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1. Introduction

The vibration modes of a free structure can be divided into rigid and deformable
modes. Rigid modes can be related to the whole structure or just to parts of
it, e.g. an aircraft and its control surfaces. Rigid modes can be associated to
real motions of the type just mentioned, or to local/global indeterminacies in
the static structural response. The latter imply hidden mechanisms to which
we can associate spurious rigid kinematic modes, or simply kinematic modes
in the following. Rigid and kinematic modes are clearly the same thing but
we use the two terms in such a way that rigid modes indicates expected rigid
motions, known or definable a priory as such, while kinematic modes will refer to
unexpected rigid motions due to a wrong design, hopefully a rare case, or, more
often the case, to modeling errors. In such a view the calculation of kinematic
modes is an important step in validating a model, as their appearance addresses
design/modeling errors to be compulsorily fixed before undertaking any further
serious analysis [4, 23, 24].

The numerical determination of vibration modes is based, regardless of how
it is obtained, on a discretized equation of the type:

Ku = ω2M u. (1)

with the stiffness matrix K being semidefinite positive as many times as there
are rigid-kinematic modes.
For a non singular K it is well known that a power filtering iteration of the
type:

U (k+1) = K−1MU (k) (2)

applied to a subspace of vectors U enriches it toward the components associated
to the lowest frequency modes [3, 25]. As such it is the core of many of the
methods used for the calculation of a subset of low frequency vibration modes
of large problems, e.g. block-subspace and Lanczos methods [22]. It is noted
also that, to preserve sparsity as much as possible and to improve numerical
conditioning, the power filtering is always implemented without any inversion.
Instead, the solution of

KU (k+1) = MU (k) (3)

is used, through a single factorization of K and repeated forward-backward
substitutions.

A somewhat standard general technique [5, 6] to preserve sparsity and obvi-
ate to any singularity of Eq. (3), so allowing the calculation of rigid-kinematic
modes also, is to change the origin of ω2, writing

(K + αM)u = (ω2 + α)M u (4)

(K + αM)U (k+1) = M U (k) (5)
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with α > 0 to avoid the risk of making the modified stiffness matrix, (K +
αM), negative definite. M should be positive definite always but, e.g. finite
elements with rotational degrees of freedom and lumped linear masses only,
it could even be semidefinite. Such a case implies that there are purely static
degrees of freedom, which can be eliminated in an algebraic manner, so becoming
dependent on true dynamic degrees of freedom only, for which M is positive
definite for sure. Eq. (4) can nonetheless be used as it is because the algebraic
only degrees of freedom will produce infinite frequencies that will not disturb
the related shifted power iteration, since it aims at a subspace of a relatively
limited number of low frequencies only.

Numerical reasons suggest choosing α as a suitable fraction of the best es-
timate available for the lowest deformable ω2. By not distinguishing rigid-
kinematic from deformable modes such an approach can produce imprecise rigid
body modes and affect the precision of the, possibly closed to zero, lowest de-
formable frequencies [14]. Nonetheless, the long standing experience gathered so
far has shown that the above shift approach is reliable enough for most practical
applications. It is here thought that it remains one of the best ways to validate a
finite element model in relation to the search of hidden kinematic modes, while
simultaneously confirming the expected existence of rigid body modes. Once
found, verified and accepted as true rigid modes any of the latter can often be
subsequently reassigned, very precisely, by inspection.

An alternative way to determine rigid-kinematic modes is to search for the
null space of K. Within such a process if only whole structure rigid body modes
existed they will appear at the factorization of the very last equations, i.e. those
corresponding to the number of true overall rigid modes. So any singularity
stepping into the factorization before them will be an indication of the presence
of an internal rigid-kinematic mode. In such a view local constraints can be
applied each time a singularity appears, continuing the factorizations till all
rigid-kinematic modes are evidenced. Such a process can be carried out with
partial diagonal pivoting to preserve symmetry and sparsity, as far as possible
with respect to numerical stability [7, 25, 26].

From the singularities reported during the factorization one can then sep-
arate true rigid body from kinematic modes and proceed to the same design-
modeling fixes as it should have been done with a verification using the shifted
eigen calculation previously addressed. It should be remarked that the search of
the null space of K can be worked out in a sound numerical way also by using
a Singular Value Decomposition (SVD) [13], but such an approach is not viable
for the kind of large and sparse Finite Element (FE) problems quite common
nowadays.

A final option is to apply a shift to the stiffness matrix only and then proceed
to a power iteration with it. Such a technique is equivalent to computing the
null frequency eigenmodes with an appropriate fictitious lumped scalar mass
matrix, chosen so to alleviate possible problems associated to null frequencies
obtained with the real mass.

On the base of what said it is hereafter assumed that the calculation of
deformable vibration modes can then proceed by assuming the availability of
a fully validated elasto-dynamic model and numerically well known true rigid
body modes.

Within such a framework the aim becomes that of calculating deformable
modes only, with a sound formulation and without the need of using any fre-
quency shift. Such an approach is not used often though, likely because the sim-
ple shifted scheme of Eq. (4) mostly gives satisfactory results. It has nonetheless
the potential for improving vibration modes analyses in the case of closely clus-
tered deformable lowest frequency modes not too far away from zero, a not so
rare case for very large and complex structures, e.g. modern jumbo aerospace
vehicles.
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In this tutorial we will present an approach based on the use of mean axes
that leads to the separation of the eigenproblem associated to rigid and de-
formable modes in a simple and neat way. Moreover, it unifies deformable
vibration and static displacements and modes calculations for free structures,
e.g. such as for the inertia relief and static residualizations of low order modal
dynamic responses (modes acceleration). To such an aim, as suggested by the
title, we will take it at large by introducing a broader view of attached-mean
axes approximations, hoping it might be of interest for a more general modeling
usage also.

2. Framing the calculation of deformable vibration modes
through attached-mean axes

Attached-mean axes refers to a scheme for approximating the motion of a free
deformable structure by separating its overall motion into a rigid and a de-
formable part. As mentioned in [17], where the classification attached-mean-
principal axes is given, the idea of mean axes dates back to [15]. Following it
the concept has been reprized in many forms, [9] should be consulted for one of
the many interpretation within the more general concept of a Tisserand frame.
Within such a framework it will be seen that attached and mean axes differs
only in the representation of generalized external forces and the mass matrix,
no difference being produced for the elastic internal forces, i.e. the stiffness and
structural damping matrices.

For general and arbitrarily large motions mean axes can produce only a
very limited decoupling of the inertia forces pertaining to the whole reference
frame motion from those associated to deformable motions only. In fact their
adoption is often criticized on the base of their uselessness for general dynamic
simulations [16].

While being not out of place completely the associated criticism is undue
when applied to small motions of a free structure around a steady straight
trajectory, where mean axes produce a significant simplification by wholly sep-
arating inertia forces related to the reference frame from deformable motions,
so that the equations of motion of the reference frame remain the same as those
of the related rigid body. As such they will remain very useful as long as the
mentioned linear equations of motion of freely moving aerospace vehicles will
continue to be of interest to engineers.

So we now reprise the development of discretized attached-mean axes models
for a linear elastic continuum by using the somewhat standard combination of
the linear Principle of Virtual Work (PVW) [18]

∫
V

δεT σdV =

∫
V

δsTfvdV +

∫
S

δsTfsdS +∫
V

δφT cvdV +

∫
S

δφT csdS −
∫
V

δsTm a dV (6)

σ = {σ11, σ22, σ33, σ12, σ13, σ23}T (7)

ε = {ε11, ε22, ε33, 2ε12, 2ε13, 2ε23}T , (8)

and a complete base Ritz Approximation (RA) of the displacement s(x, t):

s =

{
d(x, t)
φ(x, t)

}
=

[
I −(x− xo)× vδ × (x− xp) Nd(x)
0 I vδ Nφ(x)

]
o(t)
θ(t)
δ(t)
qa(t)

 =

[
R(x) Na(x)

]{ra(t)
qa(t)

}
(9)
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with: σ the Cauchy stresses, ε the small deformations,

ra =

oθ
δ

 , R =

[
I −(x− xo)× vδ × (x− xp)
0 I vδ

]
, Na =

[
Nd(x)
Nφ(x)

]
(10)

where we have assumed it convenient considering control surfaces rotations, δ,
through their pivot point, xp, as rigid modes. In the above equations we have
chosen to specify the rigid motion of the whole structure as three translations of
a point xo and three rotations about axes through that point. Clearly any linear
combination of base functions is a base, so that any other rigid motion represen-
tation could serve our scope. It should be noticed that the deformable displace-
ment field can represent both linear, Nd(x), and small rotations, Nφ(x). That
is done to take into account the external volume and surface forces, fv and fs,
and couples, cv and cs, as well as a generalized mass distribution represented
by a (6x6) local mass matrix m, i.e. having mass, static moments and moments
of inertia. On the other hand we will not extend a rotational formulation to
the internal stress-deformation field, which will remain that of a standard non
polar continuum. For a notational simplification we have included distributed
external loads and mass matrix distributions only, possible concentrated dis-
tributions being accounted for by appropriately placed delta functions (Dirac
δ).

It is remarked that the rigid-deformable separation needs not imply describ-
ing the deformable motions in term of coordinates relative to such a frame.
They can be taken in absolute coordinates also, what counts is just making
the separation explicit. In fact they are the same in the case of overall small
motions, differences being second order 1. Even if they are based on the same
discretization scheme and tools, FE models differ from their attached-mean axes
counterparts because all of their motion discretization is taken in term of ab-
solute nodal displacements and rotations, while attached-mean axes schemes
are based on describing deformable motions with respect to an attached-mean
frame. It will be seen that FE can be easily translated to attached-mean axes,
albeit at the expense of loosing some, in the case of attached axes, or all, in
the case of mean axes, of the sparsity of their equations. It is for such a reason
that attached-mean axes are mostly used with globally instead than with locally
based approximating functions. So they are mostly viable for reduced model,
often derived from FE schemes, e.g. when vibration and/or global selected static
deformable modes are used.

Then, beginning with attached axes, we impose that the deformable shape
functions Nd(x) must not contain any rigid body motion. Such a convenient
constraint is not strictly needed, as long as they are independent functions of a
complete set with non null strains. Nonetheless we prefer that they represent
a complete set of statically determinate displacement functions, from which it
follows their qualification as ”attached”. It should be noticed that the fact
they are statically determinate implies that the motion, relative to the moving
frame, of a few appropriate points of the space containing the structure are null.
Nonetheless such points need not to pertain to the material part of the structure
but just to the, attached, domain of definition of Nd(x) and Nφ(x).

Whatever to choice of the rigid body modes they need not to be associated
to the rigid modes corresponding to the constraints they are attached to. So, in
our case, the structure must not be compulsorily built in at the axes origin but
can be attached to any set of determinate constraints. Nd(x) and Nφ(x) must
be complete sets, in the sense that they will however converge, independently
from the applied loads, to the true solution as their number is increased. On
the other hand they need not satisfy natural boundary conditions, as they will

1Assuming Nd qa is a small deformable displacement relative to the reference frame, its
absolute counterpart sabs for a small rotation θ will be sabs = (I + θ×)Nd qa = Nd qa +
θ ×Nd qa = Nd qa, because θ ×Nd qa is second order.
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be enforced naturally by the PVW. Such an indirect enforcement of balance will
often require a larger base to obtain an acceptable convergence of the motions.
It will also impede a uniform, point wise convergence toward natural boundary
conditions, possibly producing a local energy averaged convergence only, of the
type Fourier series show at finite jump discontinuities. Therefore enforcing,
even partially, the satisfaction of natural boundary conditions onto Nd(x) and
Nφ(x) will greatly enhance convergence, of stresses particularly.

• How they do converge
To help in having it clear we illustrate qualitatively the kind of convergence
obtainable through the PVW when natural (balance, Neuman) boundary
conditions are not satisfied 2. For that we look for an approximated tor-
sional rotation response, θ(x, t), and internal torque distribution, Mt(x, t),
related to a beam: having a uniform torsional stiffness GJ , polar moment
of inertia for unit length I, built in at x(0), with a time stepped concen-
trated torque M(t) applied at x(L), assuming θ(x, 0) = 0 and θ̇(x, 0) = 0
as initial conditions.

M (t)

L

y

x
M

M (t)

t

The presented results are based on the use of the exact vibration modes,
normalized to unit generalized masses, with Mt(x, t) recovered directly
from θ(x, t). The related solution process can be found in many books of
structural dynamics, e.g. [12], and need not be repeated here. Given the
exact vibration modes frequencies ωi:

ωi = (2i− 1)
π

2L

√
GJ

I

the related approximations are:

θ(x, t) =
8ML

π2GJ

∞∑
i=1

(−1)i−1

(2i− 1)2
sin
(

(2i− 1)
πx

2L

)
(1− cosωit) .

and, using the notation θ
′

= ∂θ(x,t)
∂x :

Mt(x, t) = GJθ
′
(x, t) =

4M

π

∞∑
i=1

(−1)i−1

(2i− 1)
cos
(

(2i− 1)
πx

2L

)
(1− cosωit)

The vibration modes satisfy the boundary conditions, θ(0, t) = 0 and
θ
′
(L, t) = 0. It is thus clear that their superposition will never meet the

true natural boundary condition Mt(L, t) = GJθ
′
(L, t) = M .

Looking at the above solutions, for any assigned time t of interest, we can
see that the rotation appears as a Fourier series of a time antisymmetric
(sin based) periodic function of period 4L, which interest us just for 0 ≤
x ≤ L. So it is as complete as any of such series [1]. Its coefficients
are alternating in sign and asymptotic to 1

i2 , which is an indication of
good (uniform) convergence toward a continuous function. So, despite

2Savvy and mathematically well inclined modern dynamicists may not like this lengthy
example, on the base that using functional analysis concepts, [20], all of what it tells can be
synthesized in a few lines.
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violating a natural boundary condition, the rotation behaves well, not so
for its derivatives though. In fact knowing a little about Fourier series and
focusing onto Mt(x, t), i.e. θ

′
(x, t), it can be inferred that its behavior,

alternating sign asymptotic to 1
i , characterizes functions with finite jumps,

the related point wise convergence being at the middle of the amplitude of
the jump, accompanied by Gibbs type oscillations. So Mt(x, t) converges
point wise to 0 at L while simultaneously getting steeper and closer to M
from the left. Consequently we are hinted a general qualitative picture on
how, because of the use of the PVW, natural boundary conditions tend to
be satisfied by an approximation that does not contain them. That would
be enough to cast some light on the quality to impose to a complete
displacement base. We dare nonetheless being a little more boring and
notice that, after separating the two terms of the summation, i.e. those of
the 1 and cosωit, some training with elementary Fourier series allows to

guess that the term of the 1: 4M
π

∑∞
i=1

(−1)i−1

(2i−1) cos
(
(2i− 1)πx2L

)
is nothing

but the series of a time symmetric (cos based) periodic square wave of
period 4L and amplitude M . So within 0 ≤ x ≤ L we can write:

Mt(x, t) = M − 4M

π

∞∑
i=1

(−1)i−1

(2i− 1)
cos
(

(2i− 1)
πx

2L

)
cosωit.

with which we can see that, while still having a somewhat slow conver-
gence, the true natural boundary condition at L is now satisfied exactly.
Then the problem becomes one of automatically putting ”some training
with elementary Fourier series” in the calculations. Such trained calcula-
tions are well known to structural dynamicists under the names: modes
acceleration, inertia segregation, direct summation of (generalized) forces
[2, 27]. Whatever the name the simple idea is the same for all of them:

– use any available, well behaving, motion approximation to calculate
any motion dependent generalized force,

– apply to the structure the forces so obtained and those explicitly
known,

– then solve it statically at each time instant of interest.

In our case that means loading the structure with a pure torque distribu-
tion combining M and the known continuous inertia couples:

mt(x, t) = M δ(x− L)− Iθ̈ =

M δ(x− L)− 2M

L

∞∑
i=1

(−1)i−1 sin
(

(2i− 1)
πx

2L

)
cosωit.

with the easiest name to pick up for our trained agent being the ”summa-
tion of forces”, so that:

Mt(x, t) =

L+∫
x

mt(η, t)dη = M− 4M

π

∞∑
i=1

(−1)i−1

(2i− 1)
cos
(

(2i− 1)
πx

2L

)
cosωit.

showing that the ”summation of forces” has studied what it had to of
the Fourier series, likely so its friends: ”modes acceleration” and ”inertia
segregation”. We end by noting that an engineer sizing the beam at its
free end will care little or none of the lack of uniform point wise conver-
gence at L, but will readily infer that the sizing torque is the value being
approached by the series at L from the left, happily using it for its design.
That is what happens when using modal analyses within FE approxima-
tions.
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Enlightened, hopefully, by the previous example we recall that notable, well
known ways of defining Nd(x) and Nφ(x) so to satisfy natural boundary con-
ditions are the reduced order global solutions obtained by calculating reaction
less inertia relieved displacements associated to an appropriately chosen load
base. For attached shape functions producing non null statically determinate
reactions the cancellation of their effect will come ”by nature” through the PVW
as any reaction must, compulsory, be totally forgotten and not included as an
applied external forces.

Using such a motion representation in the PVW we obtain the following
mass matrix:

Ma =


∫
V

RTm R dV

∫
V

RTm Na dV∫
V

NT
am R dV

∫
V

NT
am Na dV

 =

[
M r M rq

M qr M q

]
(11)

with M qr = MT
rq. From the expression of M r we can see that by representing

rigid motions with three pure translations and rotations we have the very same
mass matrix layout:

M r =

[
Diag {Mb} S

ST J

]
(12)

of a rigid body of mass Mb, with the antisymmetric static unbalance matrix S,
being 0 when xo is its center of mass, and the symmetric moment of inertia J
being diagonal when the x axes are the principal ones.

Then, to approximate the internal virtual work, we define the following small
strain

B =



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0
∂
∂x3

0 ∂
∂x1

0 ∂
∂x3

∂
∂x2


(13)

so that, applying it to Eq. (9), we can write:

ε = B(x)

{
ra(t)
qa(t)

}
(14)

Combining the above approximated strains with the constitutive equation:

σ = D0(x)ε+D1(x)ε̇ (15)

we obtain the stiffness:

Ka =

0 0

0

∫
V

BTD0 B dV

 =

[
0 0
0 Kq

]
(16)

and damping:

Ca =

0 0

0

∫
V

BTD1B dV

 =

[
0 0
0 Cq

]
(17)

matrices. The previous derivation of Ca should be intended just as a plausible
and expedite way to introduce some form of structural damping. Other, more
complete, forms could have been devised as well, but they do not pertain to
this tutorial. However derived the only thing that will count in the following
is that Cq should be positive definite and capable of producing relatively small
dissipations. Finally the generalized external load is:

Qa =


∫
V

RT

{
fv
cv

}
dV +

∫
S

RT

{
fs
cs

}
dS∫

V

NT
a

{
fv
cv

}
dV +

∫
S

NT
a

{
fs
cs

}
dS

 =

{
Qar

Qaq

}
(18)
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so that the response equation in attached axes is:[
M r M rq

M qr M q

]{
r̈a
q̈a

}
+

[
0 0
0 Cq

]{
ṙa
q̇a

}
+

[
0 0
0 Kq

]{
ra
qa

}
=

{
Qar

Qaq

}
(19)

where only motion coordinates and generalized load vectors have the ”a” suffix
to mark their relation to an attached system. The mass, damping and stiffness
matrices are not marked in the same way, because they will be used to define
the related matrices for the mean axes also, without repeating any integration.

3. Getting to response equations in mean axes

If in place of Na it was possible to choose a set Nm so to have:

(a) :

∫
V

RTm Nm dV = 0 (b) :

∫
V

NT
m m R dV = 0 (20)

Then Eq. (11) shows that we would be led to decoupling rigid and deformable
inertia forces. In fact the above equations are nothing but the definition of mean
axes.

In such a view we have to notice that the direct derivation using assigned
shape functions for a raw attached approximation of a statically determinate
structure, i.e. Eq. (9), is a relatively easy task. On the contrary guessing a
priori the shape functions Nm(x) satisfying Eq. (20) is a bit more difficult. In
fact the excellence in mean axes are the vibration modes but they are not for
free, a lot of calculations being required for their determination. We note also
that the definition of mean axes implies that the resulting overall linear and
angular momenta of the deformable structure, for small motions, remain the
same as those of the rigid structure, so that there will be no inertia coupling
between a floating mean reference frame and structural deformations. So, in
turn, the center of mass of a deforming structure remains the same as that of its
parent rigid body [9, 17]. Consequently the equations of motion of the reference
frame will be the same as those of the related rigid body.

Being not as easy to assign Nm(x) as Na(x) we exploit the latter to get the
former. Therefore, since any linear combination of the elements of a complete
base remains a base, we can define a new set of shape function Nm(x) using an
appropriate linear combination of Na(x) and R, i.e.

Nm(x) = Na(x)−R(x) z (21)

Imposing that Nm(x) satisfies the mean axes definition (20)(a):∫
V

RTm Nm dV =

∫
V

RTm(Na −R z) dV =∫
V

RTm Na dV −
∫
V

RTm R dV z = M rq −M r z = 0 (22)

we have:
z = M−1

r M rq (23)

so that:
Nm(x) = Na(x)−R(x)M−1

r M rq (24)

thus allowing to obtain the corresponding RA in mean axes:

s =
[
R(x) (Na(x)−R(x) M−1

r M rq)
]{rm
qm

}
, (25)

It might be of interest to recall that the above recovery of mean axes from
any corresponding attached set is, algebraically speaking, nothing but the ap-
plication of a generalized Gram-Schmidt subspace orthogonalization procedure.
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Rewriting the above equation as

s =
[
R(x) Na(x)

] [I −M−1
r M rq

0 I

]{
rm
qm

}
, (26)

we can infer the following transformation of the free amplitude coordinates only:{
ra
qa

}
=

[
I −M−1

r M rq

0 I

]{
rm
qm

}
(27)

and its inverse {
rm
qm

}
=

[
I M−1

r M rq

0 I

]{
ra
qa

}
(28)

It is remarked that, being qa = qm true always, the difference between the
motions in attached and mean axes is just in the related rigid parts. The
possibility of reading Eq. (25) as Eq. (26) makes it possible to change anything
from attached to mean axes by using just the standard energy preserving, purely
algebraic, transformation, without repeating any integration related to the use
of Eq. (25), in place of Eq. (9), into the PVW. 3 So we end with the following
mean axes matrices and load:

Mm =

[
M r 0

0 M q −MT
rq M

−1
r M rq

]
=

[
M r 0

0 Mmq

]
(29)

Cm = Ca =

[
0 0
0 Cq

]
=

[
0 0
0 Cmq

]
(30)

Km = Ka =

[
0 0
0 Kq

]
=

[
0 0
0 Kmq

]
(31)

{
Qmr

Qmq

}
=

[
I 0

−MT
rq M

−1
r I

]T {
Qar

Qaq

}
(32)

so that the equation of motion in mean axes is:[
M r 0

0 Mmq

]{
r̈m
q̈m

}
+

[
0 0
0 Cq

]{
ṙm
q̇m

}
+

[
0 0
0 Kq

]{
rm
qm

}
=

{
Qmr

Qmq

}
(33)

What above well shows the full uncoupling of the frame equation of motion
from the deformable part. So, calling s any eigenvalue, the deformable vibration
modes are given just by:

Kq qm = (−s2Mmq − s Cq) qm (34)

rm = 0 s = (Na(x)−R(x) M−1
r M rq)qm (35)

Consequently their determination stands fully alone now. Therefore the intro-
ductory promise that the use of the mean axes would have provided a lean
and direct way to separate the rigid and deformable vibration modes has been
swiftly maintained.

We want to remark here that the already mentioned important mean axes
property of the equation of the dynamics of the reference frame remaining the
same as that of the rigid body, adds a related important implication in that any
imposed constant acceleration field r̈m, e.g. gravity, does not contribute to any
component of Qmq[17]. It is also interesting to see that the new generalized load

vector exciting deformable motions, Qmq = Qaq−M
T
rq M

−1
r Qar, corresponds

3 Let us remind the well known work/energy preserving transformations [19], whereas given
any generalized coordinate transformation matrix T the corresponding transformations of the
matrices M , C, K and of the load Q are: T T M T , T T C T , T T K T and T T Q. It is
noticed that, while a right product combines the columns so to satisfy an imposed coordinate
transformation, the left product implies a combination of rows, so of the components of the
related generalized forces. An operation which is often called a generalized projection.
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to an inertia relieved load. In fact Qar is the resultant force-moment, M−1
r Qar

the instantaneous acceleration, so that −MT
rq M

−1
r Qar is the corresponding

inertia relief. The same interpretation can be applied to the change of the mass
matrix as the term −MT

rq M
−1
r M rq is nothing but the inertia relief of the

coupling inertia forces M rq q̈a. Such an inertia relief plays an important part
since it alone is capable of uncoupling the frame and deformable motions, as it
should be easily seen by applying to Eq. (19) the left transformation (projection)
of Eq. (27) only, obtaining:[

M r M rq

0 Mmq

]{
r̈a
q̈a

}
+

[
0 0
0 Cq

]{
ṙa
q̇a

}
+

[
0 0
0 Kq

]{
ra
qa

}
=

{
Qar

Qmq

}
(36)

Recalling that the PVW allows to combine any compatible virtual movement
with any set of internal-external dynamically balanced generalized forces, it is
possible to verify that the previous results corresponds to using Eq. (25) for the
virtual variations and Eq. (9) for the displacements associated to any actual
motion. The other way around, i.e. applying only the right transformation of
Eq. (27), or exchanging the virtual-actual motions used for getting Eq. (36),
will give:[

M r 0
M qr Mmq

]{
r̈m
q̈m

}
+

[
0 0
0 Cq

]{
ṙm
q̇m

}
+

[
0 0
0 Kq

]{
rm
qm

}
=

{
Qar

Qaq

}
(37)

which is somewhat of less interest, since it keeps the deformable part interact-
ing with rigid motions. Considering that qa = qm Eqs. (33), (36) and (37)
provide the same deformable modes problem as Eq. (34), the only difference
being confined to using either rm or ra in the recovery of the overall eigenfunc-
tion of any mode. It is nonetheless a fact that by applying just the left-right
transformations we loose symmetry for the whole set of equations of motion
and so the complete uncoupling warranted by mean axes 4. The mean axes
formulation of the equations of motion shows that the related representation
of the small movements of a deformable body can be seen just as a matter
of recovering a reference frame within a uniquely positioned free structure, by
using the transformations Eqs. (27), (28). either a priori, so producing Eq.
(33), or, as a kind of post processing, a posteriori, of any solution of Eq. (19).
This fact seems to support the idea that there is no use in adopting mean axes
but, even so, such an attitude is not correct for linear deformable structural
systems. In fact mean axes can have a profound effect also on the modeling
of forces depending upon the motion of the structure. That is the case for the
linear(ized) aerodynamic approximations often used in aeroelasticity and flight
mechanics, for which it is possible to produce aerodynamic corrections taking
into account a deformable structure, without changing the model structure of
the corresponding rigid body, only if mean axes are adopted [11, 21].

4. Specialization to Finite Elements

The specialization of the above ideas to a FE approximation of a free structure,
written as:

Mfe ü+Cfe ü+Kfe u = P fe (38)

is done in a straightforward manner by applying what developed for Eqs. (19)
and (33) directly to the FE nodal variables, without caring of the underlying FE
shape functions and integrals associated to the PVW discretization, which are
embedded in Mfe, Kfe and P fe already. It should be taken into account that,
to avoid spurious connections to the ground, the structural damping matrix Cfe

4The coincidence of the PVW with a Galerkin weighted residual approach should be well
known. Nowadays Eq. (33) would be related to a Bubnov-Galerkin approximation and Eqs.
(36), (37) to a Petrov-Galerkin one [20]
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must be as definite as Kfe . So we define at first the nodal rigid motions and
attached deformable base coordinates, i.e. the equivalent of (9) as:

u =
[
R Ua

]{ra
ua

}
(39)

in which the attached deformable base, Ua, corresponds to the nodal motions
of a set of free nodes related to any statically determinate structure. As it was
remarked for Nd and Nφ we recall that, being small, Ua can be indifferently
seen as both absolute or relative to the free body frame motions. So Ua is made
by columns having a number of rows equal to the whole number of FE degrees
of freedom, including those of the statically determinate constraints, with just
a 1 in the position corresponding to their free degree of freedom, counted again
with the inclusion of those of the statically determinate constraints. To have
it clearer we notice that any pre multiplication of a matrix/vector by UT

a will
reduce their number of rows to that of the free degrees of freedom with the
extraction of each row corresponding to the single number one in each column
of Ua. In the same way any post multiplication of a matrix by Ua will reduce
its number of columns to that of the free degrees of freedom with the extraction
of the columns corresponding to the ones in each columns of Ua. Taking for
example the matrix Kfe we can see that the application of the mentioned
pre-post multiplications will be tantamount to making the structure statically
determinate by eliminating the degrees of freedom of the related constraints.
On the contrary a pre multiplication of a matrix/vector by Ua will expand its
rows back to the number of all of the original FE nodal degrees of freedom,
while a post multiplications of a matrix by UT

a will do the very same for its
columns.

We can then obtain the following attached mass/damping/stiffness matrices
and load:

Ma =

[
RT Mfe R RT Mfe Ua

UT
a Mfe R UT

a Mfe Ua

]
=

[
M r M ru

Mur Mu

]
(40)

with Mur = MT
ru.

Ca =

[
RT Cfe R RT Cfe Ua

UT
a Cfe R UT

a Cfe Ua

]
=

[
0 0

0 UT
a Cfe Ua

]
=

[
0 0
0 Cu

]
(41)

Ka =

[
RT Kfe R RT Kfe Ua

UT
a Kfe R UT

a Kfe Ua

]
=

[
0 0

0 UT
a Kfe Ua

]
=

[
0 0
0 Ku

]
(42)

P a =

[
RT

UT
a

]
P fe =

{
P ar

P au

}
(43)

whose corresponding equation of motion is:[
M r M ru

Mur Mu

]{
r̈a
üa

}
+

[
0 0
0 Cu

]{
ṙa
u̇a

}
+

[
0 0
0 Ku

]{
ra
ua

}
=

{
P ar

P au

}
(44)

i.e. the same as Eq. (19), apart of the use of u in place of q to recall their
FE origin. It can be seen that attached axes mostly maintain the sparsity of
Eq. (38), the only additional coupling added pertains to the mass matrix only
and is related to the introduction of a small number of active rows-columns, i.e.
M ru and Mur, in the same number as the rigid modes.

To obtain a mean axes representation we can repeat the same procedure al-
ready used for the continuous RA, applying it directly to the already discretized
FE form. Therefore a combination of the attached nodal degrees of freedom and
rigid modes is defined

Um = Ua −R z (45)
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and used for the mass orthogonalization required to decouple deformable and
rigid modes

RTMfe Um = RTMfe (Ua −R z) = M ru −M r z = 0 (46)

whose solution
z = M−1

r M ru (47)

allows to define a corresponding mean axes nodal base

Um = (I −R M−1
r RT Mfe)Ua = T Ua (48)

T = I − R M−1
r RT Mfe, is an idempotent matrix whose expression can

be compacted, without loosing sparsity, by taking the Cholesky factorization:
M r = Lr L

T
r , so that, defining the rigid modes normalized to unit mass Rn =

R L−Tr and Mmd = Mfe Rn, we can write: T = I − Rn M
T
md. Eq. (48)

provides the following absolute mean nodal motions representation, i.e. the
equivalent of Eq. (25),

u =
[
R TUa

]{rm
um

}
(49)

Rewriting it as:

u =
{
R Ua

} [I −M−1
r M ru

0 I

]{
rm
um

}
(50)

it should be easy to infer from it Eqs. (27) and (28), with only the already
mentioned care of using u in place of q. Using the above transformations, as
done before, we can derive the mean axes nodal mass matrices:

Mm =

[
M r 0

0 UT
a T

TMfe T Ua

]
=

[
M r 0

0 Mmu

]
(51)

damping

Cm = Ca =

[
0 0
0 Cu

]
=

[
0 0

0 UT
a Cfe Ua

]
=

[
0 0
0 Cmu

]
(52)

stiffness

Km = Ka =

[
0 0
0 Ku

]
=

[
0 0

0 UT
a Kfe Ua

]
=

[
0 0
0 Kmu

]
(53)

and load

Pm =

[
RT

UT
a T

T

]{
P ar

P au

}
=

{
Pmr

Pmu

}
(54)

with their corresponding fully decoupled equation of motion[
M r 0

0 Mmu

]{
r̈m
üm

}
+

[
0 0
0 Cu

]{
ṙm
u̇m

}
+

[
0 0
0 Ku

]{
rm
um

}
=

{
Pmr

Pmu

}
(55)

i.e. the same as Eq. (33). Before presenting a few uses of a finite elements mean
axes formulation we introduce a compact form of Mmu, which will be useful
in preserving sparse operations. To such an end, using the previously defined
Mmd we write:

Mmu = UT
a (Mfe −Mfe R M−1

r RT Mfe)Ua =

UT
a (Mfe −Mmd M

T
md)Ua (56)

It is then possible to see that, as for the attached case, the mean axes touch
the sparsity of the mass matrix only. This time however in a much heavier
way since the sparsity of the mass matrix pertaining to the deformable part is
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destroyed completely. As it will be seen in the following it is still possible to
carry out many matrix operations on the mass matrix in an effective way by
working with the above version Eq. (56). Moreover, it should be noticed that
what we said about inertia relieved generalized loads and the use of left-right
transformations only applies here too. Even if we will not touch the subject
of the direct integration of Eq. (55), to be found in a companion tutorial,
we like to remark that it is possible to operate in a sparsity efficient way also
when solving the typical linear system, with a coefficient matrix of the type
(α Mfe + β Cfe + γ Kfe − α Mmd M

T
md), associated to the many implicit

methods used for direct integration in structural analysis 5.

It might now be of interest to transform the second of Eqs. (55) into a
flexibility form by explicitly solving it for um as function of inertia and external
forces. To that end we project, i.e. left transform, the FE equations to mean
axes while transforming the nodal displacements to mean axes only for the
elastic term so that we can write:

Ku um = UT
a T

T (P fe −Mfeü−Cfeu̇) (57)

Eq. (57) is readily usable for calculating the above mentioned free-free balanced
conditions, including residualized dynamic responses, i.e. when ü = B q̈ and
u̇ = B q̇, with B being a reduced response base associated to the free coordi-
nates q, whose time history has been obtained using a reduced model. Such a
residualization is called a static inertia, with damping, relief when B = R and
modes acceleration when B is composed of a set of generic global deformable
modes. We then call F a = K−1u the attached flexibility matrix and put the
above into a flexibility form by explicitly solving it for um:

um = F a U
T
a T

T (P fe −Mfeü−Cfeu̇) (58)

so that after substituting Eq. (58) into Eq. (49), defining F ua = Ua F a U
T
a ,

the absolute attached generalized flexibility matrix, and F um = T F uaT
T , the

absolute mean generalized flexibility matrix, we have:

u = R rm + T F uaT
T (P fe −Mfe ü−Cfeu̇) =

R rm + F um (P fe −Mfe ü−Cfeu̇) (59)

All of the expressions using the above flexibility matrices are of utmost help in
synthesizing and manipulating the related formulas but are never used directly
as such in any large numerical calculations. In practice the previous formula just
suggests us what to do for solving a free structures in mean axes, for whatever
load. In fact we can expand back its synthesized structure and reread it as:

• preserve sparsity as much as possible by factorizing once for all the stat-
ically determinate stiffness matrix of the left hand side of Eq. (57), i.e.
Ku = Lk L

T
k ;

• inertia relieve whatever load P using UT
a (P −Mmd(R

T
nP )), strictly as

written, i.e. the right hand side of Eq. (57);

• solve the statically determinate Eq. (57) for um, using forward-backward
substitutions based on the triangular factor Lk;

5Using any of the Woodbury type identities (http://matrixcookbook.com), it can be proven
that the solution of a linear system of equations of the type (A − B BT ) x = b, with A
symmetric, positive definite and sparse and B having far less columns than the non zero
terms in any row of the Cholesky factor L of A, is given by: x = L−T (L−1b) + C(CT b).
The matrix C can be obtained by simply applying forward-backward substitutions of L to
B and has the very same structure as B. So the solution cost will be mostly confined to the
forward-backward steps L−T (L−1b), i.e. very much the same as solving the sparse system
Ax = b only.
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• recover a full solution to mean axes: ut = Uaum, u = ut−Rn(MT
mdut),

i.e. pre multiply the just obtained um by T Ua; then add any given rigid
motion, R rm, if needed.

Further numerical ways to do it efficiently will be explained later on, in connec-
tion to block power iterations.

The above mean axes approach applied to the deformable part only, i.e.
with rm = 0, is the same as that introduced in an anticipatory paper on the
calculation of deformable vibration modes only, dating back to 1955 [8]. Such a
scheme, as reprised in [10, 12], leads to determining a pseudo inverse G of Kfe,

there called generalized matrix of influence coefficients, written asKfe G = AT ,
where A is nothing but our T . The resulting G turns out to be:

Giso =

[
K−111 0

0 0

]
G = A Giso A

T (60)

K11 being a statically determinate partition of Kfe, i.e. the same as Ku.
It is then easy to see that G is nothing but our F um. In fact, after recalling the
definition of Ua a simple inspection shows that Giso = F ua.

Eq. (59) can be specialized to calculate the deformable only, rm = 0, static
mean solutions related to inertia relieved loads only:

u = F um P fe (61)

and those related to static mean non self balanced loads:

u = T F ua P fe (62)

The above expressions are useful for the determination of reduced models with a
static displacement base, i.e. a linear combination of base loads given by: P fe =
Lfe l, appended to vibration modes so to enhance dynamic response analyses,
e.g. to better recover internal loads associated to high concentrated masses and
forces-moments, without resorting to an a posteriori response recovery using
modes acceleration [2, 27]. Solving with any of the above static solutions one
ends with an attached-mean displacements base U l l, so that the load base
amplitudes l of Lfe become a set of new generalized free coordinates. In such
a way one could even substitute any adequately complete displacement base
with a complete load base, i.e. one capable of well representing any inertia and
external loads combination.

We will now use the deformable equation in mean axes to set forth the
corresponding deformable vibration only eigenproblem, showing how to use it
in a sparsity preserving mode to maintain numerical efficiency in the power
iterations. To such an end we rewrite the related damped and undamped eigen-
problems as:

• Cfe 6= 0, s = ω(ξ ± j
√

1− ξ2), ξ being the damping factor:

Ku um = −sUT
a ((Mfe −Mmd M

T
md)Ua ûm + sCfeUa um)

ûm = λ um

• Cfe = 0:

Ku um = ω2UT
a ((Mfe −Mmd M

T
md)Ua um

which are kept in expanded form because that is the way to use them in sparsity
preserving power iterations. The related inverse power iterations will be:

• Cfe 6= 0:

Ku U
k+1
m = −UT

a ((Mfe −Mmd M
T
md)Ua Û

k

m +CfeUa U
k
m)

Û
k+1

m = Uk
m (63)
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• Cfe = 0:

Ku U
k+1
m = UT

a (Mfe −Mmd M
T
md)Ua U

k
m (64)

Since power iterations are mostly enhanced by combining them with the reduced
order projections obtained according to a problem dependent Rayleigh quotient
we report for completeness the symmetric ones associate to the above iterations:

sR =
ûTmMmuûm − uTmKuum

2ûTmMmu um + uTmCuum
ω2
R =

uTmKuum
umMmu um

(65)

Omitting the iteration indexes for ease of notation, an actual implementation of
the above iterations will be carried out with the following series of calculation
for the damped case, the undamped case being much the same:

1. U = Ua Um and Û = Ua Ûm, no actual calculations, just an expansion
introducing zeros at the determinate constraints degrees of freedom;

2. P iu = −(Mfe Û −Mmd (MT
mdÛ) +CfeU , exactly as given;

3. P iu = UT
a P iu, no actual calculations, just a compression by removing

zeros at the determinate constraints degrees of freedom;

4. solve Ku Um = P iu, with a forward-backward substitution using Lk.

5. overwrite: Û = U .

Once all the desired mean axes modes Um are available their absolute nodal
equivalents are obtained at once with: U = T Ua Um, using the same sparsity
preserving calculations previously seen.

A few application examples

1. We will now verify the eigensolutions in mean axes with a trivial, hope-
fully enlightening, example, related to three masses, m, connected by two
springs, k, free to vibrate along a straight line without any damping-
friction, for which we can write:

Mfe =

m 0 0
0 m 0
0 0 m

 Kfe =

 k −k 0
−k 2k −k
0 −k k

 u =

u1u2
u3


The related eigensolutions can easily verified by hand as being:

ω2
r = 0 ω2

d1 =
k

m
ω2
d2 = 3

k

m
ur =

1
1
1

 Ud =

−1 −1
0 2
1 −1


We then define R and Ua, Eq. (39), along with the calculation of the core
attached to mean axes transformation matrix T , Eq. (49):

R =

1
1
1

 Ua =

0 0
1 0
0 1

 T =
1

3

 2 −1 −1
−1 2 −1
−1 −1 2


Consequently the resulting matrices of the deformable part in mean axes,
Eq. (55), are:

Mmu =
m

3

[
2 −1
−1 2

]
Ku = k

[
2 −1
−1 1

]
From what above the single deformable mode is given below, along with
its back transformation to physical nodal displacements:

ω2
d1 =

k

m
ω2
d2 = 3

k

m
Um =

[
1/3 1
2/3 0

]
Ud = TUaUm =

−1 −1
0 2
1 −1


It can be seen we have obtained what we should.
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2. After having seen that within a reasonably fine FE model it would be in-
effective to calculate F a and Mu explicitly to proceed to the symbolically
simpler direct use of the power iteration of Eq. (63) used as:

Uk+1
m = F a Mu U

k
m (66)

we contradict ourselves by discovering that it could not be so always. That
happens when F a is available directly from experimental measurement,
stiffness matrices are never (rarely) measured. In such a case, assuming a
precisely known mass distribution is available and the influence coefficients
of F a are measured at enough points to make it acceptable a lumping of
the masses, to produce a mass matrix equivalent to Mfe, since R is
precisely available by inspection, it is possible to calculate Mu so that,
starting from relatively simple static only measurements, Eq. (66) leads
to a quasi experimental determination of free deformable vibration modes.
It might appear as a kind of vintage approach to modal testing but, by
avoiding the difficulties of approximating free-free conditions, still remains
quite a valid alternative to a complete free-free dynamic test, especially
in the case of scaled dynamic models.

3. A similar approach remains useful even when it is convenient to carry
out dynamic vibration tests on a statically determinate structure and it is
wanted to recover free-free modes afterward [19]. We assume, once more,
that the mass distribution is known very well, the constrained modes
shapes, called V , are measured at enough points to allow calculating Mu

with an adequate precision after lumping the known mass distribution,
into an equivalent Mfe again. So the constraint dynamic modal test
will provide a set of ω2

i , V , and possibly the generalized modal masses
Diag {mi}. If the latter are not known then they can be computed using
Diag {mi} = V T Mfe V , an operation likely to be carried out anyhow
to cross check the orthogonality of the measured modes. Retaining the
constraint modal amplitudes as being um, all the needed ingredients can
be computed with the following:

F a = Diag

{
1

miω2
i

}
(67)

Mu = Diag {mi} − V T Mfe R M−1
r RT Mfe V (68)

so that Eq. (66) can be used much as before. The mode shapes at the
measurement points are then given by: u = V um. To reduce errors and
improve convergence the described procedure requires to measure a bit
more constrained frequencies and modes than the desired free-free ones.

5. Concluding remarks

The problem of setting up an eigensolution path separating the calculation of
the undamped deformable vibration modes of a free-free structures from rigid
body modes, a need extensively explained in the introduction, is embedded
in the use of mean axes. In fact the needed separation is nothing but their
definition. Despite being it straightforward coming to such a conclusion it is
not as simple to have the related matter easily mastered by students. Often
they feel a circulatory and confusing interplay of the very definition of mean
axes with free-free vibration modes, which embed mean axes by nature, to the
point of thinking that the two things are the same. Trying to settle the matter by
pointing them to the literature clashes with largely scattered clues, requiring too
much time to be synthesized in a unified and simple framework to be mastered
not only for deformable vibrations modes. The need of writing this tutorial
is mainly due to the afore mentioned difficulty in gathering the whole content
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of what here presented through too many streams, scattered and/or delivering
to different rivers, flowing in the literature. Consequently, starting from the
excuse of computing deformable modes through mean axes, contained in the
introduction, this tutorial is much dedicated to developing them, so adhering to
its title. The more general attitude taken to tackle the problems should not miss
the objective related to the calculation of deformable modes but makes it just
a single facet of a general framework unifying a larger set of dynamic problems,
e.g: calculation of frozen snapshots of dynamic trim conditions and related
stress recovery, for a free structure. In such a way it should have provided the
reader with a well furnished toolbox from which the best wrench can be chosen
for any related pertaining problem at hand. Some past experience in using the
content of this tutorial in structural dynamics and aeroelasticity supports the
taken path. In particular, the repetition of the concept by presenting it through
an RA followed by a specialization to FE should meets two objectives. At first
an RA allows a mastering of the subject through simple assignments, workable
by hand, or with little usage of a computer and numerical skills, so to grasp a
direct physical feeling of what is being done. The following extension to FE,
which is the way the related concepts are used in real calculations nowadays,
with much computer and numerical sophistication, makes it clear that what has
been mastered though simpler application is viable for real applications too.
Without coding yet another tutorial FE code, the possibility for a student to
exercise her/his numerical skill with assignment using FE models, is quite easy
for not so large models and with FE codes allowing to export the related nodal
matrices and rigid body modes into a problem solving environment furnished
with sparse matrix tools, e.g. ScicosLab and Octave. Using them it is possible to
repeat the steps presented in the simple example shown above, with all the here
explained sparse numerical care, checking the results so obtained with the full
modal analyses of the parent FE code. Much the same can be done for dynamic
trim snapshots and modes acceleration. Of significant help is combining a fully
blown RA application, of a relatively simple structure, with a related fine FE
model, so to verify own capabilities in setting up simple approximations apt to
well represent the physics of an assigned problem. There might be some added
value also, but the support for such a claim is left to the reader.
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