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NEARLY OPTIMAL CENTRAL LIMIT THEOREM AND BOOTSTRAP

APPROXIMATIONS IN HIGH DIMENSIONS

VICTOR CHERNOZHUKOV, DENIS CHETVERIKOV, AND YUTA KOIKE

Abstract. In this paper, we derive new, nearly optimal bounds for the Gaussian approx-
imation to scaled averages of n independent high-dimensional centered random vectors
X1, . . . , Xn over the class of rectangles in the case when the covariance matrix of the
scaled average is non-degenerate. In the case of bounded Xi’s, the implied bound for the
Kolmogorov distance between the distribution of the scaled average and the Gaussian
vector takes the form

C(B2
n log3 d/n)1/2 logn,

where d is the dimension of the vectors and Bn is a uniform envelope constant on com-
ponents of Xi’s. This bound is sharp in terms of d and Bn, and is nearly (up to logn)
sharp in terms of the sample size n. In addition, we show that similar bounds hold for
the multiplier and empirical bootstrap approximations. Moreover, we establish bounds
that allow for unbounded Xi’s, formulated solely in terms of moments of Xi’s. Finally,
we demonstrate that the bounds can be further improved in some special smooth and
zero-skewness cases.

1. Introduction

Let X1, . . . , Xn be a sequence of centered independent random vectors in Rd. Denote

W :=
1√
n

n∑
i=1

Xi

and let R be the class of rectangles in Rd, which we choose to be sets of the form A =∏d
j=1(aj , bj ] for some −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . , d. In this paper, we are interested in

deriving new bounds on

ϱ := sup
A∈R

|IP(W ∈ A)− IP(Z ∈ A)|, Z ∼ N(0,ΣW ), (1.1)

where ΣW := IE[WW T ]. We are particularly interested in the high-dimensional case, where
d is potentially much larger than n.
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The problem of bounding ϱ has attracted considerable attention in the literature because
the class of rectangles R strikes an interesting balance: it is large enough so that bounds
on ϱ are useful in mathematical statistics, and, at the same time, it is small enough so
that, as n→ ∞, under minimal conditions, we have ϱ = ϱn → 0 even if d = dn → ∞ much
faster than n→ ∞, as was originally shown in [12], making bounds on ϱ particularly useful
in high-dimensional statistics and machine learning, e.g. in multiple hypothesis testing
with the family-wise error rate control and in selecting penalty parameters for regularized
estimators of high-dimensional models; see [6] for details on these and other examples.

Various bounds on ϱ and on closely related quantities were derived in [12, 13, 15, 42,
20, 41, 34, 30, 17, 23, 32, 31, 19, 18] but in our discussion, we only focus on the results
that are particular relevant for comparisons with our results. In addition, for clarity of
the introduction, we assume below that components of Xi’s are uniformly bounded by the
envelope constant Bn = Bn(d), i.e. ‖Xi‖∞ := max1≤j≤d |Xij | ≤ Bn, for all i = 1, . . . , n,
even though all aforementioned papers, as well as ours, considered the case of unbounded
Xi’s as well. It then follows from [17] that

ϱ ≤ C

(
B2
n(log(dn))

5

n

)1/4

, (1.2)

where C > 0 is a constant that is independent of n and d. This bound is conjectured to
be near-optimal when ΣW is unrestricted.

Next, [23] demonstrated that if, in addition, we assume that all eigenvalues of ΣW are
bounded below from zero (strongly non-degenerate case, in their terminology), then the
bound (1.2) can be substantially improved: they showed that

ϱ ≤ C

(
B2
n(log(dn))

4

n

)1/3

(1.3)

in this case. Moreover, they established that this bound can be further improved to the
near-sharp n−1/2 log n and the sharp (log d)3 dependencies but only for the case of jointly
log-concave Xi’s. Their results exploit the implicit smoothing that occurs when ΣW is
strongly non-degenerate. Further, [32] and [31] demonstrated, again in the strongly non-
degenerate case, that

ϱ ≤ C

((
B6
n(log d)

4 log(dn)

n

)1/2

+

(
(log d)7 log(dn)

n

)1/2
)
log n, (1.4)

which nearly matches the dependence on n in the classical Berry-Esseen bound for the
one-dimensional (d = 1) case, e.g. Theorem 2.2.15 in [39], but does not provide optimal
dependence on Bn = Bn(d) and log d.
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In this paper, our main result is to establish that in the strongly non-degenerate case,

ϱ ≤ C

(
B2
n(log d)

3

n

)1/2

log n, (1.5)

which we show to be optimal up to the log n factor, i.e. in general

ϱ ≥ c

(
B2
n(log d)

3

n

)1/2

. (1.6)

In addition, we extend this result to allow for unbounded Xi’s, which yields a bound
depending solely on some moments of Xi’s. A critical ingredient in our proofs is an explicit
use of smoothing, combined with the previous implicit smoothing ideas, as we further
comment on below.

Our result (1.5) strongly improves bounds (1.3) and (1.4), and features the optimal
dependence on the ambient dimension d, the optimal dependence on the envelope constant
Bn, and a nearly optimal dependence on the sample size n (up to the log n factor). This
result improves over (1.4) by replacing (log d)8 by the optimal (log d)3 and replacing B6

n by
the optimal B2

n. The first improvement is particularly important when log d is growing as
some fractional power of the sample size n, in which case our bound (1.5) has much better
dependence on n. The second improvement is important when the envelope constant Bn
is increasing with the sample size n, in which case our bound (1.5) also has much better
dependence on n. This, for example, occurs in the many local means settings arising
in nonparametric statistics, discussed in detail in Section 5, where the envelope constant
Bn = Bn(d) has dependency on the dimension of problem d of the form Bn(d) ∝

√
d.

In particular, the bound (1.4) would then require d3 � n for ρ → 0, whereas our bound
would only require d � n. Therefore, the improvement is critical for obtaining the sharp
dependency on the dimension d in general. Also, as discussed in Section 5, in the many
local means setting, our bound tends to be either at least as sharp (up to log factors) or
much sharper than the Gaussian approximation based on the Hungarian coupling.

Moreover, we also consider bootstrap approximations, i.e. we derive bounds on

ϱ∗ := sup
A∈R

|IP(Z ∈ A)− IP(W ∗ ∈ A | X1, . . . , Xn)|,

where W ∗ denotes a bootstrap version of W . These approximations are important in
mathematical statistics because they allow to estimate probabilities IP(Z ∈ A), A ∈ R,
using random vectorsX1, . . . , Xn, which is useful when ΣW is unknown so that probabilities
can not be calculated directly. For the multiplier and empirical bootstrap approximations,
we derive bounds that are generally similar to those for the Gaussian approximation (1.1).

Finally, we show that the log n factor in (1.5) can be removed if we assume that Xi’s
have a Gaussian component, and we also show that if Xi’s have a Gaussian component
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and satisfy a zero-skewness condition, then

ϱ ≤ C(log d)2

n
.

This last bound substantially extends the results of [18], who showed that ϱ → 0 if
(log d)2/n → 0 in the case when Xi’s have independent components with vanishing odd
moments.

Our results are built using the exchangeable pair approach coupled with the Slepian-
Stein method and employ ideas of many authors, e.g. [7, 28, 3, 8, 11, 36, 12, 15, 23, 32, 31],
but the key technical tool behind our results is a set of new smoothing inequalities, which
we call mixed smoothing inequalities. Specifically, for any rectangle A ∈ R, we first
approximate the indicator of A by a Lipschitz-smooth function and then approximate it
further via convolution with a centered Gaussian distribution. Building on the results of
[7, 3, 23], we then prove several bounds for sums of absolute values of partial derivatives
of the resulting function, which play a crucial role in our derivations.

This mixed smoothing turns out important for two reasons. First, smoothing via con-
volutions allows to obtain nearly optimal dependence on n, as demonstrated by [28] in the
moderate-dimensional case and then by [23, 32, 31] in the high-dimensional case. Second,
smoothing via Lipschitz-smooth functions allows to obtain optimal dependence on d, as
follows from our results. Our approach here is inspired by [8], who used related but dif-
ferent mixed smoothing to derive a Berry-Esseen bound with good dependence on d for
convex sets in the moderate-dimensional case.

The rest of the paper is organized as follows. In the next section, we consider Gauss-
ian approximations and derive various bounds on ϱ. In Section 3, we derive bounds for
bootstrap approximations. In Section 4, we discuss special cases, where bounds for the
Gaussian approximations can be improved. In Section 5, we demonstrate usefulness of our
results in a particular problem of nonparametric statistics: many local means problem. In
Section 6, we develop our new smoothing inequalities. in Sections 7–10, we give all the
proofs. Finally, in Section 11, we collect several known lemmas, which are used in our
derivations.

1.1. Notation. In the following, we assume n ≥ 3 and d ≥ 3 so that log n > 1 and log d >
1. Also, for any η > 0, we use R(0, η) to denote the centered ℓ∞-ball with radius η, namely

R(0, η) := {y ∈ Rd : ‖y‖∞ ≤ η}. For any A =
∏d
j=1(aj , bj ] ∈ R and t ∈ R, we denote At :=∏d

j=1(aj − t, bj + t] and (∂A)t := At \ A−t. For any r = (r1, . . . , rd)
T ∈ Rd and t ∈ R, we

denote r+t := (r1+t, . . . , rd+t)
T ∈ Rd. In addition, for any r ∈ Rd, we define the function

1r : Rd → R by 1r(y) := 1{y ≤ r} for all y ∈ Rd. Moreover, for any matrix S = (Sjk)
J,K
j,k=1,

we use ‖S‖∞ to denote its ℓ∞-norm, i.e. ‖S‖∞ := max1≤j≤J max1≤k≤K |Sij |. For any

matrices S = (Sjk)
J,K
j,k=1 and Q = (Qjk)

J,K
j,k=1, we denote 〈S,Q〉 :=

∑J
j=1

∑K
k=1 SjkQjk.
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Furthermore, we write a ≲ b if there exists a universal constant C > 0 such that a ≤ Cb.
Finally, for any random variable X and q ≥ 1, we write ‖X‖Lq and ‖X‖ψq to denote the

Lq- and ψq-norms of X, respectively, i.e. ‖X‖Lq := (IE|X|q)1/q and ‖X‖ψq := inf{C >
0: IEψq(|X|/C) ≤ 1}, where ψq(x) := exp(xq)− 1 for all x > 0. We formally define ‖X‖ψq

in the same way even when q ∈ (0, 1], although it is not a norm but a quasi-norm.

2. Gaussian Approximations

Let Σ be any d× d positive definite symmetric matrix with unit diagonal entries and let
σ∗ > 0 be the square root of its smallest eigenvalue. Define

ϱΣ = sup
A∈R

|IP(W ∈ A)− IP(Z ∈ A)|, Z ∼ N(0,Σ),

so that ϱ = ϱΣW
. In this subsection, we will derive bounds on ϱΣ. By substituting Σ = ΣW ,

we are then able to derive direct bounds on ϱ. In addition, it will sometimes be possible
to obtain better bounds on ϱ using the triangle inequality, namely ϱ ≤ |ϱ− ϱΣ|+ ϱΣ. The
latter is possible when ΣW is degenerate but can be well approximated by a non-degenerate
Σ in the ‖ · ‖∞-norm; see Remark 2.3 below for details.

Denote

∆0 :=
log d

σ2∗
‖Σ− ΣW ‖∞ and ∆1 :=

(log d)2

n2σ4∗
max
1≤j≤d

n∑
i=1

IEX4
ij .

First, we derive a bound on ϱΣ in the case of bounded Xi’s:

Theorem 2.1 (Gaussian Approximation, Bounded Case). Suppose that there is a constant
δ > 0 such that ‖Xi‖∞/

√
n ≤ δ for every i = 1, . . . , n almost surely. Then

ϱΣ ≤ C

{(
1 ∨

∣∣∣∣log( ∆1

log d
+
δ2 log d

σ2∗

)∣∣∣∣)(∆0 +
√

∆1 log d+
(δ log d)2

σ2∗

)
+
δ(log d)3/2

σ∗

}
,

where C > 0 is a universal constant.

Remark 2.1 (Optimality of Theorem 2.1). The most important feature of Theorem 2.1 is
that it implies a nearly optimal bound on ϱ. Indeed, assuming that (i) n−1

∑n
i=1 IEX

2
ij = 1

for all j = 1, . . . , d, (ii) |Xij | ≤ Bn almost surely for all i = 1, . . . , n and j = 1, . . . , d and
some constant Bn > 0, possibly depending on n, and (iii) σ∗,W ≥ b for some constant
b > 0, where σ∗,W is the square root of the smallest eigenvalue of the correlation matrix of
W , it follows from Theorem 2.1 that

ϱ ≤ CBn(log d)
3/2

√
n

log n, (2.1)

where C > 0 is a constant depending only on b; see Corollary 2.1 below for details. On the
other hand, we will show in Proposition 2.1 below that under mild conditions on Bn and
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d, there exists a distribution of Xi’s such that

ϱ ≥ cBn(log d)
3/2

√
n

, (2.2)

where c > 0 is a constant that is independent of (n, d,Bn). Comparing (2.1) and (2.2), we
conclude that the bound in Theorem 2.1 is optimal up to the log n factor. In addition, we
will be able to get rid of the excessive log n factor in the case when Xi’s have an additive
Gaussian component; see Theorem 4.1 below. ■

Remark 2.2 (Relation to Previous Work). The bound in (2.1) is as sharp as the bound
obtained by [23] for the log-concave Xi’s, which is the first (nearly) sharp result in the non-
degenerate case using implicit smoothing ideas and Stein’s method. Subsequent work of
[32] and [31], using the same implicit smoothing ideas combined with Lindeberg’s method,
obtained the following bound for more general non-degenerate cases:

ϱ ≤ C ′

((
B6
n(log d)

4 log(dn)

n

)1/2

+

(
(log d)7 log(dn)

n

)1/2
)
log n, (2.3)

under the same conditions as those aforementioned in Remark 2.1 and assuming also that
IEX2

ij = 1 for all i = 1, . . . , n and j = 1, . . . , d, where C ′ > 0 is a constant depending only

on b. Our bound (2.1) is considerably sharper. First, it has much better dependence on
the dimension d. For example, with Bn being independent of n and d ≥ n, (2.1) depends

on d via (log d)3/2 whereas (2.3) depends on d via (log d)4, which is a large improvement in
the high-dimensional case, where log d is growing as some fractional power of the sample
size n. Second, (2.1) has much better dependence on the envelope constant Bn: (2.1)
depends on Bn linearly whereas (2.3) depends on Bn via B3

n. This second improvement
is particularly important in classical applications to nonparametric statistics, where the
intrinsic dimensionality of the problem often shows up not only via d but also via Bn. We
illustrate this point in Section 5 through an example. ■

In Remark 2.3 below, we discuss how the bound on ϱΣ in Theorem 2.1 can be used
to obtain bounds on ϱΣW

when ΣW is degenerate. To this end, we need the following
Gaussian comparison lemma, which is a special case of Theorem 1.1 in [23] and is similar
to Theorem 2.2 in [32].

Lemma 2.1 (Gaussian Comparison; [23], Theorem 1.1). Let Z ∼ N(0,Σ), where Σ has
unit entries on the diagonal, and Z ′ ∼ N(0,Σ′), then

sup
A∈R

|IP(Z ∈ A)− IP(Z ′ ∈ A)| ≤ C
D

σ2∗
log d

(
1 ∨

∣∣∣∣log Dσ2∗
∣∣∣∣) ,

where σ2∗ is the smallest eigenvalue of Σ and D = ‖Σ− Σ′‖∞.

Remark 2.3 (On Degenerate Cases). As we briefly mentioned above, having bounds on
ϱΣ for general Σ in Theorem 2.1 rather than for Σ = ΣW is useful when ΣW is degenerate.
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Indeed, the direct application of Theorem 2.1 with Σ = ΣW gives a trivial bound as σ∗ = 0
in this case. Instead, by the triangle inequality and Lemma 2.1, we have

ϱ ≤ ϱΣ + C∆0

(
1 ∨

∣∣∣∣log( ∆0

log d

)∣∣∣∣) , (2.4)

where C > 0 is a universal constant. This bound can be combined with Theorem 2.1 to
obtain useful bounds on ϱ whenever there exists Σ such that the square root of its smallest
eigenvalue σ∗ is strictly positive and ‖Σ − ΣW ‖∞ is small. We illustrate this point in
Section 5 through an example. ■

Next, we extend the result in Theorem 2.1 to allow for unbounded Xi’s. Denote

M :=

(
IE

[
max
1≤j≤d

max
1≤i≤n

|Xij |4
])1/4

.

Also, denote

Λ1 := (log d)2(log n) log(dn).

Finally, for all ψ > 0, denote

M(ψ) := max
1≤i≤n

IE
[
‖Xi‖4∞1{‖Xi‖∞ > ψ}

]
.

We then have the following result:

Theorem 2.2 (Gaussian Approximation, Unbounded Case). For all ψ > 0,

ϱΣ ≤ C

{
(log n)

(
∆0 +

√
∆1 log d+

(M log d)2

nσ2∗

)
+

√
Λ1M(ψ)

nσ4∗
+
ψ(log d)3/2

σ∗
√
n

}
,

where C > 0 is a universal constant.

We now apply Theorems 2.1 and 2.2 to derive bounds on ϱ = ϱΣW
under easily inter-

pretable conditions. Let q ≥ 4 be a constant and let {Bn}n≥1 be a sequence of positive
constants, possibly growing to infinity. Also, let σ∗,W be the square root of the smallest

eigenvalue of the correlation matrix ofW and for all j = 1, . . . , d, denote σj := (IE[W 2
j ])

1/2.
Consider the following conditions:

(E.1) |Xij/σj | ≤ Bn for all i = 1, . . . , n and j = 1, . . . , d almost surely;

(E.2) ‖Xij/σj‖ψ2 ≤ Bn for all i = 1, . . . , n and j = 1, . . . , d;

(E.3) ‖max1≤j≤d |Xij/σj |‖Lq ≤ Bn for all i = 1, . . . , n;

and also consider condition

(M) n−1
∑n

i=1 IE|Xij/σj |4 ≤ B2
n for all j = 1, . . . , p;
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Similar conditions were previously used and motivated by applications in [12, 15, 17, 20,
23, 19].

Corollary 2.1 (Gaussian Approximation under Simple Conditions). Under condition
(E.1), we have

ϱ ≤ CBn(log d)
3/2 log n√

nσ2∗,W
, (2.5)

where C > 0 is a universal constant; under conditions (M) and (E.2), we have

ϱ ≤ C

(
Bn(log d)

3/2 log n√
nσ2∗,W

+
Bn(log d)

2

√
nσ∗,W

)
,

where C > 0 is a universal constant; under conditions (M) and (E.3), we have

ϱ ≤ C

Bn(log d)3/2 log n√
nσ2∗,W

+
B2
n(log d)

2 log n

n1−2/qσ2∗,W
+

(
Bq
n(log d)3q/2−4(log n) log(dn)

nq/2−1σq∗,W

) 1
q−2

 ,

where C > 0 is a constant depending only on q.

Remark 2.4 (Dropping Condition (M)). Like in the case of condition (E.1), meaningful
bounds on ϱ can be obtained without imposing condition (M) in the cases of (E.2) and
(E.3) as well. This is so because both (E.2) and (E.3) imply bounds on the left-hand
side of the inequality in condition (M). Indeed, it is straightforward to check that, for all
j = 1, . . . , d, under (E.2), we have n−1

∑n
i=1 IE|Xij/σj |4 ≲ B2

n log n+B
4
n/n

2 whereas under

(E.3), we have n−1
∑n

i=1 IE|Xij/σj |4 ≲ B
2q/(q−2)
n . We do not present the implied bounds

on ϱ for brevity of the paper. ■

We conclude this section with the proposition that provides a lower bound on the con-
vergence rate of ϱ and demonstrates that the convergence rate in (2.1) is sharp up to the
log n factor:

Proposition 2.1 (Lower Bound on ϱ). Let {Bn}n≥1 be a sequence of positive constants
such that Bn ≥ 2 for all n. Suppose that d depends on n so that

Bn(log d)
3/2

√
n

→ 0,
B4
n√

log d
→ 0,

√
n

dBn(log d)3/2
→ 0

as n→ ∞. Then, we can construct i.i.d. random vectors Xn,1, . . . , Xn,n in Rd for every n
such that

IE[Xn,ij ] = 0, IE[X2
n,ij ] = 1, |Xn,ij | ≤ Bn, for all n ≥ 1, i = 1, . . . , n, j = 1, . . . , d;

and

lim inf
n→∞

√
n

Bn(log d)3/2
sup
x∈R

∣∣∣∣∣IP
(

max
1≤j≤d

1√
n

n∑
i=1

Xn,ij ≤ x

)
− IP

(
max
1≤j≤d

Zj ≤ x

)∣∣∣∣∣ > 0,

where Z1, Z2, . . . are independent standard normal variables.
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This proposition extends Proposition 1.1 in [23] to allow for the n-dependent envelope
constant Bn.

3. Bootstrap Approximations

Since ΣW is in practice typically unknown, the Gaussian approximations obtained in the
previous section are typically infeasible in the sense that we are unable to calculate prob-
abilities IP(Z ∈ A), A ∈ R and Z ∼ N(0,ΣW ), which is needed in statistical applications.
In this section, we therefore consider bootstrap approximations. These approximations
allow to estimate IP(Z ∈ A) from the sample X1, . . . , Xn. We focus on the multiplier and
empirical bootstrap approximations.

Throughout this section, let Σ be any d×d positive definite symmetric matrix with unit
diagonal entries and let σ∗ > 0 be the square root of its smallest eigenvalue. This is the
same convention as that in the previous section.

3.1. Multiplier Bootstrap Approximation. Let ξ1, . . . , ξn be i.i.d. N(0, 1) random
variables that are independent of X := (X1, . . . , Xn). Denote X̄ := (X̄1, . . . , X̄d)

T :=
n−1

∑n
i=1Xi and consider the (Gaussian) multiplier bootstrap version of W :

W ξ :=
1√
n

n∑
i=1

ξi(Xi − X̄).

In this subsection, we are interested in bounding

ϱξΣ := sup
A∈R

|IP(W ξ ∈ A | X)− IP(Z ∈ A)|, Z ∼ N(0,Σ),

and, in particular, ϱξ := ϱξΣW
. Denote

∆′
0 :=

log d

σ2∗

∥∥∥∥∥Σ− 1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T

∥∥∥∥∥
∞

.

The following result is as an easy consequence of Lemma 2.1.

Theorem 3.1 (Multiplier Bootstrap). We have

ϱξΣ ≤ C∆′
0

(
1 ∨

∣∣∣∣log( ∆′
0

log d

)∣∣∣∣) ,
where C > 0 is a universal constant.

Applying Theorem 3.1 under easily interpretable conditions (M) and (E), we obtain the
following analog of Corollary 2.1.
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Corollary 3.1 (Multiplier Bootstrap under Simple Conditions). Under condition (E.1),
we have with probability at least 1− α that

ϱξ ≤
CBn(log d)(log n)

√
log(d/α)√

nσ2∗,W
,

where C > 0 is a universal constant; under conditions (M) and (E.2), we have with prob-
ability at least 1− α that

ϱξ ≤
CBn(log d)(log n)

√
log(d/α)√

nσ2∗,W
,

where C > 0 is a universal constant; under conditions (M) and (E.3), we have with prob-
ability at least 1− α that

ϱξ ≤ C(log d)(log n)

σ2∗,W

(
Bn
√

log(d/α)√
n

+
B2
n(log d+ α−2/q)

n1−2/q

)
,

where C > 0 is a constant depending only on q.

Remark 3.1 (Main Features of Corollary 3.1). The bounds in Corollary 3.1 are generally
comparable with the corresponding bounds in Corollary 2.1. For example, under condition
(E.1), combining Corollaries 2.1 and 3.1, we have that for some universal constant C > 0,
with probability at least 1− 1/d,

sup
A∈R

∣∣∣IP(W ∈ A)− IP(W ξ ∈ A | X)
∣∣∣ ≤ CBn(log d)

3/2 log n√
nσ2∗,W

, (3.1)

which has the same right-hand side as that of (2.5). Thus, we are able to obtain a feasible
bootstrap approximation bound to probabilities IP(W ∈ A) with the same convergence rate
as that of the infeasible Gaussian approximation. Note also that under the assumption that
σ∗,W is bounded below from zero (strongly non-degenerate case in the terminology of [23]),
(3.1) is much better than the general bound (which does not require σ∗,W > 0) following
from the results in [17]. ■

Remark 3.2 (Other Types of Multipliers). In Theorem 3.1 and Corollary 3.1, we focused
on Gaussian multipliers but we note that similar results can be obtained for other multi-
pliers, e.g. Rademacher or Mammen multipliers; see [33] and [17] for definitions. To do so,
we can apply Theorem 2.1 conditional on Xi’s to bound

sup
A∈R

|IP(W ξ ∈ A | X)− IP(W ζ ∈ A | X)|,

where W ζ is defined by analogy with W ξ with multipliers represented by random variables
ζ1, . . . , ζn instead of ξ1, . . . , ξn. ■
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3.2. Empirical Bootstrap Approximation. Let X∗
1 , . . . , X

∗
n be i.i.d. draws from the

empirical distribution of X1, . . . , Xn and consider the empirical bootstrap version of W :

W ∗ :=
1√
n

n∑
i=1

(X∗
i − X̄).

In this subsection, we are interested in bounding

ϱ∗Σ := sup
A∈R

|IP(W ∗ ∈ A | X)− IP(Z ∈ A)|, Z ∼ N(0,Σ),

and, in particular, ϱ∗ := ϱ∗ΣW
. To do so, denote

M∗ := max
1≤j≤d

max
1≤i≤n

|Xij − X̄j |

and, for all ψ > 0,

M∗(ψ) :=
1

n

n∑
i=1

‖Xi − X̄‖4∞1{‖Xi − X̄‖∞ > ψ}.

Also, denote

∆′
1 :=

(log d)2

n2σ4∗
max
1≤j≤d

n∑
i=1

(Xij − X̄j)
4.

The following result is an easy consequence of Theorem 2.2.

Theorem 3.2 (Empirical Bootstrap). For all ψ > 0,

ϱ∗Σ ≤ C

{
(log n)

(
∆′

0 +
√

∆′
1 log d+

(M∗ log d)2

nσ2∗

)
+

√
Λ1M∗(ψ)

nσ4∗
+
ψ(log d)3/2

σ∗
√
n

}
,

where C > 0 is a universal constant.

Like in the previous subsection, applying Theorem 3.2 under easily interpretable condi-
tions (M) and (E), we obtain the following analog of Corollary 2.1.

Corollary 3.2 (Empirical Bootstrap under Simple Conditions). Under condition (E.1),
we have with probability at least 1− α that

ϱ∗ ≤
CBn(log d)(log n)

√
log(d/α)√

nσ2∗,W
,

where C > 0 is a universal constant; under conditions (M) and (E.2), we have with prob-
ability at least 1− α that

ϱ∗ ≤ C

(
Bn(log d)(log n)

√
log(d/α)√

nσ2∗,W
+
Bn(log(dn))

2
√

log(1/α)√
nσ∗,W

)
,
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where C > 0 is a universal constant; under conditions (M) and (E.3), we have with prob-
ability at least 1− α that

ϱ∗ ≤ C

(
Bn(log d)(log n)

√
log(d/α)√

nσ2∗,W
+
Bn
√

log(dn) log d

n1/2−1/qα1/qσ∗,W

)
,

where C > 0 is a constant depending only on q.

Remark 3.3 (Main Features of Corollary 3.2). Bounds for the empirical bootstrap approx-
imation in this corollary are comparable but slightly worse than the corresponding bounds
in Corollary 3.1 for the multiplier bootstrap approximation. However, since we only have
upper bounds on the approximation error, this does not imply that the multiplier bootstrap
is necessarily more precise than the empirical bootstrap. In fact, simulations in [20, 17, 19]
suggest the opposite may be true, with approximation errors being rather similar for most
practical purposes. Note also that, like in the case of Corollary 3.1, under the assumption
that σ∗,W is bounded below from zero, bounds in Corollary 3.2 are much better than the
general bound (which does not require σ∗,W > 0) following from the results in [17]. ■

4. Gaussian Approximation for Special Cases: Smooth and Zero Skewness

In some special cases, the bounds in Theorems 2.1 and 2.2 can be improved. In this
section, we consider two such cases and derive an improved version of Theorem 2.1. For
brevity, we do not provide an improved version of Theorem 2.2.

An interesting practical case occurs when Xi’s are generated with additive Gaussian
noise (for example, due to measurement error or injection of noise for data privacy). As we
demonstrate here, we can improve the bound in Theorem 2.1 by removing a logarithmic
pre-factor in this case. The proof of this result is relatively simple, so that it may be useful
to review it before reading the more complicated proofs of Theorems 2.1 and 2.2.

As before, letX1, . . . , Xn be independent centered random vectors in Rd but now suppose
that we observe only their noisy versions, say X̃1, . . . , X̃n, where X̃i = Xi + gi for some
centered Gaussian gi and G =

∑n
i=1 gi/

√
n ∼ N(0,Σ0), such that G is independent of

Xi’s. Assume that Σ0 is non-degenerate and let σ∗,0 > 0 be the square root of its smallest
eigenvalue. Assume also that Σ0 has unit diagonal entries (this assumption is not essential
and is made to simplify the results below; by rescaling, similar results can be obtained as
long as all diagonal entries of Σ0 are of the same order). In addition, let Σ be any d×d non-
negative definite symmetric matrix and let Σ̃ := Σ + Σ0. Denote W̃ :=

∑n
i=1 X̃i/

√
n and

W :=
∑n

i=1Xi/
√
n, so that ΣW̃ = ΣW + Σ0, where ΣW̃ := IEW̃W̃ T and ΣW := IEWW T .

Also, denote

ϱ̃Σ := sup
A∈R

|IP(W̃ ∈ A)− IP(Z̃ ∈ A)|, Z̃ ∼ N(0, Σ̃).
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Below, we derive a bound on ϱ̃Σ. Since the distribution of X̃i’s is smooth because of
the presence of the additive Gaussian components gi, we refer to the results below as the
Gaussian approximation in the smooth case. Following the literature, e.g. [43], we also

sometimes refer to the distribution of X̃i’s as quasi-Gaussian.

Theorem 4.1 (Gaussian Approximation, Smooth Case). Suppose that there are constants
δ, c > 0 such that ‖Xi‖∞/

√
n ≤ δ for every i = 1, . . . , n almost surely and δ

√
log d ≤ cσ∗,0.

Then

ϱ̃Σ ≤ C
(
∆̃0 + ∆̃1

)
,

where C > 0 is a constant depending only on c and

∆̃0 :=
log d

σ2∗,0
‖Σ− ΣW ‖∞, ∆̃1 :=

(log d)3/2

n3/2σ3∗,0
max
1≤j≤d

n∑
i=1

IEX3
ij .

Remark 4.1 (Optimality of Theorem 4.1). In comparison with Theorem 2.1 and Corol-
lary 2.1, Theorem 4.1 does not contain the logarithmic pre-factor. Assuming that (i)
n−1

∑n
i=1 IEX

2
ij ≤ 1 for all j = 1, . . . , d, (ii) |Xij | ≤ Bn almost surely for all i = 1, . . . , n

and j = 1, . . . , d and some constant Bn > 0, possibly depending on n, and (iii) σ3∗,0 ≥ b for
some constant b > 0, it follows from Theorem 4.1 that

ϱ̃ΣW
≤ CBn(log d)

3/2

√
n

, (4.1)

where C > 0 is a constant depending only on b. This bound is optimal in the quasi-
Gaussian case with respect to both the sample size n and the dimension d, as follows
from Proposition 1.1 in [23], which yields a lower bound and allows the lower bound to be
achieved by the quasi-Gaussian distributions. Hence, it is not possible to obtain a better
bound without imposing further conditions, such as zero skewness or symmetry of the
distribution of Xi’s. ■

Our second example in this section demonstrates that, with a bit more structure, namely
assuming the zero skewness condition, we can further improve the bounds. Most notably,
the theorem below implies dependence on n via 1/n instead of 1/

√
n for uniformly bounded

Xi’s.

Theorem 4.2 (Gaussian Approximation, Smooth and Zero Skewness Case). Under the
assumptions of Theorem 4.1, assume additionally that

IE[XijXikXil] = 0 for all i = 1, . . . , n and j, k, l = 1, . . . , d. (4.2)

Then

ϱ̃Σ ≤ C
(
∆̃0 + ∆̃2

)
,

where C > 0 is a constant depending only on c and

∆̃0 :=
log d

σ2∗,0
‖Σ− ΣW ‖∞, ∆̃2 :=

(log d)2

n2σ4∗,0
max
1≤j≤d

n∑
i=1

IEX4
ij .
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Remark 4.2 (Optimality of Theorem 4.2). Assuming that (i) n−1
∑n

i=1 IEX
2
ij ≤ 1 for all

j = 1, . . . , d, (ii) |Xij | ≤ Bn almost surely for all i = 1, . . . , n and j = 1, . . . , d and some
constant Bn > 0, possibly depending on n, and (iii) σ3∗,0 ≥ b for some constant b > 0, it
follows from Theorem 4.1 that

ϱ̃ΣW
≤ CB2

n(log d)
2

n
, (4.3)

where C > 0 is a constant depending only on b. This bound is optimal in the quasi-Gaussian
case with zero skewness with respect to both the sample size n and the dimension d, as we
prove in Proposition 4.1 below. Moreover, neither the zero skewness nor quasi-Gaussian
conditions can be dropped in general to get such dependences. In fact, if the former is
not satisfied, we can at best get (4.1), as discussed in Remark 4.1 above. Similarly, it is
well-known that the dependence on n should be 1/

√
n in the normal approximation rate for

sums of independent Rademacher variables (see e.g. page 112 of [35]), so we cannot drop
the quasi-Gaussian assumption in general to get a bound proportional to 1/n. Finally,
note that (4.3) is substantially better than (4.1), meaning that imposing the zero skewness
condition is rather helpful in the quasi-Gaussian case. ■

We conclude this section with the proposition that provides a lower bound on the conver-
gence rate of ϱ̃ΣW

under the quasi-Gaussian and zero skewness conditions and demonstrates
that the convergence rate in (4.3) is sharp:

Proposition 4.1. Let X = (Xij)
∞
i,j=1 be an array of i.i.d. random variables such that

‖Xij‖ψ1 < ∞, IE[Xij ] = 0, IE[X2
ij ] = 1, IE[X3

ij ] = 0 and γ := IE[X4
ij ] − 3 6= 0. Let

W = n−1/2
∑n

i=1Xi with Xi := (Xi1, . . . , Xid)
T . Suppose that d depends on n so that

(log d)2/n→ 0 and (log d)3/n→ ∞ as n→ ∞. Also, let Z ∼ N(0, Id). Then

lim sup
n→∞

n

(log d)2
sup
x∈R

∣∣∣∣IP(max
1≤j≤d

Wj ≤ x

)
− IP

(
max
1≤j≤d

Zj ≤ x

)∣∣∣∣ > 0.

Remark 4.3 (Relation to Previous Work). This proposition complements Theorem 3 in
[18], who showed that the Gaussian approximation with vanishing error is not possible if
(log d)2/n1+δ ↛ 0 for some δ > 0 and Xij ’s are Rademacher random variables. ■

5. Application to Many Local Means Problem

An interesting setting that illustrates the value of our new bounds is the problem of many
local means, which plays a fundamental role in nonparametric statistics. In this problem,
the dimensionality of the problem actually shows up in the envelope and moments of Xi’s
and not just via log d. We illustrate this point with the following simple example. Consider
i.i.d. random vectors V1, . . . , Vn in Rκ and non-overlapping regions (Rj)

d
j=1 that partition

the support of Vi’s such that pj := IP{Vi ∈ Rj} = p for all j = 1, . . . , d and d = 1/p. Define
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components of Xi via:

Xij =
1{Vi ∈ Rj} − p√

p(1− p)
, j = 1, . . . , d,

and set W := n−1/2
∑n

i=1Xi. The distribution of W over the class of rectangles R is of
interest in testing hypotheses about the means of Xij ’s.

To apply our results in this setting, observe that

ΣW = IEWW T =
p

p(1− p)
Id −

p2

p(1− p)
1d1

′
d,

where 1d := (1, . . . , 1)T ∈ Rd. The smallest eigenvalue of ΣW is

p

p(1− p)
− p2

p(1− p)
d = 0,

so this is actually a degenerate case. On the other hand, we have for Σ := p
p(1−p)Id that

‖ΣW − Σ‖∞ ≤ p/(1− p) = 1/(d− 1)

and all eigenvalues of Σ are bounded below from zero. Thus, applying (2.4) and Theorem

2.1 with Σ = p
p(1−p)Id and δ :=

√
d/n to bound ϱΣ, we have that

ϱ ≲ (log d)2

d
+

√
d(log d)3

n
log n. (5.1)

This bound may be rather poor if d → ∞ slowly. Fortunately, we can combine (5.1) with
the bound we previously derived in [17] to obtain

ϱ ≲
(
(log d)2

d
+

√
d(log d)3

n
log n

)
∧
(
d(log n)5

n

)1/4

, (5.2)

which is much better than (5.1) when d→ ∞ slowly. Specifically, (5.2) gives

ϱ→ 0 if
d(log n)5

n
→ 0. (5.3)

Turning now to the alternative bounds in the literature, we note that the direct applica-
tion of results in [32] and [31] give an infinite bound on ϱ because ΣW is degenerate. This
is of course an unfair comparison, so it is possible to modify the arguments in [32] and [31]
to have the dependencies in their bounds via ‖Σ − ΣW ‖∞, as we did in Remark 2.3, and
obtain

ϱ ≲ (log d)2

d
+

(√
d3(log d)4 log n

n
+

√
(log d)7 log(dn)

n

)
log n (5.4)

This bound gives, when d→ ∞:

ϱ→ 0 if
d3(log n)7

n
→ 0. (5.5)
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Comparing (5.3) with (5.5), we conclude that (5.2) is substantially better than (5.4).

In addition, it is possible to obtain a bound on ϱ via the Hungarian coupling. In
particular, results in [37] and [27] imply that one can construct a centered Gaussian random
vector G in Rd such that

‖W −G‖∞ ≲
√

log n

(np)1/κ
+

√
log2 n

np

almost surely. Moreover, [5] showed that that bound is sharp up to possible log factors
when κ ≥ 2. Combining this bound with the anti-concentration inequality in Lemma 11.3
implies

ϱ ≲
√

log d

√ log n

(np)1/κ
+

√
log2 n

np

 (5.6)

When d ≥ n1/3, which is the most relevant case, this bound is better than that in (5.2) by
a (log n)2 factor for κ = 1 but worse for κ ≥ 2. For κ ≥ 3, this bound is much worse than
that in (5.2) by a polynomial-in-n factor regardless of d.

6. Mixed Smoothing Inequalities

Let ϕ > 0, ϵ ∈ [0, 1], and r ∈ Rd. Also, let Σ be a d×d symmetric positive definite matrix
with unit diagonal entries, and let σ∗ > 0 be the square root of the smallest eigenvalue of
Σ. Consider functions gϕ : R → R, mr,ϕ : Rd → R, and ρr,ϕ,ϵ,Σ : Rd → R by

gϕ(t) :=


1 if t ≤ 0,

1− ϕt if 0 < t < 1/ϕ,

0 if t ≥ 1/ϕ,

mr,ϕ(w) := gϕ
(
max
1≤j≤d

(wj − rj)

)
, w ∈ Rd, (6.1)

and
ρr,ϕ,ϵ,Σ(w) := Emr,ϕ(w + ϵZ), w ∈ Rd, (6.2)

where Z is a centered normal random vector in Rd with covariance matrix Σ. For large ϕ
and small ϵ, the function ρr,ϕ,ϵ,Σ(·) provides a good approximation to the indicator function
1r(·) = 1{· ≤ r} but, in contrast to the indicator function, is smooth. In particular, we
will prove the following inequalities, which play a key role in obtain sharp bounds for the
Gaussian approximation.

Lemma 6.1. Let v ∈ Z and K ∈ R be such that v ≥ 1 and K > 0. Set η = ηd = K/
√
log d.

Then

sup
w∈Rd

d∑
j1,...,jv=1

sup
y∈R(0,ϵσ∗η)

|∂j1,...,jvρr,ϕ,ϵ,Σ(w + y)| ≤ C
ϕ(log d)(v−1)/2

(ϵσ∗)v−1
, (6.3)
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where C > 0 is a constant depending only on v and K.

Lemma 6.2. Let v ∈ Z and K ∈ R be such that v ≥ 1 and K > 0. Set η = ηd = K/
√
log d.

Then

sup
w∈Rd

d∑
j1,...,jv=1

sup
y∈R(0,ϵσ∗η)

|∂j1,...,jvρr,ϕ,ϵ,Σ(w + y)| ≤ C
(log d)v/2

(ϵσ∗)v
,

where C > 0 is a constant depending only on v and K.

Lemma 6.3. Let v ∈ Z be such that v ≥ 1. Then for all κ, η > 0 with κ > η,

sup
w∈(A2\A1)c

d∑
j1,...,jv=1

sup
y∈R(0,ϵσ∗η)

|∂j1,...,jvρr,ϕ,ϵ,Σ(w + y)| ≤ C
dv

(ϵσ∗)v
e−(κ−η)2/4,

where C > 0 is a constant depending only on v and

A1 = {w ∈ Rd : w ≤ r − 2ϵκ}, A2 = {w ∈ Rd : w ≤ r + 2ϵκ+ ϕ−1}.

Remark 6.1 (Relation to Previous Work). All three lemmas here are new. Their proofs
are inspired by the original ideas of [7], who derived Lemma 6.2 without smoothing (with
ϕ = ∞) and η = 0. See also [23] who extended the result of [7] to allow for η > 0 in Lemma
6.2 using related methods of [3]. Having η 6= 0 is important for establishing the optimal
dependence on the envelopes. ■

7. Proofs for Section 2

Proof of Theorem 2.1. For all i = 1, . . . , n, we denote ξi := Xi/
√
n, so that W =

∑n
i=1 ξi

and ‖ξi‖∞ ≤ δ. Working with ξi’s is a little more convenient than working with Xi’s. Also,
we assume, without loss of generality, that W and Z are independent. In addition, since
ϱΣ ≤ 1, we assume, again without loss of generality, that

∆1

log d
+
δ2 log d

σ2∗
≤ 1

3
. (7.1)

Further, observe that for any w ∈ Rd and A =
∏d
j=1(aj , bj ] ∈ R, IP(W ∈ A) = IP(W ≤

b) − IP(W ≤ a), where a = (a1, . . . , ad)
T ∈ Rd and b = (b1, . . . , bd)

T ∈ Rd. Therefore, it
suffices to prove the asserted claim with ϱΣ replaced by

ϱ′ = ϱ′Σ := sup
r∈Rd

|IP(W ≤ r)− IP(Z ≤ r)|, Z ∼ N(0,Σ),

which is what we do below.

Now, for any bounded measurable function h : Rd → R and t ∈ [0, 1], define Tth : Rd → R
by

Tth(w) = IEh(
√
1− tw +

√
tZ)− IEh(Z), w ∈ Rd.
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Then, by Lemmas 11.2 and 11.3 and the fact that IP(‖Z‖∞ >
√
4 log d) ≤ 1/2, we have

ϱ′ ≲ sup
r∈Rd

|IETt1r(W )|+
√

t

1− t
log d. (7.2)

By taking the value of t appropriately, we will deduce a recursive inequality for ϱ′; see
(7.23) below. In particular, we set

t :=
∆1

log d
+
δ2 log d

σ2∗
. (7.3)

Note here that because of (7.1), | log t| ≥ 1 and 1/
√
1− t ≤ 2.

Further, fix ϕ > 0, to be chosen below in (7.24), and for any r ∈ Rd, consider the

smoothed indicator function mr,ϕ : Rd → R as in (6.1) of Section 6. Denoting W̃ =√
1− tW +

√
tZ, we have by Lemma 11.3 that

IP(W̃ ≤ t) ≤ IEmr,ϕ(W̃ ) = IEmr,ϕ(Z) + IEmr,ϕ(W̃ )− IEmr,ϕ(Z)

≤ IP(Z ≤ r + 1/ϕ) + IEmr,ϕ(W̃ )− IEmr,ϕ(Z)

≤ IP(Z ≤ r) + C
√
log d/ϕ+ IEmr,ϕ(W̃ )− IEmr,ϕ(Z)

and, similarly,

IP(Z ≤ r) ≤ IP(Z + 1/ϕ ≤ r) + C
√
log d/ϕ ≤ IEmr,ϕ(Z + 1/ϕ) + C

√
log d/ϕ

= IEmr,ϕ(W̃ + 1/ϕ) + IEmr,ϕ(Z + 1/ϕ)− IEmr,ϕ(W̃ + 1/ϕ) + C
√
log d/ϕ

≤ IP(W̃ ≤ r) + IEmr,ϕ(Z + 1/ϕ)− IEmr,ϕ(W̃ + 1/ϕ) + C
√

log d/ϕ,

where C > 0 is a universal constants. Hence,

sup
r∈Rd

∣∣∣IP(W̃ ≤ r)− IP(Z ≤ r)
∣∣∣ ≲ sup

r∈Rd

∣∣∣IEmr,ϕ(W̃ )− IEmr,ϕ(Z)
∣∣∣+√log d/ϕ,

and so,

sup
r∈Rd

|IETt1r(W )| ≲ sup
r∈Rd

|IETtmr,ϕ(W )|+
√
log d/ϕ. (7.4)

Given (7.2) and (7.4), we need to bound supr∈Rd |IETtmr,ϕ(W )|.

To do so, fix any r ∈ R (we will take the supremum in (7.23)), write h := mr,ϕ, and
proceed to bound |IETth(W )|. By the fundamental theorem of calculus and the fact that
IET1h(W ) = 0,

IETth(W ) = −1

2

∫ 1

t
IE

〈
∇h(

√
1− sW +

√
sZ),

Z√
s
− W√

1− s

〉
ds,

and so, using Lemma 11.1,

IETth(W ) = −1

2

∫ 1

t
IE

[
〈Σ,∇2hs(

√
1− sW )〉 −

〈
W√
1− s

,∇hs(
√
1− sW )

〉]
ds, (7.5)
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where for all s ∈ [t, 1], the funciton hs : Rd → R is given by

hs(w) = IEh(w +
√
sZ), w ∈ Rd.

Here, it is useful to note that hs = ρr,ϕ,
√
s,Σ, where ρr,ϕ,ϵ,Σ with ϵ =

√
s is the function

appearing in (6.2) of Section 6. In particular, hs is infinitely differentiable, with derivatives
satisfying bounds in Lemmas 6.1, 6.2, and 6.3. These bounds will be used below.

To bound the integral in (7.5), we employ the exchangeable pair approach in Stein’s
method for multivariate normal approximation by [11] and [36] along with a symmetry
argument by [23, 24] (cf. (7.13)–(7.14) below). Define ξ = (ξi)

n
i=1 and let ξ′ = (ξ′i)

n
i=1 be

an independent copy of ξ. Also, let I be a random index uniformly chosen from {1, . . . , n}
and independent of ξ and ξ′. In addition, define Yi := ξ′i− ξi and W

′ :=W +YI . It is then
easy to verify that (W,W ′) has the same distribution as (W ′,W ) (exchangeability) and

IE[W ′ −W |W ′] =
W ′

n
, IE[W ′ −W |W ] = −W

n
. (7.6)

Therefore, denoting D :=W ′ −W , we have

IE

〈
W√
1− s

,∇hs(
√
1− sW )]

〉
= IE

〈
W ′

√
1− s

,∇hs(
√
1− sW ′)

〉
= IE

〈
nD√
1− s

,∇hs(
√
1− sW ′)

〉
. (7.7)

Express the right-hand side of this chain of identities, using Taylor’s expansion around W
with exact integral remainder, as:

IE

〈
nD√
1− s

,∇hs(
√
1− sW )

〉
+ IE〈nDDT ,∇2hs(

√
1− sW )〉

+ n
d∑

j,k,l=1

√
1− sIE

[
UDjDkDl∂jklhs

(√
1− s(W + (1− U)D)

)]
, (7.8)

where U is a uniform random variable on [0, 1] independent of everything else, and note
also that by (7.6),

IE

〈
nD√
1− s

,∇hs(
√
1− sW )

〉
= −IE

〈
W√
1− s

,∇hs(
√
1− sW )

〉
. (7.9)

Therefore, substituting (7.8) and (7.9) into (7.7) and rearranging terms, we obtain

IE

〈
W√
1− s

,∇hs(
√
1− sW )

〉
=
n

2
IE〈DDT ,∇2hs(

√
1− sW )〉

+
n

2

d∑
j,k,l=1

√
1− sIE

[
UDjDkDl∂jklhs

(√
1− s(W + (1− U)D)

)]
,
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and so, by (7.5),

IETth(W ) = IETtm
r,ϕ(W ) = −1

2

∫ 1

t
(R1(s)−R2(s))ds, (7.10)

where

R1(s) :=
d∑

j,k=1

IE
[
IE
[
Σjk −

n

2
DjDk | ξ

]
∂jkhs(

√
1− sW )

]
,

R2(s) :=
n

2

d∑
j,k,l=1

√
1− sIE

[
UDjDkDl∂jklhs

(√
1− s(W + (1− U)D)

)]
.

We bound R1(s) and R2(s) in turn. Regarding R1(s), we have by Lemma 6.2 that

sup
w∈Rd

d∑
j,k=1

|∂jkhs(w)| ≲
log d

σ2∗s
.

Hence, ∫ 1

t
|R1(s)|ds ≲

(log d)| log t|
σ2∗

IE
∥∥∥Σ− n

2
IE[DDT | ξ]

∥∥∥
∞
.

Here, recalling that D =W ′ −W = YI , one can deduce

Σ− n

2
IE[DDT | ξ] = (Σ− ΣW )− 1

2

n∑
i=1

(ξiξ
T
i − IE[ξiξ

T
i ]),

and so

IE
∥∥∥Σ− n

2
IE[DDT | ξ]

∥∥∥
∞

≤ ‖Σ− ΣW ‖∞ +
1

2
IE

∥∥∥∥∥
n∑
i=1

(ξiξ
T
i − IE[ξiξ

T
i ])

∥∥∥∥∥
∞

.

Also, by Lemma 11.4, the second term is bounded, up to an absolute constant, by

max
1≤j,k≤d

√√√√ n∑
i=1

IE[ξ2ijξ
2
ik]
√
log d+

√
IE

[
max
1≤i≤n

max
1≤j,k≤d

ξ2ijξ
2
ik

]
log d

≲ max
1≤j≤d

√√√√ n∑
i=1

IE[ξ4ij ]
√

log d+ δ2 log d. (7.11)

Consequently, we obtain

1

2

∫ 1

t
|R1(s)|ds ≲ | log t| ×

(
∆0 +

√
∆1 log d+

(δ log d)2

σ2∗

)
. (7.12)

Next, we bound R2(s). We have

IE
[
UDjDkDl∂jklhs

(√
1− s(W + (1− U)D)

)]
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= −IE
[
UDjDkDl∂jklhs

(√
1− s(W ′ − (1− U)D)

)]
= −IE

[
UDjDkDl∂jklhs

(√
1− s(W + UD)

)]
, (7.13)

where the first equality holds by exchangeability and the second by W ′ =W +D. Hence,
using Taylor’s expansion one more time, we obtain

|R2(s)|√
1− s

=

∣∣∣∣n4
d∑

j,k,l=1

IE
[
UDjDkDl∂jklhs

(√
1− s(W + (1− U)D)

)]

− n

4

d∑
j,k,l=1

IE
[
UDjDkDl∂jklhs

(√
1− s(W + UD)

)]∣∣∣∣
≤ n

√
1− s

4

d∑
j,k,l,m=1

IE
[∣∣∣DjDkDlDm∂jklmhs

(√
1− s(W + UD + U ′(1− 2U)D)

)∣∣∣]

=

√
1− s

4

n∑
i=1

d∑
j,k,l,m=1

IE
[∣∣∣YijYikYilYim∂jklmhs(√1− s(W (i) + ξ̃i)

)∣∣∣], (7.14)

where U ′ is a uniform random variable on [0, 1] independent of everything else, W (i) :=

W−ξi, and ξ̃i := ξi+UYi+U
′(1−2U)Yi. Here, note that |U+U ′(1−2U)| ≤ U∨(1−U) ≤ 1

and thus ‖ξ̃i‖∞ ≤ ‖ξi‖∞ + ‖Yi‖∞ ≤ 3δ. Therefore, given that ‖ξi‖∞ ≤ δ and that Yi is

independent of W (i), we have that 4|R2(s)|/(1− s) is bounded by:

n∑
i=1

d∑
j,k,l,m=1

IE

[
|YijYikYilYim| sup

∥y∥∞≤3δ

∣∣∣∂jklmhs(√1− s(W (i) + y)
)∣∣∣]

=
n∑
i=1

d∑
j,k,l,m=1

IE[|YijYikYilYim|]IE

[
sup

∥y∥∞≤3δ

∣∣∣∂jklmhs(√1− s(W (i) + y)
)∣∣∣]

≤
n∑
i=1

d∑
j,k,l,m=1

IE[|YijYikYilYim|]IE

[
sup

∥y∥∞≤4δ

∣∣∣∂jklmhs(√1− s(W + y)
)∣∣∣]

=
d∑

j,k,l,m=1

(
n∑
i=1

IE[|YijYikYilYim|]

)
IE

[
sup

∥y∥∞≤4δ

∣∣∣∂jklmhs(√1− s(W + y)
)∣∣∣]

≲ max
1≤j≤d

n∑
i=1

IEξ4ijIE

 d∑
j,k,l,m=1

sup
∥y∥∞≤4δ

∣∣∣∂jklmhs(√1− s(W + y)
)∣∣∣
 .

Further, let

η := 4/
√
log d, κ :=

√
16 log d− 2 log(1−

√
1− t) + η, (7.15)



22 CHERNOZHUKOV, CHETVERIKOV, AND KOIKE

so that for any t ∈ (0, 1),

e−(κ−η)2/4 =

√
1−

√
1− t

d4
≤

√
t

d4
. (7.16)

Also, for any s ∈ [t, 1],

4δ
√
1− s ≤ 4δ ≤ ησ∗

√
s, (7.17)

where the second inequality follows from (7.3). Then using (7.17) and denoting

εs := 2
√
sκ+ 1/ϕ, (7.18)

we have
d∑

j,k,l,m=1

sup
∥y∥∞≤4δ

∣∣∣∂jklmhs(√1− s(W + y)
)∣∣∣

≲
ϕ(log d)3/21{

√
1−sW∈(∂A)εs}

(σ∗
√
s)3

+

√
t

d4
d4

(σ∗
√
s)4

, (7.19)

where the first term on the right-hand side appears from bounding the left-hand side by
Lemma 6.1 and the second term appears from bounding the left-hand side by Lemma 6.3
and using (7.16) (here, we denote A := {y ∈ Rd : y ≤ r} and for any x ∈ R, we write
Ax := {y ∈ Rd : y ≤ r + x} and (∂A)x := Ax \A−x). Hence,

|R2(s)| ≲ (1− s)
∆1σ

4
∗

(log d)2
IE

[
ϕ(log d)3/21{

√
1−sW∈(∂A)εs}

(σ∗
√
s)3

+

√
t

(σ∗
√
s)4

]
. (7.20)

Next,

IP(
√
1− sW ∈ (∂A)εs) ≤ IP(

√
1− sZ ∈ (∂A)εs) + 2ϱ′ ≲ εs

√
log d√

1− s
+ ϱ′ (7.21)

by the definition of ϱ′ and Lemma 11.3, using that Σ has unit diagonal entries.

Inserting this bound into (7.20), we deduce

|R2(s)| ≲
∆1σ

4
∗

(log d)2

(
ϕ(log d)3/2

(σ∗
√
s)3

(εs
√
log d+ ϱ′) +

√
t

(σ∗
√
s)4

)
.

Thus, using (7.18), we have∫ 1

t
|R2(s)|ds ≲

∆1σ
4
∗

(log d)2

(
κϕ(log d)2| log t|

σ3∗
+

(log d)2

σ3∗
√
t

+
ϱ′ϕ(log d)3/2

σ3∗
√
t

+
1

σ4∗
√
t

)

≲ ∆1

(
κϕ| log t|+ 1√

t
+

ϱ′ϕ√
t log d

)
(7.22)

since σ∗ ≤ 1 (recall that all diagonal entries of Σ are equal to one). From (7.2), (7.4),
(7.10), (7.12) and (7.22), we obtain
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ϱ′ ≤ c

[
| log t|

(
∆0 +

√
∆1 log d+

(δ log d)2

σ2∗

)
+ ∆1

(
κϕ| log t|+ 1√

t
+

ϱ′ϕ√
t log d

)
+
√
t log d+

√
log d

ϕ

]
, (7.23)

where c > 0 is a universal constant (recall that 1/
√
1− t ≤ 2). Now we are ready to specify

the value of ϕ:

ϕ :=
1

2c
√
∆1| log t|

. (7.24)

Combining this choice with the choice of t in (7.3) yields

c∆1
ϱ′ϕ√
t log d

≤ ϱ′

2
. (7.25)

Also, since t ≤ 1/3 by (7.1), κ defined in (7.15) satisfies

κ ≲
√
log d+

√
| log t|. (7.26)

The asserted claim now follows by substituting (7.3), (7.24), (7.25), and (7.26) into (7.23).
■

Proof of Theorem 2.2. The proof is a modification of the proof of Theorem 2.1. Here, we
describe the changes, keeping all unmentioned notations the same as those in the proof
of Theorem 2.1. In a nutshell, we only need to change the values of t and ϕ and use a
truncation argument in the bound for R2(s).

First, we now set

t :=
∆1

log d
+
M(ψ) log d

nσ4∗
+
ψ2 log d

nσ2∗
(7.27)

instead of using t in (7.3). As in the proof of Theorem 2.1, it is without loss of generality
to assume here that t ≤ 1/3; compare with (7.1) and (7.3). Moreover, since all diagonal
entries of Σ are equal to one, it follows that σ∗ ≤ 1. In addition, for a while, we as-
sume n−1

∑n
i=1 IEX

2
ij ≥ 1/2 for all j = 1, . . . , d. This implies via Jensen’s inequality that

∆1/ log d ≥ 1/(4n), and so | log t| ≲ log n.

Next, note that (7.2), (7.4), and (7.10) hold under our current assumptions by the same
arguments as those in the proof of Theorem 2.1. Thus, we only need to bound∫ 1

t
|R1(s)|ds and

∫ 1

t
|R2(s)|ds.

Regarding the former, we proceed as in the proof of Theorem 2.1 but we change the second
line in (7.11) by

max
1≤j≤d

√√√√ n∑
i=1

IE[ξ4ij ]
√

log d+
M2 log d

n
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so that similarly to (7.12), we obtain

1

2

∫ 1

t
|R1(s)|ds ≲ | log t| ×

(
∆0 +

√
∆1 log d+

(M log d)2

nσ2∗

)
. (7.28)

Further, by (7.14), we have

R2(s) ≲ (1− s)
n∑
i=1

d∑
j,k,l,m=1

IE
[∣∣∣YijYikYilYim∂jklmhs(√1− s(W (i) + ξ̃i)

)∣∣∣] ≤ I1(s) + I2(s),

where

I1(s) := (1− s)

n∑
i=1

d∑
j,k,l,m=1

IE
[∣∣∣ςiYijYikYilYim∂jklmhs(√1− s(W (i) + ξ̃i)

)∣∣∣],
I2(s) := (1− s)

n∑
i=1

d∑
j,k,l,m=1

IE
[∣∣∣(1− ςi)YijYikYilYim∂jklmhs

(√
1− s(W (i) + ξ̃i)

)∣∣∣],
and ςi := 1{‖ξi‖∞ ∨ ‖ξ′i‖∞ ≤ 2ψ/

√
n} for all i = 1, . . . , n. We first focus on I1(s). Given

that ‖ξ̃i‖∞ ≤ ‖ξi‖∞ + ‖Yi‖∞ ≤ 2‖ξi‖∞ + ‖ξ′i‖∞ and that Yi is independent of W (i), we
have that |I1(s)| is bounded by:

(1− s)
n∑
i=1

d∑
j,k,l,m=1

IE

[
ςi|YijYikYilYim| sup

∥y∥∞≤6ψ/
√
n

∣∣∣∂jklmhs(√1− s(W (i) + y)
)∣∣∣]

= (1− s)
n∑
i=1

d∑
j,k,l,m=1

IE[ςi|YijYikYilYim|]IE

[
sup

∥y∥∞≤6ψ/
√
n

∣∣∣∂jklmhs(√1− s(W (i) + y)
)∣∣∣]

≤ I11(s) + I12(s),

where

I11(s) := (1− s)
n∑
i=1

d∑
j,k,l,m=1

IE[|YijYikYilYim|]IE

[
ςi sup

∥y∥∞≤6ψ/
√
n

∣∣∣∂jklmhs(√1− s(W (i) + y)
)∣∣∣] ,

I12(s) := (1− s)
n∑
i=1

d∑
j,k,l,m=1

IE[|YijYikYilYim|]IE

[
(1− ςi) sup

∥y∥∞≤6ψ/
√
n

∣∣∣∂jklmhs(√1− s(W (i) + y)
)∣∣∣] .

At this step,
∫ 1
t I11(s)ds is bounded in the same way as

∫ 1
t |R2(s)|ds in the proof of Theorem

2.1; namely, ∫ 1

t
I11(s)ds ≲ ∆1

(
κϕ| log t|+ 1√

t
+

ϱ′ϕ√
t log d

)
;
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compare with (7.22). Meanwhile, using the independence between W (i) and Yi, we obtain

I12(s) ≤ (1− s)
n∑
i=1

d∑
j,k,l,m=1

IE‖Yi‖4∞IE[1− ςi]IE

[
sup

∥y∥∞≤6ψ/
√
n

∣∣∣∂jklmhs(√1− s(W (i) + y)
)∣∣∣]

≲ (1− s)

n∑
i=1

IE(1− ςi)(‖ξi‖∞ ∨ ‖ξ′i‖∞)4IE

 d∑
j,k,l,m=1

sup
∥y∥∞≤6ψ/

√
n

∣∣∣∂jklmhs(√1− s(W (i) + y)
)∣∣∣
 ,

where the last inequality follows from Chebyshev’s association inequality; see Theorem 2.14
in [10]. Then, applying (7.19) with replacing W and 4δ by W (i) and 6ψ/

√
n respectively,

we deduce

I12(s) ≲ (1− s)

n∑
i=1

IE(1− ςi)(‖ξi‖∞ ∨ ‖ξ′i‖∞)4IE

[
ϕ(log d)3/21{

√
1−sW (i)∈(∂A)εs}

(σ∗
√
s)3

+

√
t

(σ∗
√
s)4

]
.

Now, as in the proof of (7.22), we obtain

I12(s) ≲
n∑
i=1

IE(1− ςi)(‖ξi‖∞ ∨ ‖ξ′i‖∞)4

(
ϕ(log d)3/2

(σ∗
√
s)3

(εs
√
log d+ ϱ{i}) +

√
t

(σ∗
√
s)4

)
,

where, for any subset I ⊂ {1, . . . , n},

ϱI := sup
r∈Rd

∣∣∣∣∣IP
(

1√
n

∑
i∈Ic

Xi ≤ r

)
− IP(Z ≤ r)

∣∣∣∣∣ , Z ∼ N(0,Σ), i = 1, . . . , n.

In addition, for all i = 1, . . . , n,

IE(1− ςi)(‖ξi‖∞ ∨ ‖ξ′i‖∞)4 ≤ IE(1− ςi)(‖ξi‖4∞ + ‖ξ′i‖4∞)

≲ IE(1{‖ξi‖∞ > ψ/
√
n}+ 1{‖ξ′i‖∞ > ψ/

√
n})(‖ξi‖4∞ + ‖ξ′i‖4∞)

≲ IE1{‖ξi‖∞ > ψ/
√
n}‖ξi‖4∞ ≤M(ψ)/n2, (7.29)

where the penultimate inequality holds by Chebyshev’s association inequality. Thus,

I12(s) ≲
M(ψ)

n

(
ϕ(log d)3/2

(σ∗
√
s)3

((
√
sκ+ 1/ϕ)

√
log d+ ϱ) +

√
t

(σ∗
√
s)4

)

≲ M(ψ)

n

(
κϕ(log d)2

σ3∗s
+

(log d)2

σ3∗s
3/2

+
ϱϕ(log d)3/2

σ3∗s
3/2

+

√
t

σ4∗s
2

)
,

where ϱ := n−1
∑n

i=1 ϱ
{i}. Therefore, we conclude∫ 1

t
I12(s)ds ≲

M(ψ)(log d)2

nσ4∗

(
κϕ| log t|+ 1√

t
+

ϱϕ√
t log d

)
.
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Turning to I2(s), we have by the law of iterated expectations,

I2(s) ≲ (1− s)

n∑
i=1

IE

(1− ςi)‖ξi − ξ′i‖4∞
d∑

j,k,l,m=1

IE
[∣∣∣∂jklmhs(√1− s(W (i) + ξ̃i)

)∣∣∣ | ξ̃i]
 .

Here, we bound the internal sum as in (7.15) with η = 0, (7.18), (7.19), and (7.21); namely,
by Lemmas 6.1 and 6.3,

(1− s)
d∑

j,k,l,m=1

IE
[∣∣∣∂jklmhs(√1− s(W (i) + ξ̃i)

)∣∣∣ | ξ̃i]
≲ ϕ(log d)3/2

(σ∗
√
s)3

(
(
√
sκ+ 1/ϕ)

√
log d+ ϱ(i)

)
+

√
t

(σ∗
√
s)4

≲ κϕ(log d)2

σ3∗s
+

(log d)2

σ3∗s
3/2

+
ϱ(i)ϕ(log d)3/2

σ3∗s
3/2

+

√
t

σ4∗s
2
.

Thus, by (7.29),∫ 1

t
I2(s)ds ≲

M(ψ)(log d)2

nσ4∗

(
κϕ| log t|+ 1√

t
+

ϱϕ√
t log d

)
.

Combining all terms and recalling that | log t| ≲ log n, we now have

ϱ′ ≤ c

[
(log n)

(
∆0 +

√
∆1 log d+

(M log d)2

nσ2∗

)
+

(
∆1 +

M(ψ)(log d)2

nσ4∗

)(
κϕ log n+

1√
t
+

(ϱ′ + ϱ)ϕ√
t log d

)
+
√
t log d+

√
log d

ϕ

]
, (7.30)

where c > 0 is a universal constant; compare with (7.23). Here, we set

ϕ :=
1

2ec

√(
∆1 +

M(ψ)(log d)2

nσ4
∗

)
log n

and use t defined in (7.27) to obtain

ϱ′ ≤ C ′
[
(log n)

(
∆0 +

√
∆1 log d+

(M log d)2

nσ2∗

)
+

√(
∆1 +

M(ψ)(log d)2

nσ4∗

)
(log n) log(dn) +

ψ(log d)3/2

σ∗
√
n

]
+
ϱ′ + ϱ

2e
(7.31)

since κ ≲
√
log(dn) by (7.26), where C ′ is a universal constant. Hence, rearranging the

terms and substituting the definition of Λ1,

ϱ′ ≤ 2C ′

[
(log n)

(
∆0 +

√
∆1 log d+

(M log d)2

nσ2∗

)
+

√
Λ1M(ψ)

nσ4∗
+
ψ(log d)3/2

σ∗
√
n

]
+
ϱ

e
.
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Now we note that this bound is valid even when n−1
∑n

i=1 IEX
2
ij < 1/2 for some j; in fact,

we have ∆0 ≥ (log d/σ2∗)|Σjj − n−1
∑n

i=1 IEX
2
ij | > 1/2 in this case because Σjj = 1 and

σ∗ ≤ 1. As a result, this bound holds without the restriction n−1
∑n

i=1 IEX
2
ij ≥ 1/2 for all

j imposed at the beginning of the proof. We now iterate this bound to obtain inequalities
for each ϱ{i} and repeat the procedure [log n] + 1 times, dropping one observation at a
time. Here, given a proper subset I ⊂ {1, . . . , n}, we apply this bound to ϱI with re-

placing (Xi)
n
i=1 and ψ by (

√
n−|I|
n Xi)i∈Ic and

√
n−|I|
n ψ, respectively. Then, denoting the

corresponding ∆0,∆1,M,M(ψ) by ∆I
0 ,∆

I
1 ,MI ,MI(

√
n−|I|
n ψ) respectively, we have

∆I
0 =

log d

σ2∗
max

1≤j,k≤d

∣∣∣∣Σjk − 1

n− |I|
∑
i∈Ic

n− |I|
n

IEXijXik

∣∣∣∣ ≤ ∆0 +
log d

nσ2∗
max
1≤j≤d

∑
i∈I

IEX2
ij

≤ ∆0 +
log d

nσ2∗
max
1≤j≤d

√
|I|
∑
i∈I

IEX4
ij ≤ ∆0 +

√
|I|∆1 log d,

∆I
1 =

(log d)2

(n− |I|)2σ4∗
max
1≤j≤d

∑
i∈Ic

(n− |I|)2

n2
IEX4

ij ≤ ∆1,

and

(MI)2

n− |I|
≤ M2

n
,

MI(

√
n−|I|
n ψ)

n− |I|
≤ M(ψ)

n
.

Note that
∑∞

i=1 e
−i√i <∞. We thus obtain

ϱ′ ≲ (log n)

(
∆0 +

√
∆1 log d+

(M log d)2

nσ2∗

)
+

√
Λ1M(ψ)

nσ4∗
+
ψ(log d)3/2

σ∗
√
n

+
ϱ̂

elogn
,

where

ϱ̂ :=
1

|N̂ |

∑
N∈N̂

sup
r∈Rd

∣∣∣∣∣IP
(

1√
n

∑
i∈N

Xi ≤ r

)
− IP(Z ≤ r)

∣∣∣∣∣ , Z ∼ N(0,Σ),

and N̂ := {N ⊂ {1, . . . , n} : |N| = n− [log n]− 2}. Since ϱ̂ ≤ 1 and ∆1/ log d ≥ 1/(4n), as
discussed above, the asserted claim follows. ■

Proof of Corollary 2.1. Since

sup
A∈R

|IP(W ∈ A)− IP(Z ∈ A)| = sup
A∈R

|IP(SW ∈ A)− IP(SZ ∈ A)|

for any d× d diagonal matrix S, we assume, without loss of generality, that σj = 1 for all
j = 1, . . . , d. Then σ∗,W is the square root of the smallest eigenvalue of ΣW = IEWW T .
To prove the asserted claims, we will apply Theorems 2.1 and 2.2 with Σ = ΣW , so that
σ∗ = σ∗,W .
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Consider first the case when (E.1) holds. By Jensen’s inequality, ∆1 ≥ (log d)2/(nσ4∗,W ) ≥
(log d)/n, and so ∣∣∣∣log( ∆1

log d
+
δ2 log d

σ2∗

)∣∣∣∣ ≤ log n.

Also, since (E.1) implies (M),

(log n)
√
∆1 log d ≤ Bn(log d)

3/2(log n)√
nσ2∗,W

. (7.32)

Combining these inequalities and using Theorem 2.1 with δ = Bn/
√
n and ∆0 = 0 gives

the asserted claim under condition (E.1).

Next, consider the case when (M) and (E.2) hold. Without loss of generality, we assume
that

Bn(log d)
3/2 log n√

nσ∗,W
≤ 1 (7.33)

since otherwise the asserted claims are trivial. (7.32) holds by condition (M). In addition,

M ≲ Bn
√
log(dn) by Lemma 2.2.2 and discussion on page 95 of [40], and so

(log n)(M log d)2

nσ2∗,W
≲ B2

n(log d)
2(log n) log(dn)

nσ2∗,W
≲ Bn(log d)

3/2 log n√
nσ2∗,W

(7.34)

by (7.33). Moreover, since for any i = 1, . . . , n and ψ > 0,

IE‖Xi‖4∞1{‖Xi‖∞ > ψ} ≤
(
IE[‖Xi‖8∞]IP(‖Xi‖∞ > ψ)

)1/2 ≲ B4
n

√
IP(‖Xi‖∞ > ψ),

setting ψ = CBn
√
log(dn) for a sufficiently large but universal constant C, we have√

Λ1M(ψ)

nσ4∗,W
+
ψ(log d)3/2√

nσ∗,W
≲ Bn(log d)

3/2 log n√
nσ2∗,W

+
Bn(log d)

3/2
√

log(dn)√
nσ∗,W

≲ Bn(log d)
3/2 log n√

nσ2∗,W
+
Bn(log d)

2

√
nσ∗,W

, (7.35)

where the last inequality follows from σ∗,W ≤ 1. Combining ∆0 = 0, (7.32), (7.34), and
(7.35) and applying Theorem 2.2 gives the asserted claim under conditions (M) and (E.2).

Now consider the case when (M) and (E.3) hold. In this case,

M ≤

(
IE

[
n∑
i=1

max
1≤j≤d

|Xij |q
])1/q

≤ n1/qBn,

and so
(log n)(M log d)2

nσ2∗,W
≤ B2

n(log d)
2 log n

n1−2/qσ2∗,W
. (7.36)



NEARLY OPTIMAL HIGH-DIMENSIONAL CLT AND BOOTSTRAP 29

Also, (7.32) holds by the same arguments as those in the previous case. In addition, since
for any i = 1, . . . , n and ψ > 0,

IE‖Xi‖4∞1{‖Xi‖∞ > ψ} ≤ IE‖Xi‖q∞/ψq−4 ≤ Bq
n/ψ

q−4,

setting

ψ =

(
Bq
n(log n) log(dn)

σ2∗,W log d

)1/(q−2)

,

we obtain √
Λ1M(ψ)

nσ4∗,W
+
ψ(log d)3/2√

nσ∗,W
≲
(
Bq
n(log d)3q/2−4(log n) log(dn)

nq/2−1σq∗,W

) 1
q−2

. (7.37)

Combining ∆0 = 0, (7.32), (7.36), and (7.37) and applying Theorem 2.2 gives the asserted
claim under conditions (M) and (E.3) and completes the proof of the theorem. ■

Proof of Proposition 2.1. For every n ≥ 1, let (Xn,ij)
∞
i,j=1 be an array of i.i.d. variables

such that

IP (Xn,ij = an) = 1− IP (Xn,ij = bn) = pn,

where

pn :=
1

B2
n

, an :=

√
1− pn
pn

, bn := −
√

pn
1− pn

.

Since Bn ≥ 2, we have |Xn,ij | ≤ max{Bn, 1/
√
3} ≤ Bn. Also, it is straightforward to check

that IE[Xn,ij ] = 0 and IE[X2
n,ij ] = 1. Therefore, we complete the proof once we show that

there is a sequence (xn)
∞
n=1 of real numbers such that

ρ := lim inf
n→∞

√
n

Bn log
3/2 d

∣∣∣∣IP(max
1≤j≤d

Wn,j ≤ xn

)
− IP

(
max
1≤j≤d

Zj ≤ xn

)∣∣∣∣ > 0,

where

Wn,j :=
1√
n

n∑
i=1

Xn,ij .

For every n, we define xn ∈ R as the solution of the equation Φ1(x)
d = e−1, i.e. xn :=

Φ−1
1 (e−1/d). Then we have xn/

√
2 log d→ 1 as n→ ∞ (cf. the proof of Proposition 2.1 in

[30]). We also have

d(1− Φ1(xn)) = d(1− e−1/d) = 1 +O(d−1) as n→ ∞. (7.38)

Now, applying Theorem 1 in [4] with I = {1, . . . , d}, Bα = {α} and Xα = 1{Wn,α>xn} in
their notation, we obtain∣∣∣∣IP(max

1≤j≤d
Wn,j ≤ xn

)
− e−λn

∣∣∣∣ ≤ dIP (Wn,1 > xn)
2 ,
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where λn := dIP (Wn,1 > xn). Meanwhile, we have by definition

IP

(
max
1≤j≤d

Zj ≤ xn

)
= Φ1(xn)

d = e−1.

Hence we obtain∣∣∣∣IP(max
1≤j≤d

Wn,j ≤ xn

)
− IP

(
max
1≤j≤d

Zj ≤ xn

)∣∣∣∣ ≥ |e−λn − e−1| − λ2n
d
. (7.39)

To evaluate λn, we apply Theorem 2.1 in [25] with m = n, Xα = Xn,α1, Ii = {i},
ξi = Xn,i1/

√
n, δ = δn := Bn/

√
n and s = d = 1 in their notation. We have by assumption

n2δ5nx
2
n = O

(
B5
n log d√
n

)
= o

(
Bn log

3/2 d√
n

)
= o(1). (7.40)

Hence there is a constant C0 > 0 such that
√
n2δ5nxn ≤ C0 for all n. Therefore, Theorem

2.1 in [25] yields ∣∣∣∣ IP (Wn,1 > xn)

(1− Φ1(xn))eγnx
3
n/6

− 1

∣∣∣∣ ≤ Cn2δ5n(1 + x2n) for all n, (7.41)

where γn := IE[W 3
n,1] and C is a constant depending only on C0. Since

γn =
IE[X3

n,11]√
n

=
1− 2pn√
npn(1− pn)

,

we have

lim inf
n→∞

γnx
3
n

Bn(log d)3/2/
√
n
≥ lim inf

n→∞

1

2Bn
√
pn

(
xn√
log d

)3

=
√
2. (7.42)

In particular, γnx
3
n = O(Bn(log d)

3/2/
√
n) = o(1) by assumption. Combining this estimate

with (7.38) and (7.40), we deduce from (7.41)

λn =
IP (Wn,1 > xn)

(1− Φ1(xn))eγnx
3
n/6

· d(1− Φ1(xn))e
γnx3n/6

= d(1− Φ1(xn))e
γnx3n/6 + o

(
Bn log

3/2 d√
n

)

= eγnx
3
n/6 +O

(
1

d

)
+ o

(
Bn log

3/2 d√
n

)
.

Using the Maclaurin expansion of the exponential function and (7.42), we obtain

λn = 1 +
γnx

3
n

6
+O

(
1

d

)
+ o

(
Bn log

3/2 d√
n

)
and thus

e−λn+1 = 1− γnx
3
n

6
+O

(
1

d

)
+ o

(
Bn log

3/2 d√
n

)
.



NEARLY OPTIMAL HIGH-DIMENSIONAL CLT AND BOOTSTRAP 31

Note that we particularly have λn = O(1). Thus, (7.39) yields

ρ ≥ lim inf
n→∞

√
n

Bn log
3/2 d

|e−λn − e−1| = lim inf
n→∞

e−1

√
n

Bn log
3/2 d

γnx
3
n

6
,

where we used the assumption d−1 = o(Bn log
3/2 d/

√
n). Hence we obtain by (7.42)

ρ ≥ e−1

√
2

6
> 0.

This completes the proof. ■

Remark 7.1. In the above proof, it seems impossible to use a more traditional moderate
deviation result instead of Theorem 2.1 in [25]. This is because such a one requires that
the moment generating function of Xn,11 is bounded uniformly in n on a neighborhood of
the origin (see Lemma 4.1 in [29] for instance). ■

8. Proofs for Section 3

Proof of Theorem 3.1. The asserted claim is an immediate consequence of Theorem 1.1 in
[23] (restated as Lemma 2.1 in this paper) once we note that (i) conditional on X, the
random vector W ξ = n−1

∑n
i=1 ξi(Xi− X̄)(Xi− X̄)T is centered Gaussian with covariance

matrix n−1
∑n

i=1(Xi − X̄)(Xi − X̄)T and (ii) for centered Gaussian random vectors, the
Stein kernel is equal to the covariance matrix. ■

Proof of Corollary 3.1. Like in the proof of Corollary 2.1, we assume, without loss of gen-
erality, that σj = 1 for all j = 1, . . . , d, so that σ∗,W is the square root of the smallest

eigenvalue of ΣW = IEWW T . To prove the asserted claims, we will apply Theorem 3.1
with Σ = ΣW , so that σ∗ = σ∗,W . This requires bounding ∆′

0 with Σ = ΣW . We do so
separately for each case.

Consider first the case when (E.1) holds. We assume, without loss of generality, that

Bn(log d)(log n)
√

log(d/α)√
nσ2∗,W

≤ 1, (8.1)

since otherwise the asserted claim is trivial. Using this assumption, we will now prove that
there exists a universal constant C ′ ≥ 1 such that

IP

(
∆′

0 >
C ′Bn(log d)

√
log(d/α)√

nσ2∗,W

)
≤ α. (8.2)

This derivation is similar to the proof of Proposition 4.1 in [15].

Note that
σ2∗,W∆′

0/ log d ≤ ∆(1) +∆(2), (8.3)



32 CHERNOZHUKOV, CHETVERIKOV, AND KOIKE

where

∆(1) :=

∥∥∥∥∥ 1n
n∑
i=1

(XiX
T
i − IEXiX

T
i )

∥∥∥∥∥
∞

, ∆(2) := ‖X̄X̄T ‖∞ = ‖X̄‖2∞. (8.4)

We first bound ∆(1). To do so, since (E.1) implies (M),

σ2n := max
1≤j,k≤d

n∑
i=1

IE(XijXik − IE[XijXik])
2 ≤ max

1≤j,k≤d

n∑
i=1

IE(XijXik)
2 ≤ nB2

n.

Also, ∥∥∥∥max
1≤i≤n

max
1≤j,k≤d

|XijXik|
∥∥∥∥
ψ1

≲ B2
n log(dn),

so that Mn := max1≤i≤nmax1≤j,k≤d |XijXik − IE[XijXik]| satisfies√
IEM2

n ≲ ‖Mn‖ψ1 ≲ B2
n log(dn).

Hence, by Lemma 11.4,

IE∆(1) ≲ n−1
(√

σ2n log d+
√
IEM2

n log d
)

≲
√
n−1B2

n log d+ n−1B2
n(log d) log(dn) ≲

√
n−1B2

n log d,

where the last inequality follows from (8.1). Thus, applying Lemma 11.5(i) with β = η = 1,

we have for all t > 0 that ∆(1) ≲
√
n−1B2

n log d+ t with probability at least

1− exp

(
− nt2

3B2
n

)
− 3 exp

(
− cnt

B2
n log(dn)

)
,

where c > 0 is a universal constant. Setting here

t =
Bn
√

3 log(4/α)√
n

+
B2
n log(dn) log(12/α)

cn

and recalling (8.1), we conclude that

∆(1) ≲
√
B2
n log(d/α)

n

with probability at least 1− α/2, and, by the same argument, we can also find that

∆(2) ≲
√
B2
n log(d/α)

n

again with probability at least 1 − α/2. Combining these inequalities and recalling (8.3),
we obtain (8.2).

Now, observe that the function f : (0, 1) → R defined by f(x) := x(1 ∨ | log x|) for all
x ∈ (0, 1) is increasing. Also, note that by (8.1),∣∣∣∣∣log

(
C ′Bn

√
log(d/α)√

nσ2∗,W

)∣∣∣∣∣ ≲ log n.
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Therefore, the asserted claim under condition (E.1) follows from combining Theorem 3.1
and (8.2).

Further, the asserted claim in the case when (M) and (E.2) hold can be proven using
the exactly same calculations as those in the case of (E.1).

Now consider the case when (M) and (E.3) hold. In this case, we assume, again without
loss of generality, that

(log d)(log n)

σ2∗,W

(
Bn
√
log(d/α)√
n

+
B2
n(log d+ α−2/q)

n1−2/q

)
≤ 1. (8.5)

Then, defining σ2n andMn as above, we have σ2n ≤ nB2
n and

√
IEM2

n ≲ ‖Mn‖Lq/2
≲ n2/qB2

n.

Hence, by Lemma 11.4, ∆(1) defined in (8.4) satisfies

IE∆(1) ≲ n−1
(√

σ2n log d+
√
IEM2

n log d
)
≲
√
n−1B2

n log d+ n−1+2/qB2
n log d.

Thus, applying Lemma 11.5(ii) with η = 1 and s = q/2, we have for all t > 0 that

∆(1) ≲
√
n−1B2

n log d+ n−1+2/qB2
n log d+ t

with probability at least

1− exp

(
− nt2

3B2
n

)
− cnBq

n

nq/2tq/2
,

where c > 0 is a universal constant. Setting here

t =
Bn
√

3 log(4/α)√
n

+
(4c/α)2/qB2

n

n1−2/q
,

we conclude that

∆(1) ≲ Bn
√

log(d/α)√
n

+
B2
n(log d+ α−2/q)

n1−2/q

with probability at least 1 − α/2, and, by the same argument, we can also find, for ∆(2)

defined in (8.4), that

∆(2) ≲ Bn
√

log(d/α)√
n

+
B2
n(log d+ α−2/q)

n1−2/q

again with probability at least 1 − α/2. Combining these inequalities and using (8.3), we
obtain

IP

(
∆′

0 >
C ′ log d

σ2∗,W

(
Bn
√
log(d/α)√
n

+
B2
n(log d+ α−2/q)

n1−2/q

))
≤ 1− α,

where C ′ ≥ 1 is a universal constant. Here,∣∣∣∣∣log
(

C ′

σ2∗,W

(
Bn
√

log(d/α)√
n

+
B2
n(log d+ α−2/q)

n1−2/q

))∣∣∣∣∣ ≲ log n
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by (8.5). The proof can now be completed by applying Theorem 3.1 as we did in the case
of (E.1). ■

Proof of Theorem 3.2. The asserted claim follows as a direct application of Theorem 2.2
once we note that ∆0, ∆1, and M(ψ) are equal to ∆′

0, ∆
′
1, and M

∗(ψ) and M is bounded
from above by M∗ if we substitute X∗

1 − X̄, . . . ,X∗
n− X̄ instead of X1, . . . , Xn in Theorem

2.2. ■

Proof of Corollary 3.2. Like in the proof of Corollary 2.1, we assume, without loss of gen-
erality, that σj = 1 for all j = 1, . . . , d, so that σ∗,W is the square root of the smallest

eigenvalue of ΣW = IEWW T . To prove the asserted claims, we will apply Theorem 3.2
with Σ = ΣW , so that σ∗ = σ∗,W . This requires bounding all terms appearing in Theorem
3.2. We do so separately for each case.

Consider first the case when (E.1) holds. We assume, without loss of generality, that

Bn(log d)(log n)
√

log(d/α)√
nσ2∗,W

≤ 1, (8.6)

since otherwise the asserted claim is trivial. Then by the proof of Corollary 3.1,

∆′
0 log n ≲ Bn(log d)(log n)

√
log(d/α)√

nσ2∗,W
(8.7)

with probability at least 1− α/2. Also, by Lemma 11.6 and (8.6),

IE max
1≤j≤d

n∑
i=1

|Xij |4 ≲ nB2
n +B4

n log d ≲ nB2
n.

Thus, by Lemma 11.7(i) with η = β = 1, we have for any t > 0 that max1≤j≤d
∑n

i=1 |Xij |4 ≲
nB2

n + t with probability at least

1− 3 exp

(
− t

cB4
n

)
,

where c > 0 is a universal constant. Setting here t = cB4
n log(6/α), using Jensen’s inequal-

ity, and recalling (8.6), we have that

max
1≤j≤d

n∑
i=1

(Xij − X̄j)
4 ≲ max

1≤j≤d

n∑
i=1

|Xij |4 ≲ nB2
n +B4

n log(6/α) ≲ nB2
n

with probability at least 1− α/2, and so

(log n)
√

∆′
1 log d ≲ Bn(log d)

3/2 log n√
nσ2∗,W
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with the same probability. Further, M∗ ≲ Bn, and so

(M∗ log d)2 log n

nσ2∗,W
≲ B2

n(log d)
2 log n

nσ2∗,W
≲ Bn(log d)

3/2 log n√
nσ2∗,W

by (8.6). Finally, setting ψ = 2Bn gives M∗(ψ) = 0 and

ψ(log d)3/2√
nσ∗,W

≲ Bn(log d)
3/2

√
nσ∗,W

.

Combining presented inequalities and applying Theorem 3.2 gives the asserted claim under
condition (E.1).

Next, consider the case when (M) and (E.2) hold. We assume, without loss of generality,
that

Bn(log d)(log n)
√
log(d/α)√

nσ2∗,W
+
Bn(log(dn))

2
√

log(1/α)√
nσ∗,W

≤ 1 (8.8)

since otherwise the asserted claim is trivial. Then, again by the proof of Corollary 3.1, ∆′
0

satisfies (8.7) with probability at least 1− α/4. Further, by Jensen’s inequality, (8.8), and
Lemmas 11.6 and 11.7(i) with η = 1 and β = 1/2,

max
1≤j≤d

n∑
i=1

(Xij − X̄j)
4 ≲ nB2

n +B4
n(log(dn))

2 log d+B4
n(log(dn))

2(log(1/α))2

≲ nB2
n +B4

n(log(dn))
2(log(1/α))2,

with probability at least 1− α/4, and so

(log n)
√

∆′
1 log d ≲ Bn(log d)

3/2 log n√
nσ2∗,W

+
B2
n(log d)

3/2 log(dn) log(1/α) log n

nσ2∗,W

≲ Bn(log d)
3/2 log n√

nσ2∗,W
+
Bn(log(dn))

2
√
log(1/α)√

nσ∗,W

with the same probability by (8.8). In addition, M∗ ≲ Bn
√
log(dn)

√
log(1/α) with prob-

ability at least 1− α/4, and so

(M∗ log d)2 log n

nσ2∗,W
≲ B2

n(log(dn))
4 log(1/α)

nσ2∗,W
≲ Bn(log(dn))

2
√

log(1/α)√
nσ∗,W

with the same probability by (8.8). Finally, setting ψ = C ′Bn
√

log(dn)
√
log(1/α) with a

sufficiently large but universal constant C ′ > 0, we have M∗(ψ) = 0 with probability at
least 1− α/4, and

ψ(log d)3/2√
nσ∗,W

≲ Bn(log(dn))
2
√

log(1/α)√
nσ∗,W

.

Combining presented inequalities and applying Theorem 3.2 gives the asserted claim under
conditions (M) and (E.2).
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Now consider the case when (M) and (E.3) hold. We assume, without loss of generality,
that

Bn(log d)(log n)
√
log(d/α)√

nσ2∗,W
+
Bn
√
log(dn) log d

n1/2−1/qα1/qσ∗,W
≤ 1 (8.9)

since otherwise the asserted claim is trivial. Using this assumption, by the proof of Corol-
lary 3.1,

∆′
0 log n ≲ (log d)(log n)

σ2∗,W

(
Bn
√

log(d/α)√
n

+
B2
n(log d+ α−2/q)

n1−2/q

)

≲ Bn(log d)(log n)
√
log(d/α)√

nσ2∗,W
+
Bn
√

log(dn) log d

n1/2−1/qα1/qσ∗,W

with probability at least 1− α/4. Also, given that

IE max
1≤i≤n

max
1≤j≤d

|Xij |4 ≤
(
IE max

1≤i≤n
max
1≤j≤d

|Xij |q
)4/q

≤ n4/qB4
n,

we have by Lemma 11.6 that

IE max
1≤j≤d

n∑
i=1

|Xij |4 ≲ nB2
n + n4/qB4

n log d.

Thus, by Lemma 11.7(ii) with η = 1 and s = q/4, we have for any t > 0 that

max
1≤j≤d

n∑
i=1

|Xij |4 ≲ nB2
n + n4/qB4

n log d+ t

with probability at least 1− (cnBq
n)/tq/4, where c > 0 is a universal constant. Setting here

t = (4cn/α)4/qB4
n and using Jensen’s inequality, we have that

max
1≤j≤d

n∑
i=1

(Xij − X̄j)
4 ≲ max

1≤j≤d

n∑
i=1

|Xij |4 ≲ nB2
n + n4/qB4

n(log d+ α−4/q)

with probability at least 1− α/4, and so

(log n)
√
∆′

1 log d ≲ Bn(log d)
3/2 log n√

nσ2∗,W
+
B2
n(log d)

3/2(log n)(
√
log d+ α−2/q)

n1−2/qσ2∗,W

≲ Bn(log d)(log n)
√
log(d/α)√

nσ2∗,W
+
Bn
√

log(dn) log d

n1/2−1/qα1/qσ∗,W

with the same probability by (8.9). In addition, by Markov’s inequality, for any t > 0,

IP

(
max
1≤j≤d

max
1≤i≤n

|Xij | > t

)
≤ t−qIE max

1≤j≤d
max
1≤i≤n

|Xij |q ≤ nBq
n/t

q,
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and so M∗ ≲ n1/qBn/α
1/q with probability at least 1− α/4, so that

(M∗ log d)2 log n

nσ2∗,W
≲ B2

n(log d)
2 log n

n1−2/qα2/qσ2∗,W
≲ Bn

√
log(dn) log d

n1/2−1/qα1/qσ∗,W

with the same probability by (8.9). Finally, setting ψ = C ′n1/qBn/α
1/q for a sufficiently

large but universal constant C ′ > 0, we have M∗(ψ) = 0 with probability at least 1− α/4
and

ψ(log d)3/2√
nσ∗,W

≲ Bn(log d)
3/2

n1/2−1/qα1/qσ∗,W
.

Combining all presented inequalities and applying Theorem 3.2 gives the asserted claim
under conditions (M) and (E.3). ■

9. Proofs for Section 4

Proof of Theorem 4.1. Observe that for any w ∈ Rd and A =
∏d
j=1(aj , bj ] ∈ R, IP(W̃ ∈

A) = IP(W̃ ≤ b) − IP(W̃ ≤ a), where a = (a1, . . . , ad)
T ∈ Rd and b = (b1, . . . , bd)

T ∈ Rd.
Therefore, it suffices to prove the asserted claim with ϱ̃Σ replaced by

ϱ̃′ = ϱ̃′Σ := sup
r∈Rd

|IP(W̃ ≤ r)− IP(Z̃ ≤ r)|, Z̃ ∼ N(0, Σ̃),

which is what we do below.

For all i = 1, . . . , n, denote ξi := Xi/
√
n, so that W =

∑n
i=1 ξi. Also, let Z ∼ N(0,Σ)

be independent of everything else. Then

W̃ =W +G and Z̃ = Z +G.

In addition, for any r ∈ Rd, let hr : Rd → R be the function defined by

hr(x) := IE1(x+G ≤ r).

For brevity of notations, we suppress the dependence on r in what follows.

By Lemma 6.2 with ϕ = ∞ and ϵ = 1, the function h is infinitely differentiable and each
derivative is bounded by a constant that only depends on the order of the derivative; in
particular,

sup
x∈Rd

d∑
j,k=1

|∂jkh(x)| ≲
log d

σ2∗,0
, sup

x∈Rd

d∑
j,k,l=1

sup
y∈R(0,σ∗,0η)

|∂jklh(x+ y)| ≲ (log d)3/2

σ3∗,0
, (9.1)

where η := 2c/
√
log d. The second property, local stability of the derivative, is impor-

tant to obtain good dependence on δ. Since h is infinite differentiable and has bounded
derivates, we can freely interchange differentiation and integration below, without further
announcement.
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Now, write
IP(W̃ ≤ r)− IP(Z̃ ≤ r) = IEh(W )− IEh(Z). (9.2)

Also, define the Slepian interpolant

F (s) :=
√
1− sF +

√
sZ, s ∈ [0, 1],

for any random vector F in Rd. Using fundamental theorem of calculus and integration by
parts, write (9.2) further as:

IEh(W )− IEh(Z) = −1

2

∫ 1

0
IE

〈
∇h(W (s)),

Z√
s
− W√

1− s

〉
ds

= −1

2

∫ 1

0
IE

[
〈Σ,∇2h(W (s))〉 −

〈
W√
1− s

,∇h(W (s))

〉]
ds. (9.3)

To bound the integral here, we employ Stein’s leave-one-out trick.

First, we have

IE

[〈
W√
1− s

,∇h(W (s))

〉]
=

1√
1− s

n∑
i=1

d∑
j=1

IE[ξij∂jh(W (s))].

Let W (i) := W − ξi for i = 1, . . . , n. Taylor expanding ∂jh(W (s)) around W (i)(s) =
W (s)−

√
1− sξi for each i, we obtain

IE

[〈
W√
1− s

,∇h(W (s))

〉]
=

1√
1− s

n∑
i=1

d∑
j=1

IE[ξij∂jh(W
(i)(s))] +

n∑
i=1

d∑
j,k=1

IE[ξijξik∂jkh(W
(i)(s))] +R1(s),

where

R1(s) =
√
1− s

n∑
i=1

d∑
j,k,l=1

IE[(1− U)ξijξikξil∂jklh(W
(i)(s) +

√
1− sUξi)],

and U is a uniform random variable on [0, 1] independent of everything else. Using the

independence between W (i) and ξi as well as IE[ξij ] = 0, we deduce

IE

[〈
W√
1− s

,∇h(W (s))

〉]
=

n∑
i=1

d∑
j,k=1

IE[ξijξik]IE[∂jkh(W
(i)(s))] +R1(s). (9.4)

Next, we decompose IE
[
〈Σ,∇2h(W (s))〉

]
as

IE
[
〈Σ,∇2h(W (s))〉

]
= IE

[
〈Σ− ΣW ,∇2h(W (s))〉

]
+ IE

[
〈ΣW ,∇2h(W (s))〉

]
.

(9.5)

We have by the first inequality in (9.1)∣∣IE [〈Σ− ΣW ,∇2h(W (s))〉
]∣∣ ≲ ∆̃0. (9.6)
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Meanwhile, we further decompose IE
[
〈ΣW ,∇2h(W (s))〉

]
in the following. Since ΣW =∑n

i=1 IE[ξiξ
T
i ], we have

IE
[
〈ΣW ,∇2h(W (s))〉

]
=

n∑
i=1

d∑
j,k=1

IE[ξijξik]IE [∂jkh(W (s))] .

Taylor expanding ∂jkh(W (s)) around W (i)(s), we obtain

IE
[
〈ΣW ,∇2h(W (s))〉

]
=

n∑
i=1

d∑
j,k=1

IE[ξijξik]IE[∂jkh(W
(i)(s))] +R2(s), (9.7)

where

R2(s) =
√
1− s

n∑
i=1

d∑
j,k,l=1

IE[ξijξik]IE[ξil∂jklh(W
(i)(s) +

√
1− sUξi)].

From (9.2)–(9.7), we obtain

|IP(W̃ ≤ r)− IP(Z̃ ≤ r)| ≲ ∆̃0 +

∫ 1

0
|R1(s)|ds+

∫ 1

0
|R2(s)|ds. (9.8)

Therefore, we complete the proof once we show∫ 1

0
|R1(s)|ds ≲ ∆̃1 and

∫ 1

0
|R2(s)|ds ≲ ∆̃1. (9.9)

Since ‖ξi‖∞ ≤ δ ≤ σ∗,0η/2 by assumption, we have

|R1(s)| ≤
n∑
i=1

d∑
j,k,l=1

IE

[
|ξijξikξil| sup

y∈R(0,σ∗,0η/2)
|∂jklh(W (i)(s) + y)|

]

=

n∑
i=1

d∑
j,k,l=1

IE [|ξijξikξil|] IE

[
sup

y∈R(0,σ∗,0η/2)
|∂jklh(W (i)(s) + y)|

]
,

where the last line follows from the independence between W (i) and ξi. Using ‖ξi‖∞ ≤
σ∗,0η/2 again, we conclude

|R1(s)| ≤
n∑
i=1

d∑
j,k,l=1

IE [|ξijξikξil|] IE

[
sup

y∈R(0,σ∗,0η)
|∂jklh(W (s) + y)|

]

≤

(
max
1≤j≤d

n∑
i=1

IE[|ξij |3]

)
d∑

j,k,l=1

IE

[
sup

y∈R(0,σ∗,0η)
|∂jklh(W (s) + y)|

]
.

Therefore, we obtain by the second inequality in (9.1)

|R1(s)| ≲ max
1≤j≤d

n∑
i=1

IE[|ξij |3]
log3/2 d

σ3∗,0
= ∆̃1. (9.10)
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This yields the first inequality in (9.9); since we can similarly prove the second one, the
desired result follows from combining the bounds and noting that these bounds do not
depend on r. ■

Proof of Theorem 4.2. The proof is a modification of the proof of Theorem 4.1, inspired by
[26]. Here, we describe the changes, keeping all unmentioned notations the same as those
in the proof of Theorem 4.1. In a nutshell, we only need to consider an additional Taylor
expansion when bounding R1(s) and R2(s).

As in the proof of Theorem 4.1, it suffices to prove the asserted claim with ϱ̃Σ replaced
by ϱ̃′Σ. Also, note that (9.8) holds under our current assumptions by the same arguments
as those in the proof of Theorem 4.1. Thus, we only need to bound∫ 1

0
|R1(s)|ds and

∫ 1

0
|R2(s)|ds.

To bound the former, we consider the Taylor expansion of ∂jklh(W
(i)(s) +

√
1− sUξi)

around W (i)(s) and rewrite R1(s) as

R1(s) =
√
1− s

n∑
i=1

d∑
j,k,l=1

IE[(1− U)ξijξikξil∂jklh(W
(i)(s))] +R′

1(s),

where

R′
1(s) = (1− s)

n∑
i=1

d∑
j,k,l,q=1

IE[U(1− U)ξijξikξilξiq∂jklqh(W
(i)(s) +

√
1− sUU ′ξi)],

and U ′ is a uniform random variable on [0, 1] independent of everything else. Since W (i), ξi
and U are independent, we obtain

R1(s) =
√
1− s

n∑
i=1

d∑
j,k,l=1

IE[1− U ]IE[ξijξikξil]IE[∂jklh(W
(i)(s))] +R′

1(s).

Thus, we conclude R1(s) = R′
1(s) by the assumption (4.2). Now, note that we have by

Lemma 6.2 with ϕ = ∞ and ϵ = 1

sup
x∈Rd

d∑
j,k,l,q=1

sup
y∈R(0,σ∗,0η)

|∂jklqh(x+ y)| ≲ (log d)2

σ4∗,0
.

Using this inequality instead of the second one in (9.1), we can prove |R′
1(s)| ≲ ∆̃2 analo-

gously to the proof of (9.10). A similar argument also yields |R′
2(s)| ≲ ∆̃2, completing the

proof. ■
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Proof of Proposition 4.1. The proof is almost the same as that of [23, Proposition 1.1],
except that we use Theorem 3 in [35, Chapter VIII] instead of Eq.(2.41) in [35, Chapter
VIII].

It suffices to show that there is a sequence (xn)
∞
n=1 of real numbers such that

ρ := lim inf
n→∞

n

log2 d

∣∣∣∣IP(max
1≤j≤d

Wn,j ≤ xn

)
− IP

(
max
1≤j≤d

Zj ≤ xn

)∣∣∣∣ > 0,

where

Wn,j :=
1√
n

n∑
i=1

Xn,ij .

We define the sequence (xn)
∞
n=1 in the same way as in the proof of Proposition 2.1. Then

we can prove (7.38) and (7.39) by the same arguments as in the proof of Proposition 2.1.

Moreover, since xn = O(
√
log d) = o(n1/4) by assumption, Theorem 3 in [35, Chapter VIII]

implies

P (W1 > xn)

1− Φ1(xn)
= e

γ
24n

x4n

{
1 +O

(
xn + 1√

n

)}
.

Combining this with (7.38), we obtain

λn =
P (W1 > xn)

1− Φ1(xn)
· d(1− Φ1(xn))

= e
γ

24n
x4n

{
1 +O

(
xn + 1√

n

)}
+O

(
1

d

)
.

Using the Maclaurin expansion of the exponential function, we obtain

λn = 1 +
γ

24n
x4n + o

(
x4n
n

)
+O

(
xn + 1√

n

)
+O

(
1

d

)
and thus

e−λn+1 = 1− γ

24n
x4n + o

(
x4n
n

)
+O

(
xn + 1√

n

)
+O

(
1

d

)
.

Note that we particularly have λn = O(1). Thus, (7.39) yields

ρ ≥ lim inf
n→∞

n

log2 d
|e−λn − e−1| = lim inf

n→∞
e−1 n

log2 d

|γ|x4n
24

= e−1 |γ|
6

because xn/
√
2 log d → 1 as well as d−1 = o((log d)−1) = o(n−1 log2 d) and n/ log3 d → 0

by assumption. This completes the proof. ■
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10. Proofs for Section 6

Throughout this section, for brevity of notations, we often drop super-indices ϕ, ϵ, r,
and Σ in the functions gϕ(·), mr,ϕ(·), and ρr,ϕ,ϵ,Σ(·) and simply write g(·), m(·), and ρ(·)
instead. Also, we use ≲ to denote inequalities that hold up to a universal constant.

Proof of Lemma 6.1. First, note that the asserted claim for general r ∈ Rd follows from
the asserted claim for r = 0 because

ρr,ϕ,ϵ,Σ(w) = ρ0,ϕ,ϵ,Σ(w − r).

Similarly, the asserted claim for general Σ follows from the asserted claim for Σ = Id.
Indeed, define Σ1 = Σ − σ2∗Id and Σ2 = σ2∗Id and let Z1 and Z2 be independent random
vectors in Rd such that Z1 ∼ N(0,Σ1) and Z2 ∼ N(0,Σ2). Then Z ∼ N(0,Σ) is equal in
distribution to Z1 + Z2. Hence,

ρr,ϕ,ϵ,Σ(w) = IEmr,ϕ(w + ϵZ1 + ϵZ2) = IEρr,ϕ,ϵσ∗,Id(w + ϵZ1),

and so, by Jensen’s inequality,

sup
w∈Rd

d∑
j1,...,jv=1

sup
y∈R(0,ϵσ∗η)

|∂j1,...,jvρr,ϕ,ϵ,Σ(w + y)|

≤ IE

 sup
w∈Rd

d∑
j1,...,jv=1

sup
y∈R(0,ϵσ∗η)

|∂j1,...,jvρr,ϕ,ϵσ∗,Id(w + ϵZ1 + y)|


= sup

w∈Rd

d∑
j1,...,jv=1

sup
y∈R(0,ϵσ∗η)

|∂j1,...,jvρr,ϕ,ϵσ∗,Id(w + y)|

Therefore, in what follows, we set r = 0 and Σ = Id.

Next, we prepare some notation. Let

Rd− = {w ∈ Rd : w ≤ 0}.

Also, let φ : Rd → R denote the pdf of the standard normal distribution on Rd. In addi-
tion, let φ1 : R → R and Φ1 : R → R denote the pdf and the cdf of the standard normal
distribution on R. Moreover, for all j = 1, . . . , d, let πj : Rd → R be the function defined
by

πj(w) = 1

{
j = arg max

1≤k≤d
wk

}
, w ∈ Rd,

where argmax1≤k≤dwk is equal to the smallest l = 1, . . . , d such that wl = max1≤k≤dwk.
Here, it is useful to note that the functions πj(·) satisfy

d∑
j=1

πj(w) = 1 (10.1)
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for all w ∈ Rd. Finally, let Ψ: Rd → R be the function defined by

Ψ(w) =

∫ 0

−∞

d∏
j=1

Φ1(t− wj)dt, w ∈ Rd.

It is straightforward to check that

∂j1...juΨ(w) = (−1)u
∫
Rd
−

πj1(s)∂j2,...,juφ (s− w) ds (10.2)

for all u = 1, . . . , v, j1, . . . , ju = 1, . . . , d, and w ∈ Rd.

For the rest of the proof, we proceed in two steps. In the first step, we prove that

sup
w∈Rd

d∑
j1,...,jv=1

sup
y∈R(0,ϵη)

|∂j1...jvρ(w + y)|

≤ 2ϕ

ϵv−1
sup
w∈Rd

d∑
j1,...,jv=1

sup
y∈R(0,η)

|∂j1...jvΨ(w + y)|. (10.3)

In the second step, we prove that

sup
w∈Rd

d∑
j1,...,jv=1

sup
y∈R(0,η)

|∂j1...jvΨ(w + y)| ≲ (log d)(v−1)/2. (10.4)

Combining these steps gives the asserted claim of the lemma.

Step 1. Here, we prove (10.3). Fix any w ∈ Rd and j1, . . . , jv = 1, . . . , d, and observe
that

∂j1ρ(w) =

∫
Rd

∂j1m(w + ϵz)φ(z)dz =
1

ϵd

∫
Rd

∂j1m(s)φ

(
s− w

ϵ

)
ds,

where the second equality holds by the change of variables z 7→ s = w + ϵz. Therefore,

∂j1,...,jvρ(w) =
(−1)v−1

ϵd+v−1

∫
Rd

mj1(s)∂j2,...,jdφ

(
s− w

ϵ

)
ds

=
(−1)v−1

ϵv−1

∫
Rd

mj1(w + ϵz)∂j2,...,jdφ(z)dz,

where the second equality holds by the reverse change of variables s 7→ z = (s− w)/ϵ. In
addition,

mj1(w + ϵz) = g′
(
max
1≤j≤d

(wj + ϵzj)

)
πj1(w + ϵz)

for almost all z with respect to the Lebesgue measure on Rd. Thus, given that

g′(t) =

{
ϕ if t ∈ (0, 1/ϕ),

0 if t /∈ (0, 1/ϕ),
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denoting

A1 =
{
z ∈ Rd : w + ϵz ≤ 0

}
, A2 =

{
z ∈ Rd : w + ϵz ≤ 1/ϕ

}
,

we have

∂j1,...,jvρ(w) =
(−1)v−1ϕ

ϵv−1

∫
A2\A1

πj1(w + ϵz)∂j2,...,jvφ(z)dz,

and so

|∂j1,...,jvρ(w)| ≤
ϕ

ϵv−1

∣∣∣∣∫
A2

πj1(w + ϵz − 1/ϕ)∂j2,...,jvφ(z)dz

∣∣∣∣
+

ϕ

ϵv−1

∣∣∣∣∫
A1

πj1(w + ϵz)∂j2,...,jvφ(z)dz

∣∣∣∣ ,
where we used πj1(w + ϵz) = πj1(w + ϵz − 1/ϕ). Therefore,

sup
w∈Rd

d∑
j1,...,jv=1

sup
y∈R(0,ϵη)

|∂j1...jvρ(w + y)|

≤ 2ϕ

ϵv−1
sup
w∈Rd

d∑
j1,...,jv=1

sup
y∈R(0,ϵη)

∣∣∣∣∫
A1

πj1(w + y + ϵz)∂j2,...,jvφ(z)dz

∣∣∣∣ . (10.5)

Moreover, ∫
A1

πj1(w + y + ϵz)∂j2,...,jvφ(z)dz (10.6)

=

∫
{s∈Rd : ϵs≤0}

πj1(ϵs)∂j2,...,jvφ(s− (w + y)/ϵ)ds

=

∫
Rd
−

πj1(s)∂j2,...,jvφ(s− (w + y)/ϵ)ds

= (−1)v∂j1,...,jvΨ((w + y)/ϵ), (10.7)

where the first equality holds by the change of variables z 7→ s = z + (w + ϵ)/ϵ and the
third by (10.2). Combining (10.5) and (10.7) gives the asserted claim of this step.

Step 2. Here, we prove (10.4). To do so, we proceed by induction on v. For v = 1, we
have for all w ∈ Rd, y ∈ R(0, η), and j = 1, . . . , d that

|∂jΨ(w + y)| =
∫ 0

−∞

 ∏
l : l ̸=j

Φ1(t− wl − yl)

φ1(t− wj − yj)dt.

To bound the integral on the right-hand side here, consider the partition

(−∞, 0] = Tj ∪ Tcj ,
where

Tj =
{
t ∈ (−∞, 0] : |t− wj | ≤ (2 log d)1/2 + η

}
, Tcj = (−∞, 0] \ Tj .
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Then ∫
Tj

 ∏
l : l ̸=j

Φ1(t− wl − yl)

φ1(t− wj − yj)dt

≤
∫
Tj

 ∏
l : l ̸=j

Φ1(t− wl + η)

φ1(t− wj + η)
φ1(t− wj − yj)

φ1(t− wj + η)
dt

≲
∫
Tj

 ∏
l : l ̸=j

Φ1(t− wl + η)

φ1(t− wj + η)dt

≤
∫ 0

−∞

 ∏
l : l ̸=j

Φ1(t− wl + η)

φ1(t− wj + η)dt = −∂jΨ(w − η),

where the second inequality holds for all y ∈ R(0, η) because η ≤ K/
√
log d. Also,∫

Tc
j

 ∏
l : l ̸=j

Φ1(t− wl − yl)

φ1(t− wj − yj)dt

≤
∫
Tc
j

φ1(t− wj − yj)dt ≲
∫ +∞

(2 log d)1/2
φ1(t)dt ≲ φ1

(
(2 log d)1/2

)
≲ d−1.

Combining these bounds, we obtain

d∑
j=1

sup
y∈R(0,η)

|∂jΨ(w + y)| ≲ 1−
d∑
j=1

∂jΨ(w − η)

= 1 +
d∑
j=1

∫
Rd
−

πj(s)φ(s− w + η)ds

= 1 +

∫
Rd
−

φ(s− w + η)ds ≤ 2,

where the last line follows from (10.1). This gives (10.4) for v = 1.

Now, fix v ≥ 2. By induction, we can assume that

max
1≤u≤v−1

sup
w∈Rd

d∑
j1,...,ju=1

sup
y∈R(0,η)

|∂j1,...,juΨ(w + y)| ≲ (log d)(u−1)/2. (10.8)

Also, define

J = {(j1, . . . , jv) ∈ {1, . . . , d}v : all j1, . . . , jv are different}
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and J c = {1, . . . , d}v \ J . Like in the v = 1 case, we can check that for all w ∈ Rd,
y ∈ R(0, η), and (j1, . . . , jv) ∈ J , we have

|∂j1...jvΨ(w + y)| ≲ d−v + (−1)v∂j1...jvΨ(w − η).

Therefore,

d∑
j1,...,jv=1

sup
y∈R(0,η)

|∂j1...jvΨ(w + y)|

≲ 1 +
∑

(j1,...,jv)∈J c

sup
y∈R(0,η)

|∂j1...jvΨ(w + y)|+ (−1)v
d∑

j1,...,jv=1

∂j1...jvΨ(w − η).

Here, for all w ∈ Rd,∣∣∣∣∣∣
d∑

j1,...,jv=1

∂j1...jvΨ(w)

∣∣∣∣∣∣ =
d∑

j1,...,jv=1

∫
Rd
−

πj1(s)∂j2,...,jvφ (s− w) ds

=
d∑

j2,...,jv=1

∫
Rd
−

∂j2,...,jvφ (s− w) ds ≲ (log d)(v−1)/2

by (10.1) and Lemma 2.2 in [23].

Hence, it remains to prove that∑
(j1,...,jv)∈J c

sup
y∈R(0,η)

|∂j1...jvΨ(w + y)| ≲ (log d)(v−1)/2. (10.9)

To do so, for all (j1, . . . , jv) ∈ J c, let N(j1, . . . , jv) denote the number of different indices
among v indices j1, . . . , jv. Then

J c = J1 ∪ · · · ∪ Jv−1,

where

Ju = {(j1, . . . , jv) ∈ J c : N(j1, . . . , jv) = u} , u = 1, . . . , v − 1.

Thus, ∑
(j1,...,jv)∈J c

sup
y∈R(0,η)

|∂j1...jvΨ(w + y)| =
v−1∑
u=1

∑
(j1,...,jv)∈Ju

sup
y∈R(0,η)

|∂j1...jvΨ(w + y)|.

Next, fix any u = 1, . . . , v − 1 and consider the corresponding sum on the right-hand side
of the equality above. Fix any (j1, . . . , jv) ∈ Ju. By the definition of Ju, there are exactly
u different indices among v indices j1, . . . , jv. Denote them by o1, . . . , ou and assume that
they appear k1, . . . , ku times, respectively, where k1 + · · ·+ ku = v. Then, denoting

o = (o1, . . . , ou), J o = {1, . . . , d} \ {o1, . . . , ou},
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we have for all w ∈ Rd that

|∂j1...jvΨ(w)| =

∣∣∣∣∣∣
∫ 0

−∞

∏
j∈J o

Φ1(t− wj)

u∏
i=1

∂kiΦ1(t− woi)dt

∣∣∣∣∣∣
≲
∫ 0

−∞

∏
j∈J o

Φ1(t− wj)

u∏
i=1

(
(|t− woi |ki−1 + 1)φ1(t− woi)

)
dt.

To bound the integral on the right-hand side here, consider the partition

(−∞, 0] = T0 ∪ T1 ∪ · · · ∪ Tu,

where

T0 =
{
t ∈ (−∞, 0] : ∨ui=1 |t− woi | ≤ (4v2 log d)1/2

}
and

Ti =
{
t ∈ (−∞, 0] \ T0 : i = arg max

1≤k≤u
|t− wok |

}
, i = 1, . . . , u.

Then∫
T0

∏
j∈J o

Φ1(t−wj)
u∏
i=1

(
(|t− woi |ki−1 + 1)φ1(t− woi)

)
dt ≲ (log d)(v−u)/2|∂o1...ouΨ(w)|

and, for all i = 1, . . . , u,∫
Ti

∏
j∈J o

Φ1(t− wj)

u∏
i=1

(
(|t− woi |ki−1 + 1)φ1(t− woi)

)
dt

≲
∫
Ti
|t− woi |v−uφ1(t− woi)dt ≲

∫ +∞

(4v2 log d)1/2
tvφ1(t)dt

≲
∫ +∞

(4v2 log d)1/2
exp(v log t− t2/2)dt ≲

∫ +∞

(4v2 log d)1/2
exp(−t2/4)dt

=
√
2

∫ +∞

(2v2 log d)1/2
exp(−t2/2)dt ≲ φ1

(
(2v2 log d)1/2

)
≲ d−v.

Combining these bounds, we obtain∑
(j1,...,jv)∈J u

sup
y∈R(0,η)

|∂j1...jvΨ(w + y)|

≲ 1 + (log d)(v−u)/2
d∑

o1,...,ou=1

sup
y∈R(0,η)

|∂o1...ouΨ(w + y)|

≲ 1 + (log d)(v−u)/2(log d)(u−1)/2 ≲ (log d)(v−1)/2,



48 CHERNOZHUKOV, CHETVERIKOV, AND KOIKE

where the third line follows from (10.8). Therefore, given that u = 1, . . . , v − 1 here is
arbitrary, (10.9) follows, which gives the asserted claim of this step and completes the
proof of the lemma. ■

Proof of Lemma 6.2. As in the proof of Lemma 6.1, it suffices to consider the case with
r = 0 and Σ = Id, which is what we do below. Our argument relies on the following
elementary identity.

Lemma 10.1. For any random vector W in Rd, we have

IEm(W ) = IEm0,ϕ(W ) = ϕ

∫ ϕ−1

0
IP(W ≤ s)ds.

Proof. For any random variable τ , we have, with IPτ being the law of τ ,

IE[g(τ)] =

∫
R
g(t)IPτ (dt) = −

∫
R

(∫ ∞

t
g′(s)ds

)
IPτ (dt)

= −
∫ ∞

−∞

(∫
R
1(−∞,s](t)IP

τ (dt)

)
g′(s)ds

= −
∫ ∞

−∞
IP(τ ≤ s)g′(s)ds = ϕ

∫ ϕ−1

0
IP(τ ≤ s)ds.

Applying this identity with τ = max1≤j≤dWj , we obtain

IE[m(W )] = ϕ

∫ ϕ−1

0
IP

(
max
1≤j≤d

Wj ≤ s

)
ds = ϕ

∫ ϕ−1

0
IP(W ≤ s)ds.

This completes the proof. ■

Using Lemma 10.1, we can rewrite ρ(w) as

ρ(w) = ϕ

∫ ϕ−1

0
IP(w + ϵZ ≤ s)ds

= ϕ

∫ ϕ−1

0

{∫
Rd

1Rd
−
(w − s+ ϵz)φ(z)dz

}
ds

= ϕ

∫ ϕ−1

0

{∫
Rd

1Rd
−
(ϵz)φ(z − ϵ−1(w − s))dz

}
ds

= ϕ

∫ ϕ−1

0

{∫
Rd
−

φ(z − ϵ−1(w − s))dz

}
ds.

Thus, we have

∂j1,...,jvρ(w) =
(−1)vϕ

ϵv

∫ ϕ−1

0

{∫
Rd
−

∂j1,...,jvφ(z − ϵ−1(w − s))dz

}
ds. (10.10)
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Combining this identity with Lemma 2.2 in [23] gives the asserted claim. ■

Proof of Lemma 6.3. As in the beginning of the proof of Lemma 6.1, define Σ1 = Σ−σ2∗Id
and Σ2 = σ2∗Id and let Z1 and Z2 be independent random vectors in Rd such that Z1 ∼
N(0,Σ1) and Z2 ∼ N(0,Σ2). Then

sup
w∈(A2\A1)c

d∑
j1,...,jv=1

sup
y∈R(0,ϵσ∗η)

|∂j1,...,jvρr,ϕ,ϵ,Σ(w + y)|

≤ IE

 sup
w∈(A2\A1)c

d∑
j1,...,jv=1

sup
y∈R(0,ϵσ∗η)

|∂j1,...,jvρr,ϕ,ϵσ∗,Id(w + ϵZ1 + y)|

 .
Also, by the union and Chernoff’s bounds,

IP
(
‖Z1‖∞ > κ

)
≤ 2de−κ

2/2 ≤ 2de−(κ−η)2/4.

Thus, by Lemma 6.2,

IE

 sup
w∈(A2\A1)c

d∑
j1,...,jv=1

sup
y∈R(0,ϵσ∗η)

|∂j1,...,jvρr,ϕ,ϵσ∗,Id(w + ϵZ1 + y)|


≲ sup

w∈(A′
2\A′

1)
c

d∑
j1,...,jv=1

sup
y∈R(0,ϵσ∗η)

|∂j1,...,jvρr,ϕ,ϵσ∗,Id(w + y)|+ (log d)v/2

(ϵσ∗)v
× de−(κ−η)2/4,

where
A′

1 = {w ∈ Rd : w ≤ r − ϵκ}, A′
2 = {w ∈ Rd : w ≤ r + ϵκ+ ϕ−1}.

Combining these inequalities shows that the asserted claim for general Σ follows from the
asserted claim for Σ = Id with replacing A1 and A2 by A′

1 and A′
2, respectively. In what

follows, we therefore set Σ = Id. Similarly, again as in the proof of Lemma 6.1, we set
r = 0.

Further, note that identity (10.10) derived in the proof of Lemma 6.2 did not rely on
any specific assumptions of Lemma 6.2, and so remains valid under current assumptions.
We will use this identity below.

Next, for any w ∈ Rd and s ∈ [0, ϕ−1], if maxj wj < −ϵκ, we have maxj(wj − s) <
−ϵκ− s < −ϵκ; if maxj wj > ϵκ+ ϕ−1, we have maxj(wj − s) > ϵκ+ ϕ−1 − s > ϵκ. So, we
deduce from (10.10) that

sup
w∈(A′

2\A′
1)

c

d∑
j1,...,jv=1

sup
y∈R(0,ϵη)

|∂j1,...,jvρ(w + y)|

≤ sup
w∈Rd:maxj wj /∈[−ϵκ,ϵκ]

d∑
j1,...,jv=1

sup
y∈R(0,ϵη)

ϕ

ϵv

∫ ϕ−1

0

∣∣∣∣∣
∫
Rd
−

∂j1,...,jvφ(z − ϵ−1(w + y))dz

∣∣∣∣∣ ds
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≤ sup
x∈Rd:maxj xj /∈[−κ,κ]

d∑
j1,...,jv=1

sup
y∈R(0,η)

1

ϵv

∣∣∣∣∣
∫
Rd
−

∂j1,...,jvφ(z − x− y)dz

∣∣∣∣∣ .
Thus, we complete the proof once we show

sup
x∈Rd:maxj xj /∈[−κ,κ]

d∑
j1,...,jv=1

sup
y∈R(0,η)

∣∣∣∣∣
∫
Rd
−

∂j1,...,jvφ(z − x− y)dz

∣∣∣∣∣ ≲ dve−(κ−η)2/4. (10.11)

To prove (10.11), we introduce some additional notations. For an integer ν ≥ 0, the ν-th

Hermite polynomial is denoted by Hν : Hν(t) = (−1)νφ1(t)
−1φ

(ν)
1 (t). We denote by tν the

maximum root of Hν when ν ≥ 1. For example, t1 = 0, t2 = 1, t3 =
√
3. It is evident that

Hν is positive and strictly increasing on (tν ,∞). We also have

t1 < t2 < · · · . (10.12)

See e.g. [38, Theorem 3.3.2]. When ν ≥ 1, we define the function hν on R by hν(t) =
Hν−1(t)φ1(t), t ∈ R. A simple computation shows h′ν(t) = −hν+1(t); hence hν is strictly
decreasing on [tν ,∞). Moreover, since hν is either even or odd, we have

|hν(−t)| = |hν(t)| for any t ∈ R. (10.13)

Finally, for every u ∈ {1, . . . , v}, we set

Nu(v) := {(ν1, . . . , νu) ∈ Zu : ν1, . . . , νu ≥ 1, ν1 + · · ·+ νu = v},
Ju(d) := {(j1, . . . , ju) ∈ {1, . . . , d}u : j1, . . . , ju are mutually different}.

We turn to the main body of the proof of (10.11). We have for any x ∈ Rd

d∑
j1,...,jv=1

sup
y∈R(0,η)

∣∣∣∣∣
∫
Rd
−

∂j1,...,jvφ(z − x− y)dz

∣∣∣∣∣
≲

v∑
u=1

∑
(ν1,...,νu)∈Nu(v)

∑
(j1,...,ju)∈Ju(d)

sup
y∈R(0,η)

∣∣∣∣∣
∫
Rd
−

∂ν1j1 · · · ∂νuju φ(z − x− y)dz

∣∣∣∣∣ .
Therefore, we obtain the desired result once we show

sup
x∈Rd:maxj xj>κ

∑
(j1,...,ju)∈Ju(d)

sup
y∈R(0,η)

∣∣∣∣∣
∫
Rd
−

∂ν1j1 · · · ∂νuju φ(z − x− y)dz

∣∣∣∣∣ ≲ dve−(κ−η)2/4 (10.14)

and

sup
x∈Rd:maxj xj<−κ

∑
(j1,...,ju)∈Ju(d)

sup
y∈R(0,η)

∣∣∣∣∣
∫
Rd
−

∂ν1j1 · · · ∂νuju φ(z − x− y)dz

∣∣∣∣∣ ≲ dve−(κ−η)2/4

(10.15)
for any (ν1, . . . , νu) ∈ Nu(v) with u ∈ {1, . . . , v}.
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For every x ∈ Rd, set

I(x) :=
∑

(j1,...,ju)∈Ju(d)

sup
y∈R(0,η)

∣∣∣∣∣
∫
Rd
−

∂ν1j1 · · · ∂νuju φ(z − x− y)dz

∣∣∣∣∣ .
Then we have

I(x) =
∑

(j1,...,ju)∈Ju(d)

u∏
q=1

sup
y∈R(0,η)

∣∣hνq(−xjq − yjq)
∣∣ ∏
k:k ̸=j1,...,ju

Φ1(−xk − yk).

In particular, we obtain I(x) ≲ dv. Therefore, it is enough to prove (10.14)–(10.15) when
κ− η > tv ∨ 1 because we can take a sufficiently large constant C ′

v depending only on v so

that I(x) ≤ C ′
vd
ve−(κ−η)2/4 for all x ∈ Rd and κ− η ≤ tv ∨ 1.

Let us consider the case maxj xj > κ. Then there is an l ∈ {1, . . . , d} such that xl > κ.
For any positive integer ν ≤ v, hν is decreasing on [tv,∞) (recall (10.12)), so we have

|hν(−xl − yl)| ≲ (κ− η)ve−(κ−η)2/2 for any y ∈ R(0, η) (recall (10.13) and κ− η > tv ∨ 1).
Hence, noting that |hν | is bounded by a constant depending only on ν, we obtain

I(x) ≲
∑

(j1,...,ju)∈Ju(d)

(κ− η)ve−(κ−η)2/2 ∨ Φ1(−κ+ η)

≤ dvκve−κ
2/2 ∨ Φ1(−κ+ η).

Since Φ1(−κ + η) ≤ e−(κ−η)2/2 by Chernoff’s bound and supt>0 t
ve−t

2/4 < ∞, we obtain
(10.14).

Next consider the case maxj xj < −κ. Then we have −xj > κ for all j = 1, . . . , d. Since
κ− η > tv and hν is decreasing on [tv,∞) for any positive integer ν ≤ v, we obtain

I(x) ≤
∑

(j1,...,ju)∈Ju(d)

u∏
q=1

hνq(κ− η) ≲ du
u∏
q=1

(κ− η)νq−1e−(κ−η)2/2

≲ dv(κ− η)v−1e−(κ−η)2/2 ≲ dve−(κ−η)2/4,

where the third inequality follows from
∑

q νq = v and 1 ≤ u ≤ v, and the last inequality

follows from supt>0 t
v−1e−t

2/4 <∞. Hence we obtain (10.15) and complete the proof. ■

11. Auxiliary Lemmas

Lemma 11.1. Let Z = (Z1, . . . , Zd)
T be a centered Gaussian random vector in Rd with a

non-singular covariance matrix Σ = (Σjk)
d
j,k=1. Then for any j = 1, . . . , d, ϵ > 0, w ∈ Rd,
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and bounded and measurable h : Rd → R,

IEh(w + ϵZ)Zj = ϵ

d∑
k=1

∂khϵ(w)Σjk,

where hϵ : Rd → R is given by hϵ(w) = IEh(w + ϵZ) for all w ∈ Rd.

Remark 11.1. This lemma is a version of Stein’s identity suitable for non-differentiable
functions h. Although the lemma seems to be rather well known, we provide its proof
below for reader’s convenience. ■

Proof. Observe that the asserted claim for general ϵ > 0 follows from the asserted claim
for ϵ = 1 by rescaling of the vector Z. Therefore, we only consider the case ϵ = 1.

Now, fix any j = 1, . . . , d, w ∈ Rd, and bounded and measurable h : Rd → R. Then,
denoting A = Σ−1/2, so that V = AZ ∼ N(0, Id), we have

hϵ(w) = IEh(w + Z) = IEh(w +A−1V )

=

∫
h(w +A−1v)φ(v)dv = |A|

∫
h(s)φ(A(s− w))ds,

where φ is the pdf of the standard normal distribution on Rd and |A| is the determinant
of A. Thus, differentiating under the integral, which is allowed by Corollary A.10 in [22],
for all k = 1, . . . d,

∂khϵ(w) = −|A|
∫
h(s)

d∑
l=1

Akl∂lφ(A(s− w))ds

= −
∫
h(w +A−1v)

d∑
l=1

Akl∂lφ(v)dv =

∫
h(w +A−1v)

d∑
l=1

Aklvlφ(v)dv.

Hence,

d∑
k=1

∂khϵ(w)Σjk =

∫
h(w +A−1v)

d∑
l=1

d∑
k=1

ΣjkAklvlφ(v)dv

=

∫
h(w +A−1v)

d∑
l=1

(Σ1/2)jlvlφ(v)dv = IEh(w + Z)Zj ,

where the last equality follows from Z = Σ1/2V . The asserted claim follows. ■

Lemma 11.2. Let X, Y , and Z be independent random vectors in Rd. Denote

ζ := sup
r∈Rd

∣∣∣IP(X ≤ r)− IP(Y ≤ r)
∣∣∣ and γ := sup

r∈Rd

∣∣∣IP(X + Z ≤ r)− IP(Y + Z ≤ r)
∣∣∣
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and let ϵ > 0 be such that α := IP(Z ∈ R(0, ϵ)) > 1/2. Then

ζ ≤ γ + ατ

2α− 1
,

where

τ := sup
r∈Rd

∣∣∣IP(Y ≤ r + 2ϵ)− IP(Y ≤ r)
∣∣∣.

Remark 11.2. This result is an adaptation of Lemma 2.4 from [23] with hopefully easier
to follow notations and is a version of Lemma 11.4 from [9]. We provide a proof here for
reader’s convenience. ■

Proof. Note that

ζ = max

(
sup
r∈Rd

(
IP(X ≤ r)− IP(Y ≤ r)

)
, sup
r∈Rd

(
IP(Y ≤ r)− IP(X ≤ r)

))
and consider the case

ζ = sup
r∈Rd

(
IP(X ≤ r)− IP(Y ≤ r)

)
. (11.1)

In this case, for any r ∈ Rd, we have

IP(X + Z ≤ r + ϵ)− IP(Y + Z ≤ r + ϵ) = I1,r + I2,r, (11.2)

where

I1,r = IE
[(

1{X + Z ≤ r + ϵ} − 1{Y + Z ≤ r + ϵ}
)
1{Z ∈ R(0, ϵ)}

]
,

I2,r = IE
[(

1{X + Z ≤ r + ϵ} − 1{Y + Z ≤ r + ϵ}
)
1{Z /∈ R(0, ϵ)}

]
.

Here, denoting ζr := IP(X ≤ r)− IP(Y ≤ r), we have

I1,r ≥ IE
[(

1{X ≤ r} − 1{Y ≤ r + 2ϵ}
)
1{Z ∈ R(0, ϵ)}

]
= IE

[
1{X ≤ r} − 1{Y ≤ r + 2ϵ}

]
IE
[
1{Z ∈ R(0, ϵ)}

]
≥ (ζr − τ)α

and

I2,r = IE
[
IE
[
1{X + Z ≤ r + ϵ} − 1{Y + Z ≤ r + ϵ} | Z

]
1{Z /∈ R(0, ϵ)}

]
≥ −ζ(1− α).

Therefore, taking the supremum over r ∈ Rd in (11.2) and recalling (11.1), we have

γ ≥ ζ(2α− 1)− τα.

Rearranging the terms in this inequality gives the asserted claim under (11.1), and since
the case

ζ = sup
r∈Rd

(
IP(Y ≤ r)− IP(X ≤ r)

)
is similar, the proof is complete. ■
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Lemma 11.3 (Nazarov’s inequality). Let Z = (Z1, . . . , Zd)
T be a centered Gaussian ran-

dom vector in Rd such that IEZ2
j ≥ 1 for all j = 1, . . . , d with d ≥ 3. Then for any z ∈ Rd

and any ε > 0,

IP(Z ≤ z + ε)− IP(Z ≤ z) ≤ Cε
√
log d,

where C > 0 is a universal constant.

Proof. See Lemma A.1 in [15]. ■

Lemma 11.4. Let X1, . . . , Xn be independent centered random vectors in Rd with d ≥ 2.
Define the following quantities: Z := max1≤j≤d |

∑n
i=1Xij |,M := max1≤i≤nmax1≤j≤d |Xij |,

and σ2 := max1≤j≤d
∑n

i=1 IE[X
2
ij ]. Then

IE[Z] ≤ C
(
σ
√
log d+

√
IE[M2] log d

)
,

where C > 0 is a universal constant.

Proof. See Lemma 8 in [14] ■

Lemma 11.5. Assume the setting of Lemma 11.4. (i) For every η > 0, β ∈ (0, 1] and
t > 0,

IP{Z ≥ (1 + η)IE[Z] + t} ≤ exp{−t2/(3σ2)}+ 3 exp{−(t/(C‖M‖ψβ
))β},

where C > 0 is a constant depending only on η, β. (ii) For every η > 0, s ≥ 1 and t > 0,

IP{Z ≥ (1 + η)IE[Z] + t} ≤ exp{−t2/(3σ2)}+ C ′IE[M s]/ts,

where C ′ > 0 is a constant depending only on η and s.

Proof. See Theorem 4 in [1] for case (i) and Theorem 2 in [2] for case (ii). ■

Lemma 11.6. Let X1, . . . , Xn be independent random vectors in Rd with d ≥ 2 such
that Xij ≥ 0 for all i = 1, . . . , n and j = 1, . . . , d. Define Z := max1≤j≤d

∑n
i=1Xij and

M := max1≤i≤nmax1≤j≤dXij. Then

IE[Z] ≤ C

(
max
1≤j≤d

IE

[
n∑
i=1

Xij

]
+ IE[M ] log d

)
,

where C > 0 is a universal constant.

Proof. See Lemma 9 in [14]. ■

Lemma 11.7. Assume the setting of Lemma 11.6. (i) For every η > 0, β ∈ (0, 1] and
t > 0,

IP{Z ≥ (1 + η)IE[Z] + t} ≤ 3 exp{−(t/(C‖M‖ψβ
))β},
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where C > 0 is a constant depending only on η, β. (ii) For every η > 0, s ≥ 1 and t > 0,

IP{Z ≥ (1 + η)IE[Z] + t} ≤ C ′IE[M s]/ts,

where C ′ > 0 is a constant depending only on η, s.

Proof. See Lemma E.4 in [15]. ■
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[38] Szegö, G. (1939). Orthogonal Polynomials. American Mathematical Society.
[39] Tao, T. (2012). Topics in Random Matrix Theory. American Mathematical Society.
[40] van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes.

Springer, New York.
[41] Zhang, X. and Cheng, G. (2018). Gaussian approximation for high dimensional vector

under physical dependence. Bernoulli 24, 2640–2675.
[42] Zhang, D. and Wu, W. (2017). Gaussian approximation for high-dimensional time

series. Ann. Statist. 45, 1895–1919.
[43] Zhilova, M. (2020). Nonclassical Berry-Esseen inequalities and accuracy of the boot-

strap. Ann. Statist. 48, 1922–1939.

(V. Chernozhukov) Department of Economics and Center for Statistics & Data Science, MIT,
50 Memorial Drive, Cambridge, MA 02142, USA.

Email address: vchern@mit.edu

(D. Chetverikov) Department of Economics, UCLA, Bunche Hall, 8283, 315 Portola Plaza,
Los Angeles, CA 90095, USA.

Email address: chetverikov@econ.ucla.edu

(Y. Koike) Mathematics and Informatics Center and Graduate School of Mathematical
Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan.

Email address: kyuta@ms.u-tokyo.ac.jp


	CEMMAP COVER.pdf
	OptimalHD-CLT-v13.pdf



