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Abstract

We propose a robust method of discrete choice analysis when agents’ choice sets
are unobserved. Our core model assumes nothing about agents’ choice sets apart from
their minimum size. Importantly, it leaves unrestricted the dependence, conditional
on observables, between agents’ choice sets and their preferences. We first characterize
the sharp identification region of the model’s parameters by a finite set of conditional
moment inequalities. We then apply our theoretical findings to learn about households’
risk preferences and choice sets from data on their deductible choices in auto collision
insurance. We find that the data can be explained by expected utility theory with low
levels of risk aversion and heterogeneous choice sets, and that more than three in four
households require limited choice sets to explain their deductible choices. We also find
that the data are consistent with some models of choice set formation, but not others.
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1 Introduction

The starting point of any discrete choice problem is the finite set of alternatives from which

the agent makes her choice—her choice set. Discrete choice analysis in the tradition of

McFadden (1974) rests on two assumptions about agents’ choice sets. The first is that an

agent’s choice set is a subset of a known universal set of feasible alternatives—the feasible set.

The second assumption is that an agent’s choice set is observed. McFadden shows that when

these assumptions hold, one can apply the principle of revealed preference to learn about

agents’ unobserved preferences from data on their observed choices. Moreover, he shows that

with additional restrictions on the structure and distribution of agents’ preferences, one can

achieve point identification of a parametric model of discrete choice.

In practice, however, agents’ choice sets are often unobserved. Sometimes this is a missing

data problem—the agents’ choice sets are observable in principle but are not recorded in the

data. For example, one studying the college enrollment choices of high school students may

not observe the colleges to which a student applied and was admitted (Kohn et al. 1976);

one studying the travel mode choices of urban commuters may not observe if some modes

normally available to a commuter were temporarily unavailable on a given day (Ben-Akiva

and Boccara 1995); or one studying the hospital choices of English patients may not observe

which alternatives were offered to a patient by her referring physician (Gaynor et al. 2016).

At other times the problem is that agents’ choice sets are unobservable mental constructs.

This is the case in models of limited attention or limited consideration, where an agent con-

siders only a subset of the feasible set due to, for example, search costs, brand preferences,

or cognitive limitations. For instance, one studying the personal computer choices of retail

consumers can be sure that a consumer was not aware of all computers for sale but cannot

observe the computers of which a consumer was aware (Goeree 2008); one studying the Medi-

gap plan choices of Medicare insureds cannot observe which of the available plans an insured

in fact considered (Starc 2014); or one studying the energy retailer choices of residential

electricity customers cannot observe whether or to what extent a customer considered the

alternatives to her default, incumbent retailer (Hortaçsu et al. 2017).

When agents’ choice sets are unobserved the econometrician is forced to make additional

assumptions in order to achieve point identification. The most common approach is to as-

sume, often implicitly, that all choice sets coincide with the feasible set or a known subset of

the feasible set. More sophisticated approaches allow for heterogeneity in agents’ choice sets

and obtain point identification by relying on auxiliary information about the composition or

distribution of choice sets, two-way exclusion restrictions (i.e., variables assumed to impact

choice sets but not preferences and vice versa), and other restrictions on the choice set forma-

tion process (e.g., conditional independence between choice sets and preferences). In some
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applications these approaches seem reasonable or at least plausible. In many applications,

however, they likely result in misspecified models, biased estimates, and incorrect inferences.

More fundamentally, the basic revealed preference argument breaks down when choice

sets are unobserved. At one extreme, when an agent’s choice set equals the feasible set, her

choice reveals that she prefers the chosen alternative to all others. At the other extreme,

when an agent’s choice set comprises a single alternative, her choice is driven entirely by

her choice set and reveals nothing about her preferences. In all other cases her choice is a

function of both her preferences and her choice set. Learning about preferences from choices

when choice sets are unobserved is the main challenge we address in this paper.

We propose a new, robust method of discrete choice analysis when agents’ choice sets are

unobserved. Our core model imposes mild restrictions on agents’ preferences and assumes

nothing about agents’ choice sets or how they are formed, apart from assuming that they

have a known minimum size greater than one. Under these weak conditions the distribution

of preferences typically is not point identified, but only partially identified. In our main

theoretical result we characterize the sharp identification region of the distribution of prefer-

ences. Sharpness means that the identification region comprises all and only those preference

distributions for which there exists a choice set formation process such that the distribution

of model implied choices matches the distribution of observed choices. As a corollary to our

main result we show that if one also assumes that preferences are independent of choice set

size then the distribution of choice set size is also partially identified.

We lay out our core model in Section 2. We begin with the classic random utility model

developed by McFadden (1974) and others, though we allow for a utility function that is

neither linear in parameters nor additively separable in unobservables. Our key point of

departure from the classic model, however, is that we relax the assumption that the agents’

choice sets are observed. Instead, we assume only that the minimum size of the agents’

choice sets is a known integer greater than one. Consequently, our model admits any choice

set formation process (subject only to the minimum size assumption) and allows for any

dependence structure, without restriction, between agents’ choice sets and their observables

and, conditional on observables, between agents’ choice sets and their preferences.

In Section 3 we first show that our model implies multiple optimal choices for an agent, re-

sulting from the multiple possible realizations of her choice set. It is this multiplicity that, in

the absence of additional restrictions on the choice set formation process, generally precludes

point identification of the model’s parameters. Because we avoid making such additional,

unverifiable assumptions, our approach yields a robust method of statistical inference. We

then present our main identification results, both of which leverage a result in random set
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theory, due to Artstein (1983), to define a finite set of conditional moment inequalities that

characterizes the sharp identification region for the model’s parameters.1

In Sections 4 and 5 we demonstrate the usefulness of our theoretical findings by applying

them to learn about households’ risk preferences and choice sets from data on their deductible

choices in auto collision insurance. The data hail from a large U.S. insurance company and

contain information on more than 100,000 households who first purchased auto collision

coverage from the company between 1998 and 2007.

In Section 4 we specify an empirical model of deductible choice in auto collision insur-

ance that allows for unobserved heterogeneity in households’ risk preferences and in their

choice sets. Although we observe the feasible set of deductibles, we do not observe which

deductibles enter a household’s choice set. In our setting, therefore, there may be unobserved

heterogeneity in choice sets. What’s more, such unobserved heterogeneity may be due to

missing data—e.g., if different households are quoted different subsets of deductibles—or to

unobserved constraints—e.g., if some households disregard low deductibles due to budget

constraints or high deductibles due to liquidity constraints. Either way, the robust method

of discrete choice analysis that we propose is equally applicable and valid.

We present our empirical findings in Section 5. Our key finding with respect to risk

aversion is that the data can be explained by expected utility theory with a distribution of

risk aversion that has low mean and variance, with at least a quarter of households being

effectively risk neutral. By comparison, three point identified expected utility models—

two that specify processes of heterogeneous choice set formation and are estimated on our

data, and one that assumes full size choice sets (i.e., choice sets that contain all feasible

alternatives) and is estimated on similar data—yield means that are substantially higher.

Our key finding with respect to choice sets is that more than three in four households

require limited (i.e., less than full size) choice sets to explain their deductible choices. We

discuss two drivers of this result—suboptimal choices and violations of the law of demand.

We also discuss how the frequency of suboptimal choices is consistent with some models

of choice set formation, but not others. The latter discussion contributes a new, robust

approach to testing the assumptions on choice set formation in a random utility model.

Our empirical findings highlight the importance of using a robust method to conduct

inference on discrete choice models when there may be unobserved heterogeneity in choice

sets. The literature on risky choice, motivated in part by reported estimates of risk aversion

that seem implausibly high in light of the Rabin (2000) critique (e.g., Cicchetti and Dubin

1The recent econometrics literature uses the result in Artstein (1983), discussed in detail in Molchanov
and Molinari (2018, Chapter 2), to conduct identification analysis in various partially identified models (e.g.,
Beresteanu and Molinari 2008; Beresteanu et al. 2011; Galichon and Henry 2011; Chesher et al. 2013; Chesher
and Rosen 2017). For a review, see Molinari (2020).
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1994; Sydnor 2010), has focused on developing and estimating models that depart from

expected utility theory in their specification of how agents evaluate risky alternatives. Our

findings provide new evidence on the importance of developing models that differ in their

specification of which alternatives agents evaluate, and of data collection efforts that seek to

directly measure agents’ heterogeneous choice sets (Caplin 2016).

We conclude the paper in Section 6 with a discussion in which we provide an overview of

the prior literature on discrete choice analysis with unobserved heterogeneity in choice sets

and recap our contributions to the literature.

2 A Random Utility Model with Unobserved

Heterogeneity in Choice Sets

Our starting point is the random utility model developed by McFadden (1974). Let I denote

a population of agents and D denote a finite set of alternatives, which we call the feasible set.

Let U be a family of real valued functions defined over the elements of D. The random utility

model posits that for each agent i P I there exists a function Ui drawn from U according to

some probability distribution such that

d P� Ci ô Uipdq ¥ Uipcq for all c P Ci, c � d, (2.1)

where P� denotes “is chosen from” and Ci � D denotes the agent’s choice set.

We assume that each agent i P I is characterized by a real valued vector of observable

attributes xi � psi, pzic, c P Dqq, where si is a subvector of attributes specific to agent i that

are constant across alternatives and zic is a subvector of attributes specific to alternative c

that may vary across agents. Let xic � psi, zicq denote the vector of observable attributes

relevant to alternative c. In addition, we assume that each agent i P I is further characterized

by a real valued vector of unobservable attributes νi, which are idiosyncratic to the agent.

Let X and V denote the supports of xi and νi, respectively.

To operationalize Ui as a random variable, we posit that it is a function of the agent’s

observable and unobservable attributes and we impose restrictions on its distribution.

Assumption 2.1 (Restrictions on Utility):

(I) There exists a function W : X � V ÞÑ R, known up to a finite dimensional parameter

vector δ P ∆ � Rk, where ∆ is convex and compact, and continuous in each of its

arguments such that Uipcq � W pxic,νi; δq for all c P D, pxic,νiq � a.s.

(II) The distribution of νi, denoted by P , is continuous, known up to a finite dimensional

parameter vector γ P Γ � Rl, where Γ is convex and compact, and independent of xi.
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Assumption 2.1 allows for nonadditive unobserved heterogeneity in Ui, indexed by νi.

It is weaker than the standard assumption that Ui is additively separable in unobservables.

That said, one could let νi � pνic, c P Dq and specify W pxic,νi; δq � ωpxic; δq � νic as in a

conditional logit (McFadden 1974), or let νi � pυi, pεic, c P Dqq and specify W pxic,νi; δq �

ωpxic,υi; δq � εic as in a mixed logit (McFadden and Train 2000).

Assumption 2.1 also posits that the functional family of Ui and the distributional family

of νi are known parametric classes, and that νi is independent of xi. Though standard in

discrete choice analysis, the parametric assumptions are not essential for our partial iden-

tification results (see Remark 3.1), and the independence assumption can be relaxed based

on the specific structure of the empirical model (as we illustrate in our application). The

assumption that P is continuous, which ensures there are no utility ties, is also nonessential

because our partial identification results allow for sets of model implied optimal choices and

thus can readily accommodate utility ties; see Section A.3.3 of the Supplemental Material.

Our key point of departure from McFadden (1974) and the bulk of the discrete choice

literature is the assumption regarding what is observed by the econometrician. It is stan-

dard to assume that (i) a random sample of choice sets Ci, choices di, and attributes xi,

tpCi, di,xiq : di P
� Ci, i P I � Iu, is observed, and that (ii) |Ci| ¥ 2 for all i P I, where | � |

denotes set cardinality (see, e.g., Manski 1975, Assumption 1). By contrast, we assume:

Assumption 2.2 (Random Sample and Minimum Choice Set Size):

(I) A random sample of choices di and attributes xi, tpdi,xiq : i P I � Iu, is observed.

(II) Prp|Ci| ¥ κq � 1 for all i P I, where κ ¥ 2 is a known integer.

Assumption 2.2(I) is weaker than the standard assumption as it omits the requirement

that choice sets are observed. Given this difference, Assumption 2.2(II) is comparable to the

standard assumption as it requires that choice sets have a known minimum size, κ, greater

than one. The empirical content of the model increases with κ. Knowledge of κ is immediate

when choice sets are observed. We assume that κ is known, either from information in the

data or by assumption, even though choice sets are unobserved. In any event, Assumption

2.2(II) is weaker than the assumption that every agent’s choice set coincides with the feasible

set or a known subset of the feasible set.

Remark 2.1: Assumption 2.2(II) can be weakened to Prp|Ci| � 1q ¤ π̄1   1 for all i P I,

where π̄1 is known. The empirical content of the model is decreasing in π̄1.

A key feature of our model is that it admits any choice set formation process, including

any mixture process, subject only to Assumption 2.2(II). Choice sets may be formed by
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internal processes, such as simultaneous or sequential search (Stigler 1961; Weitzman 1979;

Honka et al. 2019) or elimination-by-aspects or attention or attribute filters (Tversky 1972a,b;

Masatlioglu et al. 2012; Kimya 2018; Cattaneo et al. 2020), or by external processes, such as

advertising (Chamberlin 1933; Goeree 2008; Terui et al. 2011) or choice architecture (Thaler

and Sunstein 2008; Johnson et al. 2012; Gaynor et al. 2016). Whether internal or external,

the choice set formation process can admit any dependence structure, without restriction,

between agents’ choice sets and their observable attributes and, conditional on observables,

between agents’ choice sets and their unobservable attributes. That is, Ci can be arbitrarily

correlated with xi and, conditional on xi, Ci can be arbitrarily correlated with νi.

3 Partial Identification of the Model’s Parameters

3.1 Preferences

The random utility model in Section 2 implies multiple optimal choices for the agent, due

to the multiple possible realizations G of her choice set Ci. Let d�i pG; xi,νi; δq denote the

model implied optimal choice for agent i with attributes pxi,νiq, choice set Ci � G � D,

|G| ¥ κ, and utility parameter δ. That is, d�i pG; xi,νi; δq � arg maxcPGW pxic,νi; δq.

The set of model implied optimal choices given pxi,νiq and δ is

D�
κpxi,νi; δq �

¤
G�D:|G|¥κ

!
d�i pG; xi,νi; δq

)
�

¤
G�D:|G|�κ

!
d�i pG; xi,νi; δq

)
, (3.1)

where the last equality follows from Sen’s property α: any alternative that is optimal for

a given choice set G1 � D is also optimal for every choice set G � G1 containing that

alternative. The set D�
κpxi,νi; δq is a random closed set with realizations in D.2 It contains

the |D| �κ� 1 best alternatives in D, where “best” is defined with respect to Ui. Figure 3.1

contains stylized depictions of D�
κpxi,νi; δq when |D| � 3 and κ � 2.

When the information in the data and the economic model do not impose sufficiently

strong restrictions on the distribution of Ci, the multiplicity of model implied optimal choices

generally precludes point identification of the model’s parameters θ � rδ;γs. The reason is

that the relationship between the model and the data is incomplete (Tamer 2003). To see

this, let Prpd�i � c|xi;θ,Fp�; xi,νiqq denote the model implied conditional probability that

alternative c is chosen given xi and pθ,Fp�; xi,νiqq, where Fp�; xi,νiq denotes the conditional

2The formal definition of a random closed set is provided in Definition A.1 in the Supplemental Material.
That D�

κpxi,νi; δq is a random closed set is formally established in Lemma A.1 in the Supplemental Material.

6



ν

ν̄c1,c2pxq

ν̄c1,c3pxq

ν̄c2,c3pxq

D�
2 � tc1, c2u

D�
2 � tc1, c2u

D�
2 � tc2, c3u

D�
2 � tc2, c3u

(a) Upcq �W pxc, ν; δq

νc1 � νc3

νc2 � νc3

ω̄c2,c3pxq

ω̄c1,c3pxq

ω̄c2,c1pxq

D�
2 � tc2, c3u

D�
2 � tc1, c2u

D�
2 � tc2, c3u

D�
2 � tc1, c2u

D�
2 � tc1, c3u

D�
2 � tc1, c3u

(b) Upcq � ωpxc; δq � νc

Figure 3.1: Stylized depictions of D�
κ when |D| � 3 and κ � 2.

Notes: In Panel (a), ν P R, Upcq � W pxc, ν; δq, and the alternatives in D are vertically differentiated. The
threshold ν̄ca,cbpxq is the value of ν above which ca has greater utility than cb and below which cb has greater
utility than ca. In Panel (b), ν P R3 and Upcq � ωpxc; δq�νc. The threshold ω̄ca,cbpxq � ωpxcb ; δq�ωpxca ; δq
is the value of νca�νcb above which ca has greater utility than cb and below which cb has greater utility than
ca. Because κ � 2, either |C| � 2 or |C| � 3 and hence D�

2 comprises the first and second best alternatives in
D. For a given ν, the first best appears in black and the second best in red. The agent’s choice is determined
by her realization G of C. She chooses the first best if it is in G; otherwise she chooses the second best.

probability mass function of Ci given pxi,νiq. For all c P D,

Prpd�i � c|xi;θ,Fp�; xi,νiqq �

»
τPV

¸
G�D

1pd�i pG; xi, τ ; δq � cqFpG; xi, τ qdP pτ ;γq. (3.2)

Because we require only that FpG; xi,νiq � 0 for G � D, |G|   κ, there may be multiple

admissible values of pθ,Fp�; xi,νiqq such that

Prpd�i � c|xi;θ,Fp�; xi,νiqq � Prpdi � c|xiq, @c P D, xi � a.s., (3.3)

where di is the agent’s observed choice.3 Nonetheless, in general, it is not the case that for

every θ in a parameter space Θ there is an admissible Fp�; xi,νiq such that condition (3.3)

holds. Hence, we can partially identify θ from the information in the data and the model.

The set of values of θ P Θ for which there exists an admissible distribution Fp�; xi,νiq

such that condition (3.3) holds forms the sharp identification region for θ. We denote this

region by ΘI . The distribution Fp�; xi,νiq, however, is an infinite dimensional nuisance

3By contrast, if Fp�;xi,νiq is known or sufficiently restricted (e.g., parametrically specified), then θ can
be point identified by condition (3.3) given sufficient variation in xi.
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parameter, which creates difficulties for the computation of ΘI and for statistical inference.

We circumvent these difficulties by working directly with the set D�
κpxi,νi; δq.

If the model is correctly specified, the agent’s observed choice di is maximal with respect

to her preference among the alternatives in her choice set and it therefore satisfies

di P D
�
κpxi,νi; δq, xi � a.s., (3.4)

for the data generating value of θ. To harness the empirical content of equation (3.4), we

leverage a result in Artstein (1983), reported in Theorem A.1 in the Supplemental Material.

This result allows us to translate equation (3.4) into a finite number of conditional moment

inequalities that fully characterize the sharp identification region ΘI .

Theorem 3.1: Let Assumptions 2.1 and 2.2 hold. In addition, let θ � rδ;γs, Θ � ∆�Γ,

and K � tK � D : |K|   κu. Then

ΘI �

"
θ P Θ : Prpd P K|xq ¤ P pD�

κpx,ν; δq XK � H;γq, @K P K,x� a.s.

*
. (3.5)

Our proof of Theorem 3.1, provided in Section A.3.1 of the Supplemental Material, es-

tablishes that the characterization in equation (3.5) is sharp—all and only those values of

θ P Θ for which the inequalities in equation (3.5) hold could have generated the observed

data under the maintained assumptions.4 These inequalities have a straightforward inter-

pretation. At the data generating value of θ P Θ, it must be the case that, for every

subset K P K, the conditional probability that K contains a model implied optimal choice

(right hand side) is not less than the conditional probability of the observed choice (left

hand side), which itself is optimal. When the alternatives in D are vertically differenti-

ated, the set K can be restricted to the subsets
ÝÑ
K � tc1u, tc1, c2u, . . . , tc1, c2, . . . , cκ�1u and

ÐÝ
K � tc|D|u, tc|D|, c|D|�1u, . . . , tc|D|, c|D|�1, . . . , c|D|�κ�2u,

5 and the inequalities translate into

statements about cumulative shares for higher (respectively lower) quality alternatives.

3.1.1 Computational Feasibility

There are two main computational challenges in applying Theorem 3.1. First, given any κ ¥

2, the number of inequalities in equation (3.5) grows superlinearly with |D|. In Theorem A.2

and Corollary A.2 in the Supplemental Material, we provide sufficient conditions to reduce

the number of inequalities needed to obtain ΘI . Exploiting these results, in simulations

(available upon request) we run our analysis with |D| � 101, κ � 10, 30, 50, 70, 90, and

4If per Remark 2.1 one weakens Assumption 2.2(II) to Prp|Ci| � 1q ¤ π̄1   1 where π̄1 is known, then
ΘI �

 
θ P Θ : Prpd P K|xq ¤ π̄1 � p1� π̄1qP pD

�

2 px,ν; δq XK � H;γq,@K P K,x� a.s.
(
.

5See Corollary A.2 in the Supplemental Material.
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ν P R. In each case we compute a 95 percent confidence set for ΘI ,
6 with the number of

inequalities ranging from about 1,800 to 18,000, in less than half an hour. Moreover, in

Corollary A.1, we show that ΘI can be equivalently characterized as the set of values θ P Θ

for which the optimal value of a convex program is zero. Because one can leverage efficient

algorithms for solving convex programs, the computational cost of the convex programming

method grows with |D| at a slower rate than the cost of the direct method.

The second challenge is computing the model implied probabilities (the right hand sides

of the inequalities).7 In Theorem A.3 in the Supplemental Material, we provide substantial

simplifications to compute these probabilities when the dimension of ν is large. We do so in

mixed logit models with unobserved heterogeneity in choice sets, where choice sets can be

arbitrarily correlated with the entire vector ν, but the random coefficients and the additive

disturbances are independent. We show how one can exploit the logit closed form choice

probabilities and then numerically integrate over the random coefficients. We illustrate this

in simulations (available upon request) where |D| � 7, 12, 17, κ � 5, and ν P R|D|�1. The

choices of |D| and κ are motivated by recent studies of drug plan choices under limited

consideration in Medicare Part D (Abaluck and Adams 2020; Coughlin 2020). In each case

we compute a 95 percent confidence set for ΘI , with the number of inequalities ranging from

about 10,000 to 325,000, and the run times ranging from about 5 minutes to 20 hours.

To evaluate the feasibility of our method from the perspective of a researcher who has

access to run-of-the-mill computing power (as opposed to large clusters or cloud computing),

we run our simulations on a single, four year old Dell Precision Tower 7910 (Dual CPU E5-

2687W v4 @ 3.00GHz with 128GM memory).

3.2 Choice Sets

Theorem 3.1 establishes that, under mild restrictions on the utility function (Assumption 2.1)

and knowing only the minimum size of agents’ choice sets (Assumption 2.2), one can learn

features of the distribution of preferences without observing agents’ choice sets or knowing

how they are formed. We now show that, with an additional restriction on the choice set

formation process, one can also learn features of the distribution of choice sets.

Let `i � |Ci| denote the size of agent i’s choice set Ci. When `i � |D| we say that Ci has

“full” size. When `i   |D| we say that Ci is “limited” or “restricted.” More specifically, we

say that Ci is “full�1” when `i � |D| � 1, “full�2” when `i � |D| � 2, and so forth.

In addition to Assumptions 2.1 and 2.2, one could assume that:

6See Section 5.
7The left hand side of each inequality can be estimated from the data. The right hand side is a function

of xi known up to θ.

9



Assumption 3.1 (Choice Set Size): Agent i draws the size `i of her choice set such that

Prp`i � q|xi,νiq � Prp`i � q|xiq � πpq; xi;ηq, q � κ, . . . , |D|, (3.6)

where πpq; xi;ηq ¥ 0 for q ¥ κ,
°|D|
q�κ πpq; xi;ηq � 1, and the function π is known up to

a finite dimensional parameter vector η P H � Rm where H is convex and compact. To

simplify notation, define πqpx;ηq � πpq; x;ηq.

Assumption 3.1 posits that the size `i of agent i’s choice set is drawn from an unspecified

distribution with support tκ, . . . , |D|u, which allows for the possibility that the agent’s choice

set has full size, `i � |D|, or is limited, `i   |D|. The only restrictions it imposes on the

distribution of agents’ choice sets are that the distributional family of `i is a known parametric

class—though, as before, the parametric structure is not essential (see Remark 3.1)—and

that `i is independent of νi. Conditional on `i, however, the model with Assumption 3.1

continues to allow for any dependence structure, without restriction, between agents’ choice

sets and their observable attributes and, conditional on observables, between agents’ choice

sets and their unobservable attributes. Moreover, agents with choice sets of the same size

need not have choice sets with the same composition.

Under Assumption 3.1, Theorem 3.1 specializes to the following corollary.8

Corollary 3.1: Let Assumptions 2.1, 2.2, and 3.1 hold. In addition, let θ � rη; δ;γs

and Θ � H �∆� Γ. Then

ΘI �

"
θ P Θ : Prpd P K|xq ¤

°|D|
q�κ πqpx;ηqP pD�

q px,ν; δq XK � H;γq, @K � D,x� a.s.

*
. (3.7)

The sharp identification region ΘI in Corollary 3.1 has two noteworthy features. First, the

projection of ΘI on rδ;γs is equal to the sharp identification region in Theorem 3.1. In

other words, the information in ΘI about the distribution of preferences is the same with or

without Assumption 3.1. This is because D�
q�1pxi,νi; δq � D�

q pxi,νi; δq for all q ¥ κ, and

thus the projection of ΘI on rδ;γs is obtained with πκpxi;ηq � 1 and πqpxi;ηq � 0 for q ¡ κ.

Second, ΘI provides information about the distribution of choice set size, as well. It yields

a lower bound on πκpxi;ηq (the upper bound is one provided κ   |D|) and upper bounds

on πqpxi;ηq for q � κ � 1, . . . , |D| (the lower bounds are zero provided κ   |D| because

D�
q�1pxi,νi; δq � D�

q pxi,νi; δq).
9

8The proof of Corollary 3.1 follows immediately from the proof of Theorem 3.1 and therefore is omitted.
9The computational burden of recovering ΘI under Corollary 3.1 may be greater than under Theorem 3.1

because more inequalities may be needed. However, one can still take advantage of the strategies referenced
in Section 3.1.1 to reduce the computational burden.
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Figure 3.2: Stylized depictions of inequalities in ΘI when |D| � 5 and κ � 4.

Notes: Inequalities for three sets K � D are depicted: (a) K � tc1u; (b) K � tc2u; and (c) K � tc1, c2u.
For a given ν, the first best alternative in D appears in black and the second best in red.

Remark 3.1: Theorem 3.1 and Corollary 3.1 can be generalized for a structure pW,P q

or pW,P, πq, as the case may be, that is subject only to nonparametric restrictions. We focus

on the case with parametric restrictions for computational reasons and because methods of

statistical inference for moment inequality models focus on this case.

3.3 Illustration of the Inequalities Characterizing ΘI

Figure 3.2 contains stylized depictions of three inequalities in equation (3.7) when |D| � 5,

κ � 4, νi � νi is a scalar with support V � r0, ν̄s, and the alternatives in D are vertically

differentiated. In this case Prp`i P t4, 5uq � 1, and with a slight abuse of notation we let

π � Prp`i � 5|xiq. Thus, with probability π the agent draws a choice set of size 5, in

which case D�
5 comprises the first best alternative. With probability 1 � π the agent draws

a choice set of size 4, in which case D�
4 comprises the first and second best alternatives. In

the former case the agent chooses the first best alternative. In the latter case the agent’s

choice is determined by her realization G of Ci. She chooses the first best if it is contained in

G; otherwise she chooses the second best.10 The threshold ν̄ca,cbpxiq is the value of νi above

which ca has a greater utility than cb and below which cb has a greater utility than ca.

Panel (a) depicts the inequality for K � tc1u. If `i � 5 then Ci � D and c1 is the optimal

choice if νi ¡ ν̄c1,c2pxiq. If `i � 4 then c1 is optimal if νi ¡ ν̄c1,c2pxiq and the realization G of

10In general, the agent chooses the best alternative in the intersection of her realizations of D�

q and Ci.

11



Ci includes c1 or if νi P rpν̄c1,c3pxiq, ν̄c1,c2pxiqs and G excludes c2. It follows that

Prpdi � c1|xiq ¤ πP pνi ¡ ν̄c1,c2pxiq;γq � p1� πqP pνi ¡ ν̄c1,c3pxiq;γq.

Similar reasoning applies to the other singleton sets, with K � tc2u depicted in Panel (b).

The inequalities in equation (3.7) also include those for non-singleton sets. To see why,

Panel (c) depicts the inequality for K � tc1, c2u. While the left hand side is additive,

Prpdi P tc1, c2u|xiq � Prpdi � c1|xiq � Prpdi � c2|xiq,

the right hand side is subadditive: the shaded area in Panel (c) is smaller than the sum of

the shaded areas in Panels (a) and (b). Hence, values of θ P Θ that satisfy the inequalities

for K � tc1u and K � tc2u may fail to satisfy the inequality for K � tc1, c2u.

Not all pairs of singleton sets, however, yield nonredundant inequalities. Consider, for

example, K � tc1u and K � tc5u. As is clear from Figure 3.2, there is no value of νi for

which D�
4 contains both c1 and c5. It follows that the inequality for K � tc1, c5u is redundant

if the inequalities for K � tc1u and K � tc5u are satisfied. This reasoning can substantially

reduce the number of inequalities needed to recover ΘI ; see Section 3.1.1.

Though not depicted in Figure 3.2, let us highlight the algebra that delivers an upper

bound on π. Consider K � tc1, c2, c3, c4u. Given this K we have

Prpdi P K|xiq ¤ π PrpD�
5 XK � Hq � p1� πqPrpD�

4 XK � Hq

ô Prpdi � c5|xiq ¥ π PrpD�
5 � tc5uq � πP pνi ¤ ν̄c4,c5pxiq;γq.

Given any γ, this inequality yields an upper bound on π. In general, one obtains the upper

bound on π from a projection of ΘI on the η component of θ.

4 Deductible Choices in Auto Collision Insurance

In this section and the next, we apply our theoretical findings to learn about the distributions

of risk preferences and choice set size from data on households’ deductible choices in auto

collision insurance. In this section, we specify a random expected utility model that allows

for unobserved heterogeneity in risk aversion and choice sets and describe our data.

4.1 Empirical Model

We model households’ deductible choices in auto collision insurance. Each household i faces

a menu of prices pi � ppic, c P Dq, where pic is the household specific premium associated
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with deductible c and D is the feasible set of deductibles, has a probability µi of experiencing

a claim during the policy period, and has an array of observed characteristics ti.
11 Following

the related literature (e.g., Cohen and Einav 2007; Sydnor 2010; Barseghyan et al. 2011,

2013, 2016),12 we make two simplifying assumptions about claims and their probabilities.

Assumption 4.1 (Claims and Claim Probabilities):

(I) Households disregard the possibility of more than one claim during the policy period.

(II) Any claim exceeds the highest deductible in D; payment of the deductible is the only

cost associated with a claim; and deductible choices do not influence claim probabilities.

Assumption 4.1(I) is motivated by the fact that claim rates are small, so the likelihood of

two or more claims in the same policy period is very small.13 Assumption 4.1(II) abstracts

from small claims, transaction costs, and moral hazard.

Under Assumption 4.1, household i’s choice of deductible involves a choice among binary

lotteries, indexed by c P D, of the following form: Lipcq � p�pic, 1� µi;�pic � c, µiq. The

household chooses among these lotteries based on the criterion in equation (2.1). We assume

that household i’s preferences conform to expected utility theory,

Uipcq � p1� µiquipwi � picq � µiuipwi � pic � cq, (4.1)

where wi is the household’s wealth and ui is its Bernoulli utility function.

We impose the following shape restriction on ui.

Assumption 4.2 (CARA): The function ui exhibits constant absolute risk aversion, i.e.,

uipyq �
1�expp�νiyq

νi
for νi � 0 and uipyq � y for νi � 0.

Assuming CARA has two key virtues. First, ui is fully characterized by the coefficient of

absolute risk aversion, νi � �u2i pyq{u
1
ipyq. Second, νi is a constant function of wealth and

hence one can estimate ui without observing wealth. We note, however, that our approach

can accommodate other shape restrictions (e.g., constant relative risk aversion) as well as

non-expected utility models (e.g., the probability distortion model in Barseghyan et al. 2013).

In terms of the core model developed in Section 2, household i’s observable attributes are

xi � pµi, ti,piq, with xic � pµi, ti, picq, and its sole unobservable attribute is its coefficient of

absolute risk aversion νi.
14 Per Assumptions 2.1 and 4.2, we posit that νi � P pγptiqq, where

11As we explain in Section 4.2, we estimate µi and treat it as data.
12For a survey, see Barseghyan et al. (2018, Section 5.2).
13It also forestalls the critique that very small risks are driving our inferences about risk preferences.
14In terms of the notation used in Section 2, si � pµi, tiq, zic � pic, and νi � νi.
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P is specified below in Assumption 4.3(I), and that, pxic, νiq � a.s.,

Uipcq �
p1� µiqp1� exppνipicqq � µip1� exppνippic � cqqq

νi
. (4.2)

Observe that, by equation (4.2), we assume that µi and pic affect utility directly and we

allow ti to affect utility indirectly through νi. To capture this indirect effect, we could

specify γptiq � fpti; δq where the functional form of f is known up to δ P ∆. Instead,

we account for observed heterogeneity in preferences nonparametrically by conducting the

analysis separately on population subgroups based on ti.

Per Assumption 2.2(I), we suppose that the deductible choices and observable attributes,

tpdi,xiq : i P Iu, for a random sample of households I � I, |I| � n, are observed, but

that the households’ choice sets, tCi : Ci � D, i P Iu, are unobserved. Per Assumption

2.2(II), we assume that Prp|Ci| ¥ κq � 1 for every household i P I, where κ ¥ 2. At this

point, however, we do not impose Assumption 3.1. Accordingly, conditional on xi, Ci can

be arbitrarily correlated with νi. We impose Assumption 3.1 only in Section 5.2 when we

apply Corollary 3.1 to learn about the distribution of choice set size.

We close the empirical model with two final assumptions.

Assumption 4.3 (Heterogeneity Restrictions):

(I) Conditional on ti, νi follows a Beta distribution on r0, 0.03s with parameter vector

γptiq � pγ1ptiq, γ2ptiqq and is independent of pµi, picq. To simplify notation, we suppress

below the dependence of γ on ti.

(II) The minimum choice set size is κ � 3.

Assumption 4.3(I) specifies that P is the Beta distribution with support V � r0, 0.03s. The

main attraction of the Beta distribution is its flexibility (e.g., Ghosal 2001). Its bounded

support is a plus given our setting. A lower bound of zero rules out risk loving preferences

and seems appropriate for insurance markets that exist primarily because of risk aversion.

Imposing an upper bound enables us to rule out absurd levels of risk aversion, and the choice

of 0.03 is conservative both as a theoretical matter and in light of prior empirical estimates

in similar settings (e.g., Cohen and Einav 2007; Sydnor 2010; Barseghyan et al. 2011, 2013,

2016). Assumption 4.3(II) posits that the size of every household’s choice set is either full,

full-1, or full-2. In our setting |D| � 5. We set κ � 3 for reasons we explain in Section 4.2.

Remark 4.1: We also consider a mixed logit specification Uipcq � ωpxic, νiq � εic, where

ωpxic, νiq is the certainty equivalent of the right hand side of equation (4.2), νi is distributed

14



per Assumption 4.3(I), and εic is an i.i.d. disturbance that follows a Type 1 Extreme Value

distribution and is independent of pxic, νiq; see Section 5.1.1.

4.2 Data Description

We obtained the data from a large U.S. property and casualty insurance company. The

data contain annual information on more than 100,000 households who first purchased auto

policies from the company during the ten year period from 1998 to 2007. We focus on

households’ deductible choices in auto collision coverage. This coverage pays for damage to

the insured vehicle, in excess of the deductible, caused by a collision with another vehicle

or object, without regard to fault. The feasible set of auto collision deductibles is D �

t$100, $200, $250, $500, $1000u and thus |D| � 5.

To construct our analysis sample, we initially include every household who first pur-

chased auto collision coverage from the company between 1998 and 2007, retaining, at the

time of first purchase, its deductible choice di, its pricing menu pi, its claim probability µi,

and an array ti of three demographic characteristics: gender, age, and insurance score of

the principal driver.15 This yields an initial sample of 112,011 households. We then exclude

households whose deductible choices cannot be rationalized by the model specified in Sec-

tion 4.1 for any pair pνi, Ciq such that νi P r0, 0.03s and |Ci| P t3, 4, 5u. Importantly, our

rationalizability check does not rely on the assumption that P is the Beta distribution. This

excludes 0.1 percent of the initial sample, yielding a final sample of 111,890 households.16

Several comments are in order. First, we retain households’ deductible choices at the time

of first purchase to increase confidence that we are working with active choices. One might

worry that households renew their policies without actively reassessing their deductibles.

Second, we require νi P r0, 0.03s for the reasons stated in Section 4.1. However, the

composition of our sample is robust to the upper bound of the support. If we decrease the

upper bound to 0.02 the sample decreases by one household to 111,889 households. If we

increase the upper bound to 0.04 the sample remains the same at 111,890 households.17

Third, we require |Ci| P t3, 4, 5u—i.e., we assume κ � 3—to keep the model as close as

possible to the standard approach that assumes full size choice sets. As we explain in Section

5.2, κ � 3 is the highest value that is consistent with the data.

15Insurance score is a credit based risk score.
16The data in this paper are not the same as the data in Barseghyan et al. (2013) and Barseghyan

et al. (2016), though both data sets have the same source. In this paper, the data comprise 112,011 house-
holds who first purchased auto collision coverage between 1998 and 2007. In Barseghyan et al. (2013) and
Barseghyan et al. (2016), the data comprise 4,170 households who first purchased auto collision coverage,
auto comprehensive coverage, and home all perils coverage in the same year, in either 2005 or 2006.

17Moreover, our results are robust to increasing the upper bound from 0.03 to 0.04, as indicated by results
available from the authors upon request.
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Fourth, the company generates each household’s pricing menu, pi � ppic, c P Dq, accord-

ing to the following pricing rule: pic � gpcqp̄i � ζ, where p̄i is the household’s base price,

g is a decreasing positive function, and ζ ¡ 0. We observe g, ζ, and the premium paid by

each household given its chosen deductible. We thus can recover each household’s base price.

Given the company’s pricing rule, the base price is a sufficient statistic for pi. Moreover,

any pic P pi can be treated as the base price. We treat the premium associated with the

$1000 deductible as the base price—i.e., p̄ � p1000—and round it to the nearest five dollars.

We use the rounded base prices and resulting pricing menus throughout our analysis.18

Fifth, we estimate the households’ claim probabilities using the company’s claims data.

We assume that household i’s auto collision claims in year t follow a Poisson distribution with

mean λit. We also assume that deductible choices do not influence claim rates (Assumption

4.1(II)). We perform a Poisson panel regression with random effects and use the results to

calculate a fitted claim rate pλi for each household.19 In principle, a household may experience

one or more claims during the policy period. We assume that households disregard the

possibility of experiencing more than one claim (Assumption 4.1(I)). Given this, we transformpλi into a claim probability µi � 1 � expp�pλiq, which follows from the Poisson probability

mass function, and round it to the nearest half percentage point.20 We treat µi as data.

Table 4.1 presents descriptive statistics for the analysis sample. Panel A summarizes

the households’ deductible choices, pricing menus, claim probabilities, and demographic

characteristics. Panel B reports the sample distribution of deductible choices for the full

sample and for subsamples based on gender, age, and insurance score.21 In Table 4.1 and

throughout the paper, young/old and low/high insurance scores are defined as bottom/top

third based on the age and insurance score, respectively, of the principal driver.

18This includes our rationalizability check, though the final sample would be virtually identical if we
used exact prices. Our use of rounded prices reduces the computational burden of recovering ΘI and is
supported by evidence that “people show a marked tendency to produce 0- and 5-ending numbers” in
numerical cognition tasks, including price cognition (Schindler and Kirby 1997, p. 193). See also Schindler
and Wiman (1989), Vanhuele and Drèze (2000), and Liang and Kanetkar (2006).

19In an effort to obtain the most precise estimates, we use the full set of auto collision claims data, which
comprises 1,349,853 household-year records. As we explain in Section C.1 of the Supplemental Material,
we calculate pλi conditional on the household’s observables at the time of first purchase and its subsequent
claims experience.

20Our use of rounded claim probabilities reduces the computational burden of recovering ΘI and is
supported by evidence that people report rounded probabilities (Manski and Molinari 2010).

21In addition, Table C.1 in the Supplemental Material reports the sample distribution of deductible choices
by octiles of base price p̄ and claim probability µ.
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Table 4.1: Descriptive Statistics

Panel A. Summary Statistics
Std. 5th 95th

Mean dev. pctl. Median pctl.

Deductible choice (dollars) 439 178 200 500 500

Pricing menus:
p500 217 137 77 181 480
p250 � p500 65 42 22 54 146
p500 � p1000 49 32 17 41 110

Claim probability (annual) 0.088 0.030 0.045 0.085 0.140

Demographic characteristics:
Female 0.468 0.499 0 0 1
Age (years) 48.1 16.6 24.5 45.9 76.7
Insurance score 731 114 555 725 934

Panel B. Deductible Choices
Percent choosing deductible

Obs. $100 $200 $250 $500 $1000

All households 111,890 1.1 15.2 13.7 65.4 4.6

Male 59,476 1.0 14.9 12.9 65.9 5.4
Female 52,414 1.1 15.5 14.7 64.8 3.8

Young 36,932 0.1 6.9 10.7 77.1 5.2
Old 38,046 2.5 26.2 16.7 51.0 3.6

Low Insurance Score 37,087 0.4 10.1 12.7 72.2 4.6
High Insurance Score 38,371 1.8 20.9 14.6 58.1 4.6

Notes: Analysis sample (111,890 households). Pricing statistics are annual amounts in
nominal dollars. Demographic statistics are for the principal driver.

5 Empirical Findings

Our empirical application is motivated in part by the fact that, although we observe the

feasible set of deductibles, we do not observe which deductibles enter a household’s choice

set. There are many plausible sources of unobserved heterogeneity in choice sets. It may be

due to missing data—e.g., different sales agents may quote different subsets of deductibles

to different households—or to unobserved constraints—e.g., some households may disregard

low deductibles due to budget constraints or high deductibles due to liquidity constraints.

Our application is also motivated by a persistent finding in prior empirical studies of

risk preferences which assume full size choice sets. These studies tend to find that average

risk aversion is quite high—arguably implausibly high. Two recent examples that utilize

similar data are Cohen and Einav (2007) and Barseghyan et al. (2013). We suspect that

the assumption of full size choice sets may be driving this finding and that allowing for

unobserved heterogeneity in choice sets may yield more credible estimates of risk preferences.
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In what follows we first apply Theorem 3.1, which does not assume independence between

preferences and choice sets, to learn about the distribution of risk aversion (Section 5.1). We

then apply Corollary 3.1, which assumes that choice set size is independent of preferences

(Assumption 3.1), to learn about the distribution of choice set size (Section 5.2).

In the text we present results for the population (all households). As indicated in Section

4.1, we also conduct our analysis separately for population subgroups based on observed char-

acteristics ti. The subgroup results are reported in Section C.3 of the Supplemental Material.

For the population and each subgroup, the conditional moment inequalities in equations (3.5)

and (3.7) need to hold pµi, p̄iq�a.s. We therefore compute, for the population and each sub-

group, a confidence set that asymptotically uniformly covers the vector pEpνiq,Varpνiqq with

probability 95 percent,22 using the method proposed by Andrews and Shi (2013) [hereafter,

AS].23 In addition, we report 95 percent confidence intervals for percentiles of νi based on

projections of the AS confidence set, and we apply the bootstrap-based calibrated projection

method proposed by Kaido et al. (2019) [hereafter, KMS] to obtain asymptotically uniformly

valid 95 percent confidence intervals for Epνiq, π3, π4, and π5.24 We review the AS and KMS

methods in Section B of the Supplemental Material.25

Following AS, we aggregate the inequalities in equations (3.5) and (3.7), as the case

may be, by discretizing the support of pµi, p̄iq into 65 “hypercubes.”26 Where applicable, we

leverage the strategies referenced in Section 3.1.1 to reduce our computational burden. We

also mention that there are values of θ P ΘI for which the sample analogs of the moment

inequalities in equations (3.5) and (3.7) are satisfied. This implies that we fail to reject the

hypothesis that our empirical model is correctly specified.27

To provide context for our risk aversion estimates in Section 5.1, we also report estimates

obtained under two point identified expected utility models. They are:

� Uniform Random (UR): Utility is given by equation (4.2). Choice sets are drawn

uniformly at random from D, conditional on |Ci| � q for q ¥ κ and independent of νi.

Specifically, PrpCi � G||G| � qq �
�
|D|
q

��1
for all G � D, |G| � q, q ¥ κ; and Ci K νi.

22For νi � Betapγ1, γ2q, a unique pair pEpνiq,Varpνiqq corresponds to each pair pγ1, γ2q.
23The AS confidence set asymptotically exploits all the information in the conditional moments, in the

sense that as the sample size grows to infinity the number of inequalities used for inference increases and the
confidence set shrinks to the (group specific) sharp identification region.

24Although they do not asymptotically exploit all the information in the conditional moments because
they are based on a fixed number of inequalities, the KMS confidence intervals (implemented on the same
sample with the same inequalities and tuning parameters) are shorter than those obtained by projecting the
AS confidence set.

25Both the AS and KMS methods entail the selection of tuning parameters. We find that our results are
robust to the choice of tuning parameters, as indicated by results available from the authors upon request.

26Following AS, µi and p̄i are normalized by their covariance matrix to ensure more uniform hypercubes.
Each hypercube contains between 660 and 2,901 households, except for one that contains all households.

27For methods to test for misspecification in moment inequality models, see Bugni et al. (2015).
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� Alternative Specific Random (ASR): Utility is given by equation (4.2). Alternatives in

D enter choice sets with alternative specific probabilities, independent of one another

and νi, conditional on |Ci| ¥ κ (cf. Manski 1977; Manzini and Mariotti 2014). Specifi-

cally, PrpCi � G||G| ¥ κq � PrpCi � Gq{p1 �
°
G�D:|G| κ PrpCi � Gqq for all G � D,

where PrpCi � Gq �
±

cPG ϕpcq
±

cPDzGp1� ϕpcqq and ϕpcq � Prpc P Ciq; and Ci K νi.

UR and ASR are “reduced form” models that can capture a wide range of choice set for-

mation processes. For example, UR is consistent with a simultaneous search process with

a uniform prior (cf. Stigler 1961),28 and ASR may describe an advertising process in which

alternatives are marketed with different intensities in independent, non-targeted campaigns.

With dependence between ϕpcq and νi, ASR can capture an even wider range of choice set

formation processes, including, for instance, a sequential search process with free recall (e.g.,

Weitzman 1979) or an advertising process with correlated, targeted campaigns.

5.1 Risk Preferences

Panel (a) of Figure 5.1 depicts the AS 95 percent confidence set for pEpνiq,Varpνiqq for all

households.29 In addition, Table 5.1 reports (i) the KMS 95 percent confidence interval for

the mean of νi and (ii) 95 percent confidence intervals for the 25th and 75th percentiles of νi

based on projections of the AS confidence set. For the mean, we report the actual confidence

interval as well as the risk premium, for a lottery that yields a loss of $1000 with probability

10 percent, implied by each bound. For the percentiles, we report only the implied risk

premia. Focusing on the lower bounds, the main takeaway is that the households’ deductible

choices can be explained by a distribution of absolute risk aversion that has a low mean, on

the order of 10�3, and low variance, on the order of 10�6. Strikingly, the lower bound on the

25th percentile of νi corresponds to a risk premium of less than half a cent, implying that

the data are consistent with at least a quarter of households being effectively risk neutral.

To provide context for these results, Table 5.1 also reports: (i) 95 percent confidence

intervals for the mean, 25th percentile, and 75th percentile of νi obtained under UR and

ASR; and (ii) point estimates for the mean of νi reported by Cohen and Einav (2007) and

Barseghyan et al. (2013) for their CARA models. Cohen and Einav (2007) estimate the

distribution of absolute risk aversion in a parametric expected utility model using data on

deductible choices in Israeli auto insurance. Barseghyan et al. (2013) estimate the distribu-

28With a uniform prior, the simultaneous search problem reduces to choosing the optimal number of
alternatives to search and, given this number, randomly choosing the alternatives to be searched.

29In Figure C.2 in the Supplemental Material, we also report a 95 percent confidence set for an outer
region of admissible probability density functions of νi.
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Figure 5.1: AS 95 percent confidence sets for pEpνq,Varpνqq.

tions of absolute risk aversion and probability distortions in a parametric rank-dependent

expected utility model using data on deductible choices in U.S. auto and home insurance.

The main takeaway is that the baseline lower bounds are substantially smaller than the

lower bounds obtained under UR and ASR and the point estimate reported by Cohen and

Einav (2007). This suggests that if one properly allows for heterogeneity in choice sets,

the data can be explained by expected utility theory with substantially lower levels of risk

aversion than many familiar models—including some that allow for choice set heterogeneity

but perhaps misspecify the choice set formation process—would imply. A second takeaway

comes from results in Barseghyan et al. (2013). Their point estimate for the mean of νi is

only slightly larger than the baseline lower bound ($68 versus $62 in terms of implied risk

premium). However, because they allow for probability distortions, νi does not fully capture

a household’s level of risk aversion in their model. Taking into account their point estimate

for probability distortions, the implied risk premium is $91, suggesting that heterogeneous

choice sets have very different behavioral implications than probability distortions.

5.1.1 Mixed Logit with Unobserved Heterogeneity in Choice Sets

We also compute the AS 95 percent confidence set for pEpνiq,Varpνiqq for a mixed logit spec-

ification Uipcq � ωpxic, νiq � εic, where ωpxic, νiq is the certainty equivalent of the right hand

side of equation (4.2), νi is distributed per Assumption 4.3(I), and εic is an i.i.d. disturbance

that follows a Type 1 Extreme Value distribution with scale parameter σ and is independent

of pxic, νiq. We define utility in terms of its certainty equivalent so that εic is measured in
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Table 5.1: Distribution of Absolute Risk Aversion

Implied risk premium
Mean Mean 25th pctl. 75th pctl.

LB UB LB UB LB UB LB UB

Baseline model 0.00105 0.00347 $062 $307 $000 $078 $079 $454
UR 0.00167 0.00170 $115 $117 $086 $088 $142 $145
ASR 0.00260 0.00264 $211 $216 $040 $043 $333 $340

Cohen and Einav (2007) 0.00310 $267 Not reported Not reported
Barseghyan et al. (2013) 0.00113 $068 Not reported Not reported

Notes: 95 percent confidence intervals for baseline, UR, and ASR models. LB = lower bound. UB =
upper bound. Implied risk premia for a lottery that yields a loss of $1000 with probability 10 percent.

dollars (which allows for a clear economic interpretation).30 Panel (b) of Figure 5.1 depicts

the confidence set for three values of σ chosen so that the standard deviation of εic is equal

to 10 percent, 25 percent, and 50 percent of the average price difference among adjacent

deductibles in D. (At zero percent, of course, the mixed logit specification reduces to the

baseline model.) As the “noise factor” increases, the confidence set expands mainly to the

“northwest,” admitting higher values of Varpνiq and lower values of Epνiq. Focusing on the

latter, the projection of the confidence set on Epνiq is essentially unchanged at a noise factor

of 10 percent. At 25 percent the lower bound is smaller but still informative. By 50 percent,

however, the confidence set effectively admits pEpνiq,Varpνiqq � p0, 0q (i.e., all households

are risk neutral) and overall is quite large. The bottom line is that the confidence set remains

informative at reasonable levels of noise. Not surprisingly, however, as the magnitude of the

noise approaches that of the variation in observable covariates, the data loses much of its

informational content about preferences.

5.2 Choice Set Size

Table 5.2 reports KMS 95 percent confidence intervals for π5, π4, and π3. The interesting

quantities are the upper bounds on π5 and π4. The former is the maximum fraction of

households whose deductible choices can be rationalized with full size choice sets, while the

latter is the maximum fraction of households whose deductible choices can be rationalized

30Moreover, if we did not use certainty equivalents, the mixed logit specification would be subject to the
nonmonotonicity critique of Apesteguia and Ballester (2018, Corollary 1), who show that random expected
utility models with CARA or CRRA utility and additive i.i.d. disturbances violate a basic monotonicity
property: given any choice set, as risk aversion increases the choice probabilities of the riskier alternatives
decrease at first but eventually increase (because differences in expected utilities converge to zero as risk
aversion increases, allowing differences in disturbances to determine choices). This is not the case for our
baseline model, which is a random parameter model and thus is immune to their critique even without using
certainty equivalents (Apesteguia and Ballester 2018, Proposition 5). Although monotonocity problems
can still arise with certainty equivalents, our lotteries do not run afoul of their nonmonotonicity result for
certainty equivalents (Apesteguia and Ballester 2018, Corollary 2).
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Table 5.2: Distribution of Choice Set Size

π5 π4 π3

(full) (full-1) (full-2)
LB UB LB UB LB UB

All households 0.00 0.24 0.00 0.89 0.11 1.00

Notes: KMS 95 percent confidence intervals. LB = lower
bound. UB = upper bound.

with full-1 choice sets. By implication, one minus the former is the minimum fraction of

households who require full-1 or full-2 choice sets to rationalize their deductible choices,

while one minus the latter (which equals the lower bound on π3) is the minimum fraction of

households who require full-2 choice sets.31

The main result is that a large majority of households require limited choice sets (full-1

or full-2) to explain their deductible choices. Specifically, we find that at least 76 percent of

households require limited choice sets, including at least 11 percent who require full-2 choice

sets. In the remainder of this section we discuss two drivers of this key result: suboptimal

choices and violations of the law of demand.32

5.2.1 Suboptimal Choices

The first driver is the existence and frequency of suboptimal choices. In total, 16.7 percent

of households in our sample choose a deductible that is suboptimal (i.e., not first best in D)

under our empirical model at all ν P r0, 0.03s. The vast majority of these households choose

$200, which is a suboptimal alternative under the model for virtually every household in our

sample.33 In particular, $200 is dominated by $100 or $250, depending on µ. Suboptimal

alternatives, sometimes called dominated alternatives, are not uncommon in discrete choice

settings, including insurance settings (see, e.g., Handel 2013; Bhargava et al. 2017).

To see why $200 is a suboptimal alternative under the model, consider a risk neutral

household with claim probability µ. The household prefers $200 to $100 if and only if

µ   p100�p200
200�100

, and prefers $200 to $250 if and only if µ ¡ p200�p250
250�200

. In our data p100 � p200 �

p200 � p250 for all households. For the risk neutral household, therefore, at most one of

the foregoing inequalities holds and thus $200 is dominated by $100 or $250, depending

on the value of µ. A similar logic applies for risk averse households with reasonable levels

of risk aversion—under our model or any other model in which lotteries are evaluated by

31By construction, because κ � 3, the lower bounds on π5 and π4 are zero, the lower bound on π3 is one
minus the upper bound on π4, and the upper bound on π3 is one.

32In other applications, different or additional data features may reveal the presence of heterogeneous
choice sets. One example is zero shares for alternatives that are not suboptimal.

33The remainder of these households choose $1000 or $500 when $250 is optimal.
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expectations over functions of final wealth (see Barseghyan et al. 2016)—and indeed for

virtually every household in our sample $200 is suboptimal at all ν P r0, 0.03s.34

Yet 15.2 percent of households in our sample choose $200. At the same time, only 1.1

percent choose $100 and 13.7 percent choose $250. Hence, the combined demand for $100

and $250 is less than the demand for $200. This pattern is even more pronounced within

certain subgroups, including households with old principal drivers and households with high

insurance scores; see Table 4.1.

Heterogeneous choice sets can readily explain these choice patterns. In our model all

that is required to rationalize a household’s choice of $200 is the absence of $100 or $250, as

the case may be, from the household’s choice set. Moreover, all that is required to explain

Prpd � 100|xq � Prpd � 250|xq ¡ Prpd � 200|xq is a choice set distribution in which the

frequencies of $100 and $250 are sufficiently less than the frequency of $200.

With full size choice sets, however, our model cannot explain these choice patterns. The

reason is that, with full size choice sets, our model satisfies the following conditional rank

order property, which is a generalization of the rank order property established by Manski

(1975) for random utility models that are linear in the nonrandom parameters and feature

an additive i.i.d. disturbance in the utility function.

Property 5.1 (Conditional Rank Order Property): For all c, c1 P D, Prpd � c1|x,νq ¥

Prpd � c|x,νq if and only if W pxc1 ,ν; δq ¥ W pxc,ν; δq, ν � a.s..

Indeed, any model that satisfies an analogous property is incapable of explaining the

relative frequency of $200 in the distribution of observed deductible choices.35 This includes,

inter alia, the conditional and mixed logit models (McFadden 1974; McFadden and Train

2000), the semiparametric random utility model of Manski (1975), and the multinomial

probit model (e.g., Hausman and Wise 1978).36 At the same time, not all choice set formation

processes can explain these choice patterns. For instance, UR cannot but ASR can.

Claim 5.1: Take the model in Section 2. Suppose for a given c P D there exist a, b P D,

a � b � c, such that for each ν P V, W pxa,ν; δq ¡ W pxc,ν; δq or W pxb,ν; δq ¡ W pxc,ν; δq.

Then for any distribution of ν with support V:

(I) Property 5.1 implies Prpd � a|xq � Prpd � b|xq ¡ Prpd � c|xq, x� a.s.

34Evaluating equation (4.2) for all 111,890 households over a fine grid of ν, we find that the $200 deductible
is optimal in 0.001 percent of cases, all of which entail ν ¥ 0.0115.

35In the case of a model with additively separable noise where ν � pυ, pεc, c P Dqq and W pxc,ν; δq �
ωpxc,υ; δq � εc, the analogous property is: For all c, c1 P D, Prpd � c1|x,υq ¥ Prpd � c|x,υq if and only if
ωpxc1 ,υ; δq ¥ ωpxc,υ; δq, υ � a.s.

36This also includes the probability distortion model in Barseghyan et al. (2016), which explains why they
find that 13.0 percent of the households in their data cannot be rationalized by their model.
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(II) Under UR, Prpd � a|xq � Prpd � b|xq ¡ Prpd � c|xq, x� a.s.

(III) Under ASR, Prpd � a|xq � Prpd � b|xq   Prpd � c|xq is possible.

The proof of Claim 5.1(I) is set forth in Section C.5 of the Supplemental Material.37 We

emphasize that Claim 5.1 does not rely on Assumption 3.1 or the assumptions of the empirical

model set forth in Section 4.1. It thus exemplifies a new approach to testing assumptions

on choice set formation in any random utility model under weak restrictions on the utility

function and without parametric restrictions on the distribution of preferences or choice sets.

5.2.2 Law of Demand

Violations of the law of demand are also driving our main result on choice sets. With full size

choice sets, households’ demand for high deductibles should increase as base price increases

and should decrease as claim risk increases. If follows that, with full size choice sets, we

should observe for all K P
ÐÝ
K �

 
t$1000u, t$1000, 500u, t$1000, $500, $250u

(
,

Prpd P K|µ, p̄q ¡ Prpd P K|µ1, p̄1q if µ   µ1 and p̄ ¡ p̄1. (5.1)

In our data, however, we observe multiple violations. In particular, when we compare all

pairs of hypercubes, where one hypercube has a lower average µ and a higher average p̄ than

the other, over all subsets K P
ÐÝ
K , we find 61 violations (3 percent) of equation (5.1).38

The requirement in equation (5.1) holds generically for models in which BrUpcq�Upc1qs
Bp̄

¡ 0

and BrUpcq�Upc1qs
Bµ

  0 for all c, c1 P D, c ¡ c1. Given the assumptions of our empirical model, the

law of demand implies a second, stronger requirement (cf. Barseghyan et al. 2020). Observe

that for any x � pµ, p̄q and any subset K � D of adjacent deductibles, there exists an interval

SKpxq � V such that d�pD; x, νq P K if ν P SKpxq and d�pD; x, νq P DzK if ν P VzSKpxq,
where d�pD; x, νq denotes the model implied optimal choice when the choice set has full size.

It follows that, with full size choice sets,

Prpd P K|xq ¤ Prpd P K 1|x1q if SKpxq � SK1px1q (5.2)

for any subsets K,K 1 � D of adjacent deductibles and any x � x1. In our data, however, we

observe numerous violations of equation (5.2). In particular, when we compare all pairs of

hypercubes, where x denotes the average pµ, p̄q in one hypercube and x1 denotes the average

pµ1, p̄1q in the other, over all subsets K,K 1 � D of adjacent deductibles where each subset

37An analogous claim holds in the case of a model with additively separable noise for any distribution of
υ with support Υ, where the predicate is: Suppose for a given c P D there exist a, b P D, a � b � c, such
that for each υ P Υ, ωpxa,υ; δq ¡ ωpxc,υ; δq or ωpxb,υ; δq ¡ ωpxc,υ; δq.

38We do not count violations where K contains a suboptimal alternative under the model given the
average pµ, p̄q in either hypercube.
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contains either one, two, or three deductibles, we find 44,847 instances (15 percent) in which

SKpxq � SK1px1q but Prpd P K|xq ¡ Prpd P K 1|x1q.39

We conclude by highlighting how equation (5.2) relates to the characterization of ΘI in

Corollary 3.1. Consider whether any parameter vector with π|D| � 1 belongs to ΘI . At

that value D�
κpx, νq � td�pD; x, νqu, a singleton, and hence the inequality in equation (3.7),

evaluated at any subset K � D of adjacent deductibles and its complement DzK, implies

Prpd P K|xq �
¸
cPK

»
1pd�pD; x, τq � cqdP pτ ;γq �

»
SKpxq

dP pτ ;γq,

which in turn implies equation (5.2). Thus, a violation of equation (5.2) implies that no

parameter vector with π|D| � 1 belongs to ΘI . A similar logic applies to the choice prob-

abilities of suboptimal alternatives. In general, our method—through the inequalities in

equation (3.7)—takes into account all restrictions implied by the data and the model, while

accounting for finite sample uncertainty.

6 Discussion

Discrete choice analysis in the tradition of McFadden (1974) contemplates heterogeneity in

agents’ choice sets. It however assumes that choice sets are observed by the econometrician

(McFadden 1974, p. 107). In practice choice sets are often unobserved. Manski (1977,

p. 239) suggests the following characterization of the outcome probability of the discrete

choice process—i.e., the probability that an agent with observable attributes xi and choice

set G chooses alternative c— when agents’ choice set are unobserved:

Prpdi � c|xiq �
¸
G�D

Prpc P� G|xiqPrpCi � G|xi, c P Gq, (6.1)

where P� denotes “is chosen from” and PrpCi � G|xi, c P Gq is the probability that G is

drawn from the feasible set D given that c is in the realized choice set.

The two-stage characterization in equation (6.1) forms the basis of numerous models

of discrete choice with unobserved heterogeneity in choice sets, including ours (as one can

readily see from equation (3.2) and where PrpCi � G|xi, c P Gq can depend on preferences).

It also makes plain the nature of the identification problem when choice sets are unobserved

(which we elaborate in Section 3.1). In order to point identify the model of preferences,

which is represented by P� in equation (6.1), the econometrician has to make assumptions—

either explicitly or implicitly, sometimes arbitrary and often unverifiable—about the choice

39Again, we do not count violations where K or K 1 contains a suboptimal alternative under the model
given x or x1, respectively.
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set formation process, including with respect to the dependence or lack thereof between

preferences and choices sets (conditional on observables) (cf. Ben-Akiva 1973, pp. 84-85).

In what follows we provide an overview of the assumptions made in the econometrics

and applied literatures on discrete choice analysis to grapple with the identification problem

created by unobserved heterogeneity in choice sets.40 We describe four prominent approaches

and provide examples of recent papers that take each approach. We do not provide a

comprehensive review of the literature, which is vast and spans a diverse array of fields in

economics. However, our overview of the landscape enables us to situate our approach within

the literature and provides context for our contributions, which we recap at the end.

� � �

The most common approach in the discrete choice literature to the identification problem

created by unobserved choice sets is to assume that agents’ choice sets all comprise the

feasible set or a known subset of the feasible set.41 This is the approach taken by, for

example, Berry et al. (1995) in estimating demand curves from aggregate data on U.S. auto

sales; Cohen and Einav (2007) in estimating risk preferences from individual-level data on

deductible choices in Israeli auto insurance; and Chiappori et al. (2019) in estimating risk

preferences from aggregate betting data on U.S. horse races. We also take this approach in

prior work on estimating risk preferences from individual-level data on deductible choices in

U.S. auto and home insurance (Barseghyan et al. 2011, 2013, 2016).

Papers that allow for heterogeneity in choice sets take three basic approaches to identifi-

cation. The first is to rely on auxiliary information about the composition or distribution of

agents’ choice sets. For instance, Draganska and Klapper (2011), who study ground coffee

sales, use survey data on brand awareness;42 De los Santos et al. (2012), who study on-

line book purchases, use survey data on web browsing;43 Conlon and Mortimer (2013), who

study vending machine sales, utilize periodic inventory snapshots; and Honka and Chinta-

gunta (2017), who study auto insurance purchases, use survey data on price quotes.44

40Many important papers in the theory literature—including papers on revealed preference analysis under
limited attention, limited consideration, and other forms of bounded rationality that manifest in unobserved
heterogeneity in choice sets—also grapple with the identification problem (e.g., Masatlioglu et al. 2012;
Manzini and Mariotti 2014; Caplin and Dean 2015; Lleras et al. 2017; Cattaneo et al. 2020). However,
these papers generally assume rich datasets—e.g., observed choices from every possible subset of the feasible
set—that often are not available in applied work, especially outside of the laboratory. A notable exception is
Dardanoni et al. (2020), which assumes that only a single cross-section of aggregate choice shares is observed.

41Cf. Swait (2001, p. 643): “The most common strategy of choice set specification makes all choice sets
equal to the master set....”; Honka et al. (2017, p. 615): “[M]ost demand side models maintain the full
information assumption that consumers are aware of and consider all available alternatives.”

42In a similar vein, Honka et al. (2017), who study bank account openings, use survey data on brand
awareness and search activity.

43Similarly, Kim et al. (2010), who study online camcorder sales, use market data on web searches.
44For earlier papers, see, e.g., Roberts and Lattin (1991) and Ben-Akiva and Boccara (1995).
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The second approach is to rely on two-way exclusion restrictions—i.e., assume that certain

variables impact choice sets but not preferences and vice versa. For example, Goeree (2008)

assumes that media advertising affects the set of computers of which a consumer is aware

(and hence her choice set) but not her preferences over computers, while computer attributes

affect her preferences but not her choice set;45 Gaynor et al. (2016) assume that waiting

times and mortality rates directly impact a patient’s preferences over hospitals but not her

referring physician’s preferences (which determine her choice set), while distance to hospital

and hospital fixed effects directly impact her referring physician’s preferences (and hence her

choice set) but not her preferences; and Hortaçsu et al. (2017) assume that a retail electricity

customer’s decision to consider alternatives to her retailer is a function of her last period

retailer (e.g., a bad customer service experience) but not her next period retailer, while her

choice of retailer is a function of her next period retailer but not her last period retailer.46

The last approach is to rely primarily on restrictions to the choice set formation process.

Five recent papers that exemplify this approach are Abaluck and Adams (2020), Barseghyan

et al. (2020), Crawford et al. (2020), Lu (2019), and Cattaneo et al. (2020).47

Abaluck and Adams (2020) consider two models of choice set formation: a variant of the

ASR model described above and a “default specific” model in which each agent’s choice set

comprises either a single, default alternative or the entire feasible set. They show that the

restrictions imposed on choice probabilities by these models are sufficient for point identifica-

tion of preferences and choice set probabilities due to induced asymmetries in cross-attribute

responses (‘Slutsky asymmetries’), assuming that choice sets and preferences are indepen-

dent conditional on observables and that every alternative has a continuous attribute with

large support that is additively separable in utility and shifts choice set probabilities.

Barseghyan et al. (2020) study point identification of discrete choice models with un-

observed heterogeneity in preferences and choice sets. They establish conditions for point

identification of the preference distribution under generic choice set formation processes.

They also illustrate the tradeoff between the common exclusion restrictions and the restric-

tions on choice set formation required for semi-nonparametric point identification.

Crawford et al. (2020) show that with panel data (or group-homogeneous cross-section

data) and preferences in the logit family, point identification of preferences is possible, with-

45Similarly, van Nierop et al. (2010) assume that in-store marketing impacts which brands of laundry
detergent and yogurt a shopper considers (and hence her choice set) but not her preferences over brands,
while brand attributes impact her preferences but not her choice set.

46Heiss et al. (2019) similarly assume that a Medicare Part D insured’s decision to consider alternatives
to her existing drug plan is triggered by past changes in her plan’s attributes (e.g., a price increase), while
her plan choice is determined by current attributes of available plans. See also Ho et al. (2017).

47Dardanoni et al. (2020) also take this approach. However, they rule out unobserved preference hetero-
geneity and focus on point identification of the choice set formation model.

27



out any exclusion restrictions, under the assumption that choice sets and preferences are

independent conditional on observables and with restrictions on how choice sets evolve over

time. These restrictions enable the construction of proper subsets of agents’ true choice sets

(‘sufficient sets’) that can be utilized to estimate the preference model.

Lu (2019) provides conditions for both partial and point identification of a random coef-

ficient logit model. He assumes that each agent’s unobserved choice set is bounded by two

observed sets, her largest possible choice set (e.g., the feasible set) and her smallest possible

choice set (containing a default alternative and at least one other alternative). He shows

that availability of these data, together with the assumption that agents’ choices obey Sen’s

property α, yields moment inequalities on the choice probabilities, which he uses to obtain

outer regions on the model’s preference parameters.

Cattaneo et al. (2020) propose a random attention model in which agents’ preferences

are homogeneous (and thus independent of choice sets) and the probability of a particular

choice set does not decrease when the number of possible choice sets decreases. Within this

framework, they provide revealed preference theory and testable implications for observable

choice probabilities, as well as partial identification results for preference orderings.

The approach that we propose and apply in this paper falls into this last category. How-

ever, it relies on fewer and weaker restrictions on the choice set formation process than any

other paper in that category. Our core model imposes—and hence our main identification

result requires—only one mild assumption on the choice set formation process, namely that

choice sets have a known minimum size greater than one. Importantly, our core model

does not assume that choice sets are independent of preferences conditional on observables

(Abaluck and Adams 2020; Crawford et al. 2020; Cattaneo et al. 2020). Nor do we im-

pose other restrictions on how agents’ choice sets are formed (Abaluck and Adams 2020;

Barseghyan et al. 2020) or evolve over time (Crawford et al. 2020), rely on exclusion re-

strictions or large support assumptions (Abaluck and Adams 2020; Barseghyan et al. 2020),

require that the econometrician knows the composition of the smallest possible choice set

for each agent (Abaluck and Adams 2020; Lu 2019), or assume that choice sets satisfy a

monotonicity or other regularity condition (Lu 2019; Cattaneo et al. 2020).

Due to the parsimony of our approach we obtain partial and not point identification

of the underlying model of preferences. Nevertheless, we demonstrate that much can be

learned about the distribution of preferences under our approach. Moreover, what is learned

has more credibility because we avoid making a host of arbitrary or unverifiable assumptions

about the choice set formation process in order to achieve point identification. Our pri-

mary contribution, therefore, is that we offer a new, robust, informative, and implementable

method of discrete choice analysis when choice sets are unobserved. We show how one can
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use this method to partially identify and conduct inference on the distribution of preferences

as well as the distribution of choice set size (with an additional independence assumption).

We also contribute a new, robust approach to testing assumptions on choice set formation

when the setting features suboptimal choices.

In addition to our contributions to the discrete choice literature, our empirical applica-

tion contributes new insights to the literature on risky choice. In particular, one of our key

empirical findings is that our data can be explained by expected utility theory with lower

levels of risk aversion than would be implied by many familiar models in the literature. As

noted above, the risky choice literature, motivated in part by advances in behavioral eco-

nomics including the Rabin (2000) critique, has increasingly focused on models that depart

from expected utility theory in their specification of how agents evaluate risky alternatives.

While these models are important and yield many valuable insights, our findings highlight

the importance and promise of models that differ in their specification of which alternatives

agents evaluate. They also highlight the need for and value of data collection efforts that

seek to directly measure agents’ heterogeneous choice sets.

References
Abaluck, J. and A. Adams (2020): “What Do Consumers Consider Before They Choose? Iden-

tification from Asymmetric Demand Responses,” Quarterly Journal of Economics, forthcoming.

Andrews, D. W. K. and X. Shi (2013): “Inference Based on Conditional Moment Inequalities,”
Econometrica, 81, 609–666.

Apesteguia, J. and M. A. Ballester (2018): “Monotone Stochastic Choice Models: The Case
of Risk and Time Preferences,” Journal of Political Economy, 126, 74–106.

Artstein, Z. (1983): “Distributions of Random Sets and Random Selections,” Israel Journal of
Mathematics, 46, 313–324.

Barseghyan, L., F. Molinari, T. O’Donoghue, and J. C. Teitelbaum (2013): “The Nature
of Risk Preferences: Evidence from Insurance Choices,” American Economic Review, 103, 2499–
2529.

——— (2018): “Estimating Risk Preferences in the Field,” Journal of Economic Literature, 56,
501–564.

Barseghyan, L., F. Molinari, and J. C. Teitelbaum (2016): “Inference under Stability of
Risk Preferences,” Quantitative Economics, 7, 367–409.

Barseghyan, L., F. Molinari, and M. Thirkettle (2020): “Discrete Choice under Risk with
Limited Consideration,” Working Paper, Department of Economics, Cornell University.

29



Barseghyan, L., J. Prince, and J. C. Teitelbaum (2011): “Are Risk Preferences Stable
Across Contexts? Evidence from Insurance Data,” American Economic Review, 101, 591–631.

Ben-Akiva, M. and B. Boccara (1995): “Discrete Choice Models with Latent Choice Sets,”
International Journal of Marketing Research, 12, 9–24.

Ben-Akiva, M. E. (1973): “Structure of Passenger Travel Demand Models,” Ph.D. Dissertation,
Department of Civil Engineering, Massachusetts Institute of Technology.

Beresteanu, A., I. Molchanov, and F. Molinari (2011): “Sharp Identification Regions in
Models with Convex Moment Predictions,” Econometrica, 79, 1785–1821.

Beresteanu, A. and F. Molinari (2008): “Asymptotic Properties for a Class of Partially
Identified Models,” Econometrica, 76, 763–814.

Berry, S., J. Levinsohn, and A. Pakes (1995): “Automobile Prices in Market Equilibrium,”
Econometrica, 63, 841–890.

Bhargava, S., G. Loewenstein, and J. Sydnor (2017): “Choose to Lose: Health Plan Choices
from a Menu with Dominated Options,” Quarterly Journal of Economics, 132, 1319–1372.

Bugni, F. A., I. A. Canay, and X. Shi (2015): “Specification Tests for Partially Identified
Models Defined by Moment Inequalities,” Journal of Econometrics, 185, 259–282.

Caplin, A. (2016): “Measuring and Modeling Attention,” Annual Review of Economics, 8, 379–
403.

Caplin, A. and M. Dean (2015): “Revealed Preference, Rational Inattention, and Costly Infor-
mation Acquisition,” American Economic Review, 105, 2183–2203.

Cattaneo, M. D., X. Ma, Y. Masatlioglu, and E. Suleymanov (2020): “A Random At-
tention Model,” Journal of Political Economy, 128, 2796–2836.

Chamberlin, E. H. (1933): The Theory of Monopolistic Competition: A Re-orientation of the
Theory of Value, Cambridge, MA: Harvard University Press.

Chesher, A. and A. M. Rosen (2017): “Generalized Instrumental Variable Models,” Economet-
rica, 85, 959–989.

Chesher, A., A. M. Rosen, and K. Smolinski (2013): “An Instrumental Variable Model of
Multiple Discrete Choice,” Quantitative Economics, 4, 157–196.
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A Theory

A.1 Unobserved Heterogeneity in Choice Sets as Additively
Separable Errors

It is possible to represent unobserved heterogeneity in choice sets through additively sepa-

rable error terms. In a classic random utility model with Uipcq � Wipcq � ηic, one may let

ηic P t�8, 0u for each alternative c P D and allow ηic to be correlated with ηic1 for any two

alternatives c, c1 P D. One would then posit that: if κ � |D| then ηic � 0 for each alternative

c P D; if κ � |D| � 1 then ηic � �8 for at most one alternative in D (the identity of which

is left unspecified); if κ � |D| � 2 then ηic � �8 for at most two alternatives in D (the

identities of which are left unspecified); and so forth. This model yields that alternative c is

not chosen if ηic � �8, which is analogous to alternative c not being chosen when it is not

contained in the agent’s choice set.

A.2 Random Closed Sets

The theory of random closed sets generally applies to the space of closed subsets of a locally

compact Hausdorff second countable topological space F. For simplicity we consider here the

case F � Rk and refer to Molchanov (2017) for the general case. Denote by F (respectively,

K) the collection of closed (compact) subsets of Rk. Denote by pΩ,F, P q the nonatomic

probability space on which all random variables and random sets are defined.

Definition A.1 (Random Closed Set): A map Y : Ω Ñ F is a random closed set if for

every compact set K in Rk, Y �1pKq � tω P Ω : Y pωq XK � Hu P F.

Definition A.2 (Selection): For any random set Y, a (measurable) selection of Y is a

random vector y (taking values in Rk) such that ypωq P Y pωq, P � a.s.

Theorem A.1 (Artstein’s Theorem): A random vector y and a random set Y can be

realized on the same probability space as random elements y1 and Y 1, distributed as y and Y

respectively, so that P py1 P Y 1q � 1, if and only if

P py P Kq ¤ P pY XK � Hq @K P K. (A.1)

Because in this paper the random closed set of interest D�
κpxi,νi; δq is a subset of D, it

suffices to consider F � D; see Molchanov (2017, Example 1.1.9).

Lemma A.1: The set D�
κpxi,νi; δq in equation (3.1) is a random closed set.
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Proof. Let D�
κ � D�

κpxi,νi; δq. An application of Molchanov (2017, Example 1.1.9) yields

that D�
κ satisfies the measurability requirement in Definition A.1 if the vector r1pc P D�

κq, c P
Ds is a random vector with values in t0, 1u|D|. Next, note that for any c P D, the event

tc P D�
κu is equivalent to the event

�
G�Dtc P D�

κ, Ci � Gu. Once the value of Ci is fixed,

D�
κ is a singleton-valued random variable and the result follows.

A.3 Proof of Theorem 3.1 and Related Results

A.3.1 Proof of Theorem 3.1

Let d�pG; x,ν; δq denote the model implied optimal choice for an agent with attributes px,νq
and choice set G. Recall that by Assumption 2.2(II), PrpC � G|x,νq � 0 for all G � D
such that |G|   κ. Then by definition the sharp identification region ΘI is given by the set

of values of θ for which there exists a distribution Fp�; x,νq such that FpG; x,νq ¥ 0 for all

G � D, FpG; x,νq � 0 if |G|   κ,
°
G�D FpG; x,νq � 1, and for all c P D

Prpd � c|xiq �
»

τPV

¸
G�D

1pd�pG; x, τ ; δq � cqFpG; x, τ qdP pτ ;γq, x� a.s. (A.2)

This is because for such values of θ one can complete the model with a distribution Fp�; x,νq
so that the model implied conditional distribution of optimal choices matches the distribution

of choices observed in the data. We are then left to show that this set is equal to the one in

equation (3.5). Molchanov and Molinari (2018, Theorem 2.33) show that the observed vector

pd,xq is a selection of the random closed set pD�
κpx,ν; δq,xq if and only if the condition in

equation (3.5) holds x�a.s. for all K � D. Take θ such that there exists a distribution

FpG; x,νq under which equation (A.2) holds. By definition pd�pG; x,ν; δq,xq is a selection

of pD�
κpx,ν; δq,xq, and by Molchanov and Molinari (2018, Theorem 2.33) the inequality in

equation (3.5) holds x�a.s. for all K � D. Conversely, take a value of θ for which the

inequalities in equation (3.5) are satisfied x�a.s. for all K � D. Then, by Theorem A.1,

there exists a selection pd̃ipGq,xq of pD�
κpx,ν; δq,xq such that Prpd � c|xq � Prpd̃pGq � c|xq,

x�a.s., for all c P D for some G such that |G| ¥ κ. Let FpG; x,νq equal 1 for one such set

G with d̃pGq � c, and equal 0 for all other G � D. Then equation (A.2) holds x�a.s.

for all c P D. To conclude the proof, we show that if the inequalities in (3.5) hold for all

K � D : |K|   κ, then they hold for all K � D. Recall that the set D�
κpx,ν; δq comprises

the |D| � κ� 1 best alternatives in D. Then any set K � D : |K| ¥ κ includes at least the

p|D| � κ� 1q-th best alternative for all realizations of ν in V , so that PrpD�
κpx,ν; δq XK �

Hq � 1 and the inequality in equation (3.5) holds mechanically.
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A.3.2 An Equivalent Characterization Based on Convex Optimization

We next show that the characterization in Theorem 3.1 can equivalently be written in terms

of a convex optimization problem.

Corollary A.1: Let Assumptions 2.1 and 2.2 hold and let Θ � ∆� Γ. Then

ΘI �
$&%θ P Θ : max

uPR|D|:||u||¤1

��uJppxq �
»

τPV

max
d�PD�

κ px,τ ;δq

�
uJqd

�
	
dP pτ ;γq

�� � 0,x� a.s.

,.- ,

(A.3)

where ppxq � rPrpd � c1|xq . . . Prpd � c|D||xqsJ and, for a given d� P D�
κpx,ν; δq, qd

� �
r1pd� � c1q . . . 1pd� � c|D|qsJ.

Proof. We establish the equivalence between equations (3.5) in the paper and (A.3) here.1

Due to the positive homogeneity in u of uJppxq � ³
τPV

maxd�PD�
κ px,τ ;δq u

Jqd
�
dP pτ ;γq, we

have that

uJppxq �
»

τPV

max
d�PD�

κ px,τ ;δq
uJqd

�

dP pτ ;γq ¤ 0 (A.4)

holds for all u : ||u|| ¤ 1 if and only if (A.4) holds for all u P R|D|. Consider the specific

subset of vectors U � tu P R|D| : uj P t0, 1u, j � 1, . . . , |D|u. Each vector u P U uniquely

corresponds to a subset Ku � tc1u1, . . . , c|D|u|D|u. For a given u, uJqd
� � 1 if d� P Ku and

uJqd
� � 0 otherwise. Hence, the corresponding inequality in (A.4) reduces to

Prpd P Ku|xq � uJppxq ¤ E

�
max

d�PD�
κ px,τ ;δq

uJqd
� |x;γ

�
� P pD�

κpx,ν; δq XKu � H;γq.

It then follows that any θ in the set defined in (A.3) belongs to the set defined in (3.5)

because tK : K � Du � tKu : u P Uu.
Conversely, take a θ in the set defined by (3.5). Then, by Theorem A.1, there exists a

selection d� of D�
κpx,ν; δq such that for all c P D and x�a.s., Prpd � c|xiq � Prpd� � c|xiq.

Hence, θ belongs to the set defined in (A.3).

As the set D�
κpx,ν; δq is comprised of the |D| � κ� 1 best alternatives in D, it can have

only a finite number of realizations, which we henceforth denote D1, . . . , Dh. Hence, the

1The argument of proof goes through similar steps as in Molchanov and Molinari (2018, Theorem 3.28).
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characterization in (A.3) can be rewritten as

ΘI �
#
θ P Θ : max

uPR|D|:||u||¤1

�
uJppxq �

ḩ

j�1

�
max
d�PDj

uJqd
�



P pD�

κpx,ν; δq � Dj;γq
�
� 0,x� a.s.

+
.

This means that to determine whether a given θ P Θ belongs to ΘI , it suffices to maximize

an easy-to-compute superlinear, hence concave, function over a convex set, and check if the

resulting objective value vanishes. Several efficient algorithms in convex programming are

available to solve this problem, see for example the Matlab software for disciplined convex

programming CVX (Grant and Boyd 2010).

A.3.3 Positive Probability of Utility Ties

When utility ties are allowed, one can readily adapt the definition of D�
κpxi,νi; δq to include

this feature:

D�
κpxi,νi; δq �

¤
G�D:|G|¥κ

!
arg max

cPG
W pxic,νi; δq

)
�

¤
G�D:|G|�κ

!
arg max

cPG
W pxic,νi; δq

)
,

(A.5)

where again the last equality follows from Sen’s property α, and now arg maxcPGW pxic,νi; δq
may include multiple elements of D due to the possibility of utility ties. The random closed

set D�
κpxi,νi; δq contains alternatives up to the p|D| � κ � 1q-th best in D, where “best” is

defined with respect to W pxic,νi; δq. Due to the possibility of ties, |D�
κpxi,νi; δq| may be

larger than |D| � κ� 1.2

To see that our characterization in Theorem 3.1 applied with this new definition of

D�
κpxi,νi; δq remains sharp, note that the model implied optimal choice for an agent with

attributes pxi,νiq, utility parameters δ, and choice set G is no longer unique. But this

additional multiplicity of optimal choices is incorporated into D�
κpxi,νi; δq, and all model

restrictions continue to be embedded in the requirement that di P D�
κpxi,νi; δq, xi�a.s.

The proof of Theorem 3.1 continues to apply, although at the price of additional notation

(a selection mechanism that determines the probability with which each optimal choice

d�i pG; xi,νi; δq P arg maxcPGW pxic,νi; δq is selected when multiple alternatives are optimal

for a realization G of Ci).

2To illustrate, consider the case |D| � 5 and κ � 4. When utility ties occur with positive probability,
for a given px,ν; δq it might be, for example, that three alternatives are tied as first best, and hence at least
one of them is in any realization of |Ci| and the cardinality of D�

κpxi,νi; δq equals 3.
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A.4 Computational Simplifications

We omit the subscript i on random variables and random sets throughout this section.

A.4.1 Sufficient Collection of Test Sets K

Theorem 3.1 and Corollary 3.1 provide a characterization of ΘI as the collection of θ P Θ that

satisfy a finite number of conditional moment inequalities, indexed by the test sets K � D.

In this subsection we provide results to reduce the collection of test sets K for which to check

the inequalities from all nonempty proper subsets of D to a smaller collection.

Theorem A.2: Let the assumptions of Theorem 3.1 hold. Then the following steps yield

a sufficient collection of sets K, denoted K, on which to check the inequalities in equation

(3.5) to verify if θ P ΘI . Initialize K � tK � D : |K|   κu. Then:

(1) For a given set K P K, if it holds that @ν P V an element of K (possibly different

across values of ν) is among the |D|�κ�1 best alternatives in D, then set K � KzK;3

(q) Repeat the following step for q � 2, . . . , κ � 1. Take any set K P K such that K �
Kq�1 Y tcju for some Kq�1 with |Kq�1| � q � 1 and tcju P K, Kq�1 P K after Steps (1)

and (q-1). If Eν P V such that both cj and at least one element of Kq�1 are among the

|D| � κ� 1 best alternatives in D, then set K � KzK.

If the set D�
κ does not depend on δ, as in our application in Sections 4–5, the collection K

is invariant across θ P Θ.

Proof. Step (1) follows because under the stated condition, PrpD�
κpx,ν; δq XK � Hq � 1.

Step (q) follows because under the stated condition, the events tD�
κpx,ν; δqXtcju � Hu and

tD�
κpx,ν; δqXKq�1 � Hu are disjoint. This implies that the right hand side of the inequality

in equation (3.5) is additive, and therefore that inequality evaluated at K is implied by the

ones evaluated at tcju and at Kq�1.

Depending on the structure of the realizations of the random set D�
κpx,ν; δq, Theorem

A.2 can be further simplified. The following corollary provides an example.

Corollary A.2: Let Assumptions 2.1 and 2.2 hold. Suppose all possible realizations of

D�
κpx,ν; δq are given by adjacent elements of D, as tcj, cj�1, . . . , cj�|D|�κu, for j � 1, . . . , κ.

3Here the notation KzK indicates that the set K is removed from the collection of sets K. In practice,
one can implement this step first on sets K : |K| � 1, and for K that satisfies the condition remove from K
all sets K 1 � K. Then repeat the procedure for the remaining sets K : |K| � 2, and so forth.
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Then the collection of test sets K in Theorem A.2 can be initialized to

K �
!
tc1u, tc1, c2u, tc1, c2, c3u, � � � , tc1, c2, . . . , cκ�1u,

tc|D|u, tc|D|, c|D|�1u, tc|D|, c|D|�1, c|D|�2u, � � � , tc|D|, c|D|�1, . . . , c|D|�κ�2u
)

(A.6)

and it includes 2pκ� 1q elements.

Proof. We first establish that if the inequalities in equation (3.5) are satisfied for sets of size

|K| � m, m � 1, . . . , κ � 1, comprised of adjacent alternatives (with respect to |D|), then

they are satisfied for all K � D.

Let the inequality in equation (3.5) be satisfied for K1 � tcj, cj�1, . . . , cpu, for K2 �
tcq, cq�1, . . . , ctu, with p   q�1 so that K1XK2 � H, and for K � K1Ytcp�1, . . . , cq�1uYK2

(the set that comprises all adjacent alternatives between cj and ct). We then show that the

inequality for K1 Y K2 is redundant. The same argument generalizes to sets comprised of

the union of disjoint collections of adjacent alternatives.

Consider first the case that q � p ¥ |D| � κ� 1. Then D�
κpx,ν; δq cannot intersect both

K1 and K2, and hence

P pD�
κpx,ν; δq X pK1 YK2q � H;γq � P pD�

κpx,ν; δq XK1 � H;γq � P pD�
κpx,ν; δq XK2 � H;γq

and the result follows.

Consider next the case that q � p   |D| � κ� 1. We claim that in this case

D�
κpx,ν; δq XKzpK1 YK2q � H ñ D�

κpx,ν; δq X pK1 YK2q � H. (A.7)

To establish this claim, take cs P tcp�1, . . . , cq�1u � KzpK1 YK2q. Suppose cs P D�
κpx,ν; δq.

Then either cp P D�
κpx,ν; δq or cq P D�

κpx,ν; δq, because |D�
κpx,ν; δq| � |D| � κ � 1. The

claim follows because K1 Y K2 � K, and hence Prpd P K1 Y K2|xq ¤ Prpd P K|xq, while

P pD�
κpx,ν; δq X pK1 YK2q � H;γq � P pD�

κpx,ν; δq XK � H;γq due to (A.7).

Finally, we show that it suffices to verify equation (3.5) for the sets K P K as specified in

equation (A.6). Consider first the case where |D|�κ�1 ¡ κ�1. Then for all 1   p   q   κ

and K � tcp, cp�1, . . . , cqu, it holds that |K|   κ� 1 and, denoting Kc � DzK,

P pD�
κpx,ν; δq XK � H;γq � 1� P pD�

κpx,ν; δq � Kc;γq
� 1� P pD�

κpx,ν; δq � tc1, . . . , cp�1u;γq � P pD�
κpx,ν; δq � tcq�1, . . . , cDu;γq

� 1� P pD�
κpx,ν; δq � tcq�1, . . . , cDu;γq, (A.8)
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where the first equality follows by definition, the second follows because D�
κpx,ν; δq is com-

prised of |D| � κ � 1 adjacent alternatives, and the last follows because P pD�
κpx,ν; δq �

tc1, . . . , cp�1u;γq � 0 as |tc1, . . . , cp�1u|   κ� 1   |D| � κ� 1. On the other hand,

Prpd P tcp, . . . , cquq ¤ Prpd P tc1, . . . , cquq,

and hence if equation (3.5) is satisfied for K � tc1, . . . , cqu, it is also satisfied for K �
tcp, cp�1, . . . , cqu for all 1   p   q   κ. A similar reasoning, with appropriate modifications,

holds for sets K � tc|D|�q�1, cp�1, . . . , c|D|�p�1u.
When |D| � κ � 1 ¤ κ � 1, equation (A.8) continues to hold as stated whenever p  

|D|�κ� 1. If p ¡ |D|�κ� 1, the result follows by the additivity in the second line of (A.8)

and the additivity of probabilities, because

Prpd P K|xq ¤ P pD�
κpx,ν; δq XK � H;γq ô Prpd P Kc|xq ¥ P pD�

κpx,ν; δq � Kc;γq.

Hence, the inequality for K � tcp, . . . , cqu is implied whenever it is satisfied for K �
tc1, . . . , cpu and K � tcq, . . . , c|D|u.

When Assumption 3.1 is maintained, the logic of Theorem A.2 can be used to obtain a

collection of sufficient test sets K on which to verify the inequalities in (3.7), by applying

its Steps 2.1-2.(κ � 1) to the random sets D�
q px,ν; δq, q � κ, . . . , |D|. Further simplifica-

tions are possible when interest centers on specific projections of ΘI , using the fact that

D�
q�1pxi,νi; δq � D�

q pxi,νi; δq for all q ¥ κ. As discussed following Corollary 3.1, when As-

sumption 3.1 is maintained the projection of ΘI on rδ;γs is obtained by setting πκpx;ηq � 1

and πqpx;ηq � 0, q � κ � 1, . . . , |D|. Hence, Steps 2.1-2.(κ � 1) in Theorem A.2 applied

only to D�
κpx,ν; δq deliver the sufficient collection of sets K on which to verify (3.7) to ob-

tain the sharp identification region for rδ;γs. On the other hand, the projection of ΘI on

πqpx;ηq, q � κ � 1, . . . , |D|, is obtained by setting πlpx;ηq � 0 for all l R tq, κu, and that

on πκpx;ηq by setting πlpx;ηq � 0 for all l � κ � 2, . . . , |D|. Hence, Steps 2.1-2.(κ � 1) in

Theorem A.2 applied, respectively, to only D�
κpx,ν; δq and D�

q px,ν; δq deliver the sufficient

collection of sets K on which to verify (3.7) to obtain the sharp identification region for πq,

q � κ � 1, . . . , |D|, and applied only to D�
κpx,ν; δq and D�

κ�1px,ν; δq deliver the sufficient

collection of sets K on which to verify (3.7) to obtain the sharp identification region for πκ.

The two corollaries that follow illustrate the specific adaptations of Theorem A.2 that

we use in our application in Sections 4–5. Proofs are omitted because the corollaries follow

immediately from Theorem A.2.

Corollary A.3: Let D � tc1, c2, c3, c4, c5u and κ � 3. Suppose that all assumptions
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in Corollary 3.1 hold and that ν is a scalar with support r0, ν̄s, ν̄   8. Then the following

steps yield a sufficient collection of sets K, denoted K, on which to check the inequalities in

equation (3.7) to obtain sharp bounds on π5. Initialize K � tK : K � Du. Then:

1. For any set K � tcj, cku � D, if Eν P r0, ν̄s such that both cj and ck are among the

best 3 alternatives in D, then set K � Kztcj, cku;
2. Set K � Kztcj, ck, clu for all j, k, l P t1, 2, 3, 4, 5u.
Corollary A.4: Let D � tc1, c2, c3, c4, c5u and κ � 3. Suppose that all assumptions

in Corollary 3.1 hold and that ν is a scalar with support r0, ν̄s, ν̄   8. Then the following

steps yield a sufficient collection of sets K, denoted K, on which to check the inequalities in

equation (3.7) to obtain sharp bounds on π4. Initialize K � tK : K � Du. Then:

1. For any set K � tcj, cku � D, if Eν P r0, ν̄s such that both cj and ck are among the

best 3 alternatives in D, then set K � Kzttcj, cku, tDztcj, ckuuu;
2. For any set K � tcj, ck, clu � D such that tcj, cku P K after Step 1, if Eν P r0, ν̄s such

that both cl and at least one element of tcj, cku are among the best 3 alternatives in D,

then set K � Kztcj, ck, clu;
3. For any set K P K, if @ν P r0, ν̄s one element of K, possibly different across values of

ν, is among the best 2 alternatives in D, then set K � KzK.

In our application in Sections 4–5, the number of inequalities obtained through application

of Theorem A.2 and Corollaries A.3–A.4 is 390 for the sharp identification region of γ; 1,105

for the sharp identification region of π5; and 975 for the sharp identification region of π4.

A.4.2 Additively Separable Extreme Value Type 1 Unobserved Heterogeneity

We now explain how to compute P pD�
κpx,ν; δq XK � H;γq when ν � pυ, pεc, c P Dqq and

W pxc,ν; δq � ωpxc,υ; δq � εc, with εc independently and identically distributed Extreme

Value Type 1 and independent of υ, as in a mixed logit (McFadden and Train 2000).

Given a realization G of the choice set and c1 P G (and no utility ties), we have

Prpd�pG; x,ν; δq � c1|x,υq � PrpW pxc1 ,ν; δq ¥ W pxc,ν; δq @c P G|υq
� exppωpxc1 ,υ; δqq°

cPG exppωpxc,υ; δqq . (A.9)

We show that conditional on υ, one can continue to leverage the closed form expressions

in equation (A.9) to compute P pD�
κpx,ν; δq X K � H;γq so that numerical integration is

needed only for υ.
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Theorem A.3: Suppose that ν � pυ, pεc, c P Dqq and W pxc,ν; δq � ωpxc,υ; δq � εc,

with εc independently and identically distributed Extreme Value Type 1 and independent of υ.

Conditional on υ, any P pD�
κpx,ν; δqXK � H|υ;γq can be computed as a linear combination

over different sets G of expression (A.9). Hence, any P pD�
κpx,ν; δq X K � H;γq can be

computed as an integral with respect to the distribution of υ of linear combinations over

different sets G of expression (A.9).

To prove this theorem, we first establish two auxiliary results. The first one states that

the probability of at least one alternative in K being preferred to all alternatives in DzK is

the sum over all elements of K that each is first best in D.

Claim A.1: Conditional on υ, the probability that at least one alternative in a set K � D
is better than all alternatives in the set DzK is given by

Prp_c1PK W pxc1 ,ν; δq ¡ W pxc,ν; δq @c P DzK|νq �
¸
c1PK

exppωpxc1 ,υ; δqq°
cPD exppωpxc,υ; δqq .

Proof of Claim A.1. We first establish equivalence of the following events:

tDc1 P K s.t. W pxc1 ,ν; δq ¡ W pxc,ν; δq; @c P DzKu
ðñ Yc1PKtW pxc1 ,ν; δq ¡ W pxc,ν; δq, @c P Dzc1u. (A.10)

The right-to-left implication in (A.10) is immediate. The left-to-right implication can be

established by contradiction, observing that the complement of the event in the right-hand-

side of (A.10) is that there exists a c P DzK that is preferred to all other alternatives. The

result then follows because the events in the right-hand-side of (A.10) are disjoint.

Next, recall that, as discussed in Section A.3.2, the set D�
κpx,ν; δq can only take on a

finite number of realizations, denoted D1, . . . , Dh, with |Dj| � |D|�κ�1 for all j � 1, . . . , h.

We show how to compute the probability of any of these realizations.

Claim A.2: For each j � 1, . . . , h, P pD�
κpx,ν; δq � Dj|υ;γq can be computed as a linear

combination of expression (A.9) for different sets G.

Proof of Claim A.2. Note that

P pD�
κpx,ν; δq � Dj|υ;γq � P pW pxc1 ,ν; δq ¡ W pxc,ν; δq, @c1 P Dj, @c P DzDj|υ;γq.

Given this, the proof proceeds sequentially. Suppose |D�
κpx,ν; δq| � 1. Then the result

follows immediately (with G � D). Suppose |D�
κpx,ν; δq| � 2. Then we have Dj � tc1, c2u
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for some c1, c2 P D, and

P ptW pxc1 ,ν; δq ¡ W pxc,ν; δqu X tW pxc2 ,ν; δq ¡ W pxc,ν; δqu @c P DzDj|υ;γq
� P pW pxc1 ,ν; δq ¡ W pxc,ν; δq @c P DzDj|υ;γq�P pW pxc2 ,ν; δq ¡ W pxc,ν; δ|υ;γq @c P DzDjq

� P ptW pxc1 ,ν; δq ¡ W pxc,ν; δqu Y tW pxc2 ,ν; δq ¡ W pxc,ν; δqu @c P DzDj|υ;γq.

Each of the first two terms in this expression is obtained applying expression (A.9) with

G � DzDj; the last term, by Claim A.1, is obtained as the sum over c1 P Dj of expression

(A.9) with G � D.

For |D�
κpx,ν; δq| ¥ 3 one can proceed iteratively using the inclusion/exclusion formula

and applying Claim A.1.

With these results in hand, we prove Theorem A.3.

Proof of Theorem A.3. By Claim A.2 we can compute P pD�
κpx,ν; δq � Dj|υ;γq for each Dj

such that |Dj| � |D| � κ � 1 as a linear combination of expression (A.9) with different sets

G. To obtain the result in Theorem A.3, for each set K one can simply sum P pD�
κpx,ν; δq �

Dj|υ;γq over the sets Dj such that Dj XK � H.

B Statistical Inference

Under Theorem 3.1, θ � pγ1, γ2q. Under Corollary 3.1, θ � pγ1, γ2, π3, π4, π5q. The sample

moments that we use to make confidence statements on (projections of) θ in Section 5 are:

m̄n,K,jpθq � 1

n

ņ

i�1

mK,jpdi, µi,pi;θq

� 1

n

ņ

i�1

rp1pdi P K, pµi,piq P Bjq � P pD�
κpµi,piq XK � H;γq1ppµi,piq P Bjqs , (B.1)

where Bj, j � 1, . . . , J , are “hypercubes” as defined in Andrews and Shi (2013, Example

1) [AS henceforth], to which we return below, and P pD�
κpµ,pq X K � H;γq is a function

known up to θ that can be evaluated using the Beta cumulative distribution function.

We obtain confidence regions for the vector θ using the procedure proposed by AS, as

for example in Figure 5.1, and confidence intervals for single components and scalar smooth

functions of θ using the procedure proposed by Kaido et al. (2019), as for example in Table

5.1. Here we briefly recap these procedures. We refer to the original papers for a thorough

discussion of the methods, and to Canay and Shaikh (2017) for a comprehensive presentation

of the literature on inference in moment inequality models.
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Given how the company generates pi, a household’s base price p̄i is a sufficient statistic for

pi. We follow AS and transform pµi, p̄iq using the upper-triangular Cholesky decomposition

of their sample covariance matrix, so that the transformed variables pµ̃i, p̃iq have a sample

covariance matrix equal to the identity matrix. We then let the side lengths of the hypercubes

Bj be determined by the octiles of the distribution of µ̃i and of the distribution of p̃i, and

include also a hypercube to which all values of pµi,piq belong, so that J � 65. As the sample

size goes to infinity, the collection of hyper-cubes is required to expand as discussed in AS

(p. 624 and Appendix B of their Supplemental Material).

We base our confidence sets on the Kolmogorov-Smirnov test statistic suggested by AS

(equation (3.7) on p. 618), which in our framework simplifies to

Tnpθq � n max
j�1,...,J ;KPK

max

"
m̄n,K,jpθq
σ̂n,K,jpθq , 0

*2

with σ̂n,K,jpθq the sample analog estimator of the population standard deviation ofmK,jpdi, µi,pi;θq.
Our application of the method proposed by AS computes bootstrap-based critical values to

obtain a confidence set

CS � tθ P Θ : Tnpθq ¤ ĉn,1�α�ηpθq � ηu

where η ¡ 0 is an arbitrarily small positive constant which we set equal to 10�6 as suggested

by AS (p. 625). This confidence set covers each θ P ΘI with asymptotic probability 1 � α

uniformly over a large class of probability distributions P ; for a formal statement see AS

(Theorem 2 on p. 632). We use this method to compute a confidence set on γ � rγ1, γ2s P
Γ � R2, and from that to obtain a confidence set on pEpνq,Varpνqq, leveraging the fact that

for ν � Betapγ1, γ2q, to each value of pγ1, γ2q corresponds a unique pair pEpνq,Varpνqq.
In practice, we evaluate Tnpθq and the bootstrap-based critical value ĉn,1�α�ηpθq on a

grid of values θ designed to give good coverage of the pEpνq,Varpνqq space to obtain a

precise description of the confidence set for this pair of parameters. To explain how this

grid is constructed, we note that given the assumption that ν has a Beta distribution with

support r0, 0.03s, Epνq P 0.03 � p0, 1s and Varpνq P 0.0009 � p0, 0.25s. We therefore obtain

a grid of values over pγ1, γ2q comprised of 665,603 points, such that the associated grid on

pEpνq,Varpνqq has first coordinate in 0.03�r0.0005, 0.9995s with step size 0.03�0.0005, and

second coordinate in 0.0009�p0.0005, 0.25s with step size 0.0009�0.0005. The approximation

of ĉn,1�α�ηpθq is based on the bootstrap procedure detailed in AS (Section 9) and uses 1,000

bootstrap replications.4 The procedure takes as inputs a GMS function ϕ, a GMS sequence

4Compared to the description in AS (Section 9), note that our moment inequalities are of the ¤ form,

11



τn such that τn Ñ 8 as nÑ 8, and a non-decreasing sequence of positive constants βn such

that βn{τn Ñ 0 as nÑ 8, which together are used to determine which moment inequalities

are sufficiently close to binding to contribute to the limiting distribution of Tnpθq. We use

the GMS function proposed by AS (equation (4.10) on p. 627):5

ϕK,jpθq �
$&%0 if τ�1

n

?
nm̄n,K,jpθq{σ̂n,K,jpθq ¥ �1,

�βn otherwise,

and we set τn � p0.3 lnnq1{2 and βn � p0.4 lnn{ ln lnnq1{2 as recommended by AS (p. 643).

We obtain confidence intervals on π3, π4, π5, Epνq, and Varpνq using the method proposed

by Kaido et al. (2019) [KMS henceforth]. The first three parameters are linear projections

of θ � rπ,γs. The other two are smooth functions of γ with gradients that satisfy the

assumptions in KMS (Theorem 3.1 on p. 1407). To keep a compact notation, in what

follows we denote any function of θ for which we compute a confidence interval as fpθq. The

lower and upper points of the confidence interval (henceforth, CIfn) are obtained solving,

respectively,

min
θPΘ

{max
θPΘ

fpθq s.t.
?
nm̄n,K,jpθq{σ̂n,K,jpθq ¤ ĉfnpθq, j � 1, ..., J, K P K,

where ĉfnpθq is computed using the bootstrap-based calibrated projection procedure detailed

in KMS (Section 2.2). The critical level ĉfnpθq is calibrated so that the (scalar-valued)

function of θ, rather than the vector θ itself as in AS, is uniformly asymptotically covered

with probability 1 � α over a large class of probability distributions P , see KMS (Theorem

3.1 on p. 1407) for a formal statement. Similarly to AS, the KMS procedure takes as inputs

a GMS function ϕ and a GMS sequence τn.6 To simplify computations, we use the hard

threshold GMS function7

ϕK,jpθq �
$&%0 if τ�1

n

?
nm̄n,K,jpθq{σ̂n,K,jpθq ¥ �1,

�8 otherwise.

The procedure also requires a regularization parameter ρ ¥ 0, which (similarly to ϕ and

τn) enters the calibration of ĉfn,1�α and introduces a conservative distortion that is required

whereas AS’s are of the ¥ form.
5They label the GMS sequence κn, but we use τn to avoid confusion with our notation κ for the (known

and fixed) minimum choice set size in Assumption 2.2.
6Our findings based on the AS and KMS methods are robust to the choice of tuning parameters, as

indicated by results available from the authors upon request.
7This function was proposed by Andrews and Soares (2010) and labeled ϕp1q on p. 131 of their article.
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to obtain uniform coverage of projections. The smaller is the value of ρ, the larger is the

conservative distortion, but the higher is the confidence that the critical value is uniformly

valid in situations where the local geometry of ΘI makes inference especially challenging.

For a discussion, see KMS (Section 2.2). We choose the value of ρ as follows. We begin with

the recommendation in KMS (Section 2.4). To further guard against possible irregularities

in the local geometry of ΘI , we reduce the resulting value of ρ by 20 percent.

C Additional Results

C.1 Claim Probabilities

As we explain in Section 4.2, we estimate the households’ claim probabilities using the com-

pany’s claims data. We assume that household i’s auto collision claims in year t follow a

Poisson distribution with mean λit. We also assume that the household’s deductible choice

does not influence its claim rates λit (Assumption 4.1(II)). We treat the household’s claim

rate as a latent random variable and assume that lnλit � X1
itβ � εi, where Xit is a vector

of observables and exppεiq follows a Gamma distribution with unit mean and variance φ.

We perform a Poisson panel regression with random effects to obtain maximum likelihood

estimates of β and φ. In an effort to obtain the most precise estimates, we use the full

set of auto collision claims data, which comprises 1,349,853 household-year records. For

each household, we calculate a fitted claim rate pλi conditional on the household’s observ-

ables at the time of first purchase and its subsequent claims experience. More specifically,pλi � exppX1
i
pβqEpexppεiq|Yiq, where Yi records household i’s claims experience after pur-

chasing the policy and Epexppεiq|Yiq is calculated using the maximum likelihood estimate

of φ. In principle, a household may experience one or more claims during the policy period.

We assume that households disregard the possibility of experiencing more than one claim

(Assumption 4.1(I)). Given this, we transform pλi into a claim probability µi � 1� expp�pλiq,
which follows from the Poisson probability mass function, and round it to the nearest half

percentage point. We treat µi as data.

C.2 Deductible Choices

Table C.1 reports the sample distribution of deductible choices by octiles of base price p̄

and claim probability µ. The octiles are the normalized hypercubes referenced in Section 5

(other than the one that contains all households).
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Table C.1: Deductible Choices by Octiles of p̄ and µ

p̄ µ Percent choosing deductible
octile octile Obs. $100 $200 $250 $500 $1000

1 1 2,756 3.3 31.2 18.9 43.8 2.9
1 2 2,901 3.6 31.8 18.7 43.6 2.2
1 3 2,661 2.9 32.1 20.0 43.6 1.5
1 4 2,113 3.4 34.2 20.6 40.8 1.0
1 5 2,116 3.9 32.1 20.2 42.2 1.5
1 6 1,630 4.2 34.5 21.9 38.9 0.6
1 7 1,233 4.4 34.1 22.8 38.7 0.0
1 8 660 5.0 39.4 25.6 30.0 0.0
2 1 1,949 1.0 20.8 17.0 57.1 4.0
2 2 1,944 2.0 22.3 16.9 56.4 2.5
2 3 1,543 1.9 25.7 19.1 50.7 2.6
2 4 2,152 2.0 23.1 18.5 54.4 2.0
2 5 1,320 2.3 26.7 18.0 50.8 2.2
2 6 1,979 1.6 25.6 20.1 51.1 1.6
2 7 1,584 1.8 26.5 22.6 47.9 1.3
2 8 1,151 2.0 26.5 22.7 48.7 0.2
3 1 1,362 0.7 20.4 14.3 59.8 4.7
3 2 1,914 0.8 18.5 14.6 62.1 3.9
3 3 2,127 0.8 19.8 16.1 60.0 3.2
3 4 1,518 1.3 20.3 17.7 59.4 1.4
3 5 2,255 1.0 19.9 17.6 59.4 2.1
3 6 1,773 0.8 19.9 18.4 59.1 1.9
3 7 1,729 1.2 21.1 20.0 56.7 1.1
3 8 1,602 1.2 20.7 22.2 54.9 0.9
4 1 1,340 0.7 12.7 13.7 67.5 5.3
4 2 1,458 0.8 14.1 15.2 65.8 4.3
4 3 1,632 0.7 15.1 15.4 66.1 2.8
4 4 1,595 0.6 14.7 16.6 64.8 3.3
4 5 1,606 0.8 14.3 17.1 65.4 2.5
4 6 1,705 0.6 16.1 15.2 65.5 2.6
4 7 1,974 0.7 15.4 17.0 65.5 1.5
4 8 1,914 1.0 17.3 17.7 62.8 1.2
5 1 1,126 0.4 11.4 12.6 70.5 5.2
5 2 1,547 0.1 11.8 11.9 71.7 4.5
5 3 1,609 0.5 10.4 13.0 71.6 4.5
5 4 1,522 0.5 10.6 14.5 71.4 3.0
5 5 2,066 0.7 10.8 12.8 72.1 3.5
5 6 1,697 0.6 12.5 14.7 69.2 2.9
5 7 1,801 0.2 12.2 14.6 70.9 2.2
5 8 2,128 0.5 11.9 17.1 68.8 1.6
6 1 1,303 0.3 6.7 9.1 78.3 5.6
6 2 1,403 0.2 6.9 11.4 75.5 6.0
6 3 1,326 0.5 7.3 11.2 76.8 4.2
6 4 1,784 0.3 8.1 11.2 76.2 4.2
6 5 1,589 0.2 7.9 9.8 78.0 4.1
6 6 1,725 0.5 8.9 12.0 74.7 3.9
6 7 2,061 0.1 7.3 11.2 78.4 3.1
6 8 2,363 0.1 9.0 12.3 76.3 2.2
7 1 1,521 0.3 5.2 6.9 81.1 6.5
7 2 1,351 0.1 5.6 7.5 80.1 6.7
7 3 1,665 0.2 4.1 8.6 80.2 6.8
7 4 1,646 0.1 5.0 6.7 81.7 6.4
7 5 1,726 0.1 5.0 7.4 82.6 5.0
7 6 1,865 0.1 4.9 7.9 82.5 4.6
7 7 2,045 0.1 5.7 7.6 82.4 4.2
7 8 2,452 0.2 5.4 9.1 81.0 4.4
8 1 2,636 0.0 1.3 2.5 74.2 21.9
8 2 1,553 0.1 1.5 1.8 80.3 16.4
8 3 1,463 0.0 1.6 3.1 82.8 12.4
8 4 1,568 0.0 1.4 2.7 80.2 15.6
8 5 1,384 0.0 1.8 2.0 80.6 15.6
8 6 1,570 0.1 2.0 3.0 78.9 16.1
8 7 1,501 0.0 1.2 2.5 82.7 13.7
8 8 1,698 0.1 2.1 3.3 81.0 13.5

Notes: Analysis sample (111,890 households).
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Table C.2: Distribution of Absolute Risk Aversion

Implied risk premium
Mean Mean 25th pctl. 75th pctl.

LB UB LB UB LB UB LB UB

Male 0.00104 0.00321 $061 $279 $000 $073 $076 $426
Female 0.00101 0.00377 $059 $339 $000 $117 $081 $485
Young 0.00043 0.00306 $022 $263 $000 $095 $000 $407
Old 0.00107 0.00432 $063 $393 $000 $073 $095 $548
Low insurance score 0.00042 0.00315 $021 $273 $000 $073 $007 $425
High insurance score 0.00102 0.00501 $060 $452 $000 $127 $085 $591

Notes: 95 percent confidence intervals. LB = lower bound. UB = upper bound. Implied risk
premia for a lottery that yields a loss of $1000 with probability 10 percent.

C.3 Subgroup Results

Figure C.1 depicts the AS 95 percent confidence set for pEpνiq,Varpνiqq for population sub-

groups based on gender, age, and insurance score of the principal driver. In addition, Table

C.2 reports (i) the KMS 95 percent confidence interval for the mean of νi and (ii) 95 percent

confidence intervals for the 25th and 75th percentiles of νi based on projections of the AS

confidence set. For the mean, we report the actual confidence interval as well as the risk

premium, for a lottery that yields a loss of $1000 with probability 10 percent, implied by each

bound. For the percentiles, we report only the implied risk premia. For the most part, the

subgroup results are comparable to the results for all households. The notable exceptions are

the lower bounds on the mean for households with young principal drivers and households

with low insurance scores. These lower bounds are on the order of 4 � 10�4 (which implies a

risk premium of about $20), whereas the corresponding lower bounds for the other subgroups

and the population are on the order of 10�3 (which implies a risk premium of about $60).8

Strikingly, the lower bounds on the 75th percentile for these two subgroups correspond to

risk premia of 17 cents and $7, respectively.

Table C.3 reports KMS 95 percent confidence intervals for π5, π4, and π3 for the same

population subgroups. The interesting quantities are the upper bounds on π5 and π4. The

former is the maximum fraction of households whose deductible choices can be rationalized

with full size choice sets, while the latter is the maximum fraction of households whose

deductible choices can be rationalized with full-1 choice sets. By implication, one minus

the former is the minimum fraction of households who require full-1 or full-2 choice sets to

rationalize their deductible choices, while one minus the latter (which equals the lower bound

8Because the subgroups all have different confidence sets (as well as different sample sizes), it is possible
that a result for all households is not a weighted average of the corresponding results within a subgroup.
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(e) Low insurance score
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Figure C.1: AS 95 percent confidence sets for pEpνq,Varpνqq.
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Table C.3: Distribution of Choice Set Size

π5 π4 π3

(full) (full-1) (full-2)
LB UB LB UB LB UB

Male 0.00 0.26 0.00 0.85 0.15 1.00
Female 0.00 0.30 0.00 0.90 0.10 1.00
Young 0.00 0.25 0.00 1.00 0.00 1.00
Old 0.00 0.27 0.00 0.96 0.04 1.00
Low insurance score 0.00 0.33 0.00 1.00 0.00 1.00
High insurance score 0.00 0.27 0.00 1.00 0.00 1.00

Notes: KMS 95 percent confidence intervals. LB = lower bound. UB
= upper bound.

on π3) is the minimum fraction of households who require full-2 choice sets.9 We find, inter

alia, that: (i) at least 70 percent of households with female principal drivers require limited

choice sets to explain their deductible choices, whereas at least 74 percent of households with

male principal drivers require limited choice sets; (ii) at least 73 percent of households with

old principal drivers require limited choice sets to explain their deductible choices, whereas

at least 75 percent of households with male principal drivers require limited choice sets;

and (iii) at least 67 percent of households with low insurance scores require limited choice

sets to explain their deductible choices, whereas at least 73 percent of households with high

insurance scores require limited choice sets.10

C.4 Admissible Probability Density Functions

Figure C.2 depicts a 95 percent confidence set for an outer region of admissible probability

density functions of νi for all households. To construct the outer region (shaded in grey),

we find at each point on a grid of 101 values of νi the minimum and maximum values of

all probability density functions implied by values of θ in the AS 95 percent confidence

set. This gives us 101 points on the lower and upper envelopes of admissible probability

density functions. In other words, we obtain pointwise sharp lower and upper bounds on

the set of admissible probability density functions. Although the bounds are pointwise

sharp, the region is labeled an outer region because not all probability density functions

in it are consistent with the distribution of observed choices. The figure also superimposes

the predicted density functions of νi based on point estimates obtained under the UR and

9By construction, because κ � 3, the lower bounds on π5 and π4 are zero, the lower bound on π3 is one
minus the upper bound on π4, and the upper bound on π3 is one.

10Because the subgroups all have different confidence sets (as well as different sample sizes), it is possible
that the upper bound on π5 for all households is not a weighted average of the upper bounds on π5 within
a subgroup. The same is true for the upper bound on π4 (and, therefore, for the lower bound on π3).

17



0 1 2 3

�10�2

0

10

20

30

40
UR

ASR

ν

fpν
q

Figure C.2: Confidence set for outer region of admissible probability density functions of ν.

Notes: The figure depicts a 95 percent confidence set for an outer region of admissible probability
density functions of νi. It also superimposes the implied probability density functions of νi based
on point estimates obtained under the UR and ASR models.

ASR models. The UR predicted density function does not lie entirely inside the confidence

set, whereas the AR predicted density function does (although we note that this does not

necessarily imply that the true choice formation process is an ASR process).

C.5 Proof of Claim 5.1

Claim 5.1(I) follows from Property 5.1 by integrating with respect to the distribution of ν.

Claim 5.1(II) follows from the fact that the UR model satisfies Property 5.1. Suppose

alternative c1 is preferred to alternative c. Alternative c1 may be chosen from choice sets that

contain both c1 and c and from choice sets that contain c1 but not c. However, alternative

c may be chosen only from choice sets that contain c but not c1. Because all choice sets,

conditional on the draw of |C|, are equiprobable, c1 is chosen more frequently than c.

We can establish Claim 5.1(III) with a trivial example. Suppose ϕpaq � ϕpbq � 0

and ϕpcq � 1. Then Prpd � a|xq � Prpd � b|xq � 0 and Prpd � c|xq ¡ 0 provided

there exists a positive measure of values ν P V such that W pxc,ν; δq ¡ W pxc1 ,ν; δq for

all c1 P Dzta, bu, c1 � c. More generally, Prpd � a|xq � Prpd � b|xq   Prpd � c|xq is

possible provided ϕpaq and ϕpbq are sufficiently low, ϕpcq is sufficiently high, and c is the

best alternative in Dzta, bu for some positive measure of values ν P V .

18



References
Andrews, D. W. K. and X. Shi (2013): “Inference Based on Conditional Moment Inequalities,”

Econometrica, 81, 609–666.

Andrews, D. W. K. and G. Soares (2010): “Inference for Parameters Defined by Moment
Inequalities Using Generalized Moment Selection,” Econometrica, 78, 119–157.

Canay, I. A. and A. M. Shaikh (2017): “Practical and Theoretical Advances in Inference
for Partially Identified Models,” in Advances in Economics and Econometrics: Eleventh World
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