2011) http://dx.doi.org/10.1039/c0sm01494j10.1039/c0sm01494jSearch in Google Scholar

[15] N. Kern, D. Frenkel, J. Chem. Phys. 118, 9882 (2003) http://dx.doi.org/10.1063/1.156947310.1063/1.1569473Search in Google Scholar

[16] A. Giacometti, G. Pastore, F. Lado, Mol. Phys. 107, 555 (2009) http://dx.doi.org/10.1080/0026897090288964210.1080/00268970902889642Search in Google Scholar

[17] A. Giacometti, F. Lado, J. Largo, G. Pastore, F. Sciortino, J. Chem. Phys. 131, 174114 (2009) http://dx.doi.org/10.1063/1.325600210.1063/1.3256002Search in Google Scholar

[18] A. Giacometti, F. Lado, J. Largo, G. Pastore, F. Sciortino, J. Chem. Phys. 132, 174110 (2010) http://dx.doi.org/10.1063/1.341549010.1063/1.3415490Search in Google Scholar

[19] F. Lado, Phys. Lett. 89A, 196 (1982) 10.1016/0375-9601(82)90207-9Search in Google Scholar

[20] F. Lado, Mol. Phys. 7, 283 (1982) http://dx.doi.org/10.1080/0026897820010020210.1080/00268978200100202Search in Google Scholar

[21] F. Lado, Mol. Phys. 47, 299 (1982) http://dx.doi.org/10.1080/0026897820010021210.1080/00268978200100212Search in Google Scholar

[22] F. Lado, E. Lomba, M. Lombardero, J. Chem. Phys. 103, 481 (1995) http://dx.doi.org/10.1063/1.46961510.1063/1.469615Search in Google Scholar

[23] R. Zwanzig, J. Chem. Phys. 22, 1420 (1954) http://dx.doi.org/10.1063/1.174019310.1063/1.1740193Search in Google Scholar

[24] J.A. Barker, D. Henderson, J. Chem. Phys. 47, 2856 (1967) http://dx.doi.org/10.1063/1.171230810.1063/1.1712308Search in Google Scholar

[25] C. Gögelein et al., J. Chem. Phys. 129, 085102 (2008) http://dx.doi.org/10.1063/1.295198710.1063/1.2951987Search in Google Scholar

[26] C. Gögelein, F. Romano, F. Sciortino, A. Giacometti, J. Chem. Phys. in press (2012) Search in Google Scholar

[27] M. Doi and S.F. Edwards, Theory of Polymer Dynamics (Oxford Univ. Press 1986) Search in Google Scholar

[28] H. Löwen, Phys. Rep. 237, 249 (1994) http://dx.doi.org/10.1016/0370-1573(94)90017-510.1016/0370-1573(94)90017-5Search in Google Scholar

[29] A.P. Henninen, J.H.J. Thijssen, E.C.M. Vermolen, M. Dijskra, A. Van Blaaderen, Nat. Mater. 3, 593 (2007) http://dx.doi.org/10.1038/nchembio1007-59310.1038/nchembio1007-593Search in Google Scholar PubMed

[30] J. P. Hansen, I. R. McDonald, Theory of Simple Liquids (Academic, New Yor Search in Google Scholar

[31] S. Labík, A. Malijevský, P. Voňka, Mol. Phys. 56, 709 (1985) http://dx.doi.org/10.1080/0026897850010265110.1080/00268978500102651Search in Google Scholar

[32] C. G. Gray, K. E. Gubbins, Theory of Molecular Fluids, Vol. 1: Fundamentals (Clarendon, Oxford, 1984) 10.1093/oso/9780198556022.001.0001Search in Google Scholar

[33] L. Vega, E. de Miguel, L. F. Rull, G. Jackson, I. A. McLure, J. Chem. Phys. 96, 2296 (1992) http://dx.doi.org/10.1063/1.46208010.1063/1.462080Search in Google Scholar

[34] H. Liu, S. Garde, and S. Kumar, J. Chem. Phys. 123, 174505 (2005) http://dx.doi.org/10.1063/1.208505110.1063/1.2085051Search in Google Scholar PubMed

[35] F. Sciortino, A. Giacometti, G. Pastore, Phys. Rev. Lett. 103, 237801 (2009) http://dx.doi.org/10.1103/PhysRevLett.103.23780110.1103/PhysRevLett.103.237801Search in Google Scholar PubMed

[36] F. Sciortino, A. Giacometti, G. Pastore, Phys. Chem. Chem. Phys. 12, 11869 (2010) http://dx.doi.org/10.1039/c0cp00504e10.1039/c0cp00504eSearch in Google Scholar PubMed

[37] D. Henderson, J.A. Parker, Physical Chemistry, an advanced treatise Vol. VIIIA, (1971) Search in Google Scholar

[38] J.A. Barker, D. Henderson, Rev. Mod. Phys. 48, 587 (1976) http://dx.doi.org/10.1103/RevModPhys.48.58710.1103/RevModPhys.48.587Search in Google Scholar

[39] D. Henderson, O. H. Scalise, W. S. Smith, J. Chem. Phys. 72, 2431 (1980) http://dx.doi.org/10.1063/1.43943710.1063/1.439437Search in Google Scholar

[40] C.N. Likos, Zs T. Nèmeth, H. Löwen, J. Phys: Condens. Matter 6, 10965 (1994) http://dx.doi.org/10.1088/0953-8984/6/50/00710.1088/0953-8984/6/50/007Search in Google Scholar

[41] J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971) http://dx.doi.org/10.1063/1.167482010.1063/1.1674820Search in Google Scholar

[42] H. C. Andersen, D. Chandler, J.D. Weeks, Adv. Chem. Phys. 34, 105 (1976) http://dx.doi.org/10.1002/9780470142530.ch210.1002/9780470142530.ch2Search in Google Scholar

[43] D. Chandler, J.D. Weeks, H.C. Andersen, Science 220, 787 (1983) http://dx.doi.org/10.1126/science.220.4599.78710.1126/science.220.4599.787Search in Google Scholar PubMed

[44] D. Chandler H.C. Anderson, J. Chem. Phys. 57, 1930 (1972) http://dx.doi.org/10.1063/1.167851310.1063/1.1678513Search in Google Scholar

[45] E. Bianchi, R. Blaak, C. N. Likos, Phys. Chem. Chem. Phys. 13, 6397 (2011) http://dx.doi.org/10.1039/c0cp02296a10.1039/c0cp02296aSearch in Google Scholar PubMed

[46] R. Fantoni, A. Giacometti, F. Sciortino, G. Pastore, Soft Matter 7, 2419 (2011) http://dx.doi.org/10.1039/c0sm00995d10.1039/c0sm00995dSearch in Google Scholar

[47] A. Reinhardt et al., J. Chem. Phys. 134, 104905 (2011) http://dx.doi.org/10.1063/1.355705910.1063/1.3557059Search in Google Scholar PubMed

[48] J.M. Tavares, P. I. C. Teixeira, M. M. Telo de Gama, F. Sciortino, J. Chem. Phys. 132, 234502 (2010) http://dx.doi.org/10.1063/1.343534610.1063/1.3435346Search in Google Scholar PubMed

[49] E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli, F. Sciortino, Phys. Rev. Lett. 97, 168301 (2006) http://dx.doi.org/10.1103/PhysRevLett.97.16830110.1103/PhysRevLett.97.168301Search in Google Scholar PubMed

Published Online: 2012-6-17
Published in Print: 2012-6-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-012-0019-x/html
Scroll to top button