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Abstract

We introduce a test for whether agents’ preferences over network structure are
interdependent. Interdependent preferences induce strategic behavior since the optimal
set of links directed by agent i will vary with the configuration of links directed by
other agents.

Our model also incorporates agent-specific in- and out-degree heterogeneity and ho-
mophily on observable agent attributes. This introduces 2N +K2 nuisance parameters
(N is number of agents in the network and K the number of possible agent attribute
configurations).

Under the null equilibrium is unique, but our hypothesis is nevertheless a composite
one as the degree heterogeneity and homophily nuisance parameters may range freely
across their parameter space. Under the alternative our model is incomplete; there may
be multiple equilibrium network configurations and our test is agnostic about which one
is selected.

Motivated by size control, and exploiting the exponential family structure of our
model under the null, we restrict ourselves to conditional tests. We characterize the
exact null distribution of a family of conditional tests and introduce a novel Markov
Chain Monte Carlo (MCMC) algorithm for simulating this distribution.

We also characterize the locally best test. The form of this test depends upon the
gradient of the likelihood with respect to the strategic interaction parameter in the
neighborhood of the null. Remarkably, this gradient, and consequently the form of the
locally best test statistic, does not depend on how an equilibrium is selected. Exploiting
this lack of dependence, we outline a feasible version of the locally best test.

We present two illustrative applications. First, we test for whether nations behave
strategically when choosing locations for overseas diplomatic missions. Second, we test
for whether firms prefer to sell to firms with richer customer bases (i.e., whether firms
value “indirect customers”). Some Monte Carlo experiments explore the size and power
properties of our test in practice.

JEL Codes: C31
Keywords: Network formation, Locally Best Tests, Similar Tests, Exponential Fam-

ily, Incomplete Models, Degree Heterogeneity, Homophily, Binary Matrix Simulation, Edge
Switching Algorithms
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Network data feature in many areas of economic research. Examples include buyer-

supplier networks or supply-chains (e.g., Atalay et al., 2011), research and development

(R&D) and other types of strategic partnerships across firms (e.g., König et al., 2019), pat-

terns of trade among nations (e.g., Tinbergen, 1962), the structure of friendships between

adolescents (e.g., Calvó-Armengol et al., 2009), and interbank lending and borrowing (e.g.,

Boss et al., 2004). Jackson et al. (2017) present many other examples. Such data abound in

the other social sciences as well (e.g., Apicella et al., 2012).

One approach to modelling networks proceeds pairwise, or dyad-by-dyad. In this approach

(the realization of) each possible link in a network is independent of all others. Importantly

this independence may only hold conditional on latent agent-specific attributes; such latent

attributes may induce dependence across links unconditionally. Gravity models of trade,

with exporter and importer fixed effects, provide a familiar illustration (Anderson, 2011).

Stochastic block models (SBMs), widely studied in statistics, also fall into this category

(Airoldi et al., 2008; Bickel et al., 2013; Gao et al., 2015).

A second approach views a network as an equilibrium outcome of a large N -player game.

In this approach agents’ preferences over links may vary with the presence or absence of links

elsewhere in the network. For example agents’ may prefer reciprocated to unreciprocated

links. Alternatively they may attach extra utility to links which induce transitive closure

(Granovetter, 1973). In such settings small, local, re-wirings of a network may induce a

cascade of additional link updates which can, at least in principle, change the global topology

of a network. Multiple equilibria may also arise. In strategic models, stable networks need

not be efficient as agents fail to account for the costs and benefits of links they form on

others. The two classes of network formation models, in addition to being scientifically

distinct, generate different policy implications (Goyal, 2009).

Graham (2017) and de Paula et al. (2018) represent two recent attempts to actualize,

respectively the dyad-by-dyad and strategic approaches, into workable econometric mod-

els.1 In this paper we take a first step toward integrating these two econometric modelling

approaches. We study a model of network formation which simultaneously incorporates

rich agent-level unobserved heterogeneity, homophily, and interdependent preferences. We

are aware of no prior attempt to incorporate these three features into a single econometric

model. Incorporating heterogeneity and homophily into the null model is important because

these factors provide alternative explanations for the types of network microstructure often

associated with strategic behavior.

In our model the importance of preference interdependencies is indexed by a parameter

(or vector of parameters). Our goal is to test whether this parameter equals zero. Testing the

1Graham (2020) surveys the larger econometric literature on network formation.
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null of no strategic interaction in an interesting baseline model is a natural point of departure

for empirical work. In some settings (e.g., international trade, friendship formation), strategic

behavior may be plausibly second order. In such situations our test provides researchers with

a useful specification check. When strategic interaction is suspected to be central, a rejection

of our test would confirm these priors.

Our null model can match any network in- and out-degree sequence, as well as rich

patterns of homophilous linking. Heavy-tailed degree distributions characterize many real

world networks, as does homophily (e.g., Barabási, 2016; McPherson et al., 2001). Degree

heterogeneity and homophily also generate local network structures often associated with

strategic behavior, such as reciprocity, transitivity and degree assortativity. Our test is able

to discriminate between, for example, clustering due to homophilous sorting and that due to

a structural taste for transitivity in relationships. Relatedly our null model is not a universal

“strawman”; our test will not “always reject”.

Admittedly, we are unable to offer any direct guidance as to how to proceed in the event

of a rejection. While a small collection of papers outline methods of set identification for

parameters in strategic network formation models (e.g., Sheng, 2014; Menzel, 2016; de Paula

et al., 2018), no existing approach allows for unobserved agent-specific effects in addition to

strategic behavior. It is possible that some of the ideas which appear below could be re-

purposed for set identification; but such re-purposing is not direct. We leave this for future

research.

In constructing our test we faced several challenges.

1. Our nuisance parameter is high dimensional. Our null model includes 2N agent-

specific (incidental) degree heterogeneity parameters as well as K2 homophily coef-

ficients (where K equals the number of observed agent types). Because these nuisance

parameters can range freely across their parameter space under the null, avoiding size

distortion is difficult. This problem famously arises in instrumental variables models,

where the size properties of common tests may vary with instrument strength (c.f.,

Moreira, 2009; Andrews et al., 2019).

2. Our model is incomplete under the alternative (cf., de Paula, 2013). When preferences

are inter-dependent multiple equilibrium networks may occur. We leave the mechanism

which selects the observed equilibrium unspecified. Because the alternative is incom-

plete it is not obvious how to choose a test statistic with good power. A likelihood ratio

test, for example, would require a complete specification of the equilibrium selection

under the alternative.

3. We characterize the exact distribution of our test statistic under the null. Practical
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Figure 1: Pharmaceutical Buyer-Supplier Network, 2015

Source: Compustat and authors’ calculations.
Notes: 2015 buyer-supplier relationships among publicly traded firms in NAICS industry
3254 (pharmaceuticals). The head of each arc denotes the buying firm. Firms in each of the
six-digit sub-sectors are shaded differently (see the legend). The largest weakly-connected
component is shown.

application of this result, however, requires a feasible simulation algorithm.

Section 1 presents our model of strategic network formation. We begin by defining agent

preferences and characterizing equilibrium networks. With this foundation we are able to

write down a likelihood function for the network. Since there may exist multiple equilibrium

networks, this likelihood depends on an unknown (and unmodelled) equilibrium selection

mechanism. Although well-defined (see Theorem 1.1 below), our likelihood function cannot

be numerically evaluated in practice.

Section 2 outlines our approach to testing and derives the form of the locally best test

statistic. We characterize the exact distribution of our test statistic under the null. However,

for reasons of practically, we approximate the exact null distribution by simulation. Section 3

outlines a new Markov Chain Monte Carlo (MCMC) algorithm for generating random draws

from the required null distribution. Our algorithm may be of independent interest to those

familiar with binary matrix simulation and counting problems arising in machine learning,

ecology and other fields (e.g., Sinclair, 1993).

Section 4 presents two small applications of our test. First we test for whether nations

behave strategically when choosing locations for their diplomatic missions. In particular, we

focus on whether nations value transitivity in diplomatic ties. We might posit, for example,

that the value of a diplomatic mission in the People’s Republic China (PRC) increased for
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many countries after President Carter’s decision to formally recognize the PRC in 1978 (cf.,

Kinne, 2014). If prior to 1978 many countries had diplomatic relations with the United

States, but not the PRC, directing an arc to the PRC after the US did so would generate a

transitive triad.

In a second application, we test for whether firms value indirect customers (i.e., do they

prefer to sell to firms which themselves sell to many other firms). For this illustration we use

three Buyer-Supplier networks that we constructed from Compustat data.2 Specifically we

look at the vehicle, computer and pharmaceutical manufacturing industries. Figure 1 plots

the pharmaceutical and medicine buyer-supplier network.

Section 4 also reports on a small number of Monte Carlo experiments we conducted to

verify the theoretical size and power properties of our test. Section 5 finishes with a short

discussion of some possible areas for additional research.

While our focus is on strategic interaction in the context of a single network (with many

agents), our results are also applicable to settings where the econometrician observes many

independent games, each with a small number of players (e.g., market entry decisions by rival

firms across many markets). Chen et al. (2018) and Kaido and Zhang (2019) are two recent

examples of attempts to extend likelihood-ratio ideas to this type of setting. The test we

introduce below is an analogous to a score-type test, complementing these likelihood-based

approaches.

1 Model of network formation

Here we outline a model of strategic network formation. In this model N heterogenous agents

form a directed network (or digraph). We begin by establishing some basic notation. We

then introduce agent preferences over the form of the network, discuss equilibrium networks

and, finally, develop a likelihood function for the observed network.

1.1 Notation

A directed graph G(N ,A) consists of a set of nodes (agents) N = {1, . . . , N} and a set of

ordered pairs of nodes A = {(i, j), (k, l), . . .} for i 6= j, k 6= l, and i, j, k, l ∈ N . The elements

of A correspond to those arcs, or directed links, present in G(N ,A).

In what follows we typically work with the adjacency matrix D = [Dij] where

Dij =

{
1 if ij ∈ A
0 otherwise

. (1)

2Atalay et al. (2011) constructed a similar network also using data from Compustat.
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Since we rule out self-links, as might arise in, for example, citation networks, the diagonal of

D consists of structural zeros.

Let G− ij denote the network obtained by deleting link ij from G (if present), and G+ ij

the network one gets after adding this link (if absent). Let D±ij denote the adjacency matrix

associated with the network obtained by adding/deleting link ij from G. Let DN denote the

set of all 2N(N−1) possible adjacency matrices and IJ the set of all possible J-dimensional

binary vectors.

Associated with each agent in the network is the triple (Ai, Bi, X
′
i)
′. Here Ai and Bi are,

as explained further below, agent-level out- and in-degree heterogeneity terms unobserved by

the econometrician. In contrast Xi is a K × 1 vector of group membership indicators that is

observed by the econometrician. These indicators might reflect the industrial classification of

a firm, the gender or race of an individual, or the broad geographic location of a nation. More

generally Xi enumerates the support points of a collection of (observed) discrete regressors.

We leave the joint distribution of (Ai, Bi, X
′
i)
′ unrestricted.3 This implies, for example,

that the unobserved degree heterogeneity (Ai, Bi)
′ may be correlated with the observed co-

variates Xi, as in fixed effects panel data analyses (see also Graham (2017), Dzemski (2018),

Jochmans (2018) and Yan et al. (2018)).

1.2 Preferences

We assume that agents care about the shape of the network. Let d ∈ DN be a feasible

N -player network. Agent utility varies with the configuration of this network. The utility

agent i gets from some feasible network wiring d is assumed equal to

νi(di,d−i; U) =
∑
j

dij[Ai +Bj +X ′iΛ0Xi + γ0sij(d)− Uij], (2)

Here di = (di1, . . . , dii−1, dii+1, . . . , diN)′ corresponds the set of links that agent i chooses to

form (or not), while d−i equals the links that the other N − 1 agents in the network choose

to form (or not). In the language of game theory, di corresponds to a pure strategy.

Agent i’s utility varies with number and nature of those links she chooses to send, or

direct, towards others. The utility associated with i directing a link to j is increasing in the

heterogeneity terms Ai and Bj. Agents with high values of out-degree heterogeneity Ai get

a large amount of baseline utility from any link they send. In a social network context high

Ai agents are “extroverts”. High Bj agents, in contrast, are especially attractive targets for

links sent by others. In a social network high Bj agents are “prestigious”.

3This distribution does have implications for test power, as will become apparent below.
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In a buyer-supplier context high Ai firms might especially value a diverse customer base

or supply a “critical” input used in the production processes of many other firms. High Bj

firms correspond to especially attractive customers. For example, national big box retail

chains with many retail locations, like Walmart and Target, may have high Bj values since

their purchases are less sensitive to local economic shocks.

The X ′iΛ0Xj

def
≡ W ′

ijλ0 term allows for assortative matching on agent attributes.4 The

elements of the K × K matrix Λ = [λkl] parameterize the systematic utility generated by

links, say, from group k to group l. This allows, for example, the utility generated by links

across agents belonging to different groups to systematically differ from that generated by

within-group links. In the buyer-supply context, arcs between firms with particular industrial

classifications may generate greater surplus. In a social network girls might, all things equal,

prefer other girls as friends. The Λ0 matrix parameterizes homophily (or heterophily) of

these types.

Network generating processes where link utility varies with agent-level degree heterogene-

ity and observable dyad attributes – the first three terms in (2) – can successfully match many

features of real world networks (Graham, 2017). The third term in (2) – sij(d) – enriches

this baseline model to allow agent preferences over links to vary with the presence or absence

of links elsewhere in the network. de Paula et al. (2018) call preferences of this type “in-

terdependent”. It is the dependence of utility on sij(d) that makes the model “strategic”:

agent i’s optimal action may vary with the configuration of links directed by others.

For now the only restriction we place on sij(d) is that

sij(d) = sij(d− ij) = sij(d + ij). (3)

If existence of a pure strategy equilibrium is additionally desired, then additional restrictions

on sij(d) may be needed. Although we emphasize pure strategy equilibria in our discussion

and examples, all of our results allow for mixed strategy equilibria as well. Consequently, in

practice, sij(d) may be specified quite freely, although our test may have low power for some

choices.

One feature of sij(d), which will prove central to our analysis, is that is has finite range.

To see this observe that since the set of all networks DN is finite, the strategic interaction

term sij (d) also takes only a finite number of values. Let S = {s, s1, . . . , sM , s} be the set of

possible values for sij (d), ordered from smallest to largest.

4We define Wij = (Xi ⊗Xj) and λ = vec (Λ′).
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An example illustrates. Let sij(d) equal

sij(d) = dji, (4)

as would be appropriate when agents have a taste for reciprocated links. In this case S =

{0, 1}. If agents prefer transitive links (i.e., they prefer to direct friendships to “friends of

friends”), then we might set

sij(d) =
∑
k

dikdkj, (5)

which implies that S = {0, 1, . . . , N − 1}. Finiteness of the cardinality of S (for a given N)

plays an important role in our analysis, as will become apparent below.

The final component of agent utility is idiosyncratic; we assume that the {Uij}i 6=j are in-

dependent and identically distributed (iid) logistic random variables. The logistic assumption

is also important: it generates exponential family structure which we exploit when forming

our test.

1.3 Equilibrium networks

Throughout we assume that the observed network D coincides with an equilibrium outcome

of an N -player complete information game. Each agent (i) observes {(Ai, Bi, X
′
i)}

N
i=1 and

{Uij}i 6=j and then (ii) decides which, out of N − 1 other agents, to send links to. Agents may

play mixed strategies.

Any feasible network configuration d ∈ DN coincides with a pure strategy combination.

We assume that the observed network corresponds to a pure strategy contained in a (possibly

mixed strategy) Nash equilibrium (NE). In practice most (common) choices of sij(d) are

monotonic, which ensures (by Tarski fixed point theorem), the existence of an equilibrium in

pure strategies. We emphasize this special case in most of what follows, but nothing essential

hinges upon it and our results apply to equilibria in mixed strategies as well.

In the analysis of undirected networks, the pairwise stability equilibrium concept intro-

duced by Jackson and Wolinsky (1996) plays a prominent role. The use of NE, however, is

standard in the context of directed networks. For example, Bala and Goyal (2000) and Dutta

and Jackson (2000) study the efficiency properties of pure strategy NE directed networks.
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Pure strategy equilibria

A pure strategy NE corresponds to a pure strategy combination d∗ where, for U = u (with

U
def
≡ [Uij]) and all i = 1, . . . , N ,

νi
(
d∗i ,d

∗
−i,u

)
≥ νi

(
di,d

∗
−i,u

)
(6)

for all possible pure strategies di ∈ IN−1.

To further understand the structure of a pure strategy equilibrium it is helpful to introduce

a notion of marginal utility. The marginal utility i receives from sending a link to j equals:

MUij (di,d−i; U) =

{
νi (d)− νi (d− ij) if dij = 1

νi (d + ij)− νi (d) if dij = 0
. (7)

Under preferences (2) the marginal utility of the ij link is therefore

MUij (di,d−i; U) = Ai +Bj +W ′
ijλ0 + γ0sij (d)− Uij. (8)

With this notation any adjacency matrix which simultaneously satisfies the N(N − 1) non-

linear equations:

Dij = 1(Ai +Bj +W ′
ijλ+ γ0sij (D) ≥ Uij) (9)

for i = 1, . . . , N and j 6= i is a pure strategy NE.

Similar to Miyauchi (2016), consider the mapping ϕ(D) : DN → IN(N−1):

ϕ(D)
N(N−1)×1

≡


1(MU12(D) ≥ 0)

1(MU13(D) ≥ 0)
...

1(MUNN−1(D) ≥ 0)

 . (10)

Next let vec∗(A) be a modification of the matrix vectorization operator which drops the

diagonal elements of the square matrix A. Define its inverse operator as reconstituting A,

but now with zeros on its main diagonal. With this notation it easy to see that any pure

strategy NE equilbrium network, d∗, including possibly the observed one, D, corresponds to

a fixed point:

d∗ = vec−1
∗ (ϕ(d∗)). (11)

One advantage of the fixed point representation (11) is that is allows for the application of

Tarski’s (1955) fixed point theorem. For γ ≥ 0 and sij(d) weakly increasing in d for all
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dyads, Tarski’s theorem guarantees (i) the existence of an equilibrium and (ii) that the set of

all equilibria constitutes a non-empty complete lattice (cf., Miyauchi, 2016, Proposition 1).

This characterization applies when sij(d) takes either of the two example forms introduced

above. Of course, as shown by Nash (1950), an equilibrium in mixed strategies will always

exist. In practice this allows for substantial flexibility in the form of sij(d).

1.4 Likelihood

While we remain agnostic about equilibrium selection in the presence of multiplicity, it is

nevertheless useful to develop an abstract notation for the unknown equilibrium selection

rule. This notation allows us to write down a likelihood for the network. Of course this

likelihood function could not be evaluated numerically without first replacing our abstract

selection mechanism with something more concrete.

Let n
def
≡ N(N − 1) equal the number of (ordered) dyads in the network. Further let

A
def
≡ [Ai] and B

def
≡ [Bi] be theN×1 vectors of agent-specific out- and in-degree heterogeneity

parameters. The non-strategic (nuisance) parameters of our model are collected in δ =

(λ′,A′,B′)′, recalling that λ is the K2 × 1 vector which parameterizes homophily on Xi.

Adding our strategic interaction parameter, γ we get a full parameter vector of θ = (γ, δ′)′.

Let N (d,u; θ) be a function which assigns, for U = u, a probability weight to network

or, equivalently, pure strategy combination d:

N (d,u; θ) : DN × Rn → [0, 1] (12)

We assume that the selection mechanism (12) is such that:

1. if d is the only network which satisfies (6) when U = u (i.e., is the unique NE), then

N (d,u; θ) = 1;

2. if d is not a NE when U = u, then N (d,u; θ) = 0;

3. if there are multiple pure strategy NE, then N (d,u; θ) ≥ 0 for any d which is a NE

and zero otherwise (subject to the adding-up constraint
∑

d∈DN
N (d,u; θ) = 1);

4. if there is a unique mixed strategy NE when U = u, then N (d,u; θ) ≥ 0 equals the

probability assigned to pure strategy combination d (contained in the mixed strategy

NE). If there are multiple mixed strategy NE when U = u, then N (d,u; θ) ≥ 0 will

additionally reflect the probabilities attached to different equilibria, etc.
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With N (d,u; θ) defined, we can write the likelihood of observing network D = d as

P (d; θ,N ) =

∫
u∈Rn

N (d,u; θ)fu(u)du, (13)

where fu(u) =
∏

i 6=j fU(uij) with fU(u) = eu/[1 + eu]2

Theorem 1.1. For any network d ∈ DN there exists a measurable function N (d, ·; θ) : Rn →
[0, 1], which assigns to u ∈ Rn the NE weight on the pure strategy combination corresponding

to d.

The proof of Theorem 1.1 can be found in Appendix A.1. Although we do not explicitly

define N (d,u; θ), only stating its key properties, Theorem 1.1 shows that N (d,u; θ) exists

and is measurable. An implication of this result is that the likelihood (13) is well-defined.

To understand the likelihood (13) it is helpful to consider a (relatively) simple example.

This example will also help in understanding our derivation of the optimal test statistic

below. Assume that sij(d) = dji such that agents prefer reciprocated links when γ ≥ 0. In

this example sij(d) equals either zero (j does not reciprocate) or one (j does reciprocate).

We can use the two elements of S to partition the real line into what we will call buckets :

R = (−∞, µij] ∪ (µij, µij + γ] ∪ (µij + γ,∞) . (14)

Here µij = Ai + Bj + X ′iΛ0Xi equals the systematic, non-strategic, component of utility

generated by arc ij. Next consider the realization of Uij, the idiosyncratic utility agent i

gets when she directs a link to j. If Uij falls into the first bucket in (14), then agent i will

always direct a link to j; irrespective of whether j chooses to direct a link to i or not. If

Uij falls into the middle or inner bucket, however, then i will direct a link to j only if j

reciprocates. Finally, if Uij falls into the last bucket, then i will never direct a link to j

regardless of whether j directs a link to i or not. We will call the first and last buckets in

(14) outer buckets.

If both Uij and Uji fall in their respective inner buckets, then the {i, j} dyad can either

take the empty (Dij = Dji = 0) or reciprocated (Dij = Dji = 1) configuration in equilibrium.

In contrast, if either Uij or Uji falls into an outer bucket, then the {i, j} dyad’s wiring is

uniquely determined. For example if Uij is in the first outer bucket and Uji is in the inner

bucket, then the {i, j} dyad will take the reciprocated form with probability one. It is a

strictly dominant strategy for i to direct an link to j in this case and a best response for j

to reciprocate.

For U = u, let J(u) ≤
(
N
2

)
equal the number of dyads {i, j}, where both uij and uji fall

into their inner bucket. For each of these dyads both the empty and reciprocated configuration

10



is an equilibrium outcome. There are therefore 2J(u) equilibrium networks in this case; the

N (d,u; θ) function would assign some probability between zero and one to each of these 2J(u)

networks (summing to one in total).5

Let DNE
N (u) be the set of 2J(u) equilibrium networks when U = u. One equilibrium

selection rule would assign equal probability to all NE. In this case we could write the

likelihood as

P (d; θ,N ) =

∫
u∈Rn

1
(
d ∈ DNE

N (u)
)

|DNE
N (u)|

fu(u)du, (15)

such that N (d,u; θ) =
1(d∈DNE

N (u))
|DNE

N (u)| . This example illustrates that (13), while well-defined, is

generally intractable; even when the equilibrium selection mechanism is fully-specified.

2 Testing for strategic interaction

Our goal is to construct a powerful test for the presence of strategic interaction in network

formation with good size properties. Importantly we wish to remain agnostic about any

degree heterogeneity and homophily. Let ∆ denote a subset of the K2 + 2N dimensional

Euclidean space in which δ0 = (λ0,A0,B0) is, a priori, known to lie, and

Θ0 = {(γ, δ′) : γ = 0, δ ∈ ∆} . (16)

Our null hypothesis is the composite one:

H0 : θ ∈ Θ0 (17)

since δ may range freely over ∆ ⊂ RK2+2N under the null.

Under the null the likelihood is P0(d; δ)
def
≡ P (d; (0, δ′)′,N0) with

N0(d,u; θ) =
∏
i

∏
j

1
(
Ai +Bj +W ′

ijλ ≥ uij
)dij

× 1
(
Ai +Bj +W ′

ijλ < uij
)1−dij .

Under the null the unique “equilibrium” network is the one where all links with positive

marginal utility are present and those with negative marginal utility are not; N0(d,u; θ)

places a probability of 1 on this network. Evaluating the integral (13) under the null yields

5For simplicity we ignore mixed strategy equilibria in this example.
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P0(d; δ) =
N∏
i=1

∏
j 6=i

[
exp

(
W ′
ijλ+R′iA +R′jB

)
1 + exp

(
W ′
ijλ+R′iA +R′jB

)]dij

×

[
1

1 + exp
(
W ′
ijλ+R′iA +R′jB

)]1−dij

where Ri is the N × 1 vector with a 1 in its ith element and zeros elsewhere. Variants of this

likelihood are analyzed by Chatterjee et al. (2011), Charbonneau (2017), Graham (2017),

Jochmans (2018), Dzemski (2018) and Yan et al. (2018).

2.1 Exponential family structure under the null

Under the null our likelihood, P0(d; δ), is a member of the exponential family. To see this it

is helpful to establish some additional notation. The out- and in-degree sequences equal:

S =

(
Sout

Sint

)′
=

(
D1+, . . . , DN+

D+1, . . . , D+N

)
. (18)

Here D+i =
∑

j Dji and Di+ =
∑

j Dij equal the in- and out-degree of agents i = 1, . . . , N .

The K ×K cross-link matrix equals

M =
∑
i

∑
j

DijXiX
′
j. (19)

This matrix summarizes the inter-group link structure in the network (homophily). The

klth element of M records the number of links sent by type k agents (e.g., semiconductor

manufacturers) to type l agents (e.g., computer manufacturers).

Let S,M be a degree sequence and cross-link matrix. We say S,M is graphical if there

exists at least one arc set A such that G (V ,A) is a simple directed graph with degree

sequence S and cross link matrix M. We call any such network a realization of S,M. The

set of all possible realizations of S,M is denoted by GS,M (DS,M denotes the associated set

of adjacency matrices).

With this notation it is easy to verify that the null model belongs to the exponential

family:

P0(d; δ) = c(δ) exp (t′δ) (20)

with a (minimally) sufficient statistic for δ of t =
(
vec (m′)′ , s′out, s

′
in

)′
. In words, the K2 +

N +N sufficient statistics are (i) the cross link matrix, (ii) the out-degree sequence and (iii)

12



the in-degree sequence.

Under H0 the conditional likelihood of the event D = d is

P0 (d|T = t) =
1

|Ds,m|
(21)

if d ∈ Ds,m and zero otherwise. Under the null of no strategic interaction all networks with

the same in- and out-degree sequences and cross link structure are equally likely. Importantly

this conditional likelihood is invariant to actual value of the nuisance parameter δ.

2.2 Locally best similar test

In our setting a test with critical function φ (D) will have size α if its null rejection probability

(NRP) is less than or equal to α for all values of the nuisance parameter:

sup
θ∈Θ0

Eθ [φ (D)] = sup
γ=γ0,δ∈4

Eθ [φ (D)] = α. (22)

Since the nuisance parameter δ is very high dimensional, size control is non-trivial. For

some intuition as to why consider, as an example, the case where sij(d) =
∑

k dikdkj, such

that agents’ have a taste for transitivity when γ0 > 0. A natural test statistic in this case

would be some function of D that is increasing in the number of transitive triads, , in

the network. The researcher would then reject the null of γ0 = 0 when this statistic is large

enough. Unfortunately, the expected number of transitive triads varies dramatically under

the null depending on the value of δ. Certain configurations of A, B and/or λ may result

in a network with large numbers of transitive triads even when agents’ have no taste for

transitivity per se (i.e., under the null). If we choose a single critical value for rejection then,

depending on the values of A, B and/or λ, size may be very poor.

To avoid any size distortion induced by variation in δ over ∆ ⊂ RK2+2N we exploit the ex-

ponential family structure of our model (under the null). Let T = {(s,m) : s,m is graphical}
be the set of possible sufficient statistics T. We proceed conditional on T; that is, instead of

choosing a single critical value, which may result in under- or over-rejection, depending on

the value of δ, we proceed conditionally on T (the minimally sufficient statistic for δ). Our

chosen critical value varies with T. In this way we ensure good size control.

Formally, for each t ∈ T we form a test with the property that, for all θ ∈ Θ0,

Eθ [φ (D)|T = t] = α. (23)

13



Such an approach ensures similarity of our test since, by iterated expectations,

Eθ [φ (D)] = Eθ [Eθ [φ (D)|T]] = α (24)

for any θ ∈ Θ0 (Ferguson, 1967). By proceeding conditionally we ensure that the NRP is

unaffected by the value of δ.

By Ferguson (1967, Lemma 1, Section 3.6) T is a boundedly complete sufficient statistic

for θ under the null. By Ferguson (1967, Theorem 2, Section 5.4) every similar test will thus

take the form

Eθ [φ (D)|T = t] = α (25)

for t ∈ T. Therefore, if we desire similarity of our test we must take the conditional approach.

A conditional test

We have shown that proceeding conditionally results in a similar test. Here we outline,

concretely, how to construct an exact similar test. There will be two limitations associated

with this test. First, since the test statistic is chosen heuristically, it may not have good

power in the direction of the alternative of primary interest. Second, it is generally not

computationally feasible to compute the exact test.

In subsequent sections we address both of these limitations. Specifically we derive the

form of the optimal test statistic and outline an MCMC algorithm for approximating its null

distribution.

Let R(D) be some statistic of the adjacency matrix. For example R(D) might be the

network reciprocity index (Newman, 2010):

R(D) =
2P̂ ( )

2P̂ ( ) + P̂ ( )
, (26)

where

P̂ ( ) =
2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

[Dij (1−Dji) + (1−Dij)Dji] (27)

equals the fraction of dyads which take an unreciprocated or “asymmetric” configuration

and

P̂ ( ) =
2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

DijDji (28)

the fraction which take a reciprocated or “mutual” configuration . Heuristically, this choice

of R(D) might be useful for detecting whether agents have a taste for reciprocated links.
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A conditional test based upon R(D) will have a critical function of

φ (d) =


1 R (d) > cα (t)

gα (t) R (d) = cα (t)

0 R (d) < cα (t)

(29)

where the values of cα (t) and gα (t) ∈ [0, 1] are chosen to satisfy the requirement that

Eθ [φ (D)|T = t] = α.

Under the null all adjacency matrices with the S = s and M = m are equally probable.

Therefore the null distribution of R(D) coincides with the one induced by a discrete uniform

distribution on Ds,m. By enumerating all adjacency matrices in Ds,m we could exactly com-

pute this distribution and calculate the critical values cα (t) and gα (t). In general such a

brute force approach will be infeasible.6 Therefore a method of approximating the exact null

distribution is required.

The intuition behind this test is straightforward. If the network in hand has an “unusu-

ally” large value of R(D) relative to the set of all networks with same in- and out-degree

sequences and cross-link matrix, then we reject our null.

The locally best conditional test

While choosing a statistic of adjacency matrix heuristically may lead to a test with good power

in practice, there is no guarantee that it will.7 In this section we derive, for any interdependent

preference structure, a test statistic with good power to detect small deviations from the no

strategic interaction null.

Under the alternative of strategic interaction the conditional likelihood is

P (d|T = t; θ,N ) =
P (d; θ,N )∑

v∈Ds,m
P (v; θ,N )

. (30)

Two features of this likelihood make it impractical and/or unattractive for use in testing.

First, it is complicated and (logically) cannot be evaluated without specifying an explicit

equilibrium selection mechanism, N (d,u; θ). We wish to develop inference methods which

do not depend upon details of equilibrium selection. Even if the researcher were able to specify

N (d,u; θ), numerical evaluation of the likelihood may be impractical. Second, equation (30)

6In fact very little is known about the set Ds,m; for example we are aware of no method for checking whether
a given s,m pair is graphic. From related settings we believe that the cardinality of Ds,m will typically be
intractably huge even for modestly-sized networks. See Blitzstein and Diaconis (2011) for discussion of this
point and examples from a related setting.

7Of course, there is longstanding tradition of choosing test statistics heuristically. See Cox (2006) for
interesting discussion.
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depends on the value of the nuisance parameter δ.

Assume that both δ0 and the equilibrium selection mechanism N (d,u; θ) are known (the

latter up to knowledge of γ0 of course), then, by the Neyman-Pearson Lemma, the most

powerful test for the simple hypothesis H0 : γ0 = 0 versus H1 : γ0 = γa would be based upon

the likelihood ratio (LR)
P (d|T = t; (γa, δ

′
0)′,N )

|Ds,m|−1 .

If the likelihood of the network in hand (D = d) is high under the alternative relative to

the discrete uniform reference distribution, then we reject. Unfortunately, as noted above,

forming a LR requires specifying an equilibrium selection mechanism, N . This is not straight-

forward to do, and we would prefer to avoid doing so in any case.

As an alternative to a LR test, we instead choose, for each t ∈ T, the crit-

ical function, φ (D) to maximize the derivative of the (conditional) power function

β (γ, t) = E [φ (D)|T = t] evaluated at γ = 0 subject to the (conditional) size constraint

Eθ [φ (D)|T = t] = α. Such a φ (D) is locally best (Ferguson, 1967, Lemma 1, Section 5.5).

Remarkably we show that the locally best test doesn’t not depend upon the form of the

equilibrium selection mechanism N (d,u; θ).

Differentiating the power function we get

∂β (γ, t)

∂γ

∣∣∣∣
γ=0

= E [φ (D)Sγ (D|T; θ)|T = t] (31)

with Sγ (d| t; θ) denoting the conditional score function

Sγ (d| t; θ) =
1

P0 (d; δ)

∂P (d; θ)

∂γ

∣∣∣∣
γ=0

−
∑

v∈Ds,m

∂P (v; θ)

∂γ

∣∣∣∣
γ=0

=
1

P0 (d; δ)

∂P (d; θ)

∂γ

∣∣∣∣
γ=0

+ k (t)

and k (t) only depending on the data through T = t.

By the Neyman-Pearson lemma the test with critical function

φ (d) =


1 1

P0(d;δ)
∂P (d;θ)
∂γ

∣∣∣
γ=0

> cα (t)

gα (t) 1
P0(d;δ)

∂P (d;θ)
∂γ

∣∣∣
γ=0

= cα (t)

0 1
P0(d;δ)

∂P (d;θ)
∂γ

∣∣∣
γ=0

< cα (t)

(32)

where the values of cα (t) and gα (t) ∈ [0, 1] are chosen to satisfy (23), will be locally best.
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The idea behind the locally best test is as follows. If the likelihood increases sharply as

we move away from the null in the direction of the alternative of interest, then we take this

as evidence against the null. Intuitively if the likelihood gradient in the neighborhood of the

null is large, then the likelihood ratio will also be large for simple alternatives close to the

null (i.e., when γa ∈ (−ε, ε)).
Constructing (32) requires calculating 1

P0(d;δ)
∂P (d;θ)
∂γ

∣∣∣
γ=0

. This is not straightforward since

it depends on properties of the likelihood under the alternative. Surprisingly we are able to

derive the form of this derivative.

Theorem 2.1. P (d; θ,N ) is twice differentiable with respect to γ at γ = 0. Its first derivative

at γ = 0 is

∂P (d; θ,N )

∂γ

∣∣∣∣
γ=0

= P0 (d; δ)

×

[∑
i 6=j

sij (d)

{
dij

fU (µij)∫ vij
−∞ fU (u) du

− (1− dij)
fU (µij)∫∞

vij
fU (u) du

}]
. (33)

recalling that µij = Ai + Bj + X ′iΛ0Xi equals the systematic, non-strategic, component of

utility generated by arc ij and that fU is the logistic density.

The proof of Theorem 2.1 can be found in Section A.2 of the Appendix. Here, because

it is one of our main results, and also insightful to do so, we provide a high level overview of

its derivation. Although ∂P (d;θ,N )
∂γ

∣∣∣
γ=0

does vary with δ0, it does not depend upon N . Below

we provide some intuition for this result.

Recall that S = {s, s1, . . . , sM , s} equals the possible values of sij(d), arranged from

smallest to largest. We can use these support points to partition R into a set of intervals B:

R = (−∞, µij + γs] ∪ (µij + γs, µij + γs1]∪

· · · ∪ (µij + γsM , µij + γs] ∪ (µij + γs,∞) . (34)

The elements of B, called buckets, correspond to the intervals listed in (34). In principle we

should write Bij instead of B, reflecting the dependence of the bucket definitions on the value

of µij, the systematic non-strategic utility associated with an i-to-j link. However, since this

dependence is not essential to any of the arguments that follow we leave it implicit. Note

that the cardinality of B does not depend on µij, but instead equals |S|+ 1.

Agent i’s linking behavior vis-a-vis j depends on which bucket Uij falls into. For B ∈ B, if

Uij ∈ B, then we say Uij is in, or falls into, bucket B. The first and last buckets, respectively
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(−∞, µij + γs] and (µij + γs,∞), play an important role in our argument. We call these two

buckets outer buckets. The rest of the buckets we call inner buckets.

If Uij falls into one of these outer buckets then player i has a pure strategy for dij which

is strictly dominating. Specifically if Uij falls into the lowest bucket, then i will direct an link

to j regardless of what actions are taken by the other agents in the network. The marginal

utility generated by link ij is so large that it remains positive across all possible configurations

of the rest of the network; hence i always chooses to direct an link to j.

If, instead, Uij falls into the highest bucket, then i will never direct an link to j. In this

case the marginal utility associated with link ij is so low that it remains negative across all

possible configurations of the rest of the network; hence i never chooses to direct a link to j.

Finally, if Uij falls into an inner bucket, say (µij + γsm, µij + γsm+1], then agent i’s op-

timal choice for dij is contingent upon the linking behavior of other agents. If other agents’

link actions are such that sij(d) ≥ sm, then it is a best response for i to link with j, but not

otherwise.

The vector of idiosyncratic taste shocks, U contains n = N(N −1) elements; one for each

possible arc. Let the boldface subscripts i = 1,2, . . . index these potential arcs in arbitrary

order (e.g., i maps to some ij and vice-versa). Let b ∈ Bn
def
≡ B × · · · × B and U =

(U1, . . . , Un)′; we have that U ∈ b for b ∈ Bn so that each element of u falls into a bucket.

With the above notation established we can rewrite the likelihood (13) as:

P (d; θ,N ) =
∑
b∈Bn

∫
u∈b
N (d,u; θ) fU (u) du (35)

Expression (35) suggests a derivation by cases approach to finding ∂P (d;θ,N )
∂γ

∣∣∣
γ=0

. Fortunately

a brute force exhaustive approach is not required because it is possible to show that most of

the summands in (35) do not influence the derivative at γ = 0.

Let B̃n be the set of bucket configurations with at least two inner buckets. If at least two

elements of U fall in inner buckets, then we have that U ∈ b with b ∈ B̃n. If, instead, at

most one element of U falls in an inner bucket, then we have that U ∈ b with b ∈ Bn \ B̃n.

This set-up gives the likelihood decomposition:

P (d; θ,N ) = P̃ (d; θ,N ) +Q (d; θ,N ) , (36)
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with

P̃ (d; θ,N ) =
∑

b∈Bn\B̃n

∫
u∈b
N (d,u; θ) fU (u) du (37)

Q (d; θ,N ) =
∑
b∈B̃n

∫
u∈b
N (d,u; θ) fU (u) du. (38)

To proove Theorem 2.1 we show that for γ → 0

P (d; θ,N ) = P̃ (d; θ,N ) +O
(
γ2
)
. (39)

Intuitively, this follows from the fact that the chance that two or more elements of U fall in

inner buckets is negligible when γ is close to zero (because most of the probability mass for

Uij is contained in the two outer buckets when strategic interactions are small). Hence when

calculating the optimal test statistic we are free to focus on the cases where either all, or all

but one, of the elements of U fall in outer buckets. We can then show that

∂P (d; θ,N )

∂γ

∣∣∣∣
γ=0

=
∂P̃ (d; θ,N )

∂γ

∣∣∣∣∣
γ=0

. (40)

Hence to derive the form of ∂P (d;θ,N )
∂γ

∣∣∣
γ=0

we need only calculate ∂P̃ (d;θ,N )
∂γ

∣∣∣
γ=0

. This calcula-

tion is non-trivial, but doable. Details of this calculation are provided in the proof.

It was not ex ante obvious that a useful expression for ∂P (d;θ,N )
∂γ

∣∣∣
γ=0

would be available

without any assumptions about the nature of equilibrium selection under the alternative.

That such as expression is available follows from the fact that when γ is small most agents

will have a strictly dominating pure strategy for how to link; hence the chance for multiple

equilibria is low and the form of N can generally be deduced. Conversely, when γ is small

the probability of a draw of U where many agents do not have a strictly dominating pure

strategy, and hence the details of equilibrium selection matter, is very low.

Locally best vs. heuristic test statistics

With a little manipulation we can simplify:

1

P0 (d; δ)

∂P (d; θ)

∂γ

∣∣∣∣
γ=0

=
∑
i 6=j

[dij − FU (µij)] sij (d) (41)

where FU (u) = eu/ [1 + eu] is the logistic CDF. This form of the statistic provides insight

into how our test accumulates evidence against the null in practice. Consider the case where
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sij (d) = dji, as would be true in agents’ have a taste for reciprocated links. Observe that

FU (µij) corresponds to the probability of an ij edge under the null. Therefore the optimal

test statistic is large if we observe that many ij links with low probability under the null are

reciprocated. It is not many reciprocated links that drives rejection per se, but the presence

of many “unexpected” reciprocated links.

Consider a network of boys and girls with agents exhibiting a strong taste for gender-

based homophily. The optimal test statistic in this case is the conditional sample covariance

of Dij and Dji given (Ai, Bi, Xi) and (Aj, Bj, Xj). The test based upon the reciprocity index

is – essentially – based upon the unconditional covariance. The effect of conditioning is to,

for example, given more weight to heterophilous reciprocated links than to homophilous ones.

Similarly we give more weight to reciprocated links across low degree agents, than to those

across high degree agents.

3 Simulation

Because a complete enumeration of Ds,m is not feasible unless N is very small, making our

test practical requires a method of constructing uniform random draws from this set. Such

draws can be used to simulate the null distribution of any test statistic of interest.

The problem of simulating binary matrices with fixed marginals is well-studied (e.g., Sin-

clair, 1993); with many domain specific applications (e.g., species co-occurrence/interaction

analysis). In practice one of two simulation approaches is used (see Kolaczyk (2009) for a

textbook overview).

The first approach begins with an empty graph and randomly adds links. Links need

to be added such that the end graph satisfies the degree sequence constraint. Blitzstein

and Diaconis (2011) develop an algorithm along these lines. They cleverly use checks for

graphicality of a degree sequence, available in the discrete math literature, to add links in

a way which constrains the end graph to be in the target set. They further use importance

sampling to ensure that averages of simulated network statistics are with respect to the target

uniform distribution. See also Del Genio et al. (2010) and Kim et al. (2012). Graham and

Pelican (2020) provide a textbook discussion of the Blitzstein and Diaconis (2011) algorithm.

The second approach, to which our new method belongs, uses MCMC. Specifically an

initial graph, satisfying the target constraints, is randomly rewired many times to create

a new graph from the target set. Key to this approach is ensuring that each rewiring is

compatible with the target constraints (e.g., maintains the network’s degree sequence). The

algorithm also needs to be constructed carefully to ensure that the end graph is a uniform

random draw from the target set. Sinclair (1993), Rao et al. (1996), McDonald et al. (2007),
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Berger and Müller-Hannemann (2009) and Tao (2016) all developed MCMC methods for

simulating graphs (or digraphs) with given degree sequences.

We are aware of no extant method of generating adjacency matrix draws from Ds,m. The

novelty of this problem, relative to the work described above, is the presence of the addi-

tional cross link matrix constraint, M. In the discrete math literature the cross link matrix

constraint corresponds to what is called a partition adjacency matrix (PAM) constraint. Cz-

abarka et al. (2017) conjecture that the determining whether a given s,m pair is graphical,

the PAM realization problem, is NP-complete. If their conjecture is correct (and NP 6= P),

using a Blitzstein and Diaconis (2011) type algorithm to draw from Ds,m is not feasible.

This leaves MCMC methods. Erdős et al. (2017) showed that naively incorporating a

PAM constraint into existing MCMC algorithms destroys their correctness. In this section

we introduce a new MCMC algorithm that does generate uniform random draws from Ds,m.

This algorithm is of independent interest. Before describing the algorithm we introduce some

additional definitions and notation.

3.1 Notation and definitions

We start by defining an alternating walk.

Definition 3.1. (Alternating Walk) An alternating walk H is sequence of (ordered)

dyads of the form

H := (i1, i2) , (i3, i2) , (i3, i4) , . . . , (il, il−1) (42)

or

H := (i2, i1) , (i2, i3) , (i4, i3) , . . . , (il−1, il) (43)

with ik ∈ V (G), ik 6= ik+1, ik 6= ik−1and

(i) if (ik, ik−1) , (ik, ik+1) in H, (ik, ik−1) ∈ A (G), then (ik, ik+1) /∈ A (G)

(ii) if (ik, ik−1) , (ik, ik+1) in H, (ik, ik−1) /∈ A (G), then (ik, ik+1) ∈ A (G)

(ii) if (ik−1, ik) , (ik+1, ik) in H, (ik−1, ik) ∈ A (G), then (ik+1, ik) /∈ A (G)

(iv) if (ik−1, ik) , (ik+1, ik) in H, (ik−1, ik) 6∈ A (G), then (ik+1, ik) ∈ A (G)

for all k = 2, . . . , l − 1.

For brevity we will often refer to a walk simply by its node sequence, writing H :=

i1i2, . . . , il. To unpack Definition 3.1 it is easiest to consider an example.

Observe that for H := i1i2, . . . , il, the adjacency matrix entries Di1i2 , Di3i2 , . . . , Dilil−1

alternate between ones and zeros (or zeros and ones). This observation suggests a method of

constructing an alternating walk via a sequence of “hops” across the adjacency matrix: pick

row i1 of the adjacency matrix and move horizontally to column i2, where i2 corresponds to
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one of the agents to which i1 directs a link, next move vertically to row i3, where i3 is an

agent which does not direct a link to i2, and so on.8 We call the horizontal moves active steps

and vertical moves passive steps. Figure 2 provides an example construction. The different

cases in Definition 3.1 correspond to walks beginning/ending with passive/active steps.

The length of an alternating walk equals the number of ordered dyads used to define it.

An important type of alternating walk, which following Tao (2016), we call an alternating

cycle, is central to our algorithm.

Definition 3.2. (Alternating Cycle) The alternating walk C is an alternating cycle if

i1 = il and C has even length.

The length of an alternating cycle is at least four. Let Di1i2 , Di3i1 , . . . , Dilil−1
be the

sequence of adjacency matrix entries associated with alternating cycle C in G. These entries

necessarily form a sequence of zeros and ones (or ones and zeros).

Consider constructing an alternative digraph, say G′, by replacing all the “ones” in C

with “zeros” and all “zeros” with “ones”. Rewiring G in this way is degree preserving: G′

has the same in- and out-degree sequence as G. We refer to such operations as switching the

cycle (since we switch the zeros and ones).

Figure 3 depicts two canonical alternating cycles (Rao et al., 1996). The first, C := abcda,

is a so called alternating rectangle. In the configuration to the left a and d each have a single

outlink and b and c a single inlink; this is also true in the configuration to the right, which

corresponds to the the network generated by switching C. The second cycle, called a compact

alternating hexagon, can be constructed from a 030C ( ) triad.

Let Gs denote the set of all digraphs with degree sequence s. Rao et al. (1996) showed

that, for G and G′ distinct and belonging to Gs, it is possible to obtain G′ from G by switching

a sequence of alternating rectangles and compact alternating hexagons. In practice it may

be useful, in the sense that one can move from G to G′ with fewer cycle switches, if longer

alternating cycles are used (e.g., McDonald et al., 2007; Tao, 2016).

Let KN denote the complete graph on N vertices. We define the link marking function

m : A (KN) → {0, 1}. We say the link (i1, i2) is marked if m ((i1, i2)) = 1 and unmarked if

m ((i1, i2)) = 0. The expression “mark a link” means the marking function is changed such

that m ((i1, i2)) = 1. We use the expression “unmark a link analogously”.

Definition 3.3. (Schlaufe) An alternating walk H := i1i2 . . . il is a schlaufe if either

(i) There is a node ik ∈ {i1i2 . . . il} with k 6= l such that ik = il and (k − l) mod 2 = 0.

Furthermore for any two nodes ij and ih in {i1i2 . . . il−1} with ij = ih and j 6= h it holds that

(j − h) mod 2 = 1.

8This description is essentially due to (Tao, 2016, p. 124).
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Figure 2: Constructing an alternating walk

a b c d e f g h i j

a 0 1 0 0 1 0 0 0 0 0

b 0 0 0 0 0 0 0 0 0 0

c 0 0 0 1 0 0 0 1 0 0

d 0 0 0 0 0 0 0 0 0 0

e 0 0 1 0 0 0 0 0 0 0

f 0 0 0 0 0 0 0 1 1 0

g 0 0 0 0 0 0 0 0 0 0

h 0 0 1 0 0 0 1 0 0 0

i 0 0 0 0 0 0 0 0 0 0

j 0 0 0 0 0 0 1 0 1 0

A: Alternating Walk

Indegree Outdegree

a 0 2

b 1 0

c 2 2

d 1 0

e 1 1

f 0 2

g 2 0

h 2 2

i 2 0

j 0 2

B: Degree
Sequence

Source: Authors’ calculations.
Notes: Panel A depicts an alternating walk constructed using the adjacency matrix. Agent
labels are given in the first column and row of the table. To construct such a walk randomly
we begin by choosing an agent at random. Here agent j is chosen, with an ex ante probability
of 1

10
since there are ten agents in the network. Next we take an active step where one of

agent j’s outlinks is chosen at random. Here we choose the outlink to agent g, an event
with an ex ante probability of 1

2
since agent j has just two outlinks. Following the active

step comes a passive step. In a passive step we move vertically to the row of an agent which
does not direct a link to the current agent. Here we choose a from the set {a, b, c, d, e, f, i}
uniformly at random (i.e., with an ex ante probability of 1

7
). We continue with active and

passive steps until we choose to stop or can proceed no further. Panel B reports the indegree
and outdegree of each agent in the network. Observe that in active steps the probability of
any feasible choice equals the inverse of the outdegree of the current agent. In passive steps
the probability of any feasible choice equals the inverse of the number of nodes minus the
indegree of the node chosen in the prior step minus 1 (since ik 6= ik+1). We can also construct
alternating walks by the above procedure, but instead starting with a passive step.
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Figure 3: Examples of alternating cycles

Alternating
Rectangle

a

b c

d a

b c

d

a b c d a

i 1 2 3 4 5

sel. Pr
1
4

1
1

1
3

1
1

1
2

Pr(R1) =
1
24

Compact
Alternating
Hexagon

a

b

c a

b

c

a b c a b c a

i 1 2 3 4 5 6 7

sel. Pr
1
3

1
1

1
1

1
1

1
1

1
1

1
1

Pr(R1) =
1
3

Source: Authors’ calculations.
Notes: The first row depicts an alternating rectangle before and after switching. The second
row depicts a compact alternating hexagon before and after switching. The final column
of the figure shows the probability with which each node is chosen, resulting in the total
probability of the schlaufe.

(ii) At node il there is no other node il+1 such that the alternating walk could be extended

with the unmarked link (il, il+1).

In German schlaufe corresponds to “loop”, “bow” or “ribbon” (its plural is schlaufen); the

latter translation is evocative of our meaning here. In the first case the schlaufe will coincide

with an alternating walk which includes exactly one alternating cycle.9 Visually schlaufen of

the first type, with the nodes appropriately placed, will look like loops and ribbons. In the

second case the schlaufe does not include an alternating cycle.

Associated with a schlaufe, R, is a K × K violation matrix which records the number

of extra links from group k to group l generated by switching the alternating cycle in R

(if there is one). Consider an alternating rectangle consisting of two boys and two girls. If

initially one boy directs a link to the other and one girl directs a link to the other, then after

switching the cycle the violation matrix will equal:

Ego \Alter Boy Girl
Boy -1 1
Girl 1 -1

9The requirement that ik = il and (k − l) mod 2 = 0 ensures that C = ikik+1 . . . il is an alternating cycle
(imposing even length). The “furthermore...” requirement ensures that if another node is visited multiple
times it does not form an alternative cycle (imposing non-even length). See Figure 4 for an example.

24



After switching the cycle there are too few same gender links and too many mixed gender

ones.

We call a sequence of schlaufen R = (R1, . . . , Rk) feasible if (i) the cycles of the schlaufen

are link disjoint and (ii) the sum of their violation matrices is zero (and for i < k the sum of

their violation matrices is not zero).

Conventional MCMC adjacency matrix re-wiring algorithms work by switching short cy-

cles (e.g., alternating rectangles and compact alternating hexagons). Switches of this type,

while preserving the in- and out-degree sequence of the network will typically generate net-

works with the wrong inter-group link structure (i.e., non-zero link violation matrices). Our

approach to solving this problem involves switching many alternating cycles simultaneously

such that their individual link violation matrices sum to zero.

3.2 The MCMC algorithm

Let S = s and M = m be the degree sequence and cross link matrix of the network in

hand. In order to a draw, say G′, from Gs,m we (i) start with a realization of (s,m), say

G, (ii) randomly construct (link disjoint) schlaufen, and (iii) switch any alternating cycles in

them. While switching cycles will preserve the degree sequence, it may – as discussed earlier

– result in a graph without the appropriate cross link matrix. In order to ensure that G′

has the appropriate cross link matrix, we construct schlaufen until either the sum of their

violation matrices equals zero or we stop randomly. If the sum of the schlaufen violation

matrices is zero we move to G′ from G by switching the cycles, otherwise we set G′ = G.

Proceeding in this way ensures that G′ is, in fact, a random draw from Gs,m. After sufficiently

many iterations of this process we show that a graph constructed in this way corresponds

to uniform random draw from Gs,m. A formal statement of the procecedure is provided by

Algorithm 1.

Algorithm 1 uses a subroutine to find schlaufen. This subroutine, described in Algorithm

2, finds and marks a schlaufe in the graph.

To illustrate our method in more detail consider the network depicted in Panel A of Figure

4. This network consists of two types of agents: gold (light) and blue (dark). The cross link

matrix for the graph is given in Panel D. In Panels B and C a sequence of three schlaufen

is shown. The first schlaufen is R1 = jgabcdeca. It is constructed through a sequence of

active and passive steps as described earlier (see also the notes to Figure 2 above). We begin

by choosing agent j randomly with a probability of 1
10

(since there are ten agents in the

network). We then take an active step, randomly choosing one of the two agents to which

j directs a link (i.e., either agent g or i). Here we choose agent g. Next we take a passive

step. Specifically we choose an agent at random from the set of agents that do not direct a
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Algorithm 1 Markov Draw Algorithm

Inputs: An adjacency matrix d ∈ Ds,m; a mixing time τ
Procedure:

1. Set t = 0.

2. With probability 1− q go to step 3, with probability q go to step 4.

3. find and mark a schlaufe (see Algorithm 2):

(a) if the sum of the schlaufen violation matrices is zero, then

i. switch the cycles in the schlaufen (changing the adjacency matrix d),

ii. unmark all links,

iii. go to step 4.

(b) else

i. with probability 1
2
, go to step 3 or

ii. with probability 1
2
, unmark all links and go to step 4.

4. Set t = t+ 1

(a) if t = τ then return d

(b) else go to step 2

Output: A uniform random draw d from Ds,m
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Algorithm 2 Schlaufe Detection Algorithm

Inputs: An adjacency matrix d ∈ Ds,m (this network may have marked links in it)
Procedure:

1. Choose an agent/node, say i, at random.

2. Mark agent i as active and

(a) if feasible, randomly choose one of i′s (unmarked) outlinks, say to j, and go to
step 3;

(b) else (i.e., no unmarked outlinks available) go to step 6.

3. Mark edge ij, chosen in step 2 and

(a) if agent j is already marked passive, then go to step 6;

(b) else go to step 4.

4. Mark agent j, chosen in step 3, as passive and

(a) if feasible, randomly choose an agent, say k, from among those who do not direct
links to j, and go to step 5,

(b) else go to step 6.

5. Mark edge kj, with k the agent chosen in step 4, as passive and

(a) if agent k is already marked active, then go to step 6;

(b) else go to step 2.

6. return the (marked) adjacency matrix, the constructed schlaufe and its violation matrix.

Output: A schlaufe, its violation matrix and a marked adjacency matrix.
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link to g (the agent chosen in the previous active step). The probability associated with our

choice in this passive step is 1
7
; this corresponds to the reciprocal number of agents in the

network (i.e., 10) minus the indegree the current agent (i.e., 2) minus one (since self-loops

are not allowed). We continue taking active and passive steps in this way until we visit a for

the second time. At this point we stop since our schlaufe now includes the alternating cycle

C1 = abcdeca. Note that c is also visited twice, but also that cdec is not an alternating cycle

since it is not of even length (see Definition 3.2).

As seen in the example we can calculate the probability of a schlaufe R as we go through

the algorithm (see Panel E). In Step 1 of Algorithm 2 an agent is chosen with probability 1
N

.

Next let raG(i) be the cardinality of the set of feasible out links in an active step. This set

consists of all the out links of node i, which are not already marked in D. Similarly, let rpG(i)

be the cardinality of the set of feasible outlinks in an passive step. That set consists of all

the links ij for which ji is not in A(G) and which are not already marked. The probability

of R = (i1, .., il) can now be written as

pG(R) =
1

N

l−1∏
k=1

(
1

raG(ik)
[k mod 2] +

1

rpG(ik)
[(k − 1) mod 2]

)
(44)

In step 2 of Algorithm 1 we attempt to find a sequence of schlaufen with probability

1 − q and do not change the adjacency matrix otherwise. In step 3, a schlaufen sequence

R = (R1, .., Rh) is constructed/found. After each detected schlaufe in this sequence, say

Rk, any cycle in it is marked. Let Gk be the graph with the cycles of R1, .., Rk−1 marked.

After each schlaufe added the construction is stopped with probability 1
2

. The probability

of finding a cycle Rk is pGk
(Rk) as given in equation (44) above. The total probability of a

feasible schlaufen sequence R is therefore

pG(R) = (1− q) 1

2(h−1)

h∏
i=1

pGk
(Rk). (45)

3.3 Correctness

To show that our algorithm does indeed generate a uniform random draw from the set Ds,m

we use standard Markov chain theory (e.g., Chapters 7 and 10 of Mitzenmacher and Upfal

(2005)).

The random rewiring of the network implemented by Algorithm 1 can be described as

a Markov chain. To show that, for τ large enough, it returns a uniform random draw from

Ds,m we prove that the stationary distribution of the Markov chain generated by Algorithm

1 is uniform on Ds,m. To show this it is helpful to develop a graphical representation of the
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Figure 4: A feasible schlaufen sequence
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E: Three schlaufen
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C: Network after
edge swaps

Blue Gold

Blue -1 +1

Gold +1 -1

Blue Gold

Blue 0 0

Gold 0 0

Blue Gold

Blue +1 -1

Gold -1 +1

F: Violation matrices for
the three schlaufen

Source: Authors’ calculations.
Notes: See the discussion in the main text. The figure depicts three link disjoint schlaufen
with violation matrices which sum to zero. Panel E reports the (ex ante) probability that a
given node was selected as the schlaufe was constructed. See equation (44).
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Markov chain.

We denote the state graph of the Markov chain by Φ = (Vφ,Aφ). Its underlying vertex

set Vφ is the set of all elements in Gs,m. That is each node in our state graph is a network

with degree sequence S = s and cross link matrix M = m. For G in Gs,m, we denote by vG

the corresponding vertex in Vφ. The arc set Aφ is defined as follows.

1. For all vertices we add the self loop (vG, vG) with (probability) weight q (see Step 2 of

Algorithm 1).

2. Let G and G′ be two different networks in Gs,m. Let G∆G′ equal the union of the set

of edges in G, but not in G′ and the set of edges in G′, but not in G. For each feasible

schlaufen-sequence R, with cycle edge set equal to G∆G′ we add the edge (vG, vG′) and

assign to it probability weight pG(R).

3. Finally we add a directed loop (vG, vG) if the probability of all arrows leaving vG,

introduced in points 1 and 2 immediately above, do not sum to 1. The probability of

this loop is 1 minus the sum of the probability of all other outward arrows.

The probability of any arc a ∈ Aφ is denoted by p(a). Note, by definition, the state graph

can have parallel arcs and loops.

With these definitions in place we can prove correctness of the algorithm. First we

show that the probability of the algorithm moving from graph G to G′ coincides with the

probability of moving in the reverse direction.

Lemma 3.1. For any two vertexes vG, v
′
G the transition probability attached to (vG, v

′
G) equals

that attached to (v′G, vG).

Proof. See appendix A.3.

Next we show the state graph is strongly connected. This means our Algorithm moves

from any G ∈ Gs,m to any other G′ ∈ Gs,m with positive probability.

Lemma 3.2. The state graph Φ is strongly connected.

Proof. See appendix A.3.

With these two lemmata it is east to show that the stationary distribution is uniform on

Gs,m. This gives us the main result of the section.

Theorem 3.3. Algorithm 1 is a random walk on the state graph Φ which samples uniformly

a network from Gs,m for τ →∞.
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Proof. See appendix A.3.

We provide an easy to use python implementation of this algorithm as well as the optimal

test to a given utility function.

Surce: https://github.com/AndrinPelican/ugd

Package: https://pypi.org/project/ugd/

4 Applications

4.1 Diplomatic mission network: the strategic placement of am-

bassadors

Figure 5 shows the 2005 network of diplomatic exchanges in the Americas. We constructed

this network using the Correlates of War Diplomatic exchange dataset (Bayer, 2006). An

ij arc indicates that country i has sent an ambassador to country j. As emphasized by

Kinne (2014), diplomatic recognition is a core tool of statecraft. Consequently, the decision

to establish a diplomatic mission in a country likely has strategic aspects. As a contemporary

example, consider the decision to maintain diplomatic ties with Syria after the onset of the

Syrian Civil War. This decision appears, in part, to be predicated upon the nature of a

state’s bi-lateral relations with Syria’s long term allies Russia and Iran (along the lines of

the “friend of my friend is also my friend” principle).10

The diplomatic network is also driven by a desire for prestige and practicality. Some

nations, like the United States, send and host many ambassadors. Others send and receive

very few. The network also has geographic dimensions: countries typically send ambassadors

to close neighbors. These aspects of the network naturally generate network transitivity

which is non-strategic. For example if most countries send an ambassador to, and host one

from, the United States, then virtually any additional tie will generate a transitive triad;

but this just reflects the superpower status of the United States, not a structural taste for

transitivity in relations. Similarly Central American nations may all host ambassadors from,

and send them to, one another due to their strong common cultural, economic and security

connections. A desire for transitivity need not play a role. For these reasons it is important

to allow for degree heterogeneity and (geographic) homophily when assessing whether nations

(actively) prefer transitive ties.

10Transitivity can also operate negativity, as when mainland China chooses not recognize countries which
diplomatically recognize Taiwan, China. Withholding recognition in this case increases transitivity as not
doing so would result in an intransitive triad.
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Figure 5: Diplomatic Network of the Americas, 2005

Diplomacy Network of the Americas, 2005

North America
Central America

Caribbean
South America

Source: Correlates of War Diplomatic Exchange dataset (Bayer, 2006) and authors’ calcula-
tions.
Notes: Nodes correspond to capital cities. An arc from country i to country j indicates that
an ambassador represents i in j. The network is divided into four regions: (i) North America
(California Gold), (ii) Central America (Berkeley Blue), (iii) the Caribbean (Lap Lane) and
(iv) South America (Golden Gate)
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We consider a utility function of the form given in (2) with sij(d) as defined in (5). We

consider tests of the γ0 = 0 null based upon the transitivity index (TI) as well as our locally

best test statistic. We also consider a variety of null reference distributions. These different

reference distributions illustrate the importance of controlling for degree heterogeneity and

homophily in practice.

Panel A of Figure 6 plots the distribution of the transitivity index across three null

reference sets. First we consider the set of all networks with density equal to that observed

empirically (0.399). The degree sequence and cross link matrices are allowed to freely vary.

This reference distribution would be appropriate in the absence of any homophily (λ = 0)

and degree heterogeneity (Ai = Bj = α for all i).

In empirical work it is common to compare the observed TI with network density and

conclude that a taste for transitivity is present if the TI is substantially greater than density

(the observed TI is shown by the vertical bar in the figure). Here this approach results in an

absurdly decisive rejection of the null (observed transitivity equals – by a country mile – the

1.0 quantile of the null distribution); this is a “strawman” test.

Second we consider the set of all networks with in- and out-degree sequences held equal to

those observed empirically (i.e., networks where the United States host 32 ambassadors from,

and sends 26 to, other countries in the Americas and so on). This controls for heterogeneity in

prestige and diplomatic activity across countries. This null distribution, however, continues

to assumes the absence of any homophily (λ = 0).

There are several extant methods for simulating uniform draws from this null distribu-

tion. For example, Berger and Müller-Hannemann (2009), Kim et al. (2012), Blitzstein and

Diaconis (2011), and Del Genio et al. (2010) describe methods for sampling networks with

the same degree sequence. Our algorithm easily handles this case as well.

Fixing the degree sequence shifts the null reference distribution substantially to the right.

This indicates that much of the observed transitivity in the American diplomatic network can

be explained solely by intrinsic variation in baseline diplomatic activity across nations (i.e.,

degree heterogeneity). While we still easily reject the null in this case as well, the actual TI

is much closer to – certainly not a country mile from – the mode of the reference distribution.

Third, we additionally control for the cross region structure of diplomatic ties (i.e., we

now allow λ 6= 0). We consider the four regions shown in Figure 5. Hence the reference

distribution now includes all networks with the same in- and -out degree sequences and 4×4

cross link matrix as the observed one. Additionally controlling for geographic homophily

further shifts the reference distribution to the right. While we also easily reject the null in

this case (p-value = 2 · 10−4), the ordering of the three reference distributions demonstrates

the potential importance of controlling for degree heterogeneity and homophily in practice.
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Figure 6: Testing for strategic transitivity in diplomatic exchanges in the Americas
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Source: Correlates of War Diplomatic Exchange dataset (Bayer, 2006) and authors’ calcula-
tions.
Notes: Plots of the test statistic null distribution. Panel A: Distribution of the transitivity
index (TI) according to three null models. The “California” colored histogram plots the
distribution of the TI across the set of networks with density as observed in the empirical
network, but no other constraints imposed. The “Berkeley Blue” colored histogram plots the
null distribution when the in- and out-degree sequences are additionally held fixed. Finally,
the “Golden Gate” colored histogram additionally fixes the structure of cross-region linkage
(i.e., the cross link matrix). The actual TI is in, respectively the 1.0, 1.0 and 0.9998 quantiles
of the three reference distributions. Panel B: Histogram plot of the null distribution of the
locally best test statistic holding the network’s degree sequence and cross link matrix fixed.
The observed test statistic lies in the 1.0 quantile of the reference distribution. Results based
on 10000 simulation draws.
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Failing do so could result in mis-interpreted rejections.

Panel B of the figure plots the distribution of our locally best test statistic under the null

which fixes both the degree sequence and cross link matrix. The observed locally best test

statistic exceeds in value all simulated values from the reference set. While, in this example, it

appears to be the case that many “transitivity inspired” statistics would generate rejections,

Panel B is suggestive of the power gains associated with using the local best statistics. The

locally best statistic is well outside the support of the null distribution. We explore power

comparisons further in the Monte Carlo simulations below.

4.2 Buyer-supplier network: the trade-off between direct and in-

direct customers

Our second example tests for substitutability between direct and indirect customers in a

supply chain context. Firms, may, all things equal prefer to have many customers. While

there may be a fixed costs to maintaining any customer relationship, having many customers

may reduce variation in demand for a firm’s products.

Firms may, all things equal, also prefer to supply firms that themselves have many cus-

tomers. For example, a customer whose own output is widely sought after may generate a

more reliable stream of orders than that of a firm with few customers.

In our baseline model, the supplier-specific effect, Ai, captures heterogeneity in firms’

demand for customers. Similarly, the buyer-specific effect, Bj, captures heterogeneity in

customer attractiveness. If Ai and Bi positively co-vary, as is allowed by our model, then firms

with many customers (i.e., high Ai firms) may be viewed as especially attractive customers

themselves (i.e., high Bi firms). These features of our baseline model suggest that it is not

suitable for detecting whether firms value many direct (or indirect customers) per se; however

we can test for substitutability between direct and indirect customers.

To construct such a test we set sij(d) equal to

sij (d) =

(∑
k 6=j

dik

)(∑
k

djk

)
def
≡ di+,−j × dj+ (46)

where di+,−j is notation for the number of customers firm i has excluding any customer

relationship with j. With this specification of sij(d) we can interpret γ0 in terms of the

“cross derivative”

γ0 =
∂2MUij

∂di+,−j∂dj+
. (47)

Here we hypothesize that γ0 < 0, so that firms with many direct customers value the indirect
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customers of a firm less than firms with few direct customers.

We implement our test using three industry-specific supply chain networks we constructed

using Compustat data: pharmaceuticals (see Figure 1), computers, and motor vehicles (see

Panels A and B of Figure 7). We test for whether the marginal benefit of an indirect

customer is decreasing in the number of direct customers in each industry separately and

using all three networks simultaneously. Pooling is straightforward in our set-up: the broad

4-digit manufacturing sector constitutes an observed firm attribute which is incorporated

into the cross link matrix constraint.

The p-value for the null of γ = 0 equals 0.02 for pharmaceuticals, 0.32 for computers and

0.10 for motor vehicles. Pooling all three networks together yields a p-value of 0.05. These

p-values are based upon 1000 simulated networks. The mixing time is chosen, such that each

edge is, on average, randomly modified 10 times before the network is considered a random

draw from the target set.

4.3 Monte Carlo experiments

For the Monte Carlo experiments we work with the general utility function introduced in

Section 1 above. We assume that Ai ∈ A
def
≡ {αL, αH}, Bi ∈ B

def
≡ {βL, βH} and Xi ∈ X

def
≡

{0, 1}. We assume that each support point in A× B×X occurs with equal probability (i.e.,

with probability equal to 1
8
).

Observe that their are four types of sending agents: (Ai = αL, Xi = 0), (Ai = αH , Xi = 0),

(Ai = αL, Xi = 1) and (Ai = αH , Xi = 1). Similarly there are four types of receiving agents.

The null model is therefore fully described by 16 = 4 × 4 linking probabilities. We set the

parameters βH = αH = 1.1, αL = βL = −1.1, λ00 = λ11 = 0 and λ01 = λ10 = −2.2.

Our parameter choices generate meaningful degree heterogeneity and homophily under the

null. Across 1, 000 Monte Carlo simulations with N = 48 average network density was 0.34,

average transitivity was 0.53, and the average standard deviation of, respectively, in- and

out-degree, was 4.1.

We set the strategic interaction term to sij(d) =
∑

k dikdkj; as is appropriate when

agents prefer transitive ties. To simulate a network under the alternative we draw U and

then, starting with an empty adjacency matrix, iterate to a fixed point using equation (11).

By Tarski’s Theorem this finds us the least dense pure strategy Nash Equilibrium.

We compare the performance of three tests. The infeasible locally best test that is based

upon the true value of δ0. The feasible version of this test which replaces δ0 with its maximum

likelihood estimate computed under the null (see Graham (2017), Dzemski (2018) and Yan

et al. (2018) for a discussion of this particular MLE problem). Finally we construct an ad

hoc test based upon the transitivity index (TI). This last test is the one most often used in
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Figure 7: Buyer-supplier networks used to test for substitutability between direct and indirect
buyers

(a) Computers Buyer-Supplier Network, 2015

(b) Motor Vehicles Buyer-Supplier Network, 2015
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Source: Compustat and authors’ calculations.
Notes: Plots of the computers and motor vehicles buyer-supplier networks in 2015 based upon
Compustat data. The head of each arc denotes the buying firm. Nodes colored differently
according to their sub-industry as listed in the legends. Largest weakly-connected component
is shown.
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Table 1: Monte Carlo Design Parameterization

Calibrated Link Probability

F (αH + βH + λ00) 0.90
F (αH + βL + λ00) 0.50
F (αL + βL + λ00) 0.10
F (αH + βH + λ01) 0.50
F (αH + βL + λ01) 0.10
F (αL + βL + λ01) 0.012

Source: Authors’ calculations.
Notes: Utility parameters for the Monte Carlo experiments were chosen to calibrate the null
link probabilities listed in Column 1 to equal those values listed in Column 2.

practice.

Figure 8 summarizes our main findings. The two panels of the figure correspond to the

two network sizes we considered: N = 24 and N = 48. The horizontal axes of the figures

in each panel correspond to different values of the strategic interaction parameter, γ0; the

vertical axes to rejection frequencies. With 1000 Monte Carlo replications the standard error

of our simulation estimate of size is
√

(0.05 (1− 0.05) /1000) ≈ 0.007.

As expected, the actual size of our test is indistinguishable (i.e., equal up to simulation

error) from its nominal size. For the designs considered here the power gains associated with

using the locally best test statistic derived in Section 2 are considerable. Furthermore the

feasible locally best test, which replaces δ0 with its MLE (computed under the null), performs

about as well as the infeasible locally best test based on the actual value of δ0.

The Monte Carlo experiments highlight that the locally best test, which upweights

episodes of “unexpected” transitivity, is more powerful than the ad hoc test based on com-

paring the transitivity index (TI) with its null distribution. Note both tests are “valid” and

correctly-sized.
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Figure 8: Power Analysis

(a) N = 24 agents/nodes
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(b) N = 48 agents/nodes
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Source: Authors’ calculations.
Notes: The figures plot the frequency with which H0 : γ0 = 0 is rejected across 1, 000
Monte Carlo replications for, respectively, networks with N = 24 and 48 agents. The y-
axis reports the estimated rejection frequency, the x-axis gives the value of the strategic
interaction parameter, γ0. The sparsest pure strategy NE is use to simulate each network.
For each simulation a total of 400 MCMC draws from Ds,m were used to compute critical
values. The mixing time was chosen such that every edge is randomly modified before the
network is considered a uniform draw. The marginal utility function equals Ai+Bj+X

′
iΛ0Xi+

γ0sij(d)−Uij with sij(d) =
∑

k dikdkj. The distribution of (Ai, Bi, Xi) is as described in the
main text; other model parameters are given in Table 1.
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5 Extensions

Graham and Pelican (2020) introduced an econometric model for network formation with

transferable utility (cf., Bloch and Jackson, 2007); appropriate for the analysis of undirected

networks. They use the importance sampling algorithm of Blitzstein and Diaconis (2011)

to simulate the null distribution of their test statistic. Their set-up does not allow for

homophily under the null; nor do they consider optimal test statistics. These extension

could be accomplished use the simulation algorithms for undirected networks developed in

Pelican (2019) and the ideas of this paper.

Our approach to testing could also be applied to settings where the econometrician ob-

serves many independent games, each with a small number of players (see de Paula (2013)

for a review); this arises when a small set of competing firms make entry decisions across a

large number of independent markets. Testing here is relatively better studied (e.g., Chen

et al. (2018) and the references therein). An attractive feature of our framework for empirical

researchers is that is can to easily handle, for example, “market level” unobservables (albeit

at the cost of assuming logistic utility shocks).

A primary advantage of our approach – complete agnosticism about equilibrium selection

under the null – is also a limitation. It is not obvious how to adapt our method to, for

example, construct an identified set for γ0 (or a confidence interval for this set). Research in

this direction would be useful.

While much additional research remains to be done, we have provided a feasible and

powerful test for a key scientific hypothesis on the nature of network formation, whilst main-

taining a rich and realistic null model structure. Our MCMC simulation algorithm is also

likely to be of independent interest.

References

Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P. (2008). Mixed membership

stochastic blockmodels. Journal of Machine Learning Research, 9:1981 – 2014.

Anderson, J. E. (2011). The gravity model. Annual Review in Economics, 3(1):133 – 160.

Andrews, I., Stock, J. H., and Sun, L. (2019). Weak instruments in instrumental variables

regression: theory and practice. Annual Review of Economics, 11:727 – 753.

Apicella, C. L., Marlowe, F. W., Fowler, J. H., and Christakis, N. A. (2012). Social networks

and cooperation in hunter-gatherers. Nature, 481(7382):497 – 501.

40
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de Paula, Á., Richards-Shubik, S., and Tamer, E. (2018). Identifying preferences in networks

with bounded degree. Econometrica, 86(1):263 – 288.

Del Genio, C. I., Kim, H., Toroczkai, Z., and Bassler, K. E. (2010). Efficient and exact

sampling of simple graphs with given arbitrary degree sequence. Plos One, 5(4):1–7.

Dutta, B. and Jackson, M. O. (2000). The stability and efficiency of directed communication

networks. Review of Economic Design, 5(3):251 – 272.

Dzemski, A. (2018). An empirical model of dyadic link formation in a network with unob-

served heterogeneity. Review of Economics and Statistics. University of Mannheim.
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A Supplemental Web Appendix: Proofs

The appendix includes proofs of the theorems stated in the main text as well as statements

and proofs of supplemental lemmata. All notation is as established in the main text unless

stated otherwise. Equation number continues in sequence with that established in the main

text.

A.1 Proof of Theorem 1.1

For the equation (13) to be well defined we must show that N (d, ·; θ) is measurable. For a

network d we can define a function N (d, ·; θ), which assigns to a realization U = u the Nash

equilibrium weight of the pure strategy which corresponds to d. We now show that there is

a measurable function N (d, ·; θ) satisfying these conditions.

First we consider the case where the utility shocks are bounded. Let M > 1 be given,

we show that N (d, ·; θ) is measurable on Uc = [−M,M ]n. Observe that every realization of

the taste shock u corresponds to a game in normal form γ. Here we use γ to denote a table

containing, for each pure strategy combination (or equivalently network) d, the utility of

each agent according to equation (2). We use γ to denote this table to be consistent with the

game theory literature (recognizing this may be confusing since γ is used in the main text,

and elsewhere in this appendix, to denote the strategic interaction parameter of parameter

of interest.

Utility is defined for every player. The mapping g : Rn → RN2n assigns to each taste

shock realization u the corresponding game g(u). In a game each player can choose among

2N−1 strategies (corresponding to which of the N − 1 other agents she chooses to link to);

thus there are 2(N−1)N pure strategy combinations.

Looking at equation (2) it is apparent that g is continuous and therefore measurable.

Because of continuity we have sup{||g(u)|| : u ∈ [−M,M]N(N−1)} := L < ∞. We set

Γ := [−L,L]N2n ; the set of all games with bounded payoffs.

Lemma A.1. Let Σ be the set of all mixed strategies combinations of the players. The set

E := {(γ, σ) : σ is a NE of γ ∈ Γ} ⊂ Γ× Σ (48)

is compact.

Proof. E is bounded. Thus it is sufficient to show that E is closed. The NE is defined over a

set of inequalities, which have to be fulfilled (each player cannot strictly increase her payoff

by replacing their strategy with any other pure strategy, holding the other players strategies

1



constant). The utilities are continuous functions on Γ×Σ. Now assume x ∈ Γ×Σ is not in E,

then there exists a inequality which is not satisfied. The inequality is violated by u. Because

the function on both sides of the inequality are continuous we can choose a δ environment of

x such that it is violated for all the elements in the environment. Therefore the complement

of E is open, which proves the statement.

Lemma A.2. Let Γ ⊂ Rn and Σ ⊂ Rm, E ⊂ Γ× Σ be compact sets. Further

∀x ∈ Γ∃y ∈ Σ : (x, y) ∈ E. (49)

There is a measurable function f : Γ→ Σ with

∀x ∈ Γ : (x, f(x)) ∈ E. (50)

Proof. Because of compactness there are a, b ∈ R such that Γ × Σ ⊂ [a, b)n+m. For each k

we partition [a, b) in 2k intervals: [a, a + b−a
2k

), .., [b − b−a
2k
, b) and correspondingly partition

[a, b)n+m into hyper-cubes with side length b−a
2k

. To a cube [a1, b1)× [a2, b2)× ..× [ah, bh) we

associate the characteristic vector (a1, a2, .., ah). We order vectors such that a1 > a2 if the

first coordinate i, for which entry of the two vectors is not equal is a1
i > a2

i . The ordering of

the vectors implies an ordering of the boxes by their characteristic vectors. Let Ck be the set

of hyper-cubes constructed as described above with side length b−a
2k

covering [a, b)n+m. Let

p : Rn+m → Rn be the projection.

Now we define fk : Γ→ Σ as follows. Select x ∈ Γ find all cubes in C ∈ Ck with x ∈ p(C)

and C ∩ E 6= ∅. We denote these cubes as Cx. We call x1, x2 ∈ Γ equivalent if and only if

Cx1 = Cx2 . In this way Γ is partitioned into finitely many equivalence classes. By (49) Cx is

not empty. If more than one cube is in Cx chose C, the highest one in the sense of the ordering

defined above. We select an arbitrary vector v ∈ C∩E and set fk(x
′) := (vn+1, vn+2, .., vn+m)

for all x′ equivalent to x.

fk(Γ) is finite. And each element of fk(Γ) has as a preimage the intersection of Γ with

a finite number of n dimensional cubes. Because Γ is measurable (because of compactness)

and the n dimensional cube are measurable, fk is a measurable function. Note fk does not

have property (50).

We now want to show pointwise convergence for (fk)k∈N. We fix x ∈ Γ and have a sequence

(xk, yk) = (x, fk(x)) in Γ × Σ. Because Γ × Σ is compact, (xk, yk) has a convergent sub-

sequence (xkz , ykz) with limit (x∗, y∗). Let ||v|| be the maximum norm of a vector v ∈ Rn+m.

Assume (x∗, y∗) 6∈ E, then inf{||(x∗, y∗)− e|| : e ∈ E} := ε > 0 because E is compact. Now

we can choose z (and thereby k) such that the side length of the cube is ε
2
. Then the cube

containing (x∗, y∗) does not contain any e ∈ E. A contradiction of the way fk is constructed.
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Now assume that (xk, yk) has subsequence converging to point (x̃∗, ỹ∗) 6= (x∗, y∗). Without

loss of generality assume (x̃∗, ỹ∗) < (x∗, y∗). Let i be the first index of y in which the two

vectors don’t equal. We have ỹ∗i < y∗i . Therefore |ỹ∗i − y∗i | =: ε > 0. Now we can choose a

threshold K such that for any k > K the side length of the cube is less then ε
2
. Then for all

k > K the cube containing (x̃∗, ỹ∗) and the cube containing (x∗, y∗), do not intersect. The

cube containing (x∗, y∗) is higher in the ordering then the cube containing (x̃∗, ỹ∗). Therefore

for all k > K (xk, yk) is not in a ε
2

environment of (x̃∗, ỹ∗). A contradiction to another limit

of the sequence. This shows the pointwise convergence for (fk)k∈N. The limit function we

denote with f ∗.

For a sequence of measurable functions, which converges pointwise, the limit function is

also measurable Werner (2012). f ∗ is measurable and satisfies condition (50).

Proof of Theorem 1.1

Now we are ready to prove the result stated in the main text.

For a z ∈ Zn we define a function rz : [z1, z1 + 1] × ... × [zn, zn + 1] → Σ, which assigns

to each taste shock in the hyper cube [z, z + 1] a NE. According to Lemma A.1 and Lemma

A.2 and the fact that g from above is measurable we can define rz such that it is measurable.

We now define r̄z : Rn → RN2n with r̄z(x) = rz(x) if x ∈ [z, z + 1) and r̄z(x) = 0 otherwise.

Let r : Rn → Σ with

r(x) =
∑
z∈Zn

r̄z(x) (51)

Note in equation (51) we sum over a countable set and and the sum converges absolutely for

each x. Therefore r is measurable; specifically it is a measurable function which assigns to

each taste shock to a NE. Let hd : Σ → [0, 1] be the function which assigns to every mixed

strategy the probability of d by multiplying the mixed strategies weights corresponding to d.

Since multiplication is a measurable operation hG is measurable. N (d, ·; θ) := hd ◦ r satisfies

the desired properties.

A.2 Optimal test statistic proofs

Preliminary results

Lemma A.3. Any differentiable function f ∈ O (γ2) with f (0) = 0 has a derivative of zero

at point zero.

Proof. For f ∈ O (γ2) we have, for some C > 0 and ε > 0, that

|f (γ)| < Cγ2 (52)
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for all γ ∈ [−ε, ε]. The derivative of f at γ = 0 equals

f ′ (0) = lim
γ→0

f (γ)− f (0)

γ
= lim

γ→0

f (γ)

γ
, (53)

with the second equality because f (0) = 0. As γ → 0, we will have γ < ε so that

f ′ (0) = lim
γ→0

f (γ)

γ
≤ lim

γ→0

Cγ2

γ
= lim

γ→0
Cγ (54)

which goes to zero as γ → 0 as claimed.

Proof of Theorem 2.1 (i.e., derivation of the form of the locally best test statistic)

We begin with the likelihood decomposition (35) given in the main text. The number of

summands in (35) depends on the partition that sij(d) induces on R. For a positive γ, the

number neither depends on the exact value of γ, nor on the other covariates and parameters.

Intuitively, as long as γ is positive, there is a positive probability that U falls in any combi-

nation of buckets. The number of summands in (35) is typically large. The buckets b of Bn

and the function N depend on γ.

We have that

∂P (d; θ,N )

∂γ
=

∂

∂γ

{∑
b∈Bn

∫
u∈b
N (d,u; θ) fU (u) du

}

=
∑
b∈Bn

∂

∂γ

∫
u∈b
N (d,u; θ) fU (u) du,

The switching of summation and derivative operator is possible because the number of sum-

mands does not depend on γ. We could try to take the derivative of each summands integral

boundaries and of N (d, .; θ). But there is no need to boil the ocean, because regardless of

N (d, .; θ) most of the summands are 0. To show this we consider three cases of summands.

Case 1: more than two buckets in B are inner buckets

Recall that the boldface subscripts i = 1,2, . . . index the n = N (N − 1) directed dyads in

arbitrary order. Consider a set of buckets b where two or more of them are inner buckets.

Without loss of generality assume that the L ≥ 2 inner buckets correspond to b1, . . . , bL

of b = (b1, . . . , bn). The shape of the lth bucket is (γsl, γs̄l] with sl < s̄l coinciding with

the bucket borders induced by the precise form of strategic interaction specified under the

alternative. We normalize the dyad-specific systematic utility component µij = 0 without
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loss of generality.

Recall that B̃n is the set of bucket configurations with two or more inner buckets. For

any b ∈ B̃n we can derive the upper bound:

∫
u∈b
N (d,u; θ) fU (u) du =

∫
u∈b
N (d,u; θ)

[∏
i

fU (ui)

]
du

≤
∫ γs1

γs1

fU (u1)× · · · ×
∫ γsL

γsL

fU (uL)

∫
u−L∈b−L

fU−L
(u−L) du

<

∫ γs1

γs1

fU (u1)× · · · ×
∫ γsL

γsL

fU (uL) du1 · · · duL

<

∫ γs1

γs1

1× · · · ×
∫ γsL

γsL

1du1 · · · duL

= γL (s1 − s1)× · · · × (sL − sL)

where u−L denotes the vector u after removal of its first L components and similarly for

b−L. The first equality follows from independence of the components of u, the second (weak)

inequality from the fact that N (d,u; θ) ≤ 1 for all u ∈ U. The third (strict) inequality

follows because fU−L
(u−L) is a density and the integration is not over all of Rn−L. The

fourth (strict) inequality arises because when fU (u) is the logistic density we have that

fU (u) = FU (u) [1− FU (u)] < 1 for all u on a compact interval of the real line. We conclude

that any summand where b has two or more inner buckets is O (γ2) for γ → 0.

We have, directly from this argument, that Q (d; θ,N ) ∈ O (γ2) and furthermore that

Q
(
d; (0, δ′)′ ,N

)
= 0 (since inner buckets have zero probability when γ = 0). Hence, by

Lemma A.3, we have that
∂Q (d; θ,N )

∂γ

∣∣∣∣
γ=0

= 0.

This is enough to show equation (40) of the main text. This simplification is essential to

the overall result, as it allows us to proceed without knowing any details about the form

of the equilibrium selection rule N when U takes values which admit multiple equilibrium

networks.

Case 2: No bucket in b is an inner bucket (i.e., all buckets are outer buckets)

If all components of u fall in either their first or last buckets, then the network is uniquely

defined. This occurs because agent-level preferences for forming (or not forming) a link are

so strong that they do not depend on the presence or absence of other links in the network.

5



Each agent i either prefers to send a link to j, regardless of the actions taken by others, or

does not wish to send a link. Put differently, each agent has a pure link formation strategy

which is strictly dominating in such games; therefore N (d,u; θ) is either zero or one.

For a particular network d, N (d,u; θ) = 1 if, for all (directed) dyads ij such that dij = 1,

we have that uij falls in the first bucket and for all dyads ij such that dij = 0 we have that

uij falls in the last bucket. These considerations give the equality

∫
u∈b
N (d,u; θ) fU (u) du =

∏
i 6=j

[∫ µij+γs

−∞
fU (uij) duij

]dij [∫ ∞
µij+γs̄

fU (uij) duij

]1−dij

(55)

=
∏
i 6=j

[FU (µij + γs)]dij [1− FU (µij + γs̄)]1−dij (56)

Taking logarithms of the expression above, differentiating with respect to γ, evaluating at

γ = 0, and multiplying by P0 (d; δ) yields a derivative for summands where all buckets in b

are outer buckets of

P0 (d; δ)
∑
i 6=j

[
dijs

fU (µij)

FU (µij)
− (1− dij) s̄

fU (µij)

1− FU (µij)

]
. (57)

Case 3: Exactly one bucket in b is an inner bucket

If all but one component of u falls into its first or last bucket, then the resulting network is

uniquely defined except for the presence or absence of one arc, say, ij. For any such draw of

u, since all other links are formed according to a strictly dominating strategy, player i will

either benefit from forming the ij arc or not. Hence N (d,u; θ) is also either zero or one in

this case.

For a particular network d, N (d,u; θ) will equal one if two conditions hold. First, for

all directed dyads kl 6= ij such that dkl = 1 we have that ukl falls in the first bucket and for

all dyads kl 6= ij such that dkl = 0 we have that ukl falls in the last bucket. Second, for the

dyad ij with uij falling in an inner bucket, we require that if uij ∈ [µij + γs, µkl + γsij (d))

that dij = 1, while if uij = [µkl + γsij (d) , µij + γs̄) we require that dij = 0. The overall
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likelihood contribution for this case therefore equals:∫
u∈b
N (d,u; θ) fU (u) du =

∏
kl 6=ij

[∫ µkl+γs

−∞
fU (ukl) dukl

]dkl [∫ ∞
µkl+γs̄

fU (ukl) dukl

]1−dkl

×

[∫ µij+γsij(d)

µij+γs

fU (uij) duij

]dij [∫ µij+γs̄

µij+γsij(d)

fU (uij) duij

]1−dij

=
∏
kl 6=ij

[FU (µkl + γs)]dkl [1− FU (µkl + γs̄)]1−dkl

× [FU (µij + γsij (d))− FU (µij + γs)]dij

× [FU (µij + γs̄)− FU (µij + γsij (d))]1−dij .

Recall the restriction sij (d) = sij (d− ij) = sij (d + ij). Because the last two terms in [·]
in the expression above are zero at γ = 0 we only need to consider their derivative (by the

product rule the other term equals zero at γ = 0). Differentiating the last two terms with

respect to γ (and multiplying by the balance of preceding terms) yields∏
kl 6=ij

[FU (µkl + γs)]dkl [1− FU (µkl + γs̄)]1−dkl

× [sij (d) fU (µij + γsij (d))− sfU (µij + γs)]dij

× [s̄fU (µij + γs̄)− sij (d) fU (µij + γsij (d))]1−dij

=
∏
i 6=j

[FU (µij + γs)]dij [1− FU (µij + γs̄)]1−dij

×
[
sij (d)

fU (µij + γsij (d))

FU (µij + γs)
− s fU (µij + γs)

FU (µij + γs)

]dij
×
[
s̄
fU (µij + γs̄)

FU (µij + γs̄)
− sij (d)

fU (µij + γsij (d))

FU (µij + γs̄)

]1−dij
.

Summing this expression over all potential arcs (and evaluating at γ = 0) gives a total

contribution of “one inner bucket in b” summands to the derivative of:

P0 (d; δ)
∑
i 6=j

dij

[
sij (d)

fU (µij)

FU (µij)
− s fU (µij)

FU (µij)

]
+ (1− dij)

[
s̄
fU (µij)

FU (µij)
− sij (d)

fU (µij)

FU (µij)

]
. (58)

Summing (55) and (58) then gives the expression in the statement of Theorem 2.1. Using

similar methods we can show that P (d; θ) can be differentiated with respect to γ twice as
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claimed.

A.3 MCMC Proofs

Proof of Lemma 3.1

Let AG,G′ be the set of arcs form the node vG to the node vG′ . We construct a bijection

ϕ : AG,G′ → AG′,G. Then we show that the probability of an arc p(a) is equal to p(ϕ(a)). If

that is proven, the probability of a transition form vG to vG′ is∑
a∈AG′,G

p(a) =
∑

a∈AG′,G

p(ϕ(a))

=
∑

ϕ−1(a′)∈AG′,G

p(a′)

=
∑

a′∈ϕ(AG′,G)

p(a′)

=
∑

a′∈AG,G′

p(a′)

which is the probability for a transition from vG′ to vG.

For the construction of the bijection consider that every arc AG,G′ corresponds uniquely to

a schlaufen-sequence R = (R1, .., Rh). Let Rk = (i1, .., im, .., il) with im the start of the

cycle (if there is no cycle in R, we set R = R̄). We define R̄k = (i1, .., im, il−1, ..im+1, il) and

R̄ = (R̄1, .., R̄h).

Note that the R1, .., Rh are link disjoint and as soon as the cycle of Rk is switched R̄k is

a schlaufe. The violation matrix of R̄k is the negative violation matrix of Rk. This implies

that if R is a feasible schlaufen sequence for G which defined a arc in AG,G′ then R̄ is a

feasible schlaufen-sequence for G′ and defines an arc AG′,G.

We define now ϕ as the function which maps the arc in AG,G′ with schlaufen sequence R
to the arc in AG′,G with schlaufen sequence R̄. By construction ϕ is injective, which implies

|AG,G′| ≤ |AG′,G|. By symmetry we conclude |AG′,G| ≥ |AG,G′ |, which implies |AG′,G| =

|AG′,G| and that ϕ is bijective.

It remains to show that the probability of an arc p(a) is equal to p(ϕ(a)). For any node

there are equally many feasible active / passive outlinks in G as in G′. If for a node one

outlink is marked due to an link in Rk then for the same node one outlink is marked in R̄k.

Therefore is rG′k(i) equal to rGk
(i) for an active as well as a passive step. Looking at equation

(44) the pGk
(Rk) is only different to pG′k(R̄k) in the numbering of the factors. But in a cycle
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of a schlaufe the start node im and the end node il are such that m − l mod 2 = 0. The

reordering leaves even indexes even and odd indexes odd. Therefore pG(Rk) = p′G(R̄k). From

equation (45) it follows directly that pG(R) = pG′(R̄) which completes the proof.

Proof of Lemma 3.2

The symmetric difference of two realizations of Gs,m, which we denote by G and G′ is a set of

alternating cycles. Cycles are in particular schlaufen. We order them arbitrary (R1, .., Rh).

The sum of the violation matrices is 0. Therefore (R1, .., Rh) is either a feasible schlaufen-

sequence or a concatenation of feasible schlaufen-sequences. In the first case there is an arc

from vG to vG′ . In the second case, all the feasible schlaufen-sequence define an arc to a new

node, resulting in a directed path starting at vG and ending in vG′ . Thus between any two

vertexes in Φ there is a directed path.

Proof of Theorem 3.3

Every time the Algorithm 1 arrives at step 2 a new arc is crossed. At step 2 the algorithm

follows a loop arc of type 1 with probability q (here ”refers” to the numbered points used

to describe the state graph in the main text). Others it proceeds to step 3. In step 3 a

schlaufen-sequence R is constructed. If the violation matrices of this schlaufen-sequence sum

up to 0, the in it cycles are switched and an arc of type 2 is followed with probability pG(R).

If the violation matrices do not sum up to 0, then an arc of type 3 is followed. All the cases,

in which the violation matrices don’t sum up to 0, correspond to the residual probability.

Therefore Algorithm 1 is a a random walk on the state graph Φ.

According to lemma 3.1 Φ is (weighted) symmetric and according to lemma 3.2 it is

strongly connected. Due to the self-loops, Φ is not bipartite. Therefore the limit distribution

is uniform.
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