Synthesis of Silicon Microspheres

Article Preview

Abstract:

The synthesis of silicon microspheres is of outmost importance, especially for the production of optical and electrical devices due to their unique properties displayed by this material. In this paper, we review the research on the synthesis of silicon microspheres, including one physical method, the drop method and several chemical methods, such as vapor-phase reaction, vapor-solid reaction, liquid phase reaction and magnesio-thermal reduction method. The formation mechanisms for silicon microsphere particles are also summarized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

505-518

Citation:

Online since:

March 2016

Export:

Price:

[1] S. M. Sze, Physics of semiconductor devices, second ed., Wiley, New York, (1981).

Google Scholar

[2] B. G. Streetman, S. Banerjee, Solid State Electronic Devices, fifth ed., Prentice Hall, New Jersey, (2000).

Google Scholar

[3] Ali. Serpengüzel, A. Kurt and U. K. Ayaz, Silicon microspheres for electronic and photonic integration, Photonics and Nanostructures-Fundamentals and Applications 6(2008)179-182.

DOI: 10.1016/j.photonics.2008.08.005

Google Scholar

[4] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, Two-dimensional photonic band-gap defect mode laser, Science. 284(1999)1819-1821.

DOI: 10.1126/science.284.5421.1819

Google Scholar

[5] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, Large scale synthesis of a silicon photonic crystal with a complete three dimensional bandgap near 1. 5 micrometers, Nature. 405(2000)437-440.

DOI: 10.1038/35013024

Google Scholar

[6] B. S. Song, S. Noda and T. Asano, Photonic devices based on in-plane hetero photonic crystals, Science. 300 (2003)1537-1537.

DOI: 10.1126/science.1083066

Google Scholar

[7] A. Liu, H. Rong, M. Paniccia, O. Cohen, D. Hak, Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering, Optics Express. 12(2004) 4261-4268.

DOI: 10.1364/opex.12.004261

Google Scholar

[8] H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide, Applied Physics Letters. 85 (2004)2196-2198.

DOI: 10.1063/1.1794862

Google Scholar

[9] R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering, Optics Express. 13 (2005) 19-25.

DOI: 10.1364/opex.13.000519

Google Scholar

[10] J. Song, Y. Li, X. Zhou, X. Li, Planar grating multiplexers using silicon nanowire technology: numerical simulations and fabrications, Progress in Electromagnetics Research. 123 (2012) 509-526.

DOI: 10.2528/pier11110402

Google Scholar

[11] H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, A continuous-wave Raman silicon laser, Nature. 433 (2005) 725-728.

DOI: 10.1038/nature03346

Google Scholar

[12] K. J. Vahala, Optical microcavities, Nature. 424 (2003) 839-846.

Google Scholar

[13] T. Minemoto, C. Okamoto, S. Omae, M. Murozono, H. Takakura, Y. Hamakawa, Fabrication of spherical silicon solar cells with semi-light-concentration system, Japanese Journal of Applied Physics. 44(2005)4820-4824.

DOI: 10.1143/jjap.44.4820

Google Scholar

[14] T. Minemoto, H. Takakura, Fabrication of spherical silicon crystals by dropping method and their application to solar cells, Japanese Journal of Applied Physics. 46(2007) 4016-4020.

DOI: 10.1143/jjap.46.4016

Google Scholar

[15] T. Ikuta, T. Minemoto, H. Takakura, Y. Hamakawa, Optical design of spherical silicon solar cells with reflector cup, Japanese Journal of Applied Physics. 45 (2006) 3938-3942.

DOI: 10.1143/jjap.45.3938

Google Scholar

[16] S. Omae, T. Minemoto, M. Murozono, H. Takakura, Y. Hamakawa, Crystal characterization of spherical silicon solar cell by X-ray diffraction, Japanese Journal of Applied Physics. 45 (2006) 3933-3937.

DOI: 10.1143/jjap.45.3933

Google Scholar

[17] H. C. Tapalian, J. P. Laine, P. A. Lane, Thermooptical switches using coated microsphere resonators, IEEE Photonics Technology Letters. 14 (2002) 1118-1120.

DOI: 10.1109/lpt.2002.1021988

Google Scholar

[18] I. Teraoka, S. Arnold, and F. Vollmer, Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium, Journal of the Optical Society of America B. 20 (2003)1937-(1946).

DOI: 10.1364/josab.20.001937

Google Scholar

[19] A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, L. Maleki, Optical gyroscope with whispering gallery mode optical cavities, Optics Communications. 233 (2004) 107-112.

DOI: 10.1016/j.optcom.2004.01.035

Google Scholar

[20] Y. O. Yilmaz, A. Demir, A. Kurt, A. Serpenguzel, Optical channel dropping with a silicon microsphere, IEEE Photonics Technology Letters. 17 (2005) 1662-1664.

DOI: 10.1109/lpt.2005.850896

Google Scholar

[21] M. Lu, H. Zhang, Controllable synthesis of spherical silicon and its performance as an anode for lithium-ion batteries, Ionics. 19 (2013) 1695-1698.

DOI: 10.1007/s11581-013-1006-y

Google Scholar

[22] J. Xie, G. Wang, Y. Huo, S. Zhang, G. Cao, X. Zhao, Nanostructured silicon spheres prepared by a controllable magnesiothermic reduction as anode for lithium ion batteries, Electrochimica Acta. 135 (2014) 94-100.

DOI: 10.1016/j.electacta.2014.05.012

Google Scholar

[23] S. Omae, T. Minemoto, M. Murozono, H. Takakura, Y. Hamakawa, Crystal growth mechanism of spherical silicon fabricated by dropping method, Japanese Journal of Applied Physics. 45(2006)3577-3580.

DOI: 10.1143/jjap.45.3577

Google Scholar

[24] R. Körmer, M. Jank, H. Ryssel, H. J. Schmid, W. Peukert, Aerosol synthesis of silicon nanoparticles with narrow size distribution-part 1: Experimental investigations, Journal of Aerosol Science. 41 (2010) 998-1007.

DOI: 10.1016/j.jaerosci.2010.05.007

Google Scholar

[25] R. Fenollosa, F. Meseguer, M. Tymczenko, Silicon colloids: from micro-cavities to photonic sponges, Advanced Materials. 20 (2008) 95-98.

DOI: 10.1002/adma.200701589

Google Scholar

[26] L. E. Pell, A. D. Schricker, F. V. Mikulec, B. A. Korgel, Synthesis of amorphous silicon colloids by trisilane thermolysis in high temperature supercritical solvents, Langmuir. 20 (2004) 6546-6548.

DOI: 10.1021/la048671o

Google Scholar

[27] J. Zhu, R. Liu, J. Xu, C. Meng, Preparation and characterization of mesoporous silicon spheres directly from MCM-48 and their response to ammonia, Journal of Materials Science. 46(2011) 7223-7227.

DOI: 10.1007/s10853-011-5680-8

Google Scholar

[28] S. Omae, C. Okamoto, H. Takakura, Y. Hamakawa, M. Murozono, Crystal structure analysis of spherical silicon using X-Ray pole figures, Solid State Phenom. 93 (2003) 249-256.

DOI: 10.4028/www.scientific.net/ssp.93.249

Google Scholar

[29] X. Huang, S. Uda, H. Tanabe, N. Kitahara, H. Arimune, K. Hoshikawa, In situ observations of crystal growth of spherical Si single crystals, Journal of Crystal Growth. 307 (2007) 341-347.

DOI: 10.1016/j.jcrysgro.2007.07.005

Google Scholar

[30] S. Omae, T. Minemoto, M. Murozono, H. Takakura, Y. Hamakawa, Crystal evaluation of spherical silicon produced by dropping method and their solar cell performance, Solar Energy Materials & Solar Cells. 90 (2006) 3614-3623.

DOI: 10.1016/j.solmat.2006.06.056

Google Scholar

[31] Z. Liu, T. Nagai, A. Masuda, M. Kondo, K. Sakai, K. Asai, Seeding method with silicon powder for the formation of silicon spheres in the drop method, Journal of Applied Physics. 101 (2007) 093505(1-5).

DOI: 10.1063/1.2718872

Google Scholar

[32] C. Okamoto, T. Minemoto, M. Murozono, H. Takakura, Y. Hamakawa, Electric and crystallographic characterizations on hydrogen passivated spherical silicon solar cells, Japanese Journal of Applied Physics. Part 1, 44 (2005) 7372-7376.

DOI: 10.1143/jjap.44.7372

Google Scholar

[33] C. Okamoto, K. Tsujiya, T. Minemoto, M. Murozono, H. Takakura, Y. Hamakawa, Reduction in dislocation density of spherical silicon solar cells fabricated by decompression dropping method, Japanese Journal of Applied Physics. Part 1, 44 (2005).

DOI: 10.1143/jjap.44.8351

Google Scholar

[34] Z. Liu, K. Asai, A. Masuda, T. Nagai, Y. Akashi, M. Murozono, Improvement of the production yield of spherical Si by optimization of the seeding technique in the dropping method, Japanese Journal of Applied Physics. 46(2007) 5695-5700.

DOI: 10.1143/jjap.46.5695

Google Scholar

[35] Y. Kuzuokaa, S. Isomaeb, and Y. Yamaguchi, Crystal morphology of spherical silicon particles produced by jet-splitting method, Journal of Crystal Growth. 304 (2007) 487-491.

DOI: 10.1016/j.jcrysgro.2007.02.030

Google Scholar

[36] M. Gharghi, S. Sivoththaman, Growth and structural characterization of spherical silicon crystals grown from polysilicon, Journal of Electronic Materials. 37 (2008) 1657-1664.

DOI: 10.1007/s11664-008-0547-8

Google Scholar

[37] S. Ueno, H. Kobatake, H. Fukuyama, S. Awaji, H. Nakajima, Formation of silicon hollow spheres via electromagnetic levitation method under static magnetic field in hydrogen–argon mixed gas, Materials Letters. 63(2009) 602-604.

DOI: 10.1016/j.matlet.2008.11.048

Google Scholar

[38] S. P. Walch, C. E. Dateo, Thermal decomposition pathways and rates for silane, chlorosilane, dichlorosilane and trichlorosilane, Journal of Physical Chemistry. 105 (2001) 2015-(2022).

DOI: 10.1021/jp003559u

Google Scholar

[39] W. A. P. Claasen, J. Bloem, The nucleation of CVD silicon on SiO2 and Si3N4 substrates, Journal of the Electrochemical Society. 127 (1980) 194-202.

Google Scholar

[40] W. O. Filtvedt, A. Holt, P. A. Ramachandran, M. C. Melaaen, Chemical vapor deposition of silicon from silane: Review of growth mechanisms and modeling / scale up of fluidized bed reactors, Solar Energy Materials & Solar Cells. 107(2012) 188-200.

DOI: 10.1016/j.solmat.2012.08.014

Google Scholar

[41] J. J. Wu, H. V. Nguyen, R. C. Flagan, A method for the synthesis of submicron particles, Langmuir. 3(1987) 266-271.

DOI: 10.1021/la00074a021

Google Scholar

[42] K. A. Littau, P. J. Szajowski, A. J. Muller, A. R. Kortan, L. E. Bm, A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction, The Journal of Physical Chemistry. 97 (1993) 1224-1230.

DOI: 10.1021/j100108a019

Google Scholar

[43] M. Tao, L. P. Hunt, The thermodynamic behavior of the Si-H system and its role in Si CVD from SiH4, Journal of the Electrochemical Society. 139(1992) 806-809.

DOI: 10.1149/1.2069307

Google Scholar

[44] M. T. Swihart, S. L. Girshick, Thermochemistry and kinetics of silicon hydride cluster formation during thermal decomposition of silane, The Journal of Physical Chemistry B. 103(1999) 64-76.

DOI: 10.1021/jp983358e

Google Scholar

[45] N. K. Serdyuk, V. P. Strunin, E. N. Chesnokov, V. N. Panfilov, Isotope exchange during thermal decomposition of the mixture SiH4 + SiD, Kinetikai Kataliz (Russia). 26(1985) 790-798.

Google Scholar

[46] R. Becerra, R. Walsh, Some mechanistic problems in the kinetic modeling of monosilane pyrolysis, The Journal of Physical Chemistry. 96 (1992) 10856-10862.

DOI: 10.1021/j100205a047

Google Scholar

[47] A. A. Onischuk, V. P. Strunin, M. A. Ushakova, V. N. Panfilov, Aerosol particles under silane pyrolysis, Chemical Physics (Russia). 13(1994)129-138.

Google Scholar

[48] M. B. Zbib, U. Sahaym, and D. Bahri, Characterization of silicon nanoparticles formed from a fluidized bed reactor and their incorporation onto metal-coated carbon fibers, Journal of metals. 66(2014) 82-86.

DOI: 10.1007/s11837-013-0805-y

Google Scholar

[49] A. A. Onischuk, V. P. Strunin, M. A. Ushakova, V. N. Panfilov, On the pathways of aerosol formation by thermal decomposition of silane, Journal of Aerosol Science. 28(1997) 207-222.

DOI: 10.1016/s0021-8502(96)00061-4

Google Scholar

[50] F. Huisken, H. Hofmeister, B. Kohn, M. A. Laguna, V. Paillard, Laser production and deposition of light-emitting silicon nanoparticles, Applied Surface Science. 154-155(2000)305-313.

DOI: 10.1016/s0169-4332(99)00476-6

Google Scholar

[51] M. J. Kirchhof, H. J. Schmid, W. Peukert, Reactor system for the study of high-temperature short-time sintering of nanoparticles, Review of Scientific Instruments. 75(2004) 4833-4840.

DOI: 10.1063/1.1809258

Google Scholar

[52] J. Fernández de la Mora, N. Rao, P. H. Mc Murry, Inertial impaction of fine particles at moderate Reynolds numbers and in the transonic regime with a thin-plate orifice nozzle, Journal of Aerosol Science. 21 (1990) 889-909.

DOI: 10.1016/0021-8502(90)90160-y

Google Scholar

[53] S. Balaji, J. Du, C. M. White, B. E. Ydstie, Multi-scale modeling and control of fluidized beds for the production of solar grade silicon, Powder Technology. 199(2010) 23-31.

DOI: 10.1016/j.powtec.2009.04.022

Google Scholar

[54] J. Du, B. E. Ydstie, Modeling and control of particulate processes and application to poly-silicon production, Chemical Engineering Science. 67(2012) 120-130.

DOI: 10.1016/j.ces.2011.08.023

Google Scholar

[55] S. K. Iya, U.S. Patent, 4, 684, 513. (1987).

Google Scholar

[56] C. M. White, P. Ege and B. E. Ydstie, Size distribution modeling for fluidized bed solar-grade silicon production, Powder Technology. 163(2006) 51-58.

DOI: 10.1016/j.powtec.2006.01.005

Google Scholar

[57] M. Frenklach, L. Ting, H. Wang, M. J. Rabinowtiz, Silicon particle formation in pyrolysis of silane and disilane, Israel Journal of Chemistry. 36 (1996) 293-303.

DOI: 10.1002/ijch.199600041

Google Scholar

[58] P. Ho, M. E. Coltrin, W. G. Breiland, Laser-induced fluorescence measurements and kinetic analysis of Si atom formation in a rotating disk chemical vapor deposition reactor. Journal of Physical Chemistry, 98(1994) 10138-10147.

DOI: 10.1021/j100091a032

Google Scholar

[59] C. Hollenstein, J. L. Dorier, J. Dutta, A. A. Howling, Diagnostics of particle genesis and growth in RF silane plasmas by ion mass spectrometry and light scattering, Plasma Sources Science & Technology. 3(1994) 278-285.

DOI: 10.1088/0963-0252/3/3/007

Google Scholar

[60] A. A. Onischuk, A. I. Levykin, V. P. Strunin, K. K. Sabelfeld, V. N. Panfilov, Aggregate formation under homogeneous silane thermal decomposition, Journal of Aerosol Science. 31(2000), 1263-1281.

DOI: 10.1016/s0021-8502(00)00031-8

Google Scholar

[61] R. Körmer, H. J. Schmid, and W. Peukert, Aerosol synthesis of silicon nanoparticles with narrow size distribution-Part 2: Theoretical analysis of the formation mechanism, Journal of Aerosol Science. 41 (2010) 1008-1019.

DOI: 10.1016/j.jaerosci.2010.08.002

Google Scholar

[62] W. J. Menz, M. Kraft, A new model for silicon nanoparticle synthesis, Combustion and Flame. 160(2013) 947-958.

DOI: 10.1016/j.combustflame.2013.01.014

Google Scholar

[63] T. Hogness, T. Wilson, and W. Johnson, The thermal decomposition of silane, Journal of the American Chemical Society. 58(1936) 108-112.

DOI: 10.1021/ja01292a036

Google Scholar

[64] J. H. Purnell, R. Walsh, The pyrolysis of monosilane, Proceedings of the Royal Society Series A. 293(1966) 543-561.

Google Scholar

[65] A. Yuuki, Y. Matsui and K. Tachibana, A numerical study on gaseous reactions in silane pyrolysis, Japanese Journal of Applied Physics. 27 (1987) 747-754.

DOI: 10.1143/jjap.26.747

Google Scholar

[66] H. V. Nguyen, R. C. Flagan, Particle formation and growth in single-stage aerosol reactors, Langmuir. 7(1991) 1807-1814.

DOI: 10.1021/la00056a038

Google Scholar

[67] F. Slootman, J. Parent, Homogeneous gas-phase nucleation in silane pyrolysis, Journal of Aerosol Science. 25 (1994) 15-21.

DOI: 10.1016/0021-8502(94)90178-3

Google Scholar

[68] S. L. Girshick, C. P. Chiu, Homogeneous nucleation of particles from the vapor phase in thermal plasma synthesis, Plasma Chemistry & Plasma Processing. 9(1989) 355-369.

DOI: 10.1007/bf01083672

Google Scholar

[69] C. S. Herrick, D. W. Woodruff, The homogeneous nucleation of condensed silicon in the gaseous Si-H-Cl system, Journal of the Electrochemical Society. 131 (1984) 2417-2422.

DOI: 10.1149/1.2115307

Google Scholar

[70] F. E. Kruis, J. Schoonman and B. Scarlett, Homogeneous nucleation of silicon, Journal of Aerosolence. 25(1994) 1291-1304.

DOI: 10.1016/0021-8502(94)90126-0

Google Scholar

[71] W. J. Menz, S. Shekar, G. Brownbridge, S. Mosbach, R. Körmer, W. Peukert, Synthesis of silicon nanoparticles with a narrow size distribution: A theoretical study, Journal of Aerosol Science. 44 (2012) 46-61.

DOI: 10.1016/j.jaerosci.2011.10.005

Google Scholar

[72] M. Sander, R. H. West and M. S. C. M. Kraft, A detailed model for the sintering of poly-dispersed nanoparticle agglomerates, Aerosol Science & Technology. 43(2009), 978-989.

DOI: 10.1080/02786820903092416

Google Scholar

[73] M. Celnik, R. Patterson, M. Kraft, W. Wagner, Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting, Combustion and Flame. 148(2007) 158-176.

DOI: 10.1016/j.combustflame.2006.10.007

Google Scholar

[74] W. Koch, S. K. Friedlander, The effect of particle coalescence on the surface area of a coagulating aerosol, Journal of Aerosol Science. 140(1990), 419-427.

DOI: 10.1016/0021-9797(90)90362-r

Google Scholar

[75] K. Sinniah, M. G. Sherman, L. B. Lewis, W. H. Weinberg, J. T. J. Yates, K. C. Janda, Hydrogen desorption from the monohydride phase on Si(100), Journal of Chemical Physics. 92 (1990) 5700-5711.

DOI: 10.1063/1.458501

Google Scholar