Epidermal Systems and Virtual Reality: Emerging Disruptive Technology for Military Applications

Article Preview

Abstract:

This review study, presented at the 2nd World Conference on Advanced Materials for Defense (AuxDefense 2020), focuses on skin as sensory interface and explores the latest discoveries in bioelectronic science. The work analyzes at what extent invisibility is possible by emulating nature, and if military applications can really benefit from technology that combines epidermal systems and virtual reality — and from next generation of wearable textile computing technologies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-101

Citation:

Online since:

July 2021

Authors:

Export:

Price:

* - Corresponding Author

[1] P. Forbes, Dazzled and Deceived: Mimicry and Camouflage, Yale University Press, New Haven, CT, (2009).

Google Scholar

[2] V.A Billock, D.W. Cunningham, B.H. Tsou, What Visual Discrimination of Fractal Textures Can Tell Us about Discrimination of Camouflaged Targets, in: D.H. Andrews, R.P. Herz, M.B. Wolf (Eds.), Human Factors Issues in Combat Identification, Ashgate, Farnham, 2010, p.99–101.

DOI: 10.1201/9781315587387-8

Google Scholar

[3] R. Sun, R. Onose, M. Dunne, A. Ling, A. Denham, H.-L. Kao, Weaving a Second Skin: Exploring Opportunities for Crafting On-Skin Interfaces Through Weaving, Proceedings of the 2020 ACM Designing Interactive Systems Conference. Association for Computing Machinery, New York, NY, USA, 365–377.

DOI: 10.1145/3357236.3395548

Google Scholar

[4] A. Vazquez-Guardado, Y. Yang, A.J. Bandodkar, J.A. Rogers, Recent Advances in Neurotechnologies with Broad Potential for Neuroscience Research, Nat. Neurosci.23(12) (2020) 1522–1536.

DOI: 10.1038/s41593-020-00739-8

Google Scholar

[5] H. Zhao, Y. Lee, M. Han, B.K. Sharma, X. Chen, J.-H. Ahn, J.A. Rogers, Nanofabrication Approaches for Functional Three-Dimensional Architectures, Nano Today 30 (2020) 100825.

DOI: 10.1016/j.nantod.2019.100825

Google Scholar

[6] X. Wang, R. Feiner, H. Luan, Q. Zhang, S. Zhao, Y. Zhang, M. Han, Y. Li, R. Sun, H. Wang, T.-L. Liu, X. Guo, H. Oved, N. Noor, A. Shapira, Y. Zhang, Y. Huang, T. Dvir, J.A. Rogers, Three-Dimensional Electronic Scaffolds for Monitoring and Regulation of Multifunctional Hybrid Tissues, Extrem. Mech. Lett. 35 (2020) 100634.

DOI: 10.1016/j.eml.2020.100634

Google Scholar

[7] J. Byun, Y. Lee, J. Yoon, B. Lee, E. Oh, S. Chung, T. Lee, K.-J. Cho, J. Kim, Y. Hong, Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots, Sci. Robot. 3 (2018).

DOI: 10.1126/scirobotics.aas9020

Google Scholar

[8] T.-A. Pham, T.-K. Nguyen, R.K. Vadivelu et al., A Versatile Sacrificial Layer for Transfer Printing of Wide Bandgap Materials for Implantable and Stretchable Bioelectronics, Adv. Funct. Mater. 30(43) (2020) 2004655.

DOI: 10.1002/adfm.202004655

Google Scholar

[9] J. Li, J.A. Rogers, Interface Engineering of Si Hybrid Nanostructures for Chemical and Biological Sensing, Adv. Mater. Technol. 5(8) (2020) 2000380.

DOI: 10.1002/admt.202000380

Google Scholar

[10] G. Lee, Y.S. Choi, H.-J. Yoon et al., Advances in Physicochemically Stimuli-Responsive Materials for On-Demand Transient Electronic Systems, Matter 3(4) (2020) 1031-1052.

DOI: 10.1016/j.matt.2020.08.021

Google Scholar

[11] J.A. Rogers, J.H. Ahn, Silicon Nanomembranes: Fundamental Science and Applications, John Wiley & Sons, Hoboken, NJ, (2016).

Google Scholar

[12] A. Rahman, S. Walia, S. Naznee, M. Taha, S. Nirantar, F. Rahman, M. Bhaskaran, S. Sriram, Artificial Somatosensors: Feedback Receptors for Electronic Skins, Adv. Intell. Syst. 2(11) (2020) 2000094.

DOI: 10.1002/aisy.202000094

Google Scholar

[13] Y. Yu, J. Nassar, C. Xu, J. Min, Y. Yang, A. Dai, R. Doshi, A. Huang, Y. Song, R. Gehlhar, A.D. Ames, W. Gao, Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces, Sci. Robot.  5(41) (2020).

DOI: 10.1126/scirobotics.aaz7946

Google Scholar

[14] K.A. Yildiz, A.Y. Shin, K.R. Kaufman, Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review, J. Neuroeng. Rehabil. 17(43) (2020).

DOI: 10.1186/s12984-020-00667-5

Google Scholar

[15] L. Talas, R.J. Baddeley, I.C. Cuthill, Cultural evolution of military camouflage, Phil. Trans. R. Soc. B 372 (2017) 20160351.

DOI: 10.1098/rstb.2016.0351

Google Scholar

[16] A. Elias, R. Harley, N. Tsoutas, Camouflage cultures: Beyond the art of disappearance, Sydney University Press, Sydney, (2015).

Google Scholar

[17] C. Yu, Y. Li, X. Zhang, X. Huang, V. Malyarchuk, S. Wang, Y. Shi, L. Gao, Y. Su, Y. Zhang, H. Xu, R.T. Hanlon, Y. Huang, J.A. Rogers, Adaptive Optoelectronic Camouflage Systems With Designs Inspired by Cephalopod Skins, Proc. Natl. Acad. Sci. U.S.A 111(36) (2014) 12998-3003.

DOI: 10.1073/pnas.1410494111

Google Scholar

[18] A. Fishman, J. Rossiter, M. Homer, Hiding the squid: patterns in artificial cephalopod skin, Interface 12(108) (2015).

DOI: 10.1098/rsif.2015.0281

Google Scholar

[19] S. Baik, J. Kim, H.J. Lee, T.H. Lee, C. Pang, Highly Adaptable and Biocompatible Octopus‐Like Adhesive Patches with Meniscus‐Controlled Unfoldable 3D Microtips for Underwater Surface and Hairy Skin, Adv. Sci. 5(8) (2018).

DOI: 10.1002/advs.201800100

Google Scholar

[20] K.W. McKee, D.W. Tack, Active Camouflage for Infantry Headwear Applications, Defence Research and Development Canada, Toronto, 2007, CR-2007-023.

Google Scholar

[21] N.E. Scott-Samuel, R. Baddeley, C.E. Palmer, I.C. Cuthill, Dazzle camouflage affects speed perception, PLoS One 6(6) (2000).

DOI: 10.1371/journal.pone.0020233

Google Scholar

[22] Information on https://www.onr.navy.mil/Science-Technology/Departments/Code-34/All-Programs/warfighter-protection-applications-342/warfighter-augmentation.

Google Scholar

[23] D. Iakovlev, S. Hu, H. Hassan, V. Dwyer, R. Ashayer-Soltani, C. Hunt, J. Shen, Smart Garment Fabrics to Enable Non-Contact Opto-Physiological Monitoring, Biosensors 8(2) (2018)33.

DOI: 10.3390/bios8020033

Google Scholar

[24] X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado, H. Luan, J. Ruban, X. Ning, A. Akhtar, D. Li, B. Ji, Y. Liu, R. Sun, J. Cao, Q. Huo, Y. Zhong, C. Lee, S. Kim, P. Gutruf, C. Zhang, Y. Xue, Q. Guo, A. Chempakasseril, P. Tian, W. Lu, J. Jeong, Y. Yu, J. Cornman, C. Tan, B. Kim, K. Lee, X. Feng, Y. Huang, J.A. Rogers, Skin-integrated wireless haptic interfaces for virtual and augmented reality, Nature 575 (2019) 473–479.

DOI: 10.1038/s41586-019-1687-0

Google Scholar

[25] C. Harrison, D. Tan, D. Morris, Skinput: Appropriating the Body as an Input Surface, Proceedings of the 28th International Conference on Human Factors in Computing Systems, (2010) 453–462.

DOI: 10.1145/1753326.1753394

Google Scholar

[26] C. Harrison, D. Tan, D. Morris, Skinput: Appropriating the Skin as an Interactive Canvas, Commun. ACM 54(8) (2011) 111-118.

DOI: 10.1145/1978542.1978564

Google Scholar