Computational Investigations on Phycocyanobilin †
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crespi, H.L.; Boucher, L.J.; Norman, G.D.; Katz, J.J.; Dougherty, R.C. Structure of phycocyanobilin. J. Am. Chem. Soc. 1967, 89, 3642–3643. [Google Scholar] [CrossRef]
- Cole, W.J.; Chapman, D.J.; Siegelman, H.W. Structure of phycocyanobilin. J. Am. Chem. Soc. 1967, 89, 3643–3645. [Google Scholar] [CrossRef]
- Rüdiger, W.; Carra, P.; Heocha, C.Ó. Structure of Phycoerythrobilin and Phycocyanobilin. Nature 1967, 215, 1477–1478. [Google Scholar] [CrossRef] [PubMed]
- Cole, W.J.; Chapman, D.J.; Siegelman, H.W. Structure and properties of phycocyanobilin and related bilatrienes. Biochemistry 1968, 7, 2929–2935. [Google Scholar] [CrossRef]
- Schram, B.L.; Kroes, H.H. Structure of Phycocyanobilin. Eur. J. Biochem. 1971, 19, 581–594. [Google Scholar] [CrossRef]
- Fu, E.; Friedman, L.; Siegelman, H.W. Mass-spectral identification and purification of phycoerythrobilin and phycocyanobilin. Biochem. J. 1979, 176, 1–6. [Google Scholar] [CrossRef]
- Brown, S.B.; Houghton, J.D.; Vernon, D.I. New trends in photobiology. Biosynthesis of phycobilins. Formation of the chromophore of phytochrome, phycocyanin and phycoerythrin. J. Photochem. Photobiol. B 1990, 5, 3–23. [Google Scholar] [CrossRef]
- Rockwell, N.C.; Martin, S.S.; Lagarias, J.C. Elucidating the origins of phycocyanobilin biosynthesis and phycobiliproteins. Proc. Natl. Acad. Sci. USA 2023, 120, e2300770120. [Google Scholar] [CrossRef]
- Bishop, J.E.; Lagarias, J.C.; Nagy, J.O.; Schoenleber, R.W.; Rapoport, H. Phycobiliprotein-bilin linkage diversity. I. Structural studies on A- and D-ring-linked phycocyanobilins. J. Biol. Chem. 1986, 261, 6790–6796. [Google Scholar] [CrossRef]
- Minato, T.; Teramoto, T.; Adachi, N.; Hung, N.K.; Yamada, K.; Kawasaki, M.; Akutsu, M.; Moriya, T.; Senda, T.; Ogo, S.; et al. Non-conventional octameric structure of C-phycocyanin. Commun. Biol. 2021, 4, 1238. [Google Scholar] [CrossRef]
- Croce, R.; van Amerongen, H. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 2014, 10, 492–501. [Google Scholar] [CrossRef] [PubMed]
- hEocha, C.Ó. Spectral Properties of the Phycobilins. I. Phycocyanobilin. Biochemistry 1963, 2, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, M.; Hermann, G.; Rentsch, S.; Strehlow, D.; Winter, S.; Chosrowjan, H. Excited-State Processes in Phycocyanobilin Studied by Femtosecond Spectroscopy. J. Phys. Chem. B 2000, 104, 1810–1816. [Google Scholar] [CrossRef]
- Suresh, M.; Mishra, S.K.; Mishra, S.; Das, A. The detection of Hg2+ by cyanobacteria in aqueous media. Chem. Commun. 2009, 2496–2498. [Google Scholar] [CrossRef]
- Roda-Serrat, M.C.; Christensen, K.V.; El-Houri, R.B.; Fretté, X.; Christensen, L.P. Fast cleavage of phycocyanobilin from phycocyanin for use in food colouring. Food Chem. 2018, 240, 655–661. [Google Scholar] [CrossRef]
- Alhefeiti, M.; Chandra, F.; Gupta, R.K.; Saleh, N. Dyeing Non-Recyclable Polyethylene Plastic with Photoacid Phycocyanobilin from Spirulina Algae: Ultrafast Photoluminescence Studies. Polymers 2022, 14, 4811. [Google Scholar] [CrossRef]
- Tang, K.; Beyer, H.M.; Zurbriggen, M.D.; Gärtner, W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem. Rev. 2021, 121, 14906–14956. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Spartan ’16; Build 2.0.3; Wavefunction Inc.: Irvine, CA, USA, 2016.
- Grimme, S.; Brandenburg, J.G.; Bannwarth, C.; Hansen, A.A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys. 2015, 143, 054107. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Kruse, H.; Grimme, S. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J. Chem. Phys. 2012, 136, 154101. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Hansen, A.; Ehlert, S.; Mewes, J.-M. r2SCAN-3c: A “Swiss army knife” composite electronic-structure method. J. Chem. Phys. 2021, 154, 064103. [Google Scholar] [CrossRef]
- Furness, J.W.; Kaplan, A.D.; Ning, J.; Perdew, J.P.; Sun, J. Accurate and Numerically Efficient r2SCAN Meta-Generalized Gradient Approximation. J. Phys. Chem. Lett. 2020, 11, 8208–8215. [Google Scholar] [CrossRef]
- Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S.A. Generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122. [Google Scholar] [CrossRef]
- Staroverov, V.N.; Scuseria, E.; Tao, J.; Perdew, J.P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. J. Chem. Phys. 2003, 119, 12129–12137. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
- de Souza, B.; Farias, G.; Neese, F.; Izsák, R. Predicting Phosphorescence Rates of Light Organic Molecules Using Time-Dependent Density Functional Theory and the Path Integral Approach to Dynamics. J. Chem. Theory Comput. 2019, 15, 1896–1904. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system, WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system–Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyser. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Nield, J.; Rizkallah, P.J.; Barber, J.; Chayen, N.E. The 1.45 Å three-dimensional structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus elongatus. J. Struct. Biol. 2003, 141, 149–155. [Google Scholar] [CrossRef]
- Göller, A.H.; Strehlow, D.; Hermann, G. Conformational Flexibility of Phycocyanobilin: An AM1 Semiempirical Study. ChemPhysChem 2001, 2, 665–671. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo [18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2020, 165, 461–467. [Google Scholar] [CrossRef]
- Noorizadeh, S.; Shakerzadeh, E. Shannon entropy as a new measure of aromaticity, Shannon aromaticity. Phys. Chem. Chem. Phys. 2010, 12, 4742–4749. [Google Scholar] [CrossRef]
- Glazer, A.N.; Fang, S.; Brown, D.M. Spectroscopic Properties of C-Phycocyanin and of Its α and β Subunits. J. Biol. Chem. 1973, 248, 5679–5685. [Google Scholar] [CrossRef]
PCBASA | PCBSSS | |
---|---|---|
pKa1 | 3.1 | 3.3 |
pKa2 | 4.1 | 4.3 |
pKa3 | 10.5 | 6.9 |
n | ΔG |
0 | −8.9 |
1 | −6.4 |
2 | −6.7 |
3 | −11.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gigli, M.; Donati, M.; Sgarzi, M.; Bortoluzzi, M. Computational Investigations on Phycocyanobilin. Chem. Proc. 2024, 16, 13. https://doi.org/10.3390/ecsoc-28-20202
Gigli M, Donati M, Sgarzi M, Bortoluzzi M. Computational Investigations on Phycocyanobilin. Chemistry Proceedings. 2024; 16(1):13. https://doi.org/10.3390/ecsoc-28-20202
Chicago/Turabian StyleGigli, Matteo, Matteo Donati, Massimo Sgarzi, and Marco Bortoluzzi. 2024. "Computational Investigations on Phycocyanobilin" Chemistry Proceedings 16, no. 1: 13. https://doi.org/10.3390/ecsoc-28-20202
APA StyleGigli, M., Donati, M., Sgarzi, M., & Bortoluzzi, M. (2024). Computational Investigations on Phycocyanobilin. Chemistry Proceedings, 16(1), 13. https://doi.org/10.3390/ecsoc-28-20202