Hexagonal Ferrite Fibres and Nanofibres

Article Preview

Abstract:

Hexagonal ferrites, or hexaferrites, are hugely important materials commercially and technologically, with common applications as permanent magnets, magnetic recording and data storage media, components in electrical devices operating at wireless frequencies, and as GHz electromagnetic wave absorbers for EMC, RAM and stealth technologies. Hexaferrites are all ferrimagnetic materials, and their magnetic properties are intrinsically linked to their crystalline structures, all having a strong magnetocrystalline anisotropy; that is the induced magnetisation has a preferred orientation within the crystal structure. They can be divided into two main groups: those with an easy axis of magnetisation (known as uniaxial), the hard hexaferrites, and those with an easy plane (or cone) of magnetisation (known as ferroxplana or hexaplana), soft ferrites. The common hexaferrite members are:M-type ferrites, such as BaFe12O19 and SrFe12O19Z-type ferrites (Ba3Me2Fe24O41)Y-type ferrites (Ba2Me2Fe12O22)W-type ferrites (BaMe2Fe16O27)X-type ferrites (Ba2Me2Fe28O46)U-type ferrites (Ba4Me2Fe36O60)where Me = a small 2+ ion such as cobalt, nickel or zinc, and Ba can be fully substituted by Sr. Generally, the M ferrites are hard, the Y, Z and U ferrites are soft, and the W and X ferrites can very between these two extremes, but all have large magnetisation (M) values.There is currently increasing interest in composite materials containing hexaferrite fibres. It had been predicted that properties such as thermal and electrical conductivity, and magnetic, electrical and optical behaviour will be enhanced in material in fibrous form. This is because a continuous fine fibre can be considered as effectively one-dimensional, and it does not behave as a homogeneously distributed solid. Although the intrinsic magnetisation of the material is unaffected, the effective magnetisation of an aligned fibre sample should be greater when a field is applied parallel with fibre alignment compared to when applied perpendicularly to fibre alignment. This feature was first demonstrated by the author for aligned hexaferrite fibres in 2006. This chapter will deal with progress in the manufacture and properties of hexaferrite fibres, from the first syntheses of BaM, SrM, Co2Y, Co2Z, Co2W, Co2X and Co2U micron-scale fibres by the author 12-15 years ago, to recent developments in M ferrite hollow fibres and nanofibres, and hexaferrite-coated CNTs (carbon nanotubes).The relative properties of all reported hexaferrite fibres are compared and summarised at the end of this chapter.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 241)

Pages:

1-68

Citation:

Online since:

October 2015

Export:

Price:

* - Corresponding Author

[1] U. Ozgur, Y. Alivov and H. Morkoc, Microwave ferrites, part 1: fundamental properties, J. Mat. Sci.: Mater Electron 20 (2009) 789-834.

DOI: 10.1007/s10854-009-9923-2

Google Scholar

[2] R.C. Pullar, Hexagonal Ferrites: a Review of the Synthesis, Properties and Applications of Hexaferrite Ceramics, Prog. Mat. Sci. 57 (2012) 1191-1334.

DOI: 10.1016/j.pmatsci.2012.04.001

Google Scholar

[3] I. Harter, C. C. Norton Jr and C. D. Christie (Babcock and Wilson Co. ), US Pat. 2467889, Mineral Wool, (April 1949).

Google Scholar

[4] Man-made vitreous fibres, International Agency for Research on Cancer (IARC) – IARC monographs on the evaluation of carcinogenic risks to humans 81 (2002) p.68.

Google Scholar

[5] Babcock and Wilcox Co., GB Pat. 1098595, Process of manufacturing refractory fibers, (January 1968).

Google Scholar

[6] M. J. Morton, J. D. Birchall and J. E. Cassidy (ICI Ltd. ), GB Pat. 1360197, Fibres, (July 1974).

Google Scholar

[7] M. D. Taylor, Properties and microstructures of small-diameter alumina-based fibres", in: A. R. Bunsell and M-H. Berger (Eds), "Fine Ceramic Fibres, Marcel Dekker Inc, New York (1999).

Google Scholar

[8] J. U. Ejiofor and R. G. Reddy, Characterization of pressure-assisted sintered Al–Si composites, Mat. Sci. Eng. A 259 (1999) 314-323.

DOI: 10.1016/s0921-5093(98)00907-1

Google Scholar

[9] http: /www. saffil. com , accessed Sept (2014).

Google Scholar

[10] M. H. Stacey and M. D. Taylor (ICI PLC), Eur. Pat. 0318203, Inorganic oxide fibres and their production, (November 1988).

Google Scholar

[11] Q. -G. Chen and J. T. Davies, Sol-gel processing of refractory compounds in alumina-baria system, Brit. Ceram. Trans. 96 (1997) 170-174.

Google Scholar

[12] H. B. Whitehurst (Owens-Corning Fibre Glass Corp. ), US Pat. 2968622, Magnetic ceramic fibers and method of making same, (January 1961).

Google Scholar

[13] W. Eugene and R. M. Beasley (Horizons Inc. ), US Pat. 3082051, Fiber forming process, (March 1963).

Google Scholar

[14] K. Ishino, Y. Narumiya and Y. Hashimoto (TDK Ltd. ), Jpn. Pat 59100718, Manufacture of composite ferrite fiber, (November 1982).

Google Scholar

[15] R. M. Arons (Celanese Corp. ), US Pat. 4559191, Production of ceramic fibers, (December 1985).

Google Scholar

[16] R. C. Pullar, D. R. Pyke, M. D. Taylor and A. K. Bhattacharya, The manufacture and characterisation of single phase magnetite and haematite aligned fibres from an aqueous sol-gel process, J. Mat. Sci. 33 (1998) 5229-5235.

Google Scholar

[17] H. Sato ad T. Umeda, Structures and magnetic properties of rapidly solidified strontium and barium ferrites" in: "Ferrites: Proeedings of the 6th International Conference on Ferrites (ICF6), Kyoto and Tokyo, 1992", T. Yamaguchi and M. Abe, Eds., Jpn. Soc. Powder Metall. 79 (1992).

Google Scholar

[18] M. F. Stanton, M. Layard, M. Miller, M. May and E. Kent, Carcinogenicity of fibrous glass - pleural response in rat in relation to fiber dimension, J. Natl. Cancer Inst. 58 (1977) 587-603.

DOI: 10.1093/jnci/58.3.587

Google Scholar

[19] Safety in the Use of Mineral and Synthetic Fibres, International Labour Office, Geneva, Switzerland, Occupational Safety and Health Series 64 (1990).

Google Scholar

[20] Morgan Thermal Ceramics Materials Safety Data Sheet (MSDS) 201, Revised 06/29/(2011).

Google Scholar

[21] P.A. Schulte, V. Murashov, R. Zumwalde, E. D. Kuempel and C. L. Geraci, Occupational exposure limits for nanomaterials: state of the art, J. Nanopart. Res. 12 (2010) 1971-(1987).

DOI: 10.1007/s11051-010-0008-1

Google Scholar

[22] ISO/TR 27628: 2007, Workplace atmospheres - Ultrafine, nanoparticle and nano-structured aerosols - Inhalation exposure characterization and assessment, (2007).

DOI: 10.3403/30147850u

Google Scholar

[23] Criteria for assessment of the effectiveness of protective measures (2011). http: /www. dguv. de/ifa/Fachinfos/Nanopartikel-am-Arbeitsplatz/Beurteilung-von-Schutzma %C3%9Fnahmen/index-2. jsp Accessed Sept (2014).

Google Scholar

[24] Current Intelligence Bulletin: Occupational Exposure to Carbon Nanotubes and Nanofibers, NIOSH, 2011. http: /www. steptoe. com/f-380. html Accessed Sept (2014).

Google Scholar

[25] J. Pauluhn, Multi-walled carbon nanotubes (Baytubes ®): Approach for derivation of occupational exposure limit, Regul. Toxicol. Pharmacol. 57 (2010) 78-89.

DOI: 10.1016/j.yrtph.2009.12.012

Google Scholar

[26] Guide to Safe Handling and Disposal of Manufactured Nanomaterials, BSI PD6699-2 (2007).

Google Scholar

[27] G. F. Taylor, Process and apparatus for making filaments, US Patent 1 793 529 (1931); G. F Taylor, Phys. Rev. 23 (1924) 655-660.

Google Scholar

[28] K. Han, J. D. Embury, J. J. Petrovic and G. C. Weatherly, Microstructural aspects of Cu-Ag produced by the Taylor wire method, Acta Mat. 46 (1998) 4691-4699.

DOI: 10.1016/s1359-6454(98)00135-9

Google Scholar

[29] W. H. Otto and R. B. Vidanoff, (Narmco Industries Inc., San Diego), Silica fiber forming and core sheath composite fiber development, BuWeps, Cont. N600(19) 59607, Final Summary Report (January 1964).

Google Scholar

[30] A. V. Ulitovsky, I. M. Maianski and A. I. Avramenco, Method of continuous casting of glass coated microwire" USSR Patent 128427, 15. 05. 60 Bulletin. No. 10 p.14 (1960).

Google Scholar

[31] V. S. Larin, A. V. Torcunov, A. Zhukov, J. Gonzalez and L. Panina, Preparation and properties of glass-coated microwires, J. Magn. Mag. Mat. 249 (2002) 39-45.

DOI: 10.1016/s0304-8853(02)00501-2

Google Scholar

[32] C. J. Brinker and G. W. Scherer, Sol Gel Science, Academic Press, New York, (1990).

Google Scholar

[33] L. R. McCreight, Ceramic and Graphite Fibres and Whiskers, Academic Press, New York, 1965, pp.123-4.

Google Scholar

[34] T. Furuya, Y. Uchiyama, A. Kouda (Denki Kagaku Kogyo Kabushi Kaisha), Process for production of precursor of alumina fiber, US Pat. 4348341 (September 1982).

Google Scholar

[35] K. A. Karst and H. G. Sowman (Minnesota Mining and Manufactruring Co. ), Non-frangible alumina-silica fibers, US Pat. 4047966 (September 1977).

Google Scholar

[36] M. H. Stacey And M. D. Taylor (ICI), Method of producing inorganic oxide fibers with axially aligned porosity, US Pat. 5176857 (January 1993).

Google Scholar

[37] C. Burger, B. S. Hsiao and B. Chu, Nanofibrous materials and their Applications, Ann. Rev. Mat. Res. 36 (2006) 333-368.

Google Scholar

[38] A. Formhals (Richard Schreiber Gastell), Production of artificial fibers" US Patent 2077373 (April 1937); A. Formhals, "Method and apparatus for the production of fibers, US Patent 2116942 (May 1938).

Google Scholar

[39] D. Li and Y. Xia, Electrospinning of nanofibres: Reinventing the wheel?, Adv. Mat. 16 (2004) 1151-1170.

Google Scholar

[40] D. Li and Y. Xia, Fabrication of Titania Nanofibers by Electrospinning" Nano Lett. 3 (2003) 555-560; D. Li and Y. Xia, Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning, Nano Lett. 4 (2004) 933-938.

DOI: 10.1021/nl049590f

Google Scholar

[41] Z. M. Huang, Y.Z. Zhang, M. Kotaki and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Comp. Sci. Tech. 63 (2003) 2223-2253.

DOI: 10.1016/s0266-3538(03)00178-7

Google Scholar

[42] H. L. Cox, The elasticity and strength of paper and other fibrous materials, British J. Appl. Phys. 3 (1952) 72-79.

DOI: 10.1088/0508-3443/3/3/302

Google Scholar

[43] J. Aveston, G. Cooper and A. Kelly, Properties of Fibre Composites, Conf. Proc. National Physical Laboratory, IPC, London , 1971, p.15.

Google Scholar

[44] H. E. Holcomb (Johns-Manville Corp. ), US Pat. 3118807 (January 1964).

Google Scholar

[45] G. A. Lesieutre, S. Yarlagadda, S. K. Kurtz and S. Yoshikawa, Resistively-shunted piezoceramics for passively-damped structural composites materials", Proceedings of the International Conf. on Damping of Multiphase Inorganic Materials, at the Combined ASM International Materials Week 92 / TMS 1992 Fall Meeting, Nov. 2nd-5th 1992, Chcago, IL, USA, ed R. B. Bhagat, 1993, pp.151-7; G. A. Lesieutre, S. Yarlagadda, S. Yoshikawa, S. K. Kurtz and Q. C. Xu, "Passively damped structural composite-materials using resistively shunted piezoceramic fibers, J. Mat. Eng. Perf. 2 (1993).

DOI: 10.1007/bf02645690

Google Scholar

[46] J. D. French, G. E. Weitz, E. J. Luke, R. B. Cass, B. Jaddian, P. Bhargava and A. Safari, Production of continuous piezoelectric ceramic fibers for smart materials and active control devices, Proc. SPIE - Int. Soc. Opt. Eng. 3044 (1997) 406-412.

DOI: 10.1117/12.274684

Google Scholar

[47] D. K. Hale, Physical-properties of composite-materials, J. Mat, Sci. 11 (1976) 2105-2141.

Google Scholar

[48] W. F. Brown, Solid mixture permittivities, J. Chem. Phys. 23 (1955) 1514-1517.

Google Scholar

[49] D. R. Askeland, The Science and Engineering of Materials, 3rd S. I. edition, Chapman and Hall, London, 1996, pp.562-564.

Google Scholar

[50] S. W. Tsai and H. T. Hahn, Introduction to Composite Materials, Technomic Publishing Co., Westport, CONN, USA, 1980, pp.383-390.

Google Scholar

[51] H. A. Goldberg (Hoechst Celanese Corp., New Jersey), High magnetic permeability composites containing fibers with ferrite fill, Us Pat. 4725490 (February 1988).

Google Scholar

[52] W. E. A. Davies, Dielectric-constant of Fiber Composites, J. Phys. D 7 (1974) 120-130.

Google Scholar

[53] G. Aminoff, Über ein neues oxydisches Mineral aus Långban. (Magnetoplumbit. ), Geol. Foren. Stockh. Forh. 47 (1925) 283-289.

DOI: 10.1080/11035892509448164

Google Scholar

[54] V. Adelskold, X-Ray Studies on Magneto-Plumbite, Pb0. 6Fe12O13, and other Substances resembling "Beta-Alumina", Na12O11Al12O13, Arkiv. Kemi., Min. Geol. 12a (1938) 29/1-9.

Google Scholar

[55] J. J. Went, G. W. Rathenau, E. W. Gorter and G. W. Van Oosterhout, Ferroxdure, a class of new permanent magnet materials, Phil. Tech. Rev. 13 (1952) 194-208.

DOI: 10.1103/physrev.86.424.2

Google Scholar

[56] H. P. J. Wijn, A new method of melting ferromagnetic semiconductors. BaFe18O27, a new kind of ferromagntic crystal with high crystal anisotropy, Nature 170 (1952) 707-708.

DOI: 10.1038/170707a0

Google Scholar

[57] P. B. Braun, Crystal structure of BaFe18O27, Nature 170 (1952) 708.

Google Scholar

[58] G. H. Jonker, H. P. J. Wijn and P. B. Braun, Ferroxplana, hexagonal ferromagnetic ron-oxide compounds for very high frequencies, Phil. Tech. Rev. 18 (1956) 145-180.

Google Scholar

[59] J. Smit and H. P. J. Wijn, Ferrites, Philips Technical Library, Eindhoven, (1959).

Google Scholar

[60] P. B. Braun, The crystal structure of a new group of ferromagnetic compounds, Phil. Res. Rep. 12 (1957) 491-548.

Google Scholar

[61] M. Sugimoto, Ferromagnetic Materials, Vol. 3, E. P. Wohfarth (Ed. ), North-Holland Physics Publishing, Amsterdam, 1980, p.392 – 440.

Google Scholar

[62] K. Kamishima,N. Hosaka, K. Kakizaki and N. Hiratsuka, Crystallographic and magnetic properties of Cu2X, Co2X, and Ni2X hexaferrites, J. Appl. Phys. 109 (2011) 013904.

DOI: 10.1063/1.3527933

Google Scholar

[63] J. L. Snoek, Non-metallic magnetic materials for high frequencies, Phil. Tech. Rev. 8 (1946) 353-360.

Google Scholar

[64] International Centre for Diffraction Data, Newton Square, PA, USA PDF no. 84-1531 (SrFe12O19), 84-757 (Ba Fe12O19), 84-2046 (PbFe12O19).

Google Scholar

[65] W. H. Von Aulok, in Handbook of Microwave Ferrites, Academic Press, New York, (1965).

Google Scholar

[66] J. Kreisel, H. Vincent, F. Tasset, M. Paté and J. P. Ganne, An investigation of the magnetic anisotropy change in BaFe12~2xTixCoxO19 single crystals, J. Magn. Mag. Mat. 224 (2001) 17-29.

DOI: 10.1016/s0304-8853(00)01355-x

Google Scholar

[67] D. Samaras, A Collomb, S. Hadjivasiliou, C. Achilleos, J. Tsoukala, J. Pannetier and J. Rodriguez, The Rotation of the Magnetization in the BaCo2Fe16O27 W-type Hexagonal Ferrite, J. Magn. Mag. Mat. 79 (1989) 193-201.

DOI: 10.1016/0304-8853(89)90098-x

Google Scholar

[68] G. A. Jones, S. F. H. Parker, J. G. Booth And D. S. Simkin, The rotation of the magnetization in the BaCo2Fe16O27 W-type hexagonal ferrite, IEEE Trans. Mag. 26 (1990) 2804-2806.

DOI: 10.1109/20.104880

Google Scholar

[69] A. Tauber, J. S. Megill and J. R. Shappirio, Magnetic properties of Ba2Zn2Fe28O46 and Ba2Co2Fe28O46 single crystals, J. Appl. Phys. 41 (1970) 1353-1354.

Google Scholar

[70] G. Albanese, A. Deriu and S. Rinaldi, Sublattice magnetization and anisotropy properties of Ba3Co2Fe24O41 hexagonal ferrite, Appl. Phys. 7 (1975) 1313-1323.

DOI: 10.1088/0022-3719/9/7/023

Google Scholar

[71] A. J. Kerecman, A. Tauber, T. R. AuCoin and R. O. Savage, Magnetic Properties of Ba4Zn2Fe36O60 Single Crystals, J. Appl. Phys. 39 (1968) 726-727.

DOI: 10.1063/1.2163602

Google Scholar

[72] D. Lisjak, D. Makovec and M. Drofenik, Formation of U-type hexaferrites, J. Mater. Res. 19 (2004) 2462-2470.

DOI: 10.1557/jmr.2004.0317

Google Scholar

[73] K. Okumura, T. Ishikura, M. Soda, T. Asaka, H. Nakamura, Y. Wakabayashi and T. Kimura, Magnetism and magnetoelectricity of a U-type hexaferrite Sr4Co2Fe36O60, Appl. Phys. Lett. 98 (2011) 212504.

DOI: 10.1063/1.3593371

Google Scholar

[74] L.M. Castelliz, K.M. Kim and P.S. Boucher, Preparation, stability range and high frequency permeability of some ferroxplana compounds, J. Canadian Ceram. Soc. 38 (1969).

Google Scholar

[75] E. Neckenburger, H. Severin, J.K. Vogel and G. Winkler, Ferrite hexagonaler Kristallstruktur mit hoher Grenzfrequenz, Z. Angew. Phys. 18 (1964) 65-68.

Google Scholar

[76] M. A. Vinnik, Phase relationships in the BaO-CoO-Fe2O3 system, Russ. J. Inorg. Chem. 10 (1965) 1164-1167.

Google Scholar

[77] S. I. Kuznetsova, E. P. Naiden and T. N. Stepanova, Topotactic reaction-kinetics in the formation of the hexagonal ferrite Ba3Co2Fe24O41, Inorg. Mat. 24 (1988) 856-859.

Google Scholar

[78] J. Drobek, W. C. Bigelow and R. G. Wells, Electron Microscopic Studies of Growth Structures in Hexagonal Ferrites, J. Amer. Ceram. Soc. 44 (1961) 262-264.

DOI: 10.1111/j.1151-2916.1961.tb15375.x

Google Scholar

[79] E. P. Naiden, V. I. Itin and O. G. Terekhova, Mechanochemical modification of the phase diagrams of hexagonal oxide ferrimagnets, Tech. Phys. Lett. 29 (2003) 889-891.

DOI: 10.1134/1.1631354

Google Scholar

[80] A. Tauber, S. Dixon Jr. and R. O. Savage Jr., Improvement of ferromagnetic resonance linewidth of single-crystal ZnY (Ba2Zn2Fe12O22) by new growth technique, J. Appl. Phys. 35 (1964) 1008-1009.

DOI: 10.1063/1.1713354

Google Scholar

[81] F. K. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I", J. Inorg. Nuclear Chem. 9 (1959).

DOI: 10.1016/0022-1902(59)80070-1

Google Scholar

[82] M. Erchak Jr., I. Fankuchen and R. Ward, Reaction between Ferric Oxide and Barium Carbonate in the Solid Phase. Identification of Phases by X-Ray Diffraction, J. Am. Chem. Soc. 68 (1946) 2085-(2093).

DOI: 10.1021/ja01214a063

Google Scholar

[83] H. J. Van Hook, Thermal Stability of Barium Ferrite (BaFe12O19), J. Amer. Ceram. Soc. 47 (1964) 579-581.

DOI: 10.1111/j.1151-2916.1964.tb13821.x

Google Scholar

[84] B. T. Shirk, Ba2Fe6O11: A new metastable compound, Mat. Res. Bull. 5 (1970) 771-777.

DOI: 10.1016/0025-5408(70)90091-7

Google Scholar

[85] Y. Goto and T. Takada, Phase Diagram of the System BaO-Fe2O3, J. Amer. Ceram. Soc. 43 (1960) 150-153.

Google Scholar

[86] G. Slocari, Phase Equilibrium in the Subsystem BaO·Fe2O3-BaO·6 Fe2O3, J. Amer. Ceram. Soc. 56 (1973) 489-490.

Google Scholar

[87] P. Batti, Equilibrium of the system BaO-Fe2O3 (in Italian)", Ann. Chim. (Rome) 50 (1960).

Google Scholar

[88] H. Stablein and W. May, Investigations on the phases in the system BaO. Fe2O3-Fe2O3", Ber. Deut. Keram. Geselschaft 46 (1969).

Google Scholar

[89] J. S. Reed and R. M. Fulrath, Characterization and sintering behavior of Ba and Sr ferrites, J. Amer. Ceram. Soc. 56 (1973) 207-211.

DOI: 10.1111/j.1151-2916.1973.tb12458.x

Google Scholar

[90] B. Durand and J. M. Paris, Some characteristics of the ferrite Ba-3 Fe-4(II)Fe-28(III)O-49, J. Mat. Sci. Lett. 16 (1981) 274-275.

Google Scholar

[91] R. C. Pullar and A. K. Bhattacharya, Crystallisation of hexagonal M ferrites from a stoichiometric sol-gel precursor, without formation of the α-BaFe2O4 intermediate phase, Mat. Lett. 57 (2002) 537-532.

DOI: 10.1016/s0167-577x(02)00825-x

Google Scholar

[92] H. Wullkopf, Int. J. Mag. 3 (1972) 179.

Google Scholar

[93] H. Neumann and H. P. J. Wijn, Polycrystalline Hexagonal Fe2W with Varying Ferrous Contents, J. Amer. Ceram. Soc. 51 (1968) 536.

DOI: 10.1111/j.1151-2916.1968.tb15686.x

Google Scholar

[94] Y. Goto and K. Takahashi, Phase diagram of the SrO-Fe2O3 system in it's Fe2O3-rich region and the growth of Sr0. 6Fe2O3 single crystal in composition-deviated melts, J. Jap. Soc. Powd. Powd. Metall. 17 (1971) 193.

DOI: 10.2497/jjspm.17.193

Google Scholar

[95] S. B. Narang and I. S. Huidara, Microwave dielectric properties of M-type barium, calcium and strontium hexaferrite substituted with Co and Ti, J. Ceram. Process. Res. 7 (2006) 113-116.

Google Scholar

[96] N. Langhof, D. Selfert, M. Göbbels and J. Topfer, Reinvestigation of the Fe-rich part of the pseudo-binary system SrO-Fe2O3, J. Solid State Chem. 182 (2009) 2409-2416.

DOI: 10.1016/j.jssc.2009.05.039

Google Scholar

[97] P. Batti, Univ. Trieste, Fac. Ingegneria 11 (1969).

Google Scholar

[98] P. Batti and G. Sloccari, One zone in the ternary system SrO–Al2O3–Fe2O3. I. The 1200° isotherm of the zone formed by alumina, ferric acid, strontium monoaluminate and strontium ferrite corresponding to an Fe/Sr ratio of one, Ann. Chim. /Rome) 57 (1967).

Google Scholar

[99] N. J. Shirtcliffe, S. Thompson, E. S. O'Keefe, S. Appleton and C. C. Perry, Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis, Mat. Res. Bull. 42 (2007) 281-287.

DOI: 10.1016/j.materresbull.2006.06.001

Google Scholar

[100] Y. Liu, M. G. B. Drew,J. Wang, M. Zhang and Y. Liu, Efficiency and purity control in the preparation of pure and/or aluminum-doped barium ferrites by hydrothermal methods using ferrous ions as reactants, J. Magn. Mag. Mat. 322 (2010) 366-374.

DOI: 10.1016/j.jmmm.2009.09.062

Google Scholar

[101] J. Zhou, H. Ma, M. Zhong, G. Xu, Z. Yue and Z. He, Influence of Co–Zr substitution on coercivity in Ba ferrites, J. Magn. Mag. Mat. 305 (2006) 467-469.

DOI: 10.1016/j.jmmm.2006.02.085

Google Scholar

[102] A. Deschamps and F. Bertaut, Sur la substitution de baryum par une terre rare dans lhexaferrite BaO. 6Fe2O3, C. R. Acad. Sci. 244 (1957) 3069-3072.

Google Scholar

[103] W. Grunberger, B. Springmann, M. Brusberg, M. Schmidt and R. Janke, Rubber bonded ferrite layer as a microwave resonant absorber in a frequency range from 3 up to 16 GHz, J. Magn. Mag. Mat. 101 (1991) 173-174.

DOI: 10.1016/0304-8853(91)90718-p

Google Scholar

[104] S. I. Kuznetsova, E. P. Naiden and T. N. Stepanova, Topotactic reaction-kinetics in the formation of the hexagonal ferrite Ba3Ca2Fe24O41, Inorg. Mat. 24 (1988) 856-859.

Google Scholar

[105] A. L. Stuijts, Ceramic Microstructures, John Wiley, New York, 1968, p.443.

Google Scholar

[106] E. M. C. Huijser-Gerits and G. D. Rieck, Changes in microstructure of oriented Ba3Co2Fe24O41 material during sintering. II, J. Appl. Cryst. 9 (1976) 18-27.

DOI: 10.1107/s002188987601042x

Google Scholar

[107] M. A. Vinnik, A. I. Agranovskaya and N. N. Semenova, X-ray diffraction and microstructural investigation of phase relations in the formation of the barium cobalt hexagonal ferrite BaCo2Fe16O27., Russ. J. Inorg. Chem. 12 (1967) 18-21.

Google Scholar

[108] K. Kamishima, N. Hosaka, K. Kakizaki and N. Hiratsuka, Crystallographic and magnetic properties of Cu2X, Co2X, and Ni2X hexaferrites, J. Appl. Phys. 109 (2011) 013904.

DOI: 10.1063/1.3527933

Google Scholar

[109] B. X. Gu, Magnetic properties of Ba2Me2Fe28O46 (Me2X = Ni, Cu, Mg and Zn) hexaferrites, J. Appl. Phys. 70 (1991) 372-375.

DOI: 10.1063/1.350284

Google Scholar

[110] Z. Haijun, L. Zhichao, Y. Xi, Z. Liangying and W. Mingzhong, Dielectric and magnetic properties of ZnCo-substituted X hexaferrites prepared by citrate sol–gel process, Mat. Res. Bull. 38 (2003) 363-372.

DOI: 10.1016/s0025-5408(02)01008-5

Google Scholar

[111] D. Lisjak, V. B. Bregar and M. Drofenik, The influence of microstructure on the microwave absorption of Co–U hexaferrites, J. Magn. Mag. Mat. 310 (2007) 2558-2560.

DOI: 10.1016/j.jmmm.2006.10.866

Google Scholar

[112] D. Lisjak and M. Drofenik, The thermal stabilityrange and magnetic properties of U-type hexaferrites, J. Magn. Mag. Mat. 272-6 (2004) e1817-1819.

DOI: 10.1016/j.jmmm.2003.12.879

Google Scholar

[113] K. P. Belov, L. I. Koroleva, R. Z. Levitin, Y. V. Jergin and A. V. Pedko, Die magnetokristalline anisotropie hexagonaler ferromagnetischer stoffe in der nahe des curie-punktes, Phys. Staus Solidi 12 (1965) 219.

DOI: 10.1002/pssb.19650120120

Google Scholar

[114] F. K. Lotgering, U. Enz and J. Smit, Influence of Co (II) ions on the magnetic anisotropy of ferrimagnetic oxides having hexagonal crystal structures, Philips Res. Rep. 16 (1961) 441-454.

Google Scholar

[115] H. Kojima, in Ferromagnetic Materials, Vol. 3, Ed. E. P. Wohlfarth, North-Holland Physics Publishing, Amsterdam, 1982, pp.305-391.

Google Scholar

[116] H. G. Richter and H. E. Dietrich, On magnetic properties of fine-milled barium and strontium ferrite, IEEE Trans. Magn. 4 (1968) 263.

DOI: 10.1109/tmag.1968.1066284

Google Scholar

[117] O. Kitakami, K. Goto and T. Sakurai, A study of the magnetic domains of isolated fine particles of Ba ferrite, Jpn. J. Appl. Phys. 27 (1988) 2274-2277.

DOI: 10.1143/jjap.27.2274

Google Scholar

[118] L. Rezlescu, E. Rezlescu, P. D. Popa and N. Rezlescu, Fine barium hexaferrite powder prepared by the crystallisation of glass, J. Magn. Mag. Mat. 193 (1999) 288-290.

DOI: 10.1016/s0304-8853(98)00442-9

Google Scholar

[119] T. Hirayama, Q. Ru, T. Tanki and A. Tonomura, Observation of magnetic-domain states of barium ferrite particles by electron holography, Appl. Phys. Lett. 63 (1993) 418-420.

DOI: 10.1063/1.110011

Google Scholar

[120] B. T. Shirk and W. R. Buessem, Hard magnetic materials, J. Appl. Phys. 40 (1969) 1294-1296.

Google Scholar

[121] W. A. Kaczmarek, B. Idzikowski and K. -H. Muller, XRD and VSM study of ball-milled SrFe12O19 powder, J. Magn. Mag. Mat. 177-81 (1998) 921-922.

DOI: 10.1016/s0304-8853(97)00839-1

Google Scholar

[122] C. Tanasoiu, P. Nicolau and C. Miclea, Preparation and magnetic properties of high coercivity strontium ferrite micropowders obtained by extended wet milling, IEEE Trans. Magn. 12 (1976) 980-982.

DOI: 10.1109/tmag.1976.1059141

Google Scholar

[123] M. Obol and C. Vittoria, Magnetic properties of Co2Y-type hexaferrite particles oriented in a rotating field, IEEE Trans. Mag. 39 (2003) 3103-3105.

DOI: 10.1109/tmag.2003.816019

Google Scholar

[124] L. Hongying, Z. Haifeng, Y. Lanying, X. Jijing, G. Shucai, M. Jian and H. Guangyan, Preparation and Characterization of W-Type Hexaferrite Doped with La3+, J. Rare Earths 25 (2007) 590-595.

DOI: 10.1016/s1002-0721(07)60568-7

Google Scholar

[125] M. Wu, H. He, Z. Zhao and X. Yao, Preparation of magnetic cobalt fibres and their microwave properties, J. Phys. D 33 (2000) 2927-2930.

DOI: 10.1088/0022-3727/33/22/309

Google Scholar

[126] M. Wu, H. He, Z. Zhao and X. Yao, Electromagnetic anisotropy of magnetic iron fibres at microwave frequencies, , J. Phys. D 34 (2001) 1069-1074.

DOI: 10.1088/0022-3727/34/7/308

Google Scholar

[127] H. Choosuwan, R. Guo and A. S. Bhalla, Dielectric behaviors of Nb2O5(0. 95): 0. 05TiO2 ceramic and single crystal, Mat. Lett. 54 (2002) 269-272.

DOI: 10.1016/s0167-577x(01)00576-6

Google Scholar

[128] H. Chiriac and T. A. Óvári, Amorphous glass-covered magnetic wires: Preparation, properties, applications, Prog. Mat. Sci. 40 (1996) 333-407.

DOI: 10.1016/s0079-6425(97)00001-7

Google Scholar

[129] M. Vazquez and A. P. Zhukov, Magnetic properties of glass-coated amorphous and nanocrystalline microwires, J. Magn. Mag. Mat. 160 (1996) 223-228.

DOI: 10.1016/0304-8853(96)00212-0

Google Scholar

[130] L. Panina, M. Ipatov, V. Zhukova, J. Gonzalez and A. Zhukov, Tuneable Composites ContainingMagnetic Microwires", in "Metal, Ceramic and Polymeric Composites for Various Uses, Edited by J. Cuppoletti, ISBN 978-953-307-353-8, InTech (2011).

DOI: 10.5772/21423

Google Scholar

[131] A. Zhukov, V. Zhukova, J.M. Blanco and J. Gonzalez, Recent research on magnetic properties of glass-coated microwires, J. Magn. Mag. Mat. 294 (2005) 182-192.

DOI: 10.1016/j.jmmm.2005.03.033

Google Scholar

[132] A. Zhukov, Glass-coated magnetic microwires for technical applications, J. Magn. Mag. Mat. 242-245 (2002) 216-223.

DOI: 10.1016/s0304-8853(01)01258-6

Google Scholar

[133] Y. Li, Y. Huang, L. Yan, S. Qi, L. Miao, Y. Wang and Q. Wang, Synthesis and magnetic properties of ordered barium ferrite nanowire arrays in AAO template, Appl. Surf. Sci. 257 (2011) 8974-8980.

DOI: 10.1016/j.apsusc.2011.05.075

Google Scholar

[134] H. Zheng, M. Han, J. Deng, L. Zheng, J. Wu, L. Deng and H. Qin, Synthesize of barium ferrite nanowire array by self-fabricated poroussilicon template, Appl. Surf. Sci. 311 (2014) 672-675.

DOI: 10.1016/j.apsusc.2014.05.134

Google Scholar

[135] J. Wang and C. Zeng, Growth of SrFe12O19 nanowires under an induced magneticfield, J. Cryst. Growth 270 (2004) 729-733.

DOI: 10.1016/j.jcrysgro.2004.07.012

Google Scholar

[136] P. Gawronski, V. Zhukova, J. M. Blanco and K. Kulakowski, Dynamics of interacting wires, J. Magn. Mag. Mat. 249 (2002) 9-15.

Google Scholar

[137] R. C. Pullar, M. D. Taylor and A. K. Bhattacharya, Novel aqueous sol-gel preparation and characterisation of barium M ferrite, BaFe12O19 fibres, J. Mat. Sci. 32 (1997) 349-352.

Google Scholar

[138] R. C. Pullar, S. G. Appleton and A. K. Bhattacharya, The manufacture, characterisation and microwave properties of aligned M ferrite fibres, J. Magn. Mag. Mat. 186 (1998) 326-332.

DOI: 10.1016/s0304-8853(98)00107-3

Google Scholar

[139] R. C. Pullar, M. D. Taylor and A. K. Bhattacharya, Magnetic Co2Y ferrite, Ba2Co2Fe12O22 fibres produced by a blow spun process, J. Mat. Sci. 32 (1997) 365-368.

Google Scholar

[140] R. C. Pullar, M. D. Taylor and A. K. Bhattacharya, Aligned hexagonal Co2W ferrite fibres, BaCo2Fe16O27 produced from an aqueous sol-gel process, J. Mat. Sci. 32 (1997) 873-877.

Google Scholar

[141] R. C. Pullar, S. G. Appleton, M. H. Stacey, M. D. Taylor and A. K. Bhattacharya, The synthesis and characterisation of aligned fibres of the ferroxplana ferrites Co2Z, 0. 67% CaO-doped Co2Z, Co2Y and Co2W, J. Magn. Mag. Mat. 186 (1998) 313-325.

DOI: 10.1016/s0304-8853(98)00098-5

Google Scholar

[142] R. C. Pullar and A. K. Bhattacharya, The synthesis and characterisation of Co2X (Ba2Co2 Fe28O46) and Co2U (Ba4Co2Fe36O60) ferrite fibres, manufactured from a sol-gel process, J. Mat. Sci. 36 (2001) 4805-4812.

Google Scholar

[143] R. C. Pullar, M. D. Taylor and A. K. Bhattacharya, A halide free route to the manufacture of microstructurally improved M ferrite (BaFe12O19 & SrFe12O19) fibres, J. Euro. Ceram. Soc. 22 (2002) 2039-(2045).

DOI: 10.1016/s0955-2219(01)00518-0

Google Scholar

[144] R. C. Pullar, I. K. Bdikin and A. K. Bhattacharya, Magnetic properties of randomly oriented BaM, SrM, Co2Y, Co2Z and Co2W hexagonal ferrite fibres, J. Euro. Ceram. Soc. 32 (2012) 905-913.

DOI: 10.1016/j.jeurceramsoc.2011.10.047

Google Scholar

[145] R. C. Pullar, M. H. Stacey, M. D. Taylor and A. K. Bhattacharya, Decomposition, shrinkage and evolution with temperature of aligned hexagonal ferrite fibres, Acta Mat. 49 (2001) 4241-4250.

DOI: 10.1016/s1359-6454(01)00304-4

Google Scholar

[146] R. C. Pullar and A. K. Bhattacharya, The magnetic properties of aligned M hexa-ferrite fibres, J. Magn. Mag. Mat. 300 (2006) 490-499.

DOI: 10.1016/j.jmmm.2005.06.001

Google Scholar

[147] R. C. Pullar, M. D. Taylor and A. K. Bhattacharya, Halide removal from BaM (BaFe12O19) and SrM (SrFe12O19) ferrite fibres via a steaming process, J. Mat. Res. 16 (2001) 3162-3169.

DOI: 10.1557/jmr.2001.0436

Google Scholar

[148] R. C. Pullar, Magnetic Properties of Aligned Co2Z Hexagonal Z-Ferrite Fibers, Int. J. Appl. Ceram. Technol. 11 (2014) 451-456.

DOI: 10.1111/ijac.12208

Google Scholar

[149] C.R. Gong, G.L. Fan, C.L. Song and G. Lu, Preparation and characterization of M-type barium ferrite fibers via aqueous sol–gel process, Trans. Tianjin Univ. 13 (2007) 117-120.

Google Scholar

[150] B. Huang,C. LiandJ. Wang, Template synthesisandmagneticpropertiesofhighlyalignedbarium hexaferrite (BaFe12O19) nanofibres, J. Magn. Mag. Mat. 335 (2013) 28-31.

Google Scholar

[151] Y. Liu, X. Yang, J. Zhu, F. Song and X. Shen, Morphological and magnetic characteristics of strontium ferrite micro- and nanofibres, Adv. Mat. Res. 399-401 (2012) 736-740.

DOI: 10.4028/www.scientific.net/amr.399-401.736

Google Scholar

[152] C-J. Li, J-N. Wang, X-Y. Li and L-L. Zhang, Functionalization of electrospun magnetically separable TiO2-coated SrFe12O19 nanofibers: strongly effective photocatalyst and magnetic separation", J. Mat. Sci. 46 (2011) 2058-(2063).

DOI: 10.1007/s10853-010-5038-7

Google Scholar

[153] X. Meng, J. Gao and Y. Lu, Nanocrystalline SrCexFe12-2xO19 (x = 0. 00, 0. 02, 0. 04, 0. 06, 0. 08) microfibers by sol–gel method, J. Sol-Gel Sci. Tech. 64 (2012) 86-92.

DOI: 10.1007/s10971-012-2830-7

Google Scholar

[154] X-F. Meng, Y-L. Wang and X-Q. Shen, Effects of heat-treatment condition on structure and magnetic properties of BaSm0. 3Fe11. 7O19 ferrite fibers, Chem. J. Chin. Univ. 32 (2011) 1697-1702.

Google Scholar

[155] F-Z. Mou, J-G. Guan, Z-G. Sun, X-A. Fan and G-X. Tong, In situ generated dense shell-engaged Ostwald ripening: A facile controlled-preparation for BaFe12O19 hierarchical hollow fiber arrays, J. Solid State Chem. 183 (2010) 736-743.

DOI: 10.1016/j.jssc.2010.01.016

Google Scholar

[156] F. Song, X. Shen, M. Liu and J. Xiang, Formation and characterization of magnetic barium ferrite hollow fibers with high specific surface area via solegel process, Solid State Sci. 12 (2010) 1603-1607.

DOI: 10.1016/j.solidstatesciences.2010.07.007

Google Scholar

[157] F. Song, X. Shen, J. Xiang and Y. Zhu, Characterization and magnetic properties of BaxSr1−xFe12O19 (x = 0–1) ferrite hollow fibers via gel-precursor transformation process", J. Alloys Comp. 507 (2010) 297-301.

DOI: 10.1016/j.jallcom.2010.07.184

Google Scholar

[158] F. Song, X. Shen, J. Xiang and H. Song, Formation and magnetic properties of M-Sr ferrite hollow fibers via organic gel-precursor transformation process, Mat. Chem. Phys. 120 (2010) 213-216.

DOI: 10.1016/j.matchemphys.2009.10.048

Google Scholar

[159] F. Song, X. Shen, M. Liu and J. Xiang, Preparation and magnetic properties of SrFe12O19/Ni0. 5Zn0. 5Fe2O4 nanocomposite ferrite microfibers via sol–gel process, Mat. Chem. Phys. 126 (2011) 791-796.

DOI: 10.1016/j.matchemphys.2010.12.042

Google Scholar

[160] J. Liu, C. Gong and G. Fan, Preparation and properties of barium-ferrite-containing glass ceramic fibers via an electrospinning/sol–gel process, J. Sol. Gel Sci. Tech. 61 (2012) 185-191.

DOI: 10.1007/s10971-011-2612-7

Google Scholar

[161] Z. Yang, R. Liu, X. Shen and F. Song, Magnetic properties and BSA adsorption of nano-Fe-embedded BaFe12O19 porous microfibers via organic gel-thermal selective reduction process, J. Sol-Gel Sci. Tech. 63 (2012) 8-15.

DOI: 10.1007/s10971-012-2755-1

Google Scholar

[162] H. Zeng, J. Li, J. P. Liu, Z. L. Wang and S. Sun, Exchange-coupled nanocomposite magnets by nanoparticle self-assembly, Nature 40 (2002) 395-398.

DOI: 10.1038/nature01208

Google Scholar

[163] C-J. Li, B. Wang and J-N. Wang, Magnetic and Microwave Absorbing Properties of Electrospun Ba(1-x)LaxFe12O19 Nanofibers, J. Magn. Mag. Mat. 324 (2012) 1305-1311.

DOI: 10.1016/j.jmmm.2011.11.016

Google Scholar

[164] C-J. Li, B-N. Huang and J-N. Wang, Effect of aluminum substitution on microstructure and magnetic properties of electrospun BaFe12O19 nanofibers, J. Mat. Sci. 48 (2013) 1702-1710.

DOI: 10.1007/s10853-012-6928-7

Google Scholar

[165] J. Zhang, J. Fu, F. Li, E. Xie, D. Xue, N. J. Mellors and Y. Peng, BaFe12O19 Single-Particle-Chain Nanofibers: Preparation, Characterization, Formation Principle, and Magnetization Reversal Mechanism, ACS, Nano 6 (2012) 2273-2280.

DOI: 10.1021/nn204342m

Google Scholar

[166] X. Shen, M. Liu, F. Song and X. Meng, Structural evolution and magnetic properties of SrFe12O19 nanofibers by electrospinning, J. Sol-Gel Sci. Technol. 53 (2010) 448-453.

DOI: 10.1007/s10971-009-2119-7

Google Scholar

[167] X. Shen, M. Liu, F. Song and Y. Zhu, Effects of La–Zn substitution on microstructure and magnetic properties of strontium ferrite nanofibres, Appl. Phys. A 104 (2011) 109-117.

DOI: 10.1007/s00339-011-6294-3

Google Scholar

[168] X. Shen, M. Liu, F. Song, J. Xiang and X. Meng, Microstructure and magnetic properties of electrospun one-dimensional Al3+-substituted SrFe12O19 nanofibers, J. Solid State Chem. 184 (2011) 871-876.

DOI: 10.1016/j.jssc.2011.02.010

Google Scholar

[169] M. Liu, X. Shen, F. Song, J. Xiang and X. Meng, One-dimensional SrFe12O19/SrSiO3 composite nanofibers: Preparation, structure and magnetic properties, Mat. Chem. Phys. 124 (2010) 970-975.

DOI: 10.1016/j.matchemphys.2010.08.005

Google Scholar

[170] Q. Liang, X. Shen, F. Song and M. Liu, Fabrication and Magnetic Property of One-dimensional SrTiO3/SrFe12O19 Composite Nanofibers by Electrospinning, J. Mat. Sci. Technol. 27 (2007) 996-1000.

DOI: 10.1016/s1005-0302(11)60176-x

Google Scholar

[171] L. Cong-ju and X. Guo-rong, Template preparation of strontium hexaferrite (SrFe12O19) micro/nanostructures: Characterization, synthesis mechanism and magnetic properties, Mat. Res. Bull. 46 (2011) 119-123.

DOI: 10.1016/j.materresbull.2010.09.030

Google Scholar

[172] F. N. Shakirzianov, B. Han, A. A. Kiaisec and V. P. Cheparin, The effect of nanotubes on electromagnetic waves absorption in composite radioabsorbing materials on the basis of hexagonal ferrites, Proc. 9th IEEE Int. Conf. Prop. Appl. Dielectric Mat. (2009).

DOI: 10.1109/icpadm.2009.5252291

Google Scholar

[173] D-X. Zhao, Q-L. Li, Y. Ye and C-R. Zhang, Synthesis and characterization of carbon nanotubes decorated with strontium ferrite nanoparticles, Synth. Metals 160 (2010) 866-870.

DOI: 10.1016/j.synthmet.2010.01.036

Google Scholar

[174] K. He, L. Yu, L. Sheng, K. An, Y. Ando and X. Zhao, Doping effect of single-wall carbon nanotubes on the microwave absorption properties of nano-crystalline barium ferrite, Jap. J. Appl. Phys. 49 (2010) 125101.

DOI: 10.1143/jjap.49.125101

Google Scholar

[175] A. Ghasemi, S. E. Shirsath, X. Liu and A. Morisako, Enhanced reflection loss characteristics of substituted barium ferrite/functionalized multi-walled carbon nanotube nanocomposites, J. Appl. Phys. 109 (2011) 07A507.

DOI: 10.1063/1.3551727

Google Scholar

[176] A. Ghasemi, S. Javadpour, X. Liu and A. Morisako, Magnetic and Reflection Loss Characteristics of Substituted Barium Ferrite/Functionalized Multiwalled Carbon Nanotube, IEEE Trans. Mag. 47 (2011) 4310-4313.

DOI: 10.1109/tmag.2011.2157992

Google Scholar

[177] A. Ghasemi, V. Sepelak, X. Liu and A. Morisako, First Study on the Formation of Strontium Ferrite Thin Films on Functionalized Multi-Walled Carbon Nanotube, IEEE Trans. Mag. 47 (2011) 2800-2803.

DOI: 10.1109/tmag.2011.2143391

Google Scholar

[178] A. Ghasemi, Remarkable influence of carbon nanotubes on microwave absorption characteristics of strontium ferrite/CNT nanocomposites, J. Magn. Mag. Mat. 323 (2011) 3133-3137.

DOI: 10.1016/j.jmmm.2011.06.070

Google Scholar

[179] Y. Li, Y. Huang, S. Qi, L. Niu, Y. Zhang and Y. Wu, Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite, Appl. Surf. Sci. 258 (2012) 3659-3666.

DOI: 10.1016/j.apsusc.2011.12.001

Google Scholar

[180] Q-L. Li, Y. Ye, D-X. Zhao, W. Zhang and Y. Zhang, Preparation and characterization of CNTs–SrFe12O19 composites, J. Alloys. Comp. 509 (2011) 1777-1780.

DOI: 10.1016/j.jallcom.2010.10.038

Google Scholar

[181] G. Shen, C. Yu and G. Cheng, Synthesis of M-Type Ferrite Nanocrystals via Carbon Nanotubes Templates Method, Mat. Manuf. Processes 26 (2011) 1299-1302.

DOI: 10.1080/10426914.2011.551957

Google Scholar