Mimicking the Anisotropic Behavior of Natural Porous Structures by Controlling the Reinforcing Particles Distribution in Polymeric Foams

Article Preview

Abstract:

Natural porous materials, like wood or bone, are multiscale cellular composite structures which exhibit mechanical (such as elasticity and strength) and functional (such as the thermal or acoustic insulating properties) behaviors dependent on the measuring direction. They show the best performance/weight ratio among all materials because their response is optimized in the needed direction by removing matter where not strictly functional, giving as a result a strong structural as well as morphological anisotropy. A new approach has been developed to mimic this behavior in polymeric foams, in which the mechanical and/or functional response of the cellular structure is tailored in a specific direction through the control of the spatial distribution and configuration of reinforcing particles. In order to demonstrate the concept, polymeric foams were produced with micro- or nano-sized reinforcement distributed along specific directions by means of the magnetic field. The effects of particles content, production parameters, and magnetic field strength were investigated and related to the mechanical (both elastic and magneto-elastic) performances.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-6

Citation:

Online since:

September 2012

Export:

Price:

[1] D. Klempner, K.C. Frisch, Polymeric Foams, Hanser, New York,1991.

Google Scholar

[2] J.L. Throne, O.H. Hinckley, Thernoplastic Foams, Sherwood Publishers, 1996.

Google Scholar

[3] J.M. Davis, Lightweight Sandwich Construction, Wiley-Blackwell, Oxford, 2001.

Google Scholar

[4] K.C. Rusch, Load-compression behavior of flexible foam, J. Appl. Polym. Sci. 13 (1969) 2297-2311.

DOI: 10.1002/app.1969.070131106

Google Scholar

[5] K.C. Rusch, Energy-absorbing characteristics of foamed polymers, J. Appl. Polym. Sci. 33 (1970) 1433-1447.

DOI: 10.1002/app.1970.070140603

Google Scholar

[6] L. Gong, S. Kyriakides, W.Y. Jang, Compressive response of open-cell foams. Part I: Morphology and elastic properties, Int. J. Solids. Struct. 42 (2005) 1355-1379.

DOI: 10.1016/j.ijsolstr.2004.07.023

Google Scholar

[7] S. Wong, J. Lee, H. Naguib, C.B. Park, Effect of Processing Parameters on the Mechanical Properties of Injection Molded Thermoplastic Polyolefin (TPO) Cellular Foams, Macromol. Mater. Eng. 293 (2008) 605-613.

DOI: 10.1002/mame.200700362

Google Scholar

[8] R.D. Chien, S.C. Chen, P.H. Lee, J.S. Huang, Study on the Molding Characteristics and Mechanical Properties of Injection-molded Foaming Polypropylene Parts, J. Reinf. Plast. Compos. 23 (2004) 429-444.

DOI: 10.1177/0731684404031891

Google Scholar

[9] H. Shen, A.J. Lavoie, S.R. Nutt, Enhanced peel resistance of fiber reinforced phenolic foams, Compos. Part A Appl. Sci. Manuf. 34 (2003) 941-948.

DOI: 10.1016/s1359-835x(03)00210-0

Google Scholar

[10] Z.G. Yang, B. Zhao, S.L. Qin, Z.F. Hu, Z.K. Jin, J.H. Wang, Study on the mechanical properties of hybrid reinforced rigid polyurethane composite foam, J. Appl. Polym. Scie. 92 (2003) 1493-1500.

DOI: 10.1002/app.20071

Google Scholar

[11] M.V. Alonso, M.L. Auad, S. Nutt, Short-fiber-reinforced epoxy foams, Compos. Part A Appl. Sci. Manuf. 37 (2006) 1952-1960.

DOI: 10.1016/j.compositesa.2005.12.011

Google Scholar

[12] S.H. Goods, C.L. Neuschwanger, L.L. Whinnery, W.D. Nix, Mechanical properties of a particle-strengthened polyurethane foam, J. Appl. Polym. Sci. 74 (1999) 2724-2736.

DOI: 10.1002/(sici)1097-4628(19991209)74:11<2724::aid-app20>3.0.co;2-1

Google Scholar

[13] F. Saint-Michel, L. Chazeau, J.Y. Cavaillé, Mechanical properties of high density polyurethane foams: II Effect of the filler size, Compos. Sci. Technol. 66 (2006) 2709-2718.

DOI: 10.1016/j.compscitech.2006.03.008

Google Scholar

[14] F. Saint-Michel, L. Chazeau, J.Y. Cavaillé, E. Chabert, Mechanical properties of high density polyurethane foams: I. Effect of the density, Compos. Sci. Technol. 66 (2006) 2700-2708.

DOI: 10.1016/j.compscitech.2006.03.009

Google Scholar

[15] U.K. Vaidya, S. Nelson, B. Sinn, B. Mathew, Processing and high strain rate impact response of multi-functional sandwich composites, Compos. Struct. 52 (2001) 429-440.

DOI: 10.1016/s0263-8223(01)00033-2

Google Scholar

[16] B. Wang, L. Wu, X. Jin, S. Du, Y. Sun, L. Ma, Experimental investigation of 3D sandwich structure with core reinforced by composite columns, Mater. Des. 31 (2010) 158-165.

DOI: 10.1016/j.matdes.2009.06.039

Google Scholar

[17] P. Potluri, E. Kusak, T.Y. Reddy, Novel stitch-bonded sandwich composite structures, Compos. Struct. 59 (2003) 251-259.

DOI: 10.1016/s0263-8223(02)00087-9

Google Scholar

[18] F. Xia, X.-Q. Wu, Study on impact properties of through-thickness stitched foam sandwich composites, Compos. Struct. 92 (2010) 412-421.

DOI: 10.1016/j.compstruct.2009.08.016

Google Scholar

[19] T.D. Papathanasiou, M.S. Ingber, D.C. Guell, Stiffness enhancement in aligned, short-fibre composites: A computational and experimental investigation, Compos. Sci. Technol. 54 (1995) 1-9.

DOI: 10.1016/0266-3538(95)00025-9

Google Scholar

[20] M. Kallio, The Elastic and Damping Properties of Magnetorheological Elastomers, VTT Publications, Espoo, 2005.

Google Scholar

[21] M.R. Jolly, J.D. Carlson, C.M. Beth, A model of the behaviour of magnetorheological materials, Smart Marter. Struct. 5 (1996) 607.

Google Scholar

[22] J.D. Carlson, M.R. Jolly, MR fluid, foam and elastomer devices, Mechatronics, 10 (2000) 555-569.

DOI: 10.1016/s0957-4158(99)00064-1

Google Scholar

[23] X.H. Liu, Shear performance of novel disk-type porous foam metal magneto-rheological (MR) fluid actuator, J. Optoelectron. Adv. M. 4 (2010) 1346-1349.

Google Scholar

[24] J. Diani, B. Fayolle, P. Gilormini, A review on the Mullins effect, European Polymer Journal, 45 (2009) 601-612.

DOI: 10.1016/j.eurpolymj.2008.11.017

Google Scholar

[25] L. Sorrentino, M. Aurilia, G. Forte, S. Iannace, Anisotropic Mechanical Behavior of Magnetically Oriented Iron Particle Reinforced Foams, J. Appl. Polym. Sci., 119 (2012) 1239-1247.

DOI: 10.1002/app.32603

Google Scholar

[26] D. Davino, P. Mei, L. Sorrentino, C. Visone, Polymeric composite foams with properties controlled by the magnetic field, IEEE Trans. Magn. In press, (2012).

DOI: 10.1109/tmag.2012.2198634

Google Scholar