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Abstract

We provide an adversarial approach to estimating Riesz representers of linear function-
als within arbitrary function spaces. We prove oracle inequalities based on the localized
Rademacher complexity of the function space used to approximate the Riesz representer and
the approximation error. These inequalities imply fast finite sample mean-squared-error rates
for many function spaces of interest, such as high-dimensional sparse linear functions, neural
networks and reproducing kernel Hilbert spaces. Our approach offers a new way of estimating
Riesz representers with a plethora of recently introduced machine learning techniques. We
show how our estimator can be used in the context of de-biasing structural/causal parame-
ters in semi-parametric models, for automated orthogonalization of moment equations and for
estimating the stochastic discount factor in the context of asset pricing.
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1 Introduction

Many problems in econometrics, statistics, causal inference, and finance involve linear functionals
of unknown functions:

θ(g) = E[m(Z; g)]

where Z denotes a random vector, and g : X → R is a function in some space G. A continuous
linear functional that is mean square continuous with respect to `2 norm can be written in a more
benign and useful manner. Formally, for a given linear functional θ(·), there exists a function a0

such that for any g ∈ G:1
θ(g) = E[a0(X) g(X)]

This result is known as the Riesz representation theorem, and the function a0 is the Riesz representer
of the linear functional. Evaluation of a linear functional θ(g) can be achieved by simply taking the
inner product between a0 and g.

Knowing the Riesz representation of a linear functional is a critical building block in a variety of
learning problems. For instance, in semi-parametric models, g0 is an unknown regression function
and θ(g0) is a causal or structural parameter of interest. The Riesz representer a0 of the functional
θ(·) can be used to debias the plug-in estimator and construct semi-parametrically efficient estima-
tors of the parameter θ(g0). In asset pricing applications, the Riesz representer corresponds to the
stochastic discount factor, which is of primary interest when pricing financial derivatives.

Irrespective of the downstream application, the goal of this paper is to derive an estimator for the
Riesz representer of any linear functional, when given access to n samples of the random vector Z
and a target function space A that can well approximate the function a0. We propose and analyze
an estimator â, with small mean-squared-error. Formally, with probability (w.p.) 1− ζ:

‖â− a0‖2 =

√
E
[
(â(X)− a0(X))

2
]
≤ εn,ζ

We consider estimation of the Riesz representer within some function space A and propose an
adversarial estimator based on regularized variants of the following min-max criterion:

â = arg min
a∈A

max
f∈F

1

n

n∑
i=1

(
m(Zi; f)− a(Xi) · f(Xi)− f(Xi)

2
)

1For simplicity of exposition, throughout the paper we consider scalar-valued functions g. All our results
naturally extend to vector-valued functions g, and estimate a vector valued Riesz representer that satisfies that
θ(g) = E[a(X)′g(X)].
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We derive oracle inequalities for this estimator as a function of the localized Rademacher complexity
of the function space A and the approximation error ε = mina∈A ‖a− a0‖2.

We show that as long as the function class F contains the star-hull of differences of functions in A,
i.e. F := {r(a− a′) : a, a′ ∈ A, r ∈ [0, 1]}, then the adversarial estimator satisfies w.p. 1− ζ:

‖â− a0‖2 = O

(
ε+ δn +

√
log(1/ζ)

n

)

where δn is the critical radius of the function classes F and m ◦ F = {Z → m(Z; f) : f ∈ F}. The
critical radius of a function class is a widely used quantity in statistical learning theory that allows
one to argue fast estimation rates that are nearly optimal. For instance, for parametric function
classes, the critical radius is of order n−1/2, leading to fast parametric rates (as compared to n−1/4

which would be achievable via looser uniform deviation bounds).

Moreover, the critical radius has been analyzed and derived for a variety of function spaces of inter-
est, such as neural networks, high-dimensional linear functions, reproducing kernel Hilbert spaces,
and VC-subgraph classes. Thus our general theorem allows us to appeal to these characterizations
and provide oracle rates for a family of Riesz representer estimators. Prior work on estimating Riesz
representers only considered particular high-dimensional parametric classes and derived specialized
estimators for the function space of interest. Our adversarial estimator provides a single approach
that tackles generic function spaces in a uniform manner.

We also examine the computational aspect of our estimator. We provide examples of how estimation
can be achieved in a computationally efficient manner for several function spaces of interest.

Finally, we show how our estimator can be used in the context of estimating causal or structural
parameters in semi-parametric models. Specifically, our mean square rate for the Riesz representer
is sufficiently fast to achieve semi-parametric efficiency and asymptotic normality of the causal or
structural parameter.

1.1 Applications: Causal Inference and Asset Pricing

Estimation of Riesz representers arises in two important domains for economic research: causal
inference and asset pricing.

Automated De-biasing of Causal Estimates. In causal inference, a variety of treatment
effects and policy effects can be formulated as functionals–i.e., scalar summaries–of an underlying
regression [36]. Formally, the causal parameter θ0 = θ(g0) = E[m(Z; g0)] is a functional θ(·) of the
nuisance parameter g0(x) := E[Y |X = x]. In this paper, we consider a variety of treatment and
policy effects including

1. Average treatment effect (ATE): θ0 = E[g0(1,W )− g0(0,W )], where X = (D,W ) consists of
treatment and covariates.

2. Average policy effect: θ0 =
´
g0(x)dµ(x) where µ(x) = F1(x)− F0(x)

3. Policy effect from transporting covariates: θ0 = E[g0(t(X))− g0(X)]

4



4. Cross effect: θ0 = E[Dg0(0,W )], where X = (D,W ) consists of treatment and covariates.

5. Regression decomposition: E[Y |D = 1]− E[Y |D = 0] = θresponse0 + θcomposition0 where

θresponse0 = E[g0(1,W )|D = 1]− E[g0(0,W )|D = 1]

θcomposition0 = E[g0(0,W )|D = 1]− E[g0(0,W )|D = 0]

6. Average treatment on the treated (ATT): θ0 = E[g0(1,W )|D = 1]−E[g0(0,W )|D = 1], where
X = (D,W ) consists of treatment and covariates.

7. Local average treatment effect (LATE): θ0 = E[g0(1,W )−g0(0,W )]
E[h0(1,W )−h0(0,W )] , where X = (V,W ) consists

of instrument and covariates and h0(x) := E[D|X = x] is a second regression.

More generally, our results extend to parameters defined implicitly by 0 = E[m(Z; g0; θ0)], such as
partially linear regression and partially linear instrumental variable regression.

If the regression g0 is learned by a regularized estimator ĝ, then estimation of the causal parameter
θ0 by a plug-in estimator En[m(Z; ĝ)] is badly biased. The solution is to use a de-biased formulation
of the causal parameter instead: θ0 = E[m(Z; g0) + a0(X){Y − g0(X)}]. Observe that a0 arises in
the bias correction term. We re-visit this example in Section 6.

Fundamental Asset Pricing Equation. In asset pricing, a variety of financial models deliver
the same fundamental asset pricing equation. This equation is of both theoretical and practical
interest. Theoretically, it elucidates why asset prices or returns are what they are. Practically,
it can be used to identify trading opportunities when assets are mis-priced. The asset pricing
equation follows from two weak assumptions: free portfolio formation, and the law of one price. In
Appendix B.2, we review the derivation for a general audience.2

Formally, the fundamental asset pricing equation is pt,i = Et[mt+1xt+1,i] where pt,i is the price of
asset i at time t, xt+1,i is payoff of asset i at time t + 1, and mt+1 is the market-wide stochastic
discount factor (SDF) at time t+ 1.3 The expectation is conditional on information (It, It,i) known
at time t: It are macroeconomic conditioning variables that are not asset specific, e.g. inflation
rates and market return; It,i are asset-specific characteristics, e.g. the size or book-to-market ratio
of firm i at time t. The asset pricing equation encompasses stocks, bonds, and options. We clarify
its many instantiations below, where dt+1 is dividend, C is the call price, ST is the stock price at
expiration, K is the strike price.

2The same asset pricing equation can be derived from either a model of complete markets for contingent claims, or
a model of investor utility maximization. Free portfolio formation is a weaker assumption on market structure than
the existence of complete markets for contingent claims. The law of one price is a weaker assumption on preference
structure than investor utility maximization. We present these additional derivations in Appendix B.2.

3The SDF has many additional names: marginal rate of substitution, state price density, and pricing kernel. Each
name corresponds to a different derivation of the asset pricing equation, starting from different first principles.
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Asset Price pt Payoff xt+1

Stock pt pt+1 + dt+1

Bond pt 1
Option C max{ST −K, 0}
Return 1 Rt+1

Excess return 0 Ret+1

Table 1: Generality of asset pricing equation

The fundamental asset pricing equation can also be parametrized in terms of returns. If an investor
pays one dollar for an asset i today, the gross rate of return Rt+1,i is how many dollars the investor
receives tomorrow; formally, the price is pt,i = 1 and the payoff is xt+1,i = Rt+1,i by definition.
Next consider what happens when an investor borrows a dollar today at the interest rate Rft+1 and
buys an asset i that gives the gross rate of return Rt+1,i tomorrow. From the perspective of the
investor, who paid nothing out-of-pocket, the price is pt,i = 0 while the payoff is the excess rate of
return Ret+1,i := Rt+1,i −Rft+1, leading to the asset pricing equation: 0 = Et[mt+1R

e
t+1,i].

Following [29], we focus on the latter excess return parametrization of the asset pricing equation.
Taking expectations yields the unconditional moment restriction

0 = E[mt+1R
e
t+1,iz(It, It,i)] = E[E[mt+1|Ret+1,i, It, It,i]R

e
t+1,iz(It, It,i)], ∀z(·)

Our framework nests this final expression. Specifically,

θ(g) = 0, g(Ret+1,i, It, It,i) = Ret+1,iz(It, It,i), a0(Ret+1,i, It, It,i) = E[mt+1|Ret+1,i, It, It,i]

By estimating a0, which is the projection of the SDF onto excess returns and other available
information, one can pin down the price of any hypothetical asset.

1.2 Related Work

Classical Semi-parametric Statistics. Classical semi-parametric statistical theory studies the
asymptotic properties of statistical quantities that are functionals of a density or a regression over
a low-dimensional domain [82, 60, 65, 101, 77, 108, 128, 23, 91, 106, 129, 24, 92, 3, 93, 4, 123, 79,
5]. Any continuous linear functional has a Riesz representer. In this classical theory, the Riesz
representer appears in the influence function and therefore in the asymptotic variance of semi-
parametric estimators [91]. We depart from classical theory by considering the high-dimensional
setting.

De-biased Machine Learning and Targeted Maximum Likelihood. Because the Riesz
representer appears in the asymptotic variance of semi-parametric estimators, it can be incorporated
into estimation to ensure semi-parametric efficiency. In practice, this can be achieved by introducing
a de-biasing term into the estimating equation [60, 24, 133, 15, 16, 17, 18, 69, 70, 71, 124, 100, 37,
96, 103, 66, 67, 68, 27, 135, 136]. In doubly robust estimating equations for regression functionals,
the de-biasing term is the product between the Riesz representer and the regression residual [107,
106, 127, 126, 84, 122]. The more general principle at play is Neyman orthogonality: the learning
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problem for the functional of interest becomes orthogonal to the learning problems for both the
regression and the Riesz representer [97, 98, 129, 104, 134, 17, 18, 36, 14, 35, 51].

De-biased machine learning and targeted maximum likelihood combine the algorithmic insight of
doubly-robust moment functions with the algorithmic insight of sample splitting [22, 113, 77, 129,
104]. In doing so, these frameworks facilitate a general analysis of residuals such that the target
functional is

√
n-consistent under minimal assumptions on the estimators used for the regression

and Riesz representer [112, 110, 111, 127, 134, 126, 44, 125, 74, 73]. In particular, any machine
learning estimators are permitted that satisfy

√
n‖ĝ − g0‖2 · ‖â− a0‖2 → 0 [35, 36].

The Riesz representer may be a difficult object to estimate. Even for simple regression functionals
such as policy effects, its closed form involves ratios of densities. In restricted models, where
the regression is known to belong to a certain function class, there is the further difficulty of
projecting the Riesz representer accordingly. A recent literature explores the possibility of directly
estimating the Riesz representer, without estimating its components or even knowing its functional
form [105, 95, 9, 39, 40, 62, 63, 117, 109]. A crucial insight, on which we build, is that the Riesz
representer is directly identified from data.

[63] observe that to debias an average moment, it is sufficient to estimate an empirical analogue of
the Riesz representer that approximately satisfies the Riesz representer moment equation on the n
samples. They propose a parametric min-max criterion to estimate n parameters corresponding to
the n evaluations of the empirical Riesz representer. Unlike [63], we provide a guarantee on learning
the true Riesz representer, we approximate the Riesz representer within non-parametric function
spaces, and our result therefore has broader application beyond causal inference. Importantly, [63]
require that the same sample used to estimate the n parameters is used in final stage estimation of
the causal parameter. As such, the analysis requires that the regression function g lies in a Donsker
class–a restriction that precludes many machine learning estimators. By contrast, our adversarial
estimator provides fast estimation rates with respect to the true Reisz representer and hence can be
used in combination with cross-fitting and sample splitting to eliminate the Donsker assumption.

Adversarial Estimation. Riesz representation theorem can be viewed as a continuum of un-
conditional moment restrictions. The non-parametric instrumental variable problem, based on
a conditional moment restriction, also implies a continuum of unconditional moment restrictions
[94, 56, 25, 31, 42, 32, 33, 30]. A central insight of this work is that the min-max approach for
conditional moment models may be adapted to the problem of learning the Riesz representer. In
a min-max approach, the continuum of unconditional moment restrictions is enforced adversarially
over a set of test functions [54, 8, 45].

The fundamental advantage of the min-max approach is its unified analysis over arbitrary function
classes. In particular, via local Rademacher analysis, one can derive an abstract bound that encom-
passes sparse linear models, neural networks, and RKHS methods [78, 12]. As such, the min-max
approach is actually a family of algorithms adaptive to a variety of data settings with a unified
guarantee [90, 80, 81].

Machine Learning Approaches to Causal Inference and Asset Pricing. By pursuing a min-
max approach, our work relates to previous work that incorporates a variety of machine learning
methods into causal inference. Much work on de-biased machine learning focuses on sparse and
approximately sparse models [39, 40, 38]. A neural network estimator with mean square rate has
been successfully used to learn the nuisance regression in semiparametric estimation [34, 49] and to
learn the structural function in nonparametric instrumental variable regression [59, 20, 45]. A more
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recent literature incorporates RKHS methods into causal inference due to their convenient closed
form solutions and strong performance on smooth designs [99, 116, 89, 118, 88].

Finally, our works provides a theoretical foundation for a growing literature that incorporates
machine learning into asset pricing. We follow the asset pricing literature in framing the problem of
learning a stochastic discount factor as the problem of learning a Riesz representer [57]. Specifically,
we propose a deep min-max approach based on free portfolio formation and the law of one price [11,
29]. This approach differs from deep learning approaches that predict asset prices via nonparametric
regression [86, 50, 55, 21]. Unlike previous work, we prove mean square rates for the stochastic
discount factor, and we prove

√
n-consistency and semiparametric efficiency for expected asset

prices.

2 Adversarial Estimator

For any function space G, let star(G) := {r g : g ∈ G, r ∈ [0, 1]}, denote the star hull. Let
∂G := {g− g′ : g, g′ ∈ G} denote the space of differences. We will consider estimators that estimate
Riesz representers within some function space A, equipped with some norm ‖ · ‖A. Moreover, let
〈·, ·〉2 be the inner product associated with the `2 norm, i.e. 〈a, a′〉2 := EX [a(X) a′(X)].4 Given
this notation, we define the class:

F := star(∂A) := {r (a− a′) : a, a′ ∈ A, r ∈ [0, 1]}

and assume that the norm ‖ ·‖A extends naturally to the larger space F . Moreover, let En[·] denote
the empirical average and ‖ · ‖2,n the empirical `2 norm, i.e.

‖g‖2,n :=
√

En[g(X)2].

Consider the following adversarial estimator:

â = arg min
a∈A

max
f∈F

En[m(Z; f)− a(X) · f(X)]− ‖f‖22,n − λ‖f‖2A + µ‖a‖2A (1)

Remark 1 (Population limit). Consider the population limit of our criterion where n → ∞ and
λ, µ→ 0. Then our criterion is:

max
f∈F

E[m(Z; f)− a(X) · f(X)]− ‖f‖22

By the definition of the Riesz representer we thus have:

max
f∈F

E [m(Z; f)− a(X) · f(X)]− ‖f‖22 = max
f∈F

E
[
(a0(X)− a(X)) · f(X)− f(X)2

]
=

1

4
E
[
(a0(X)− a(X))2

]
=:

1

4
‖â− a0‖22

Thus our empirical criterion converges to the mean-squared-error criterion in the population limit,
even though we don’t have access to unbiased samples from a0(X).

4In Appendix A, we examine the relationship between G and the Riesz representer space A.
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Remark 2 (Norm-Based Regularization). The extra vanishing norm-based regularization can be
avoided if one knows a bound on the norm of the true a0. In that case, one can impose a hard
norm constraint on the hypothesis space A and Ā and optimize over these norm-constrained sub-
spaces. However, regularization allows the estimator to be adaptive to the true norm of a0, without
knowledge of it.

Remark 3 (Mis-specification). We in fact allow for a0 /∈ A, and incur an extra bias part in our
estimation error of the form of: mina∈A ‖a−a0‖2. Thus A need only be an `2-norm approximating
sequence of function spaces.

3 Fast Convergence Rate

We now provide fast convergence rates of our regularized minimax estimator, parameterized by the
critical radii of the function classes:

FB := {f ∈ F : ‖f‖2A ≤ B}
m ◦ FB := {m(·; f) : f ∈ FB}

for some appropriately defined constant B. The critical radius of a function class F with range in
[−1, 1] is defined as any solution δn to the inequality:

R(δ;F) ≤ δ2 with: R(δ;F) = E

[
sup

f∈F :‖f‖2≤δ

1

n

n∑
i=1

εif(Xi)

]

with ε1:n are independent Rademacher random variables drawn equiprobably in {−1, 1}. For
VC-subgraph function classes with constant VC dimension the critical radius is of the order of√

log(n)/n. The critical radius has been characterized by many other function classes such as re-
producing kernel Hilbert spaces, neural networks and high-dimensional linear functions (c.f. [130]
and Section 4).

We will also require the following norm-dominance condition:

ASSUMPTION 1 (Mean-Squared Continuity). For some constant M ≥ 0, the following property
holds:

∀f ∈ F :
√

E [m(Z; f)2] ≤M ‖f‖2

Observe that the fact that the operator θ(g) is bounded, implies that |E[m(Z; g)]| ≤M ‖g‖2. Mean-
squared continuity is a stronger condition than boundedness, since: |E[m(Z; g)]| ≤ E[|m(Z; g)|] ≤√

E[m(Z; g)2]. In Appendix B.1, we verify this condition for a variety of popular functionals.

Example 1 (Mean-Squared Continuity for ATE). Let X = (D,W ) consist of treatment and covari-
ates. In the case of treatment effect estimation, the above is implied by a non-parametric overlap
condition, i.e. Pr[D = 1 | w] ∈ (1/M, 1− 1/M) for some M ∈ (1,∞). Then observe that:

E[(g(1,W )− g(0,W ))2] ≤ 2E[g(1,W )2 + g(0,W )2]

≤ 2ME
[
Pr[D = 1 |W ] g(1,W )2 + Pr[D = 0 |W ] g(0,W )2

]
= 2M‖g‖22
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Theorem 1. Assume that mean-squared continuity holds for some constant M ≥ 1 and that for
some B ≥ 0, the functions in FB and m ◦ FB have uniformly bounded ranges in [−1, 1]. Let:

δ := δn + εn + c0

√
log(c1/ζ)

n
,

for universal constants c0, c1, where δn upper bounds the critical radii of FB ,m ◦ FB and εn up-
per bounds the bias mina∈A ‖a − a0‖2. Let a∗ = arg mina∈A ‖a − a0‖2. Then the estimator in
Equation (1), with µ ≥ 6λ ≥ 12δ2/B, satisfies w.p. 1− ζ:

‖â− a0‖2 ≤ O
(
M2δ +

µ

δ
‖a∗‖2A

)
For µ ≤ Cδ2/B, for some constant C, the latter is: O

(
δ max

{
M2,

‖a∗‖2A
B

})
.

Remark 4. Suppose we only want to approximate the Riesz representer with respect to the weaker
distance metric ‖ · ‖F defined as:5

‖a‖2F = sup
f∈F
〈a, f〉2 −

1

4
‖f‖22 ≤ ‖a‖22

Then Theorem 1 can be adapted to show that: ‖â− a0‖F ≤ δmax
{
M2, ‖a∗‖2A/B

}
, where now the

approximation rate is εn = infa∈A ‖a− a0‖F . Observe that ‖ · ‖F satisfies:

‖a‖2F = inf
f∈F

1

4
‖f‖22 − 〈a, f〉2 + ‖a‖22 − ‖a‖22 = inf

f∈F
‖a− f/2‖22 − ‖a‖

2
2 ≤ inf

f∈F
‖a− f‖22 − ‖a‖22

where in the last inequality we used the fact that F is star-convex. Thus it is at most the projection
of a on F . Hence, it is sufficient that A approximates a0 in this weak sense that for some a∗ ∈ A the
projection of a∗ − a0 on F is at most εn. Thus any component of a0 that is orthogonal to F can be
ignored, since if we denote with a0 = a⊥0 +a

‖
0 with supf∈F 〈a⊥0 , f〉2 = 0, then ‖a0−a∗‖F = ‖a‖0−a∗‖F .

Our proof uses similar ideas as in the proof of Theorem 1 of [45], where an adversarial estimator
was considered for the case of non-parametric instrumental variable regression. Theorem 1 of [45]
provides bounds on a weaker metric than the mean-squared-error metric and requires bounds on
the critical radius of more complicated function spaces.

As a corollary of Theorem 1, we can obtain a bound for the un-regularized estimator with λ = µ = 0,
where the function classes F and G are already norm constrained, e.g. ‖f‖A ≤ U for all f ∈ F ,
which also implies that ‖a‖A ≤ U for all a ∈ A, such that functions in F and G have uniformly
bounded range. This can be achieved by using the above norm-constrained definitions of F and G
and taking the limit of Theorem 3 when B →∞. In that case, FB → F , m ◦FB → m ◦F and λ, µ
are allowed to take zero value. This leads to the corollary:

5The metric ‖ · ‖F satisfies the triangle inequality:

‖a+ b‖F ≤
√

sup
f∈F
〈a, f〉 −

1

4
‖f‖22 + sup

f∈F
〈b, f〉 −

1

4
‖f‖22 ≤ ‖a‖F + ‖b‖F

and is positive definite i.e. ‖0‖F = 0, but not necessarily homogeneous, i.e. ‖λa‖F =?|λ|‖a‖F for λ ∈ R.
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Corollary 2. Assume that mean-squared continuity holds for some constant M ≥ 1 and that the
functions in F and m ◦ F have uniformly bounded ranges in [−1, 1]. Let:

δ := δn + εn + c0

√
log(c1/ζ)

n
,

for universal constants c0, c1, where δn upper bounds the critical radii of F ,m ◦ F and εn upper
bounds the bias mina∈A ‖a− a0‖2. The estimator in Equation (1), with λ = µ = 0, satisfies:

‖â− a0‖2 ≤ O
(
M2δ

)
3.1 Fast Rates without `2-Penalty

We will use the following notation:

spanκ(F) :=

{
p∑
i=1

wifi : fi ∈ F , ‖w‖1 ≤ κ, p ≤ ∞

}
Theorem 3. Consider a set of test functions F := ∪di=1F i, that is de-composable as a union of
d symmetric test function spaces F i and suppose that A is star-convex. Consider the adversarial
estimator:

â = arg min
a∈A

sup
f∈F

En[m(Z; f)− a(X) · f(X)] + λ‖a‖A (2)

Let m ◦ F i = {m(·; f) : f ∈ F i} and

δn,ζ := 2
d

max
i=1

(
R(F i) +R(m ◦ F i)

)
+ c0

√
log(c1 d/ζ)

n
,

for some universal constants c0, c1 and Bn,λ,ζ := (‖a0‖A + δn,ζ/λ)
2. Suppose that λ ≥ δn,ζ and:

∀a ∈ ABn,λ,ζ with ‖a− a0‖2 ≥ δn,ζ : a−a0
‖a−a0‖2 ∈ spanκ(F)

Then â satisfies that w.p. 1− ζ:

‖â− a0‖2 ≤ κ (2 (‖a0‖A + 1)R(A1) + δn,ζ + λ (‖a0‖A − ‖â‖A))

4 Example Function Spaces

We now instantiate our two main theorems for several function classes of interest. Throughout
this section we will use the following convenient characterization of the critical radius of a function
class. Corollary 14.3 and Proposition 14.25 of [130] imply that the critical radius of any function
class F , uniformly bounded in [−b, b], is of the same order as any solution to the inequality:

64√
n

ˆ δ

δ2

2b

√
log (Nn(ε;Bn(δ;F))dε ≤ δ2

b
(3)

where Bn(δ;F) = {f ∈ F : ‖f‖2,n ≤ δ} and Nn(ε;F) is the empirical `2-covering number at
approximation level ε, i.e. the size of the smallest ε-cover of F , with respect to the empirical `2
metric.
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4.1 Sparse Linear Functions

Consider the class of s-sparse linear function classes in p dimensions, with bounded coefficients, i.e.,

Asplin := {x→ 〈θ, x〉 : ‖θ‖0 ≤ s, ‖θ‖∞ ≤ b},

then observe that F is also the class of s-sparse linear functions, with bounded coefficients in
[−2b, 2b]. Moreover, suppose that the `1-norm of the covariates x is bounded. The critical radius

δn is of order O
(√

s log(p n)
n

)
. It is easy to see that the ε-covering number of such a function

class is of order Nn(ε;F) = O
((
p
s

) (
b
ε

)s) ≤ O
((

p b
ε

)s)
, since it suffices to choose the support of

the coefficients and then place a uniform ε-grid on the support. Thus we get that Equation (3) is

satisfied for δ = O

(√
s log(p b) log(n)

n

)
. Moreover, observe that if m(Z; f) is L-Lipschitz in f with

respect to the `∞ norm, then the covering number of m ◦ F is also of the same order. Thus we can
apply Corollary 2 to get:

Corollary 4 (Sparse Linear Riesz Representer). The estimator presented in Corollary 2, with
A = Asplin, satisfies w.p. 1− ζ:

‖â− a0‖2 ≤ O

(
min

a∈Asplin
‖a− a0‖2 +

√
s log(p b) log(n)

n
+

√
log(1/ζ)

n

)

The latter Theorem required a hard sparsity constraint. However, our second main theorem, Theo-
rem 3, allows us to prove a similar guarantee for the relaxed version of `1-bounded high-dimensional
linear function classes. For this corollary we require a restricted eigenvalue condition which is typical
for such relaxations.

Corollary 5 (Sparse Linear Riesz Representer with Restricted Eigenvalue). Suppose that a0(x) =
〈θ0, x〉 with ‖θ0‖0 ≤ s and ‖θ0‖1 ≤ B and ‖θ0‖∞ ≤ 1. Moreover, suppose that the covariance matrix
V = E[xx′] satisfies the restricted eigenvalue condition:

∀ν ∈ Rp s.t. ‖νSc‖1 ≤ ‖νS‖1 + δn,ζ/λ : ν>V ν ≥ γ‖ν‖22

Let A = {x → 〈θ, x〉 : θ ∈ Rp}, ‖〈θ, ·〉‖A = ‖θ‖1, and F = {x → ξxi : i ∈ [p], ξ ∈ {−1, 1}}. Then
the estimator presented in Equation (2) with λ ≤ γ

8s , satisfies that w.p. 1− ζ:

‖â− a0‖2 ≤ O
(

max
{

1, 1
λ
γ
s

}√
s
γ

(
(‖θ0‖1 + 1)

√
log(p)
n +

√
log(p/ζ)

n

))
Remark 5 (Restricted Eigenvalue). We note that if we have that the unrestricted minimum eigen-
value of V is at least γ, then the restricted eigenvalue condition always holds. Moreover, observe
that we only require a condition on the population covariance matrix V and not on the empirical
covariance matrix.
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4.2 Neural Networks

Suppose that the function class A can be represented as a RELU activation neural network with
depth L and widthW , denoted as Annet(L,W ). Then observe that functions in F can be represented
as neural networks with depth L+ 1 and width 2W . Moreover, we assume that functions in m ◦ F
are also representable by neural networks of depth O(L) and width O(W ). Finally, suppose that
the covariates are distributed in a way that the outputs of F and m ◦ F are uniformly bounded in
[−b, b].

Then by the L1 covering number for VC classes of [61], the bounds of theorem 14.1 of [7] and
Theorem 6 of [13], one can show that the critical radius of F and m ◦ F is of the order of δn =

O

(√
LW log(W ) log(b) log(n)

n

)
(c.f. Proof of Example 3 of [51] for a detailed derivation). Thus we

can apply Corollary 2 to get:

Corollary 6 (Neural Network Riesz Representer). Suppose that A = Annet(L,W ), and that m◦F is
representable as a neural network with depth O(L) and width O(W ). Moreover, the input covariates
are such that functions in F and m ◦ F are uniformly bounded in [−b, b]. Then the estimator
presented in Corollary 2, satisfies w.p. 1− ζ:

‖â− a0‖2 ≤ O

(
min

a∈Annet(L,W )

‖a− a0‖2 +

√
LW log(W ) log(b) log(n)

n
+

√
log(1/ζ)

n

)

If the true Riesz representer a0 is representable as a RELU neural network, then the first term
vanishes and we achieve an almost parametric rate. For non-parametric Holder function classes,
one can easily combine the latter corollary with approximation results for RELU activation neural
networks presented in [131, 132]. These approximation results typically require that the depth
and the width of the neural network grow as some function of the approximation error ε, leading

to errors of the form: O
(
ε+

√
L(ε)W (ε) log(W (ε)) log(b) log(n)

n +
√

log(1/ζ)
n

)
. Optimally balancing ε

then typically leads to almost tight non-parametric rates, of the same order as those presented in
Theorem 1 of [48].

4.3 Reproducing Kernel Hilbert Spaces

Suppose that a0 lies in a Reproducing Kernel Hilbert Space (RKHS) with kernel K, denoted as
Arkhs(K) and with the norm ‖·‖A being the RKHS norm. Then observe that F is the same function
space. Moreover, we assume that m ◦F also lies in an RKHS with a potentially different kernel K̃.
Finally, suppose that the input covariates are such that for some constant B, functions in FB and
m ◦ FB are bounded in [−1, 1].

Let {λ̂j}nj=1 be the eigenvalues of the n × n empirical kernel matrix, with Kij = K(xi, xj)/n.
Similarly, let {µ̂j}nj=1 be the eigenvalues of the empirical kernel matrix K̃. Then by Corollary 13.18
of [130], we can derive the following corollary of Theorem 1:

Corollary 7 (RKHS Riesz Representer). Suppose that A = Arkhs, a0 ∈ Arkhs, and that m ◦ F ∈
Arkhs(K̃). Let {λ̂j}nj=1 and {µ̂j}nj=1 be the egienvalues of the empirical kernel matrices of K and
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K̃, correspondingly. Let δn be any solution to the inequalities:

B

√
2

n

√√√√ ∞∑
j=1

max{λ̂j , δ2} ≤ δ2 B

√
2

n

√√√√ ∞∑
j=1

max{µ̂j , δ2} ≤ δ2

Moreover, the input covariates are such that functions in FB and m ◦FB are uniformly bounded in
[−1, 1]. Then the estimator presented in Theorem 1, satisfies w.p. 1− ζ:

‖â− a0‖2 ≤ O

(
‖a0‖A

(
δn +

√
log(1/ζ)

n

))

We note that the latter estimator does not need to know the RKHS norm of the true function a0.
Instead it automatically adapts to the unknown RKHS norm. Moreover, note that the bound δn
is solely based on empirically observable quantities, as it is a function of the empirical eigenvalues.
Thus these empirical quantities can be used as a data-adaptive diagnostic of the error.

Finally, we note that for particular kernels a more explicit bound can be derived as a function
of the eigendecay. For instance, for the Gaussian kernel, which has an exponential eigendecay,

Example 13.21 of [130] derives that the solution to the eigenvalue inequality scales as O
(√

log(n)
n

)
,

thus leading to almost parametric rates: ‖â− a0‖2 ≤ O
(
‖a0‖A

√
log(n)
n

)
.

5 Computation

In this section we discuss computational aspects of the optimization problem implied by our ad-
versarial estimator. We show how in many cases, the min-max optimization problem can be solved
computationally efficiently and also discuss practical heuristics for cases where the problem is non-
convex (e.g. in the case of neural networks).

5.1 Sparse Linear Function Spaces

For the case of sparse linear functions, the estimator in Theorem 3 requires solving the following
optimization problem:

min
θ∈Rp:‖θ‖1≤B

max
i∈[2p]

En [m(Z; fi)− fi(X) 〈θ,X〉] + λ‖θ‖1 (4)

where fi(X) = Xi for i ∈ {1, . . . , p} and fi(X) = −Xi for i ∈ {p + 1, . . . , 2p}. This can be solved
via sub-gradient descent, which would yield an ε-approximate solution after O

(
p/ε2

)
steps. This

can be improved to O (log(p)/ε) steps if one views it as a zero-sum game and uses simultaneous gra-
dient descent, where the θ-player uses Optimistic-Follow-the-Regularized-Leader with an entropic
regularizer and the f -player uses Optimistic Hedge over probability distributions on the finite set
of test functions (analogous to Proposition 13 of [45]).
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To present the algorithm it will be convenient to re-write the problem where the maximizing player
optimizes over distributions in the 2p-dimensional simplex, i.e.:

min
θ∈Rp:‖θ‖1≤B

max
w∈R2p

≥0
:‖w‖1=1

En [m(Z; 〈w, f〉)− 〈w, f〉(X) 〈θ,X〉] + λ‖θ‖1

where f = (f1, . . . , f2p), denote the vector of the 2p functions. Moreover, to avoid the non-
smoothness of the `1 penalty it will be convenient to introduce the augmented vector V = (X;−X)
and for the minimizing player to optimize over the positive orthant of a 2p-dimensional vector
ρ = (ρ+; ρ−), with an `1 bounded norm, such that in the end: θ = ρ+ − ρ−. Then we can re-write
the problem as:

min
ρ∈R2p

≥0
:‖ρ‖1≤B

max
w∈R2p

≥0
:‖w‖1=1

En [m(Z; 〈w, f〉)− 〈w, V 〉 〈ρ, V 〉] + λ

2p∑
i=1

ρi

where we also noted that 〈w, f〉(X) = 〈w, V 〉.

Proposition 8. Consider the algorithm that for t = 1, . . . , T , sets:

ρ̃i,t+1 = ρ̃i,te
−2 ηB (−En[Vi 〈V,wt〉]+λ)+ η

B (−En[Vi 〈V,wt−1〉]+λ) ρt+1 = ρ̃t+1 min

{
1,

B

‖ρ̃t+1‖1

}
w̃i,t+1 = wi,te

2 η En[m(Z;fi)−Vi〈V,ρt〉]−η En[m(Z;fi)−Vi〈V,ρt−1〉] wt+1 =
w̃t+1

‖w̃t+1‖1

with ρ̃i,−1 = ρ̃i,0 = 1/e and w̃i,−1 = w̃i,0 = 1/(2p) and returns ρ̄ = 1
T

∑T
t=1 ρt. Then for η =

1
4‖En[V V >]‖∞ ,6 after

T = 16‖En[V V >]‖∞
4B2 log(B ∨ 1) + (B + 1) log(2p)

ε

iterations, the parameter θ̄ = ρ̄+ − ρ̄− is an ε-approximate solution to the minimax problem in
Equation (4).

5.2 Neural Nets with Simultaneous Stochastic Gradient Descent

When the function space A and F is represented as a deep neural network then the optimization
problem is highly non-convex. This is the case even if we were just solving a square loss minimization
problem. On top of this we also need to deal with the non-convexity and non-smoothness introduced
by the min-max structure of our estimator.

Luckily, the optimization problem that we are facing is similar to the optimization problem that
is encountered in training Generative Adversarial Networks, i.e. we need to solve a non-convex,
non-concave zero-sum game, where the strategy of each of the two players are the parameters
of a neural net. Luckily, there has been a surge of recent work proposing iterative optimization
algorithms inspired by the convex-concave zero-sum game theory (see, e.g. the Optimistic Adam
algorithm of [43], also utilized in the recent work of [20, 45] in the context of solving moment

6For a matrix A, we denote with ‖A‖∞ = maxi,j |Aij |
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equations, or the work of [64, 87] on the extra-gradient or stochastic extra-gradient algorithm).
All these new algorithms for solving differentiable non-convex/non-concave zero-sum games can be
deployed for our problem.

Recent work of [83] contributes to a literature on over-parameterized neural network training for
square losses [6, 46, 119]. The authors show that even for min-max losses that are very similar to the
loss of our estimator, neural nets that are sufficiently wide and appropriately randomly initialized
essentially behave like linear functions in an appropriate reproducing kernel Hilbert space, typically
referred to as the neural tangent kernel space. Given this intuition, the authors show that a
simple simultaneous gradient descent/ascent algorithm and subsequent averaging of the parameters
converges to the solution of the min-max problem. In this regime neural networks behave like linear
functions, so one can invoke analysis similar to the analysis we invoke for sparse linear function
spaces, and then carefully account for the approximation error. The intuition and results of the work
of [83] can be appropriately adapted for our loss function too so as to show that the average path
of the simultaneous gradient descent/ascent algorithm also converges in our setting. One caveat
is that growing the width of the neural net to facilitate optimization deteriorates the statistical
guarantee, since the critical radius grows as a function of the width.

5.3 Reproducing Kernel Hilbert Space

Recall the estimator is

â = arg min
a∈A

max
f∈F

En[m(Z; f)− a(X) · f(X)]− ‖f‖22,n − λ‖f‖2A + µ‖a‖2A

In this section, we derive a closed form solution for â that can be computed from matrix operations.

Towards this end, we impose additional structure on the problem. If G = F = H is a reproducing
kernel Hilbert space (RKHS), then the projection amin

0 of any RR a0 into G is clearly an element of
H as well, so we can take A = H. Also assume that the functional m satisfies m(z; f) = m(x; f).
Moreover, let the functional be such that it evaluates the function in some arguments. For example,
in ATE, m(z; f) = f(1, w)−f(0, w) where z = x = (d,w). This property holds for treatment effects
and policy effects, and it ensures that m(·; f) ∈ H.

Denote the kernel k : X × X → R, and denote the feature map φ : x 7→ k(x, ·). Denote the kernel
matrix KXX with (i, j)-th entry k(xi, xj). Denote the feature matrix Φ with i-th row φ(xi)

′. Hence
KXX = ΦΦ′.

By the reproducing property f(x) = 〈f, φ(x)〉H. Moreover, since m is a linear functional, we can
define the linear operator M : H → H, f(·) 7→ m(·; f) whereby

m(x; f) = [Mf ](x) = 〈Mf, φ(x)〉H = 〈f,M∗φ(x)〉H

where M∗ is the adjoint of M . Define the matrix Φ(m) := ΦM with i-th row φ(xi)
′M . Finally

define Ψ as the matrix with 2n rows that is constructed by concatenating Φ and Φ(m). We denote
the induced kernel matrix by K := ΨΨ′. Formally,

Ψ :=

[
Φ

Φ(m)

]
, K :=

[
K(1) K(2)

K(3) K(4)

]
:=

[
ΦΦ′ Φ(Φ(m))′

Φ(m)Φ′ Φ(m)(Φ(m))′

]
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Note that {K(j)}j∈[4] ∈ Rn×n and hence K ∈ R2n×2n can be computed from data, though they
depend on the choice of moment.

Proposition 9 (Computing kernel matrices). For example, for ATE

[K(1)]ij = k((di, wi), (dj , wj))

[K(2)]ij = k((1, wi), (dj , wj))− k((0, wi), (dj , wj))

[K(3)]ij = k((di, wi), (1, wj))− k((di, wi), (0, wj))

[K(4)]ij = k((1, wi), (1, wj))− k((1, wi), (0, wj))− k((0, wi), (1, wj)) + k((0, wi), (0, wj))

We proceed in steps. First we prove the existence of a closed form for the maximizer f̂ =
arg maxf∈H En[m(X; f) − a(X) · f(X)] − ‖f‖22,n − λ‖f‖2H by extending the classic representation
theorem of [76, 114].

Proposition 10 (Representation of maximizer). f̂ = Ψ′γ̂ for some γ̂ ∈ R2n

Appealing to this abstract result, we derive the closed form expression for the maximizer in terms
of kernel matrices.

Proposition 11 (Closed form of maximizer). γ̂ = 1
2∆−1

[
nΨM ′µ̂−

[
K(1)

K(3)

]
Φa

]
where

∆ :=

[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
+ nλK ∈ R2n×2n, µ̂ :=

1

n

n∑
i=1

φ(xi)

Next we prove the existence of a closed form for the minimizer â = arg mina∈H En[m(X; f̂)−a(X) ·
f̂(X)]− ‖f̂‖22,n − λ‖f̂‖2H + µ‖a‖2H by appealing to the classic representation theorem of [76, 114].

Proposition 12 (Representation of minimizer). â = Φ′β̂ for some β̂ ∈ Rn

Again, with this abstract result in hand, we derive the closed form expression for the minimizer in
terms of kernel matrices.

Proposition 13 (Closed form of minimizer). β̂ =

{
1
nΩ∆−1

[
K(1)K(1)

K(3)K(1)

]
+2µ ·K(1)

}−1

Ω∆−1ΨM ′µ̂

where

Ω :=

[
K(1)K(1)

K(3)K(1)

]′
− 1

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1

[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
− nλ

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1K ∈ Rn×2n

For practical use, we require a way to evaluate the minimizer using only kernel operations. Evalu-
ation directly follows from the closed form expression.

Corollary 14 (Evaluation of minimizer).

â(x) = KxX

{
1

n
Ω∆−1

[
K(1)K(1)

K(3)K(1)

]
+ 2µ ·K(1)

}−1

Ω∆−1V

where V ∈ R2n is defined such that

vj =

{
1
n

∑n
i=1[K(2)]ji if j ∈ [n]

1
n

∑n
i=1[K(4)]ji if j ∈ {n+ 1, ..., 2n}
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5.4 Oracle Based Training

Consider the estimator with λ = µ = 0:

min
a∈A

max
f∈F

En
[
m(Z; f)− a(X) · f(X)− f(X)2

]
=: `(a, f) (5)

We can solve this optimization problem by treating it as a zero-sum game, where one player controls
a and the other player controls f . Observe that the game is convex a (in fact linear) and concave
in f . Thus, we can solve this zero-sum game by having the f -player run a no-regret algorithm at
each period t ∈ {1, . . . , T} and the a-player best responding to the current choice of the f player.

Observe that for any fixed f , the best-response of the a-player is the solution to:

at = arg min
a∈A

−En[a(X) · f(X)] = arg max
a∈A

En[a(X) · f(X)]

In other words, the a-player wants to match the sign of the function f . Thus the best-response of
the a-player is equivalent to a weighted classification oracle, where the label is Yi = sign(f(Xi))
and the weight is wi = |f(Xi)|.

Finally, we need to solve the no-regret problem for the f player. If the function space F is a convex
space,7 then we can simply run the follow the leader (FTL) algorithm, where at every period the
algorithm maximizes the empirical past reward:

ft = arg max
f∈F

En
[
m(Z; f)− ā<t(X) · f(X)− f(X)2

]
= arg min

f∈F
−`(ā<t, f)

where ā<t = 1
t−1

∑
τ<t aτ .

Proposition 15. Suppose that the empirical operator En[m(Z; ·)] is bounded with operator norm
upper bounded by Mn ≥ 1 and that the function class F is convex. Consider the algorithm where
at each period t ∈ {1, . . . , T}:

ft = arg max
f∈F

`(ā<t, f) at = arg min
a∈A

`(a, ft)

Then for T = Θ
(
Mn log(1/ε)

ε

)
, the function a∗ = 1

T

∑T
t=1 at is an ε-approximate solution to the

empirical minimax problem in Equation (5).

The above algorithm requires a weighted classification oracle for the a-player and an oracle for the
f -player that solves the problem maxf∈F `(a, f), for any a.

Example 2 (f -player oracle for ATE). For the case of ATE this problem is:

f∗ = arg min
f∈F

En
[
f(T,X)2 + a(T,X)f(T,X)− f(1, X) + f(0, X)

]
7i.e. if f, f ′ ∈ F , then γf + (1− γ)f ′ ∈ F for any γ ∈ [0, 1]
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6 Debiasing Average Moment

Suppose our goal is to estimate θ0 = θ(g0), where g0 = E[Y | X]. We have access to an estimate ĝ
of g0. We consider the de-biased moment:

ma(Z; g) = m(Z; g) + a(X)′ (Y − g(X))

For simplicity of exposition, we present the remainder of the section for the case of a single-valued
regression function.

6.1 Asymptotic Normality with Sample Splitting

Consider the following cross-fitted estimate:

• Partition n samples into K folds P1, . . . , PK

• For each partition, estimate âk, ĝk based on all out-of-fold data.

• Construct estimate:

θ̂ =
1

n

K∑
k=1

∑
i∈Pk

mâk(Zi; ĝk)

Lemma 16. Suppose that K = Θ(1) and that:

∀k ∈ [K] :
√
nE[(a0(X)− âk(X)) (ĝk(X)− g0(X))]→p 0 (6)

and that for some a∗ and g∗ (not necessarily equal to a0 and g0), we have that for all k ∈ [K]:

‖âk − a∗‖2
L2

→ 0 and ‖ĝk − g∗‖2
L2

→ 0. Assume that Condition 1 is satisfied and the variables
Y, g(X), a(X) are bounded a.s. for all g ∈ G and a ∈ A.8 Then if we let σ2

∗ := Var(ma∗(Z; g∗))

√
n
(
θ̂ − θ0

)
→d N

(
0, σ2
∗
)

A sufficient condition for Condition 6 is that
√
n‖â − a0‖2‖ĝ − g0‖2 →p 0, which is a condition

on the product of the two RMSE rates. However, observe that Condition (6) is much weaker as it
implies that our Riesz estimate â only needs to approximately satisfy the representer moment for
test functions of the form: ĝ−g0. Thus, if we assume that ĝ satisfies an RMSE consistency rate that
‖ĝ−g0‖2 ≤ rn, then it suffices that it satisfies the moment for any g ∈ G, with ‖g− ĝ‖2 ≤ rn, i.e. it
suffices that it is a local Riesz representer around ĝ. This can potentially make the Riesz estimation
task much simpler than estimating a global Riesz representer. We formalize this observation in
Appendix C.

Moreover, observe that the theorem does not require consistency of both nuisance functions. Only
one of the two nuisance functions needs to be consistent, while the other must simply converge to
some limit function. For instance, as long as

√
n‖â−a0‖2 → 0 or

√
n‖ĝ− g0‖2 → 0, then the result

8This condition can be relaxed to simply assuming bounded fourth moments of Y, g(X), a(X), as long as we
strengthen the requirement to assume 4-th moment convergence to a∗, g∗, i.e. that ‖âk − a∗‖4, ‖ĝk − g∗‖4 →p 0.
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holds. Inconsistency will only impact the limit variance, which will not be equal to the efficient
variance; nonetheless, confidence intervals will be asymptotically valid. The required rate for the
latter scenario is implausible as it asks for faster than root-n rate for either a or g. However, we
can still show that the de-biased moment satisfies a double robustness property: if one nuisance
is inconsistent, as long as the other is root-n consistent, then asymptotic normality of the causal
parameter still holds. This result is presented in Appendix F.2. The result is analogous to the
one provided in [19], where an estimator with such a property was presented within the targeted
maximum likelihood framework.

6.2 Asymptotic Normality without Sample Splitting

Consider the algorithm where no cross-fitting or sample splitting is employed:

• Estimate â, ĝ on all the samples

• Construct estimate:
θ̂ = En [mâ(Z; ĝ)]

Lemma 17 (Normality via Localized Complexities). Suppose that:

∀k ∈ [K] :
√
nE[(a0(X)− âk(X)) (ĝk(X)− g0(X))]→p 0 (7)

and that for some a∗ and g∗ (not necessarily equal to a0 and g0), we have that: ‖âk − a∗‖2, ‖ĝk −
g∗‖2 = op(rn). Assume that Condition 1 is satisfied and the variables Y, g(X), a(X) are bounded a.s.
for all g ∈ G and a ∈ A. Moreover, assume that with high probability ‖ĝ‖G ≤ B1 and ‖â‖A ≤ B2.

Let δn,∗ = δn + c0

√
log(c1 n)

n for some appropriately defined universal constants c0, c1, where δn is a

bound on the critical radius of GB1
, m ◦ GB1

and AB2
and also at least

√
log log(n)

n . If

√
n
(
δn,∗ rn + δ2

n,∗
)
→ 0

then if we let σ2
∗ := Var(ma∗(Z; g∗))

√
n
(
θ̂ − θ0

)
→d N

(
0, σ2
∗
)

Suppose we use for both â and ĝ an `1 constrained linear function class in p dimensions and
that a∗, g∗ are sparse linear functions with support size s. Moreover if B1 = ‖a∗‖1 + o(1) and
B2 = ‖g∗‖1 + o(1), and the covariates satisfy a restricted eigenvalue condition, then we could

show that δn,∗ = O

(√
s log(p)
n

)
(a simplification by assuming s log(p) > log(n)). Then as long

as rn → 0, the condition is satisfied. Moreover, for such function classes, we will typically have

that rn = O

(√
s log(p)
n

)
. Therefore, the required condition is that: s log(p)√

n
= o(1) or equivalently

s = o (
√
n/ log(p)).

Of theoretical interest, it seems that without sample splitting, the analysis essentially goes through
for general function classes that are not Donsker. With sample splitting, we would require from
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Condition (8) that
√
sasg log(p)

n = o(n−1/2), where sa, sg are the sparsity bounds on a and g, respec-
tively. Simplifying, with sample splitting we require √sa sg = o (

√
n/ log(p)). By contrast, without

sample splitting, we require this condition for both sa and sg. Beyond this difference, the conditions
on the sparsity of the function classes seem comparable.

We also provide a proof of asymptotic normality without sample splitting for uniformly stable
estimators. This proof technique handles cases beyond Donsker classes or classes with small critical
radius, since stability is not only a property of the function class but also of the estimation algorithm.
Thus, it could be potentially apply to large neural net classes trained via few iterations of stochastic
gradient descent [58] or sub-bagged ensembles of overfitting estimators [47].

Lemma 18 (Normality via Uniform Stability). Suppose that:

∀k ∈ [K] :
√
nE[(a0(X)− âk(X)) (ĝk(X)− g0(X))]→p 0 (8)

and that for some a∗ and g∗ (not necessarily equal to a0 and g0), we have that:

E
[
‖âk − a∗‖22

]
,E
[
‖ĝk − g∗‖22

]
= O(r2

n)

Assume that Condition 1 is satisfied and the variables Y, g(X), a(X) are bounded a.s. for all g ∈ G
and a ∈ A. Suppose that the algorithm for estimating ĥ := (â, ĝ) is symmetric across samples and
satisfies βn-mean-squared stability, i.e.:9

EZ
[∥∥∥ĥ(Z)− ĥ−i(Z)

∥∥∥2

∞

]
≤ βn

where ĥ−i is the function that the estimation algorithm would produce if sample i was removed from
the training set. If

r2
n−1 + nβn−1rn−2 → 0

then if we let σ2
∗ := Var(ma∗(Z; g∗))

√
n
(
θ̂ − θ0

)
→d N

(
0, σ2
∗
)

Uniform stability of sub-bagged ensemble estimators. If we use sub-bagging and return
as an estimate the average of a base estimator over subsamples of size s < n, then the sub-bagged
estimate is βn := s

n -uniformly stable (see e.g. [47]). If the bias of the base estimator decays as
some function bias(s), then typically sub-bagged estimators will achieve rn =

√
s
n + bias(s) (see

e.g. [10, 75, 121]). Thus we need that nβnrn =
√

s3

n + sbias(s) → 0. As long as s = o(n1/3)

and bias(s) = o(1/s), then the conditions of the latter theorem hold. The recent work of [121]
shows that in a high-dimensional regression setting, with p� n and only r � p, n of the variables
being µ-strictly relevant variables, i.e. leading to a decrease in explained variance of at least µ, (for
some constant µ > 0), the bias of a deep Breiman tree trained on s data points decays as exp(−s).
Moreover, a deep Breiman forest where each tree is trained on s = O

(
2r log(p)

µ

)
= o(n1/3) samples,

drawn without replacement, will achieve rn = O
(√

s2r

n

)
. Thus sub-bagged deep Breiman random

forests satisfy the conditions of the theorem in the case of sparse high-dimensional non-parametric
regression.

9The notion was originally defined in [72] and used to derive imporved bounds on k-fold cross-validation. It is
weaker than the well-studied uniform stability [26]. See [47, 28, 2] for more discussion.
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7 Orthogonalizing Non-Linear Moment

Suppose our goal is to estimate the solution θ0 to a non-linear moment problem that depends on a
regression function g0, i.e.:

E[m(Z; θ0, g0)] := 0

One way to construct a Neyman orthogonal moment that is robust to first-stage errors of the
regression is to introduce a bias correction term that involves the Riesz representer of the functional
derivative of the moment with respect to g, i.e.:

ma(Z; θ, g) = m(Z; θ, g) + a(X)′ (Y − g(X))

where a0(X) is the Riesz representer of the functional derivative of m with respect to g, i.e.:

f(g) :=
∂

∂τ
E [m(Z; θ, g0 + τ (g − g0))]

∣∣∣∣
τ=0

= E[a(X)′g(X)]

The Riesz representer a0 can be estimated in a first stage as follows:

• Estimate the regression function ĝ

• Estimate a preliminary θ̃ using the non-orthogonal moment condition

• Calculate algebraically, or through automatic differentiation, the Gateaux derivative function:

f̂(g) =
∂

∂τ
E
[
m(Z; θ̃, ĝ + τ (g − ĝ))

] ∣∣∣∣
τ=0

• Apply the adversarial Riesz representer estimator for functional f̂(g), to estimate a

Following similar analysis as in Section 5 of [40], one can show that the momentma satisfies Neyman
orthogonality. Moreover, assuming that the moment function is sufficiently smooth, the estimator
outlined above will achieve faster than n−1/4 rates. These two properties are sufficient to show
that the estimator for θ, based on the orthogonal moment and using cross-fitting, will be root-n
asymptotically normal.

One caveat of the approach outlined above is the burden of either calculating the Gateaux deriva-
tive algebraically or auto-differentiating the moment. One can bypass this difficult, and reduce
to evaluation oracles of the moment, by taking arbitrarily small approximations of the Gateaux
derivative. In particular, the third step could be replaced by defining:

f̂ε(g) =
1

ε

(
E
[
m(Z; θ̃, ĝ + ε(g − g0))−m(Z; θ̃, ĝ)

])
For sufficiently small ε, the approximation error ‖f̂ε − f̂‖ is negligible. Moreover, f̂ε only requires
black-box access to evaluations of the moment function to be computed.
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A Unrestricted and Restricted Models

In the context of semi-parametric statistics, recall that the causal parameter θ0 = θ(g0) = E[m(Z; g0)]
is a functional m of the underlying regression g0(x) := E[Y |X = x]. In an unrestricted model, we
assume g0 ∈ L2(P), the space of square integrable functions. In a restricted model, additional
information about g0 can be encoded by the restriction g0 ∈ G0 ⊂ L2(P), where G0 is some convex
function space. In this section, we give an account of Riesz representation in restricted models,
following the notation and technical lemmas of [39].
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Denote G := span(G0) and Ḡ := closure(G). Define the modulus of continuity of g 7→ θ(g) by

L := sup
g∈G\{0}

|θ(g)|
‖g‖2

Definition 1 (RR and minimal RR). A RR of the functional θ(g) is a0 ∈ L2(P) s.t.

θ(g) = E[g(X)a0(X)], ∀g ∈ G

If a0 ∈ Ḡ, then it is the minimal RR and we denote it by amin
0 . Any RR can be reduced to the

minimal RR by projecting it onto Ḡ.

Lemma 19 (Lemma 1 of [39]). We have the following results

1. If L <∞ then there exists a unique minimal RR amin
0 and L = ‖amin

0 ‖2

2. If there exists a RR a0 with ‖a0‖2 < ∞ then L = ‖amin
0 ‖2 ≤ ‖a0‖2 < ∞, where amin

0 is the
unique minimal RR obtained by projecting a0 onto Ḡ

In both cases, g 7→ θ(g) can be extended to Ḡ or to all of L2(P) with modulus of continuity L

To interpret these results, consider a toy example of vectors in R3 rather than functions in L2(P).
Suppose the functional of interest is

θ : R3 → R, (x, y, z) 7→ x+ 2y + 3z

Moreover, assume g0 ∈ G where G is the (x, y)-plane, though the ambient space is R3. Then any
vector of the form a0 = (1, 2, c) with c ∈ R is a valid RR. The unique minimal RR is amin

0 = (1, 2, 0).
As an aside, the vector a0 = (1, 2, 3) is a universal RR; it holds for any choice of G ⊂ R3, not just
the (x, y)-plane. From any RR, we can obtain the minimal RR by projection onto the (x, y)-plane.

In [39, Theorem 2], we see that it is better to use amin
0 rather than any a0 to attain full semi-

parametric efficiency (unless of course G = L2(P) so there is no difference). By the stated lemma,
we know how to obtain amin

0 from any a0: projection onto Ḡ.

When do these technical issues arise? In the semi-parametric literature, a popular restricted model
is the additive model. It is an important setting where G is not dense in L2(P). We present a
definition of the additive model, then a technical lemma about the minimal RR in an additive
model.

Definition 2 (Additive model). Suppose that

1. the regression g0 is additive in components x = (x(1), x(2)): g0(x) = g
(1)
0 (x(1)) + g

(2)
0 (x(2))

2. g(1)
0 ∈ G(1)

0 , a dense subset of L2(P(1)), where P(1) is the distribution of X(1)

3. the functional depends on only the first component: m(z; g) = m(z; g(1))
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Lemma 20 (Lemma 6 of [39]). Assume an additive model. Consider any RR a0 ∈ L2(P). Then
∀g ∈ G

θ(g) = θ(g(1)) =

ˆ
amin

0 (x(1))g(1)(x(1))dP(1), amin
0 (x(1)) = E[a0(X)|X(1) = x(1)]

and
‖amin

0 ‖q ≤ ‖a0‖q, ∀q ∈ [1,∞]

This preservation of order and contraction of norm is helpful in analysis.

Finally, we quote some projection geometry for sumspaces from [23, Appendix A.4]. Suppose H1

and H2 are closed subspaces of a Hilbert space H.

Lemma 21. If H1 ⊥ H2 then the projection onto the sumspace H1+H2 is the sum of the projections
onto H1 and H2

More generally, H1 may not be orthogonal to H2. Denote by Pi the orthogonal projection onto Hi,
and denote by Qi := I − Pi the projection onto H⊥i . Denote by Π the projection onto the closure
of H1 +H2

Lemma 22 (Corollary 1 of [23]). For any h ∈ H

[I − (Q1Q2)m]h→ Πh, m→∞

Stronger versions of this result are available that provide quantitative rates of convergence and that
allow for r ≥ 2 subspaces.

B Examples

B.1 Causal Inference

Recall the definition of mean-squared continuity: ∃M ≥ 0 s.t.

∀f ∈ F :
√

E [m(Z; f)2] ≤M ‖f‖2

We verify mean-square continuity for several important functionals.

1. Average treatment effect (ATE): θ0 = E[g0(1,W )− g0(0,W )]

To lighten notation, let π0(w) := P(D = 1|W = w) be the propensity score. Assume π0(w) ∈(
1
M , 1− 1

M

)
for M ∈ (1,∞). Then

E[g(1,W )− g(0,W )]2 ≤ 2E[g(1,W )2 + g(0,W )2]

≤ 2ME
[
π0(W ) g(1,W )2 + [1− π0(W )] g(0,W )2

]
= 2ME[g(X)]2
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2. Average policy effect: θ0 =
´
g0(x)dµ(x) where µ(x) = F1(x)− F0(x)

Denote the densities corresponding to distributions (F, F1, F0) by (f, f1, f0). Assume f1(x)
f(x) ≤√

M and f0(x)
f(x) ≤

√
M for M ∈ [0,∞). In this example, m(Z; g) = m(g).

E[m(Z; g)]2 = {m(g)}2

=

{ˆ
g(x)dµ(x)

}2

=

{
E
[
g(X)

{
f1(X)

f(X)
− f0(X)

f(X)

}]}2

≤
{

2
√
ME|g(X)|

}2

≤ 4ME[g(X)]2

3. Policy effect from transporting covariates: θ0 = E[g0(t(X))− g0(X)]

Denote the density of t(X) by ft(x). Assume ft(x)
f(x) ≤M for M ∈ [0,∞). Then

E[g(t(X))− g(X)]2 ≤ 2E[g(t(X))2 + g(X)2]

= 2E
[
g(X)2

{
ft(X)

f(X)
− 1

}]
≤ 2(M + 1)E[g(X)]2

4. Cross effect: θ0 = E[Dg0(0,W )]

Assume π0(w) < 1− 1
M for some M ∈ (1,∞). Then

E[Dg(0,W )]2 ≤ E[g(0,W )]2

≤ME[{1− π0(W )}g(0,W )2]

≤ME[g(X)]2

5. Regression decomposition: E[Y |D = 1]− E[Y |D = 0] = θresponse0 + θcomposition0 where

θresponse0 = E[g0(1,W )|D = 1]− E[g0(0,W )|D = 1]

θcomposition0 = E[g0(0,W )|D = 1]− E[g0(0,W )|D = 0]

Assume π0(w) < 1− 1
M for some M ∈ (1,∞). Then re-write the target parameters in terms

of the cross effect.

θresponse0 =
E[DY ]− E[Dg0(0,W )]

E[D]

θcomposition0 =
E[Dγ0(0,W )]

E[D]
− E[(1−D)Y ]

E[1−D]

We implement DML for the cross effect, empirical means for the population means, then delta
method.
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6. Average treatment on the treated (ATT): θ0 = E[g0(1,W )|D = 1]− E[g0(0,W )|D = 1]

Assume π0(w) < 1− 1
M for some M ∈ (1,∞). Then re-write the target parameters in terms

of the cross effect.

θ0 =
E[DY ]− E[Dg0(0,W )]

E[D]

We implement DML for the cross effect, empirical means for the population means, then delta
method.

7. Local average treatment effect (LATE): θ0 = E[g0(1,W )−g0(0,W )]
E[h0(1,W )−h0(0,W )]

The result follows from the view of LATE as a ratio of two ATEs.

B.2 Asset Pricing

We present three proofs of the existence of the stochastic discount factor. These arguments are
quoted from the excellent exposition of [41].

1. Marginal rate of substitution in a consumption model.

Consider an investor with utility function U(ct, ct+1) = u(ct)+βEt[u(ct+1)], where u is period
utility, ct is consumption at time t, and β is a subjective discount factor. Denote by et the
original consumption level, and ξ the amount of the asset the consumer buys. The consumer
solves the optimization problem

max
ξ
u(ct) + βEt[u(ct+1)] s.t. ct = et − ptξ, ct+1 = et+1 + xt+1ξ

Substituting constraints into the objective, the FOC yields

pt = Et
[
β
u′(ct+1)

u′(ct)
xt+1

]
, mt+1 = β

u′(ct+1)

u′(ct)

The same FOC arises in the longer-term objective Et
[∑∞

j=0 β
ju(ct+j)

]
.

2. State price density in a contingent claim model with complete markets.

For simplicity, consider a two-period model with S possible states of nature tomorrow. A
contingent claim is a security that pays one dollar in one state s only tomorrow. pct(s) is the
price today of the contingent claim. In a complete market, investors can buy any contingent
claims. If there are complete contingent claims, the state price density exists, and it is equal
to the contingent claim price divided by probabilities. Let xt+1(s) denote an asset’s payoff
in state of nature s. The asset’s price must equal the value of the contingent claims of which
it is a bundle. Let πt+1(s) be the probability that state s occurs conditional on information
available today. Then

pt =
∑
s

pct(s)xt+1(s) =
∑
s

πt+1(s)
pct(s)

πt+1(s)
xt+1(s), mt+1(s) =

pct(s)

πt+1(s)
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3. Pricing kernel from the law of one price.

Let X be the set of all payoffs that investors can purchase (or the subset of tradeable payoffs
used in a particular study). For example, if there are complete contingent claims to S states
of nature then X = RS . More generally, markets are incomplete, so X ⊂ RS .
Free portfolio formation means x, x′ ∈ X implies ax + bx′ ∈ X for any a, b ∈ R. This
assumption rules out short sales constraints, bid-ask spreads, and leverage limitations. Let
pt(x) denote the price at time t of the asset that delivers payoff x at time t+1. The law of one
price means pt(ax+bx′) = apt(x)+bpt(x

′). In other words, asset pricing is a linear functional
over a vector space. This assumption says that investors cannot make instantaneous profits by
repackaging portfolios. It would be satisfied in a market that has already reached equilibrium.

Given free portfolio formation and the law of one price, there exists a unique payoff m∗t+1 ∈ X
such that pt(x) = Et[m∗t+1x] for all x ∈ X . m∗t+1 is called the mimicking portfolio. Unless
markets are complete, there are infinitely many SDFs that satisfy pt(x) = Et[mt+1x] of the
form mt+1 = m∗t+1 +ε where ε ∈ X⊥. An incomplete market can be interpreted as a restricted
model, and the mimicking portfolio can be interpreted as a minimal Riesz representer in the
discussion of Section A.

C Local Riesz Representer Convergence Rate

Suppose that we use the constraint the test functions to lie in:

F(rn) = {f ∈ star (∂(G − ĝ)) : ‖f‖2 ≤ rn}

And consider the estimator:
inf
a∈A

sup
f∈

Ψn(a, f)

Then by a localized concentration bound we have:

∀a ∈ A, f ∈ F(rn) : |Ψn(a, f)−Ψ(a, f)| ≤ O
(
δn,ζ‖m(·; f)− a f‖2 + δ2

n,ζ

)
≤ O

(
(M + 1)δn,ζ‖f‖2 + δ2

n,ζ

)
≤ O

(
(M + 1)δn,ζrn + δ2

n,ζ

)
=: εn

where δn,ζ = δn + c0

√
log(c1/ζ)

n and δn bounds the critical radius of the function class:

{Z → m(Z; f)− a(X) f(X) : f ∈ F(rn), a ∈ A}.

Thus we have that:

sup
f∈F(rn)

Ψ(â, f)− εn ≤ sup
f∈F(rn)

Ψn(â, f) ≤ sup
f∈F(rn)

Ψn(a∗, f)

≤ sup
f∈F(rn)

Ψ(a∗, f) + εn

= inf
a∈A

sup
f∈F(rn)

Ψ(a, f) + εn
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Concluding that:
sup

f∈F(rn)

Ψ(â, f) ≤ inf
a∈A

sup
f∈F(rn)

Ψ(a, f) + 2 εn

Moreover, if a0 is a local Riesz representer, i.e. it satisfies the Riesz equation for differences with ĝ
of any function in G within a ball rn around ĝ, then:

inf
a∈A

sup
f∈F(rn)

Ψ(a, f) = inf
a∈A

sup
f∈F(rn)

〈a0 − a, f〉 ≤ rn inf
a∈A

sup
f∈F(1)

〈a0 − a, f〉 ≤ rn inf
a∈A
‖a0 − a‖2

Thus if g0 lies within a ball rn of ĝ, we conclude that:

E[(a0(X)− â(X)) (ĝ(X)− g0(X))] ≤ O
(
M rnδn,ζ + δ2

n,ζ + rn inf
a∈A
‖a0 − a‖2

)

If for instance rn δn,ζ = o(n−1/2) and δn,ζ = o(n−1/4) and rn infa∈A ‖a0 − a‖2 = o(n−1/2), then we
can conclude that: √

nE[(a0(X)− â(X)) (ĝ(X)− g0(X))]→p 0

If a0 ∈ A and both A and G are VC-subgraph classes with constant VC dimension, then it can be

shown that δn,ζ = O

(√
log(n/ζ)

n

)
. Thus for the above conditions to hold, it suffices that: rn = o(1)

(i.e. that ĝ is RMSE-consistent).

Finally observe that we need A to have a small approximation error to a0, not with respect to the
‖ · ‖2 norm, but rather with the weaker norm:

‖a0 − a‖F = sup
f∈F(1)

〈a0 − a, f〉

Thus a does not need to match the component of a0 that is orthogonal to the subspace F . If for
instance, we assume that F lies in the space spanned by top K eigenfunctions of a reproducing
kernel hilbert space, then it suffices to consider A the space spanned by those functions too. Then
infa∈A ‖a0 − a‖F = 0. For instance, if G is a finite dimensional linear function space and g0 ∈ G,
then it suffices to consider A that is also finite dimensional linear, even if the true a0 does not lie
in that sub-space. Then all the conditions of Lemma 16 will be satisfied, even if â will never be
consistent with respect to a0.

D Proofs from Section 3

For convenience, throughout this section we will use the notation:

Ψ(a, f) := E[m(Z; f)− a(X) · f(X)] = E[(a0(X)− a(X)) f(X)] (by Riesz definition)

Ψn(a, f) :=
1

n

n∑
i=1

(m(Zi; f)− a(Xi) · f(Xi))
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D.1 Proof of Theorem 1

Proof. Let:

Ψλ
n(a, f) = Ψn(a, f)− ‖f‖22,n − λ‖f‖2A

Ψλ(a, f) = Ψ(a, f)− 1

4
‖f‖22 −

λ

2
‖f‖2A

Thus our estimate can be written as:

â := arg min
a∈A

sup
f∈F

Ψλ
n(a, f) + µ‖a‖2A

Relating empirical and population regularization. As a preliminary observation, we have
that by Theorem 14.1 of [130], w.p. 1− ζ:

∀f ∈ FB :
∣∣‖f‖2n,2 − ‖f‖22∣∣ ≤ 1

2
‖f‖22 + δ2

for our choice of δ := δn + c0

√
log(c1/ζ)

n , where δn upper bounds the critical radius of FB and
c0, c1 are universal constants. Moreover, for any f , with ‖f‖2A ≥ B, we can consider the function
f
√
B/‖f‖A, which also belongs to FB , since F is star-convex. Thus we can apply the above lemma

to this re-scaled function and multiply both sides by ‖f‖2A/B, leading to:

∀f ∈ F s.t. ‖f‖2A ≥ B :
∣∣‖f‖2n,2 − ‖f‖22∣∣ ≤ 1

2
‖f‖22 + δ2 ‖f‖2A

B

Thus overall, we have:

∀f ∈ F :
∣∣‖f‖2n,2 − ‖f‖22∣∣ ≤ 1

2
‖f‖22 + δ2 max

{
1,
‖f‖2A
B

}
(9)

Thus we have that w.p. 1− ζ:

∀f ∈ F : λ‖f‖2A + ‖f‖22,n ≥ λ‖f‖2A +
1

2
‖f‖22 − δ2 max

{
1,
‖f‖2A
B

}
≥
(
λ− δ2

B

)
‖f‖2A +

1

2
‖f‖22 − δ2

Assuming that λ ≥ 2δ2

B , we have that, the latter is at least:

∀f ∈ F : λ‖f‖2A + ‖f‖22,n ≥
λ

2
‖f‖2A +

1

2
‖f‖22 − δ2

Upper bounding centered empirical sup-loss. We now argue that the centered empirical
sup-loss:

sup
f∈F

(Ψn(â, f)−Ψn(a∗, f)) = sup
f∈F

En[(a∗(X)− â(X)) f(X)]
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is small. By the definition of â:

sup
f∈F

Ψλ
n(â, f) ≤ sup

f∈F
Ψλ
n(a∗, f) + µ

(
‖a∗‖2A − ‖â‖2A

)
(10)

By Lemma 7 of [52], the fact that m(Z; f) − a∗(X)f(X) is 2-Lipschitz with respect to the vector

(m(Z; f), f(z)) (since a∗(X) ∈ [−1, 1]) and by our choice of δ := δn + c0

√
log(c1/ζ)

n , where δn is an
upper bound on the critical radius of FB and m ◦ FB , w.p. 1− ζ:

∀f ∈ FB : |Ψn(a∗, f)−Ψ(a∗, f)| ≤ O
(
δ
(
‖f‖2 +

√
E[m(Z; f)2]

)
+ δ2

)
= O

(
δM ‖f‖2 + δ2

)
where we have invoked Assumption 1. Thus, if ‖f‖A ≥

√
B, we can apply the latter inequality for

the function f
√
B/‖f‖A, which falls in FB , and then multiply both sides by ‖f‖A/

√
B (invoking

the linearity of the operator Ψn(a, f) with respect to f) to get:

∀f ∈ F : |Ψn(a∗, f)−Ψ(a∗, f)| ≤ O
(
δM ‖f‖2 + δ2 max

{
1,
‖f‖A√
B

})
(11)

By Equations (10) and (11), we have that w.p. 1− 2ζ, for some universal constant C:

sup
f∈F

Ψλ
n(a∗, f) = sup

f∈F

(
Ψn(a∗, f)− ‖f‖22,n − λ‖f‖2A

)
≤ sup

f∈F

(
Ψ(a∗, f) + Cδ2 +

Cδ2

√
B
‖f‖A + CMδ‖f‖2 − ‖f‖22,n − λ‖f‖2A

)
≤ sup

f∈F

(
Ψ(a∗, f) + Cδ2 +

Cδ2

√
B
‖f‖A + CMδ‖f‖2 −

1

2
‖f‖22 −

λ

2
‖f‖2A + δ2

)
≤ sup

f∈F
Ψλ/2(a∗, f) +O

(
δ2
)

+ sup
f∈F

(
Cδ2

√
B
‖f‖A −

λ

4
‖f‖2A

)
+ sup
f∈F

(
CMδ‖f‖2 −

1

4
‖f‖22

)
Moreover, observe that for any norm ‖ · ‖ and any constants a, b > 0:

sup
f∈F

(
a‖f‖ − b‖f‖2

)
≤ a2

4b

Thus if we assume that λ ≥ 2δ2/B, we have:

sup
f∈F

(
Cδ2

√
B
‖f‖A −

λ

4
‖f‖2A

)
≤ C2δ4

Bλ
≤ C2

2
δ2

sup
f∈F

(
CMδ‖f‖2 −

1

4
‖f‖22

)
≤ C2M2δ2

Thus we have:

sup
f∈F

Ψλ
n(a∗, f) ≤ sup

f∈F
Ψλ/2(a∗, f) +O

(
M2 δ2

)
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Moreover:

sup
f∈F

Ψλ
n(â, f) = sup

f∈F

(
Ψn(â, f)−Ψn(a∗, f) + Ψn(a∗, f)− ‖f‖22,n − λ‖f‖2A

)
≥ sup

f∈F

(
Ψn(â, f)−Ψn(a∗, f)− 2‖f‖22,n − 2λ‖f‖2A

)
+ inf
f∈F

(
Ψn(a∗, f) + ‖f‖22,n + λ‖f‖2A

)
Observe that since Ψn(a, f) is a linear operator of f and F is a symmetric class, we have:

inf
f∈F

(
Ψn(a∗, f) + ‖f‖22,n + λ‖f‖2A

)
= inf

f∈F

(
Ψn(a∗,−f) + ‖f‖22,n + λ‖f‖2A

)
= inf

f∈F

(
−Ψn(a∗, f) + ‖f‖22,n + λ‖f‖2A

)
= − sup

f∈F

(
Ψn(a∗, f)− ‖f‖22,n − λ‖f‖2A

)
= − sup

f∈F
Ψλ
n(a∗, f)

Combining this with Equation (10) yields:

sup
f∈F

(
Ψn(â, f)−Ψn(a∗, f)− ‖f‖22,n − λ‖f‖2A

)
≤ 2 sup

f∈F
Ψλ
n(a∗, f) + µ

(
‖a∗‖2A − ‖â‖2A

)
≤ 2 sup

f∈F
Ψλ/2(a∗, f) + µ

(
‖a∗‖2A − ‖â‖2A

)
+O

(
M2 δ2

)

Lower bounding centered empirical sup-loss. First observe that:

Ψn(a, f)−Ψn(a∗, f) = En[(a∗(X)− a(X))f(X)]

Let ∆ = a∗ − â. Suppose that ‖∆‖2 ≥ δ and let r = δ
2‖∆‖2 ∈ [0, 1/2]. Then observe that since

∆ ∈ F and F is star-convex, we also have that r∆ ∈ F . Thus

sup
f∈F

(
Ψn(â, f)−Ψn(a∗, f)− ‖f‖22,n − λ‖f‖2A

)
≥ Ψn(â, r∆)−Ψn(a∗, r∆)− r2‖∆‖22,n − λr2‖∆‖2A

= rEn
[
(a∗(X)− â(X))2

]
− r2‖∆‖22,n − λr2‖∆‖2A

= r‖∆‖22,n − r2‖∆‖22,n − λr2‖∆‖2A
≥ r‖∆‖22,n − r2‖∆‖22,n − λ‖∆‖2A

Moreover, since δn upper bounds the critical radius of FB and by Equation (9):

r2‖∆‖22,n ≤ r2

(
2‖∆‖22 + δ2 + δ2 ‖∆‖2A

B

)
≤ 2δ2 + δ2 ‖∆‖2A

B
≤ 2δ2 + λ‖∆‖2A

Thus we get:

sup
f∈F

(
Ψn(â, f)−Ψn(a∗, f)− ‖f‖22,n − λ‖f‖2A

)
≥ r‖∆‖22,n − 2δ2 − 2λ‖∆‖2A
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Furthermore, again, since δn upper bounds the critical radius of FB and by Equation (9):

‖∆‖22,n ≥
1

2
‖∆‖22 −

δ2

2B
‖∆‖2A − δ2 ≥ 1

2
‖∆‖22 − λ‖∆‖2A − δ2

Thus we have:

sup
f∈F

(
Ψn(â, f)−Ψn(a∗, f)− ‖f‖22,n − λ‖f‖2A

)
≥ r

2
‖∆‖22 − 3δ2 − 3λ‖∆‖2A

≥ δ

4
‖∆‖2 − 3δ2 − 3λ‖∆‖2A

Combining upper and lower bound. Combining the upper and lower bound on the centered
population sup-loss we get that w.p. 1− 3ζ: either ‖∆‖2 ≤ δ or:

δ

4
‖∆‖2 ≤ O

(
M2 δ2

)
+ 2 sup

f∈F
Ψλ/2(a∗, f) + 3λ‖∆‖2A + µ

(
‖a∗‖2A − ‖â‖2A

)
We now control the last part. Since µ ≥ 6λ:

3λ‖∆‖2A + µ
(
‖a∗‖2A − ‖â‖2A

)
≤ 6λ

(
‖a∗‖2A + ‖â‖2A

)
+ µ

(
‖a∗‖2A − ‖â‖2A

)
≤ 2µ‖a∗‖2A

We can then conclude that:

δ

4
‖∆‖2 ≤ O

(
M2 δ2

)
+ 2 sup

f∈F
Ψλ/2(a∗, f) + 2µ‖a∗‖2A

Dividing over by δ/4, we get:

‖∆‖2 ≤ O
(
M2 δ

)
+

8

δ
sup
f∈F

Ψλ/2(a∗, f) + 8
µ

δ
‖a∗‖2A

Thus either ‖∆‖2 ≤ δ or the latter inequality holds. Thus in any case the latter inequality holds.

Upper bounding population sup-loss at minimum. Observe that by the definition of the
Riesz representer:

sup
f∈F

Ψλ/2(a∗, f) = sup
f∈F

E[(a0(X)− a∗(X)) f(z)]− 1

4
‖f‖22 −

λ

4
‖f‖2A

≤ sup
f∈F

E[(a0(X)− a∗(X)) f(z)]− 1

4
‖f‖22 = ‖a0 − a∗‖22

Concluding. Concluding we get that w.p. 1− 3ζ:

‖â− a∗‖2 ≤ O
(
M2 δ

)
+

8

δ
‖a∗ − a0‖22 + 8

µ

δ
‖a∗‖2A

By a trinagle inequality we get:

‖â− a0‖2 ≤ O
(
M2 δ

)
+

8

δ
‖a∗ − a0‖22 + ‖a∗ − a0‖2 + 8

µ

δ
‖a∗‖2A
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Choosing a∗ = arg mina∈A ‖a− a0‖2 and using the fact that δ ≥ εn, we get:

‖â− a0‖2 ≤ O
(
M2δ + ‖a∗ − a0‖2 +

µ

δ
‖a∗‖2A

)
≤ O

(
M2δ +

µ

δ
‖a∗‖2A

)

D.2 Proof of Theorem 3

Proof. By the definition of â:

0 ≤ sup
f

Ψn(â, f) ≤ sup
f

Ψn(a0, f) + λ (‖a0‖A − ‖â‖A)

Let

δn,ζ = max
i

(
R(F i) +R(m ◦ F i)

)
+ c0

√
log(c1/ζ)

n

for some universal constants c0, c1. By Theorem 26.5 and 26.9 of [115], and since F i is a symmetric
class and since ‖a0‖∞ ≤ 1, w.p. 1− ζ:

∀f ∈ F i : |Ψn(a0, f)−Ψ(a0, f)| ≤ δn,ζ

Since Ψ(a0, f) = 0 for all f ∈ F , we have that, w.p. 1− ζ:

‖â‖A ≤ ‖a0‖A + δn,ζ/λ

Let Bn,λ,ζ = (‖a0‖H + δn,ζ/λ)2, AB · F i := {a · f : a ∈ AB , f ∈ F i} and

εn,λ,ζ = max
i

(
R(ABn,λ,ζ · F i) +R(m ◦ F i)

)
+ c0

√
log(c1/ζ)

n

for some universal constants c0, c1, then again by Theorem 26.5 and 26.9 of [115],

∀a ∈ ABn,λ,ζ , f ∈ F iU |Ψn(a, f)−Ψ(a, f)| ≤ εn,λ,ζ

By a union bound over the d function classes composing F , we have that w.p. 1− 2ζ:

sup
f∈F

Ψn(a0, f) ≤ sup
f∈F

Ψ(a0, f) + δn,ζ/d = δn,ζ/d

and
sup
f∈F

Ψn(â, f) ≥ sup
f∈F

Ψ(â, f)− εn,λ,ζ/d

If ‖â − a0‖2 ≤ δn,ζ , then the theorem follows immediately. Thus we consider the case when
‖â − a0‖2 ≥ δn,ζ . Since, by assumption, for any a ∈ AB with ‖a − a0‖ ≥ δn,ζ it holds that
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a0−a
‖a0−a‖2 ∈ spanκ(F), we have a0−â

‖a0−â‖2 =
∑p
i=1 wifi, with p <∞, ‖w‖1 ≤ κ and fi ∈ F . Thus:

sup
f∈F

Ψ(â, f) ≥ 1

κ

p∑
i=1

wiΨ(â, fi) =
1

κ
Ψ

(
â,
∑
i

wifi

)

=
1

κ

1

‖â− a0‖2
Ψ(â, a0 − â)

=
1

κ

1

‖â− a0‖2
E[(a0(X)− â(X))2]

=
1

κ
‖â− a0‖2

Combining all the above we have, w.p. 1− 2ζ:

‖â− a0‖2 ≤ κ
(
εn,λ,ζ/d + δn,ζ/d + λ (‖a0‖A − ‖â‖A)

)
Moreover, since functions in A and F are bounded in [−1, 1], we have that the function a · f is
1-Lipschitz with respect to the vector of functions (a, f). Thus we can apply a vector version of the
contraction inequality [85] to get that:

R(ABn,λ,z · F i) ≤ 2
(
R(ABn,λ,z ) +R(F i)

)
Finally, we have that since A is star-convex:

R(ABn,λ,z ) ≤
√
Bn,λ,zR(A1)

Leading to the final bound of:

‖â− a0‖2 ≤ κ
(

2 (‖a0‖A + δn,ζ/λ)R(A1) + 2
d

max
i=1

(
R(F i) +R(m ◦ F i)

))
+ κ

(
c0

√
log(c1 d/ζ)

n
+ λ (‖a0‖A − ‖â‖A)

)
Since λ ≥ δn,ζ , we get the result.

D.3 Proof of Corollary 5

Proof. Consider any â = 〈θ̂, ·〉 ∈ ABn,λ,ζ and let ν = θ̂ − θ0, then:

δn,ζ/λ+ ‖θ0‖1 ≥ ‖θ̂‖1 = ‖θ0 + ν‖1 = ‖θ0 + νS‖1 + ‖νSc‖1 ≥ ‖θ0‖1 − ‖νS‖1 + ‖νSc‖1

Thus:
‖νSc‖1 ≤ ‖νS‖1 + δn,ζ/λ

and ν lies in the restricted cone for which the restricted eigenvalue of V holds. Moreover, since
|S| = s:

‖ν‖1 ≤ 2‖νS‖1 + δn,ζ/λ ≤ 2
√
s‖νS‖2 + δn,ζ/λ ≤ 2

√
s‖ν‖2 + δn,ζ/λ ≤ 2

√
s

γ
ν>V ν + δn,ζ/λ
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Moreover, observe that:
‖â− a0‖2 =

√
E[〈ν, x〉2] =

√
ν>V ν

Thus we have:
â(x)− a0(x)

‖â− a0‖2
=

p∑
i=1

νi√
ν>V ν

xi

Thus for any â ∈ ABn,λ,ζ , we can write â−a0
‖â−a0‖2 as

∑p
i=1 wifi, with fi ∈ F and:

‖w‖1 =
‖ν‖1√
ν>V ν

≤ 2

√
s

γ
+
δn,ζ
λ

1

‖â− a0‖2
.

Thus: â−a0
‖â−a0‖2 ∈ spanκ(F) for κ = 2

√
s
γ +

δn,ζ
λ

1
‖â−a0‖2 .

Moreover, observe that by the triangle inequality:

‖a0‖A − ‖â‖A = ‖θ0‖1 − ‖θ̂‖1 ≤ ‖θ0 − θ̂‖1 = ‖ν‖1 ≤ 2

√
s

γ
ν>V ν + δn,ζ/λ

Moreover, by standard results on the Rademacher complexity of linear function classes (see e.g.

Lemma 26.11 of [115]), we have R(AB) ≤ B
√

2 log(2 p)
n maxx∈X ‖x‖∞ and R(F i),R(m ◦ F i) ≤√

2 log(2)
n maxx∈X ‖x‖∞ (the latter via the fact that each F i; and therefore also m ◦ F i; contains

only two elements and invoking Masart’s lemma). Thus invoking Theorem 3:

‖â− a0‖2 ≤
(

2

√
s

γ
+
δn,ζ
λ

1

‖â− a0‖2

)
·

(
2(‖θ0‖1 + 1)

√
log(2p)

n
+ δn,ζ + λ

√
s

γ
‖â− a0‖2

)

The right hand side is upper bounded by the sum of the following four terms:

Q1 := 2

√
s

γ

(
2(‖θ0‖1 + 1)

√
log(2p)

n
+ δn,ζ

)

Q2 :=

(
δn,ζ
λ

1

‖â− a0‖2

)(
2(‖θ0‖1 + 1)

√
log(2p)

n
+ δn,ζ

)
Q3 := 2λ

s

γ
‖â− a0‖2

Q4 := δn,ζ

√
s

γ

If ‖â− a0‖2 ≥
√

s
γ δn,ζ and setting λ ≤ γ

8s , yields:

Q2 ≤ 8
1

λ

√
γ

s

(
2(‖θ0‖1 + 1)

√
log(2p)

n
+ δn,ζ

)

Q3 ≤
1

4
‖â− a0‖2
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Thus bringing Q3 on the left-hand-side and dividing by 3/4, we have:

‖â− a0‖2 ≤
4

3
(Q1 +Q2 +Q4) =

4

3
max

{√
s

γ
,

1

λ

√
γ

s

}(
20 (‖θ0‖1 + 1)

√
log(2p)

n
+ 11δn,ζ

)

On the other hand if ‖â− a0‖2 ≤
√

s
γ δn,ζ , then the latter inequality trivially holds. Thus it always

holds.

E Proofs from Section 5

E.1 Proof of Proposition 8

Proposition 23. Consider an online linear optimization algorithm over a convex strategy space S
and consider the OFTRL algorithm with a 1-strongly convex regularizer with respect to some norm
‖ · ‖ on space S:

ft = arg min
f∈S

f>

∑
τ≤t

`τ + `t

+
1

η
R(f)

Let ‖ · ‖∗ denote the dual norm of ‖ · ‖ and R = supf∈S R(f)− inff∈S R(f). Then for any f∗ ∈ S:

T∑
t=1

(ft − f∗)>`t ≤
R

η
+ η

T∑
t=1

‖`t − `t−1‖∗ −
1

4η

T∑
t=1

‖ft − ft−1‖2

Proof. The proof follows by observing that Proposition 7 in [120] holds verbatim for any convex
strategy space S and not necessarily the simplex.

Proposition 24. Consider a minimax objective: minθ∈Θ maxw∈W `(θ, w). Suppose that Θ,W are
convex sets and that `(θ, w) is convex in θ for every w and concave in θ for any w. Let ‖ · ‖Θ
and ‖ · ‖W be arbitrary norms in the corresponding spaces. Moreover, suppose that the following
Lipschitzness properties are satisfied:

∀θ ∈ Θ, w, w′ ∈W : ‖∇θ`(θ, w)−∇θ`(θ, w′)‖Θ,∗ ≤ L‖w − w
′‖W

∀w ∈W, θ, θ′ ∈ Θ : ‖∇w`(θ, w)−∇w`(θ′, w)‖W,∗ ≤ L‖θ − θ
′‖Θ

where ‖ · ‖Θ,∗ and ‖ · ‖W,∗ correspond to the dual norms of ‖ · ‖Θ, ‖ · ‖W . Consider the algorithm
where at each iteration each player updates their strategy based on:

θt+1 = arg min
θ∈Θ

θ>

∑
τ≤t

∇θ`(θτ , wτ ) +∇θ`(θt, wt)

+
1

η
Rmin(θ)

wt+1 = arg max
w∈W

wT

∑
τ≤t

∇w`(θτ , wτ ) +∇w`(θt, wt)

− 1

η
Rmax(w)
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such that Rmin is 1-strongly convex in the set Θ with respect to norm ‖ · ‖Θ and Rmax is 1-strongly
convex in the set W with respect to norm ‖·‖W and with any step-size η ≤ 1

4L . Then the parameters
θ̄ = 1

T

∑T
t=1 θt and w̄ = 1

T

∑T
t=1 wt correspond to an 2R∗

η·T -approximate equilibrium and hence θ̄ is a
4R∗
ηT -approximate solution to the minimax objective, where R is defined as:

R∗ := max

{
sup
θ∈Θ

Rmin(θ)− inf
θ∈Θ

Rmin(θ), sup
w∈W

Rmax(w)− inf
w∈W

Rmax(w)

}
Proof. The proposition is essentially a re-statement of Theorem 25 of [120] (which in turn is an
adaptation of Lemma 4 of [102]), specialized to the case of the OFTRL algorithm and to the case of
a two-player convex-concave zero-sum game, which implies that the if the sum of regrets of players
is at most ε, then the pair of average solutions corresponds to an ε-equilibrium (see e.g. [53] and
Lemma 4 of [102]).

Proof of Proposition 8 Let RE(x) =
∑2p
i=1 xi log(xi). For the space Θ := {ρ ∈ R2p : ρ ≥

0, ‖ρ‖1 ≤ B}, the entropic regularizer is 1
B -strongly convex with respect to the `1 norm and hence

we can set Rmin(ρ) = BRE(ρ). Similarly, for the space W := {w ∈ R2p : w ≥ 0, ‖w‖1 = 1}, the
entropic regularizer is 1-strongly convex with respect to the `1 norm and thus we can set Rmax(w) =
RE(w). For this choice of regularizers, the update rules can be easily verified to have a closed form
solution provided in Proposition 8, by writing the Lagrangian of each OFTRL optimization problem
and invoking strong duality. Further, we can verify the lipschitzness conditions. Since the dual of
the `1 norm is the `∞ norm, ∇ρ`(ρ, w) = En[V V >]w + λ and thus:

‖∇ρ`(ρ, w)−∇ρ`(ρ, w′)‖∞ = ‖En[V V >](w − w′)‖∞ ≤ ‖En[V V >]‖∞‖w − w′‖1
‖∇w`(ρ, w)−∇w`(ρ′, w)‖∞ = ‖En[V V >](ρ− ρ′)‖∞ ≤ ‖En[V V >]‖∞‖ρ− ρ′‖1

Thus we have L = ‖En[V V >]‖∞. Finally, observe that:

sup
ρ∈Θ

BRE(ρ)− inf
ρ∈Θ

BRE(ρ) = B2 log(B ∨ 1) +B log(2p)

sup
w∈W

RE(w)− inf
w∈W

RE(w) = log(2p)

Thus we can take R∗ = B2 log(B ∨ 1) + (B + 1) log(2p). Thus if we set η = 1
4‖En[V V >]‖∞ , then we

have that after T iterations, θ̄ = ρ̄+− ρ̄− is an ε(T )-approximate solution to the minimax problem,
with

ε(T ) = 16‖En[V V >]‖∞
4B2 log(B ∨ 1) + (B + 1) log(2p)

T
.

Combining all the above with Proposition 24 yields the proof of Proposition 8.

E.2 Proof of Proposition 15

Observe that the loss function −`(a, ·) is strongly convex in f with respect to the ‖ · ‖2,n norm, i.e.:

− 1

2
Dff `(a, f)[ν, ν] ≥ En[ν(X)2]
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and that the difference:

`(a, f)− `(a′, f) = En[(a(X)− a′(X)) · f(X)]

is an ‖a−a′‖2,n-Lipschitz function with respect to the `2,n norm (via a Cauchy-Schwarz inequality).
Thus we can conclude that (see Lemma 1 in [1]):

‖ft − ft+1‖2,n ≤ ‖ā<t − ā<t+1‖2,n

Moreover, we know that the cumulative regret of the FTL algorithm is at most (see proof of
Theorem 1 in [1]):

R(T ) ≤
T∑
t=1

|`(at, ft)− `(at, ft+1)|

Since ‖at‖∞, ‖ft‖∞ ≤ 1, each summand of the latter is upper bounded by:

|En[m(Z; ft − ft+1)]|+ 3‖ft − ft+1‖1,n

We will assume that the empirical operator En[m(Z; f)] is also a bounded linear operator, with a
bound of Mn. Thus we have:

|En[m(Z; ft − ft+1)]| ≤Mn‖ft − ft+1‖2,n

Thus overall we get:

|`(at, ft)− `(at, ft+1)| ≤ (Mn + 3)‖ft − ft+1‖2,n ≤ (Mn + 3)‖ā<t − ā<t+1‖2,n ≤
2 (Mn + 3)

t

where we used the fact that |ā<t(X)− ā<t+1(X)| ≤ 2
t , since ‖a‖∞ ≤ 1. Thus we conclude that:

R(T ) ≤ 2 (Mn + 3)

T∑
t=1

1

t
= O(Mn log(T ))

Thus after T = Θ
(
Mn log(1/ε)

ε

)
iterations, of the algorithm, the f -player has regret of at most ε.

By standard results in solving convex-concave zero-sum games, this then implies that the average
solutions: f∗ = 1

T

∑T
t=1 ft and a∗ = 1

T

∑T
t=1 at are an ε-equilibrium and therefore also that a∗ is

an ε-approximate solution to the minimax problem. This concludes the proof of the proposition.

E.3 Proof of Proposition 9

Proof. For example for ATE

[K(3)]ij = [Φ(m)Φ′]ij

= 〈M∗φ(xi), φ(xj)〉
= 〈φ(xi),Mφ(xj)〉
= 〈φ(di, wi), φ(1, wj)− φ(0, wj)〉
= k((di, wi), (1, wj))− k((di, wi), (0, wj))
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Likewise

[K(4)]ij = [Φ(m)(Φ(m))′]ij

= 〈M∗φ(xi),M
∗φ(xj)〉

= 〈φ(xi),MM∗φ(xj)〉
= 〈φ(xi),M

∗φ(1, wj)−M∗φ(0, wj)〉
= 〈Mφ(xi), φ(1, wj)− φ(0, wj)〉
= 〈φ(1, wi)− φ(0, wi), φ(1, wj)− φ(0, wj)〉
= k((1, wi), (1, wj))− k((1, wi), (0, wj))− k((0, wi), (1, wj)) + k((0, wi), (0, wj))

E.4 Proof of Proposition 10

Proof. Write the objective as

E1(f) :=
1

n

n∑
i=1

〈f,M∗φ(xi)〉H − a(xi)〈f, φ(xi)〉H − 〈f, φ(xi)〉2H − λ‖f‖2H

Recall that for an RKHS, evaluation is a continuous functional represented as the inner product
with the feature map. Due to the ridge penalty, the stated objective is coercive and strongly convex
w.r.t f . Hence it has a unique maximizer f̂ that obtains the maximum.

Write f̂ = f̂n + f̂⊥n where f̂n ∈ row(Ψ) and f̂⊥n ∈ null(Ψ). Substituting this decomposition of f̂
into the objective, we see that

E1(f̂) = E1(f̂n)− λ‖f̂⊥n ‖2H
Therefore

E1(f̂) ≤ E1(f̂n)

Since f̂ is the unique maximizer, f̂ = f̂n.

E.5 Proof of Proposition 11

Proof. Write the objective as

E1(f) =
1

n

n∑
i=1

〈Mf, φ(xi)〉 − 〈a, φ(xi)〉〈f, φ(xi)〉 − 〈f, φ(xi)〉2 − λ〈f, f〉

= f ′M ′µ̂− f ′T̂ a− f ′T̂ f − λf ′f

where µ̂ := 1
n

∑n
i=1 φ(xi) and T̂ := 1

n

∑n
i=1 φ(xi)⊗ φ(xi). Appealing to the representer theorem

E1(γ) = γ′ΨM ′µ̂− γ′ΨT̂ a− γ′ΨT̂Ψ′γ − λγ′ΨΨ′γ

= γ′ΨM ′µ̂− 1

n
γ′
[
K(1)

K(3)

]
Φa− 1

n
γ′
[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
γ − λγ′Kγ
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The FOC yields

ΨM ′µ̂− 1

n

[
K(1)

K(3)

]
Φa− 2

n

[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
γ̂ − 2λKγ̂ = 0

Hence

γ̂ =
1

2

[
1

n

[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
+ λK

]−1 [
ΨM ′µ̂− 1

n

[
K(1)

K(3)

]
Φa

]
=

1

2

[[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
+ nλK

]−1 [
nΨM ′µ̂−

[
K(1)

K(3)

]
Φa

]

E.6 Proof of Proposition 12

Proof. Observe that

f̂(x) = 〈f̂ , φ(x)〉 = φ(x)′Ψ′γ̂ =
1

2
φ(x)′Ψ′∆−1

[
nΨM ′µ̂−

[
K(1)

K(3)

]
Φa

]
m(x; f̂) = 〈Mf̂, φ(x)〉 =

1

2
φ(x)′MΨ′∆−1

[
nΨM ′µ̂−

[
K(1)

K(3)

]
Φa

]
‖f̂‖2H = γ̂′ΨΨ′γ̂ =

1

4
∆−1

[
nΨM ′µ̂−

[
K(1)

K(3)

]
Φa

]′
∆−1K∆−1

[
nΨM ′µ̂−

[
K(1)

K(3)

]
Φa

]

Write the objective as

E2(a) =
1

n

n∑
i=1

m(xi; f̂)− 〈a, φ(xi)〉f̂(xi)− f̂(xi)
2 − λ‖f̂‖2H + µ‖a‖2H

where the various terms involving f̂ only depend on a in the form Φa. Due to the ridge penalty,
the stated objective is coercive and strongly convex w.r.t a. Hence it has a unique maximizer â
that obtains the maximum.

Write â = ân+ â⊥n where ân ∈ row(Φ) and â⊥n ∈ null(Φ). Substituting this decomposition of â into
the objective, we see that

E2(â) = E2(ân) + µ‖â⊥n ‖2H
Therefore

E2(â) ≥ E2(ân)

Since â is the unique minimizer, â = ân.
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E.7 Proof of Proposition 13

Proof. Write the objective as

E2(a) = f̂ ′M ′µ̂− f̂ ′T̂ a− f̂ ′T̂ f̂ − λf̂ ′f̂ + µa′a

E2(β) = γ̂′ΨM ′µ̂− γ̂′ΨT̂Φ′β − γ̂′ΨT̂Ψ′γ̂ − λγ̂′ΨΨ′γ̂ + µβ′ΦΦ′β

= γ̂′ΨM ′µ̂− 1

n
γ̂′
[
K(1)K(1)

K(3)K(1)

]
β − 1

n
γ̂′
[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
γ̂ − λγ̂′Kγ̂ + µβ′K(1)β

=

5∑
j=1

Ej

where

E1 = γ̂′ΨM ′µ̂

E2 = − 1

n
γ̂′
[
K(1)K(1)

K(3)K(1)

]
β

E3 = − 1

n
γ̂′
[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
γ̂

E4 = −λγ̂′Kγ̂
E5 = µβ′K(1)β

Recall that

γ̂ =
1

2
∆−1

[
nΨM ′µ̂−

[
K(1)

K(3)

]
Φa

]
=

1

2
∆−1

[
nΨM ′µ̂−

[
K(1)K(1)

K(3)K(1)

]
β

]
Hence

γ̂′ =
1

2

[
nµ̂′MΨ′ − β′

[
K(1)K(1)

K(3)K(1)

]′]
∆−1

We analyze each term

1. E1

E1 =
1

2

[
nµ̂′MΨ′ − β′

[
K(1)K(1)

K(3)K(1)

]′]
∆−1ΨM ′µ̂

Hence
∂E1

∂β
= −1

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1ΨM ′µ̂

2. E2
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E2 =
1

2n

[
β′
[
K(1)K(1)

K(3)K(1)

]′
− nµ̂′MΨ′

]
∆−1

[
K(1)K(1)

K(3)K(1)

]
β

=
1

2n
β′
[
K(1)K(1)

K(3)K(1)

]′
∆−1

[
K(1)K(1)

K(3)K(1)

]
β − 1

2
µ̂′MΨ′∆−1

[
K(1)K(1)

K(3)K(1)

]
β

Hence
∂E2

∂β
=

1

n

[
K(1)K(1)

K(3)K(1)

]′
∆−1

[
K(1)K(1)

K(3)K(1)

]
β − 1

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1ΨM ′µ̂

3. E3

E3 = − 1

4n

[
nΨM ′µ̂−

[
K(1)K(1)

K(3)K(1)

]
β

]′
∆−1

[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
∆−1

[
nΨM ′µ̂−

[
K(1)K(1)

K(3)K(1)

]
β

]
Note that

∂

∂s
[x−As]′W [x−As] = −2A′W (x−As)

Therefore

∂E3

∂β
=

1

2n

[
K(1)K(1)

K(3)K(1)

]′
∆−1

[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
∆−1

[
nΨM ′µ̂−

[
K(1)K(1)

K(3)K(1)

]
β

]
4. E4

E4 = −λ
4

[
nΨM ′µ̂−

[
K(1)K(1)

K(3)K(1)

]
β

]′
∆−1K∆−1

[
nΨM ′µ̂−

[
K(1)K(1)

K(3)K(1)

]
β

]
Note that

∂

∂s
[x−As]′W [x−As] = −2A′W (x−As)

Therefore
∂E4

∂β
=
λ

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1K∆−1

[
nΨM ′µ̂−

[
K(1)K(1)

K(3)K(1)

]
β

]
5. E5

∂E1

∂β1
= 2µ ·K(1)β
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Collecting these results gives the FOC

0 = −1

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1ΨM ′µ̂

+
1

n

[
K(1)K(1)

K(3)K(1)

]′
∆−1

[
K(1)K(1)

K(3)K(1)

]
β − 1

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1ΨM ′µ̂

+
1

2n

[
K(1)K(1)

K(3)K(1)

]′
∆−1

[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
∆−1

[
nΨM ′µ̂−

[
K(1)K(1)

K(3)K(1)

]
β

]
+
λ

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1K∆−1

[
nΨM ′µ̂−

[
K(1)K(1)

K(3)K(1)

]
β

]
+ 2µ ·KXX β̂

Grouping terms [
K(1)K(1)

K(3)K(1)

]′
∆−1ΨM ′µ̂

− 1

2n

[
K(1)K(1)

K(3)K(1)

]′
∆−1

[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
∆−1nΨM ′µ̂

− λ

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1K∆−1nΨM ′µ̂

=
1

n

[
K(1)K(1)

K(3)K(1)

]′
∆−1

[
K(1)K(1)

K(3)K(1)

]
β

− 1

2n

[
K(1)K(1)

K(3)K(1)

]′
∆−1

[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
∆−1

[
K(1)K(1)

K(3)K(1)

]
β

− λ

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1K∆−1

[
K(1)K(1)

K(3)K(1)

]
β

+ 2µ ·K(1)β

Define

Ω :=

[
K(1)K(1)

K(3)K(1)

]′
− 1

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1

[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
− nλ

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1K

We simplify each side of the equation

1. LHS{[
K(1)K(1)

K(3)K(1)

]′
− 1

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1

[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
− nλ

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1K

}
∆−1ΨM ′µ̂

= Ω∆−1ΨM ′µ̂
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2. RHS{(
1

n

[
K(1)K(1)

K(3)K(1)

]′
− 1

2n

[
K(1)K(1)

K(3)K(1)

]′
∆−1

[
K(1)K(1) K(1)K(2)

K(3)K(1) K(3)K(2)

]
− λ

2

[
K(1)K(1)

K(3)K(1)

]′
∆−1K

)
∆−1

[
K(1)K(1)

K(3)K(1)

]
+ 2µ ·KXX

}
β̂

=

{
1

n
Ω∆−1

[
K(1)K(1)

K(3)K(1)

]
+ 2µ ·K(1)

}
β̂

E.8 Proof of Corollary 14

Proof.

â(x) = 〈â, φ(x)〉

= φ(x)′Φ′β̂

= KxX

{
1

n
Ω∆−1

[
K(1)K(1)

K(3)K(1)

]
+ 2µ ·K(1)

}−1

Ω∆−1ΨM ′µ̂

What remains is an account of how to evaluate V := ΨM ′µ̂ ∈ R2n.

There are two cases

1. j ∈ [n]

Observe that the j-th element of V is

vj = φ(xj)
′M ′µ̂ =

1

n

n∑
i=1

φ(xj)
′M ′φ(xi)

Moreover
φ(xj)

′M ′φ(xi) = 〈φ(xj),M
∗φ(xi)〉 = [K(2)]ji

Therefore

vj =
1

n

n∑
i=1

[K(2)]ji

2. j ∈ {n+ 1, ..., 2n}
Observe that the j-th element of V is

vj = φ(xj)
′MM ′µ̂ =

1

n

n∑
i=1

φ(xj)
′MM ′φ(xi)

Moreover
φ(xj)

′MM ′φ(xi) = 〈M∗φ(xj),M
∗φ(xi)〉 = [K(4)]ji
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Therefore

vj =
1

n

n∑
i=1

[K(4)]ji

F Proofs from Section 6

F.1 Proof of Lemma 16

Proof. Observe that θ0 = E[ma(Z; g0)] for all a. Moreover, we can decompose:

θ̂ − θ0 =
1

n

K∑
k=1

∑
i∈Pk

(mâk(Zi; ĝ)− EZ [mâk(Z; ĝk)]) +
1

K

K∑
k=1

(EZ [mâk(Z; ĝk)]− EZ [mâk(Z; g0)])

=
1

n

K∑
k=1

∑
i∈Pk

(mâk(Zi; ĝk)− EZ [mâk(Z; ĝk)]) +
1

K

K∑
k=1

EX [(a0(X)− âk(X)) (ĝk(X)− g0(X))]

Thus as long as K = Θ(1) and:
√
nEX [(a0(X)− âk(X)) (ĝk(X)− g0(X))]→p 0

we have that:

√
n
(
θ̂ − θ0

)
=
√
n

1

n

K∑
k=1

∑
i∈Pk

(mâk(Zi; ĝk)− EZ [mâk(Z; ĝk)])︸ ︷︷ ︸
A

+op(1)

Suppose that for some a∗ and g∗ (not necessarily equal to a0 and g0), we have that: ‖âk−a∗‖2 →p 0
and ‖ĝk − g∗‖2 →p 0. Then we can further decompose A as:

A = En[ma∗(Z; g∗)]− EZ [ma∗(Z; g∗)] +
1

n

K∑
k=1

∑
i∈Pk

mâk(Zi; ĝk)−ma∗(Zi; g∗)− EZ [mâk(Z; ĝk)−ma∗(Z; g∗)]︸ ︷︷ ︸
Vi

Denote with:

B :=
1

n

K∑
k=1

∑
i∈Pk

Vi =:
1

n

K∑
k=1

Bk

As long as nE[B2]→ 0, then we have that
√
nB →p 0. The second moment of each Bk is:

E
[
B2
k

]
=
∑
i,j∈Pk

E[ViVj ] =
∑
i,j∈Pk

E[E[ViVj | ĝk]] =
∑
i∈Pk

E
[
V 2
i

]
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where in the last equality we used the fact that due to cross-fitting, for any i 6= j, Vi is independent
of Vj and mean-zero, conditional on the nuisance ĝk estimated on the out-of-fold data for fold k.
Moreover, by Jensen’s inequality with respect to 1

K

∑K
k=1Bk

E[B2] = E

( 1

n

K∑
k=1

Bk

)2
 =

K2

n2
E

( 1

K

K∑
k=1

Bk

)2
 ≤ K

n2

K∑
k=1

E[B2
k] =

K

n2

K∑
k=1

∑
i∈Pk

E[V 2
i ] =

K

n2

n∑
i=1

E[V 2
i ]

Finally, observe that E[V 2
i ]→p 0, by mean-squared-continuity of the moment and by boundedness

of the Riesz representer function class, the function class G and the variable Y . More elaborately:

E[V 2
i ] ≤ E

[
(mâ(Zi; ĝk)−ma∗(Zi; g∗))

2
]

≤ 2E
[
(m(Zi; ĝk)−m(Zi; g∗))

2
]

+ 2E[(âk(X) (Y − ĝk(X))− a∗(X) (Y − g∗(X)))
2
]

The latter can further be bounded as:

4E[(ak(X)− a∗(X))
2

(Y − gk(X))2] + 4E[a∗(X)2(g∗(X)− gk(X))2] ≤ 4C
(
E
[
‖âk − a∗‖22 + ‖ĝ − g∗‖22

])
assuming that (Y − ĝk(X))2 ≤ C and a∗(X)2 ≤ C a.s.. Finally, by linearity of the operator and
mean-squared continuity, we have:

E[(m(Zi; ĝk)−m(Zi; g∗))
2
] = E[(m(Zi; ĝk − g∗))2

] ≤M E
[
‖ĝk − g∗‖22

]
Thus we have:

E[V 2
i ] ≤ (2M + 4C)

(
E
[
‖âk − a∗‖22 + ‖ĝ − g∗‖22

])
→ 0

Thus as long as K = Θ(1), we have that:

nE[B2] =
K

n

n∑
i=1

E[V 2
i ] ≤ (2M + 4C)K E

[
‖ĝ − g∗‖22 + ‖â− a∗‖22

]
→ 0

and we can conclude the result that:
√
n
(
θ̂ − θ0

)
=
√
n (En[ma∗(Z; g∗)]− EZ [ma∗(Z; g∗)]) + op(1)

where the latter term can be easily argued, invoking the Central Limit Theorem, to be asymptoti-
cally normal N(0, σ2

∗) with σ2
∗ = Var(ma∗(Z; g∗)).

F.2 Proof of Normality without Consistency

Lemma 25. Suppose that K = Θ(1) and that for some a∗ and g∗ (not necessarily equal to a0 and

g0), we have that for all k ∈ [K]: ‖âk − a∗‖2
L2

→ 0 and ‖ĝk − g∗‖2
L2

→ 0. Assume that:

∀k ∈ [K] :
√
nE[(a∗(X)− âk(X)) (ĝk(X)− g∗(X))]→p 0

and that ĝk admits an asymptotically linear representation around the truth g0, i.e.:√
|Pk| (ĝk(X)− g0(X)) =

1√
|Pk|

∑
i∈Pk

ψ(X,Zi; g0) + op(1)
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with E[ψ(X,Zi; g0) | X] = 0 and let:

σ2
∗ := VarZi(ma∗(Zi; g∗) + EX [(a0(X)− a∗(X))ψ(X,Zi; g0)])

Assume that Condition 1 is satisfied and the variables Y, g(X), a(X) are bounded a.s. for all g ∈ G
and a ∈ A. Then: √

n
(
θ̂ − θ0

)
→d N

(
0, σ2
∗
)

Similarly, if âk has an asymptotically linear representation around the truth, then the statement
above holds with:

σ2
∗ := VarZi(ma∗(Zi; g∗) + EX [ψ(X,Zi; a0) (g0(X)− g∗(X))])

Proof. Observe that θ0 = E[ma(Z; g0)] for all a. Moreover, we can decompose:

θ̂ − θ0 =
1

n

K∑
k=1

∑
i∈Pk

(mâk(Zi; ĝ)− E[mâk(Z; ĝk)]) +
1

K

K∑
k=1

(E[mâk(Z; ĝk)]− E[mâk(Z; g0)])

=
1

n

K∑
k=1

∑
i∈Pk

(mâk(Zi; ĝk)− E[mâk(Z; ĝk)])︸ ︷︷ ︸
A

+
1

K

K∑
k=1

E[(a0(X)− âk(X)) (ĝk(X)− g0(X))]︸ ︷︷ ︸
C

Suppose that for some a∗ and g∗ (not necessarily equal to a0 and g0), we have that: ‖âk−a∗‖2 →p 0
and ‖ĝk − g∗‖2 →p 0. Then we can further decompose A as:

A = En[ma∗(Z; g∗)]− E[ma∗(Z; g∗)] +
1

n

K∑
k=1

∑
i∈Pk

mâk(Zi; ĝk)−ma∗(Zi; g∗)− E[mâk(Z; ĝk)−ma∗(Z; g∗)]︸ ︷︷ ︸
Vi

Denote with:

B :=
1

n

K∑
k=1

∑
i∈Pk

Vi =:
1

n

K∑
k=1

Bk

As long as nE[B2]→ 0, then we have that
√
nB →p 0. The second moment of each Bk is:

E[B2
k] =

∑
i,j∈Pk

E[ViVj ] =
∑
i,j∈Pk

E[E[ViVj | ĝk]] =
∑
i∈Pk

E[V 2
i ]

where in the last equality we used the fact that due to cross-fitting, for any i 6= j, Vi is independent
of Vj and mean-zero, conditional on the nuisance ĝk estimated on the out-of-fold data for fold k.
Moreover, by Jensen’s inequality with respect to 1

K

∑K
k=1Bk

E[B2] = E

( 1

n

K∑
k=1

Bk

)2
 =

K2

n2
E

( 1

K

K∑
k=1

Bk

)2
 ≤ K

n2

K∑
k=1

E[B2
k] =

K

n2

K∑
k=1

∑
i∈Pk

E[V 2
i ] =

K

n2

n∑
i=1

E[V 2
i ]
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Finally, observe that E[V 2
i ]→p 0, by mean-squared-continuity of the moment and by boundedness

of the Riesz representer function class, the function class G and the variable Y . More elaborately:

E[V 2
i ] ≤ E

[
(mâ(Zi; ĝk)−ma∗(Zi; g∗))

2
]

≤ 2E
[
(m(Zi; ĝk)−m(Zi; g∗))

2
]

+ 2E[(âk(X) (Y − ĝk(X))− a∗(X) (Y − g∗(X)))
2
]

The latter can further be bounded as:

4E[(ak(X)− a∗(X))
2

(Y − gk(X))2] + 4E[a∗(X)2(g∗(X)− gk(X))2] ≤ 4C E
[
‖âk − a∗‖22 + ‖ĝ − g∗‖22

]
assuming that (Y − ĝk(X))2 ≤ C and a∗(X)2 ≤ C a.s.. Finally, by linearity of the operator and
mean-squared continuity, we have:

E[(m(Zi; ĝk)−m(Zi; g∗))
2
] = E[(m(Zi; ĝk − g∗))2

] ≤M E
[
‖ĝk − g∗‖22

]
Thus we have:

E[V 2
i ] ≤ (2M + 4C)E

[
‖âk − a∗‖22 + ‖ĝ − g∗‖22

]
→ 0

Thus as long as K = Θ(1), we have that:

nE[B2] =
K

n

n∑
i=1

E[V 2
i ] ≤ (2M + 4C)K

(
‖ĝ − g∗‖22 + ‖â− a∗‖22

)
→p 0

and we can conclude the result that:
√
nA =

√
n (En[ma∗(Z; g∗)]− E[ma∗(Z; g∗)]) + op(1)

Now we analyze term C. We will prove one of the two conditions in the “or” statement, when ĝk
has an asymptotically linear representation, i.e.√

|Pk| (ĝk(X)− g0(X)) =
1√
|Pk|

∑
i∈Pk

ψ(X,Zi; g0) + op(1)

with E[ψ(X,Zi; g0) | X] = 0. The case when âk is asymptotically linear can be proved analogously.

Let:
Ck := E[(a0(X)− âk(X)) (ĝk(X)− g0(X))]

We can then write:

Ck = E[(a∗(X)− âk(X)) (ĝk(X)− g0(X))] + E[(a0(X)− a∗(X)) (ĝk(X)− g0(X))]

Since:√
|Pk|E[(a∗(X)− âk(X)) (ĝk(X)−g0(X))] ≤

√
|Pk|‖a∗− âk‖2 ‖ĝk−g0‖2 = ‖a∗− âk‖2Op(1) = op(1)

we have that: √
|Pk|Ck =

√
|Pk|E[(a0(X)− a∗(X)) (ĝk(X)− g0(X))] + op(1)

=
1√
|Pk|

∑
i∈Pk

EX [(a0(X)− a∗(X))ψ(X,Zi; g0)] + op(1)
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Since K = Θ(1) and n/|Pk| → K, we then also have that:

√
nC =

√
n

K

K∑
k=1

Ck =

√
K

K

K∑
k=1

√
|Pk|Ck + o(1)

=
1√
K

K∑
k=1

1√
|Pk|

∑
i∈Pk

EX [(a0(X)− a∗(X))ψ(X,Zi; g0)] + op(1)

=
1√
n

K∑
k=1

∑
i∈Pk

EX [(a0(X)− a∗(X))ψ(X,Zi; g0)] + op(1)

=
1√
n

∑
i∈[n]

EX [(a0(X)− a∗(X))ψ(X,Zi; g0)] + op(1)

=
√
nEn [EX [(a0(X)− a∗(X))ψ(X,Zi; g0)]] + op(1)

√
n
(
θ̂ − θ0

)
=
√
n (En [ma∗(Z; g∗) + EX [(a0(X)− a∗(X))ψ(X,Zi; g0)]]− E[ma∗(Z; g∗)]) + op(1)

where the latter term can be easily argued, invoking the Central Limit Theorem, to be asymptoti-
cally normal N(0, σ2

∗) with σ2
∗ = VarZi(ma∗(Zi; g∗) + EX [(a0(X)− a∗(X))ψ(X,Zi; g0)]).

F.3 Proof of Lemma 17

Proof. Observe that θ0 = E[ma(Z; g0)] for all a. Moreover, we can decompose:

θ̂ − θ0 = En[mâ(Z; ĝ)]− E[mâ(Z; ĝ)] + E[mâ(Z; ĝ)]− E[mâ(Z; g0)]

= En[mâ(Z; ĝ)]− E[mâ(Z; ĝ)] + E[(a0(X)− â(X)) (ĝ(X)− g0(X))]

Thus as long as K = Θ(1) and:
√
nE[(a0(X)− â(X)) (ĝ(X)− g0(X))]→p 0

we have that:
√
n
(
θ̂ − θ0

)
=
√
nEn[mâ(Z; ĝ)]− E[mâ(Z; ĝ)]︸ ︷︷ ︸

A

+op(1)

Suppose that for some a∗ and g∗ (not necessarily equal to a0 and g0), we have that: ‖âk−a∗‖2 →p 0
and ‖ĝk − g∗‖2 →p 0. Then we can further decompose A as:

A = En[ma∗(Z; g∗)]− E[ma∗(Z; g∗)] + En [mâ(Z; ĝ)−ma∗(Z; g∗)]− E[mâ(Z; ĝ)−ma∗(Z; g∗)]

Let δn,ζ = δn + c0

√
log(c1/ζ)

n , where δn upper bounds the critical radius of function classes GB and
m ◦ GB and AB , where B is set such that these sets contain functions that are bounded in [−1, 1].
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By a concentration inequality, almost identical to that of Equation (11), we have that w.p. 1− ζ:
∀f ∈ F , a ∈ A

|En [ma(Z; g)−ma∗(Z; g∗)]− E[ma(Z; a)−ma∗(Z; g∗)]|
≤ O

(
δn,ζ (‖m ◦ (g − g∗)‖2‖‖a‖A + ‖a− a∗‖2‖g‖G + ‖g − g∗‖2‖a‖A) + δ2

n,ζ‖a‖A‖g‖G
)

Applying the latter for ĝ, â and invoking the MSE continuity, w.p. 1− ζ:

|En [mâ(Z; ĝ)−ma∗(Z; g∗)]− E[mâ(Z; ĝ)−ma∗(Z; g∗)]|
≤ O

(
δn,ζM (‖â− a∗‖2 ‖ĝ‖G + ‖ĝ − g∗‖2 ‖â‖A) + δ2

n,ζ ‖ĝ‖G ‖â‖A
)

If we let δn,∗ = δn + c0
√

c1n
n , then we have that:

|En [mâ(Z; ĝ)−ma∗(Z; g∗)]− E[mâ(Z; ĝ)−ma∗(Z; g∗)]|
= Op

(
δn,∗M (‖â− a∗‖2 ‖ĝ‖G + ‖ĝ − g∗‖2 ‖â‖A) + δ2

n,∗ ‖ĝ‖G ‖â‖A
)

If ‖â− a∗‖2, ‖ĝ − g∗‖2 = Op(rn) and ‖â‖A, ‖ĝ‖G = Op(1), we have that:

|En [mâ(Z; ĝ)−ma∗(Z; g∗)]− E[mâ(Z; ĝ)−ma∗(Z; g∗)]| = Op
(
M δn,∗rn + δ2

n,∗
)

Thus as long as:
√
n
(
δn,∗rn + δ2

n,∗
)
→ 0, we have that:

√
n |En [mâ(Z; ĝ)−ma∗(Z; g∗)]− E[mâ(Z; ĝ)−ma∗(Z; g∗)]| = op(1)

Thus we conclude that:
√
n
(
θ̂ − θ0

)
=
√
n (En[ma∗(Z; g∗)]− E[ma∗(Z; g∗)]) + op(1)

where the latter term can be easily argued, invoking the Central Limit Theorem, to be asymptoti-
cally normal N(0, σ2

∗) with σ2
∗ = Var(ma∗(Z; g∗)).

F.4 Proof of Lemma 18

Proof. Let h = (a, g) and V (Z;h) = ma(Z; g)−ma∗(Z; g∗)− E[ma(Z; g)−ma∗(Z; g∗)]. We argue
that: √

nEn
[
V (Z; ĥ)

]
= op(1)

The remainder of the proof is identical to the proof of Lemma 17. For the above property it suffices

to show that nE
[
En
[
V (Z; ĥ)

]2]
→ 0.

First we re-write the differences V (Z;h)− V (Z;h′):

V (Z;h)− V (Z;h′) = m(Z; g − g′) + (a(X)− a′(X))Y − a(X)g(X) + a′(X)g′(X)

− (〈a0, g − g′〉2 − 〈a, g〉2 + 〈a′, g′〉2 + 〈a− a′, g0〉2)
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By MSE continuity of the the moment and boundedness of the functions we have that:

E
[
(V (Z;h)− V (Z;h′))

2
]
≤ c0E

[
‖h(X)− h′(X)‖2∞

]
for some constant c0. Moreover, since, for every x, y: x2 ≤ y2 + |x| |x− y|+ |y| |x− y|:

E
[
En[V (Z; ĥ)]2

]
=

1

n2

∑
i,j

E
[
V (Zi; ĥ)V (Zj ; ĥ)

]
≤ 1

n2

∑
i,j

(
E
[
V (Zi; ĥ

−i,j)V (Zj ; ĥ
−i,j)

]
+ 2E

[∣∣∣V (Zi; ĥ
−i,j)

∣∣∣ ∣∣∣V (Zj ; ĥ
−i,j)− V (Zj ; ĥ)

∣∣∣])

≤ 1

n2

∑
i,j

(
E
[
V (Zi; ĥ

−i,j)V (Zj ; ĥ
−i,j)

]
+ 2

√
E
[
V (Zi; ĥ−i,j)2

]√
E
[(
V (Zj ; ĥ−i,j)− V (Zj ; ĥ)

)2
])

≤ 1

n2

∑
i,j

(
E
[
V (Zi; ĥ

−i,j)V (Zj ; ĥ
−i,j)

]
+ 2 c0

√
E
[
V (Zi; ĥ−i,j)2

]√
E
[
‖ĥ−i,j(Xj)− ĥ(Xj)‖2∞

])

≤ 1

n2

∑
i,j

(
E
[
V (Zi; ĥ

−i,j)V (Zj ; ĥ
−i,j)

]
+ 8 c0 βn−1

√
E
[
V (Zi; ĥ−i,j)2

])

For every i 6= j we have:

E[V (Zi; ĥ
−i,j)V (Zj ; ĥ

−i,j)] = E
[
E
[
V (Zi; ĥ

−i)V (Zj ; ĥ
−j) | ĥ−i,j

]]
= E

[
E
[
V (Zi; ĥ

−i,j) | ĥ−i,j
]
E
[
V (Zj ; ĥ

−i,j) | ĥ−i,j
]]

= 0

and √
E[V (Z; ĥ−i,j)2] ≤ O

(√
E [‖â−i,j − a∗‖22 + ‖ĝ−i,j − g∗‖22]

)
= O(rn−2)

E[V (Z; ĥ−i)2] ≤ O
(
E
[
‖â−i − a∗‖22 + ‖ĝ−i − g∗‖22

])
= O(r2

n−1)

Thus we get that:

nE
[
En[V (Z; ĥ)]2

]
=

1

n

n∑
i=1

E[V (Zi; ĥ
−i)2] +O (βn−1rn−2) = O

(
r2
n−1 + nβn−1rn−2

)
Thus it suffices to assume that

r2
n−1 + nβn−1rn−2 → 0
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