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ABSTRACT. This paper proposes a unified approach to derive sharp bounds on all conventional policy

parameters when the instrumental variables (IVs) are potentially invalid. Using a Vine Copula approach,

we propose a novel characterization of the identified sets for the marginal treatment effect (MTE) and

the policy-relevant treatment effect (PRTE) parameters. Our method has various advantages: First,

it explicitly demonstrates how imposing different IV-related assumptions with different credibility

levels affects the MTE and PRTE’s identified set. Second, it can be used to test model specifications

and hypotheses about various imperfect IV-related assumptions. Third, it provides a tractable way

to inform policy choices in the presence of uncertainty of the validity of identifying assumptions.

Our approach enlarges the MTE framework’s scope by showing how it can be used to inform policy

decisions even when valid instruments are not available.
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1. INTRODUCTION

Evaluating the impact of an intervention is fundamental for policymakers. It generates knowledge

about a program’s effectiveness and determines whether it should be scaled up, down, or discontinued.

However, the program (treatment) effects may vary widely across economic agents, and expectations

about individual treatment effects may trigger strategic participation. In such an environment,

uncovering aggregate treatment effect parameters and using them as baseline information to evaluate

new policies is challenging. Heckman and Vytlacil (2005, HV05 hereafter) propose a key causal

parameter: the marginal treatment effect (MTE). The identification of the MTE allows researchers to

recover conventional causal parameters of interest, such as average treatment effect (ATE), Local

ATE (LATE), and the ATE on treated/untreated (ATT/ATUT). It also allows researchers to evaluate

new policies through the policy-relevant treatment effect parameter (PRTE). Since its introduction,

various approaches have been proposed to identify the MTE and then the PRTE. HV05 requires

the treatment selection to be defined by a single threshold crossing model —which imposed a

monotonicity restriction, see (see Vytlacil, 2002)—and a continuous instrument. Recently, Brinch,

Mogstad, and Wiswall (2017), Mogstad, Santos, and Torgovitsky (2018) shows that the MTE can be

recovered even in the presence of discrete instruments but at the cost of imposing some parametric or

shape restrictions. Lee and Salanié (2018) relaxes the single threshold selection rule and shows the

identification of the MTE in the presence of multiple thresholds.

However, all existing MTE identification strategies strongly rely on the availability of valid

instruments. The valid instruments assumption often creates a great deal of controversy amongst

economists, see discussions in Deaton (2009) and Deaton, Heckman, and Imbens (2010). Manski

(2011) questioned the “credibility" of policy predictions based on parameters obtained under doubtful,

contestable, or non-testable restrictions and asserted that it would be harmful to policy choice. Then,

there is a clear tension between the strength of the assumptions used to recover the MTE and the

“credibility" of any policy recommendations based on it. One way to resolve this tension, as advocated

by Manski (2011), is what he referred as layered policy analysis. Layered policy analysis demands

researchers to visit various assumptions at different levels of credibility and analyze how this affects

policy predictions.1

1Regarding the layered analysis, Manski (2011, F289) said: “A researcher who performs an instructive layered policy
analysis and exposits work clearly may see himself as having accomplished the objective of informing choice."
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This paper’s first main contribution is to show how one can use a modified version of the MTE to

perform informative and credible policy analyses on conventional policy parameters, specifically

the PRTE. To accommodate possibly invalid instruments, we introduce a modified MTE parameter,

namely the disaggregated marginal treatment effect (DMTE). To fix the idea, consider the model

Y = Y1D + Y0(1− D) and D = 1{P(Z) ≥ V}, where Y1 and Y0 are potential outcomes, D is

the treatment, Y is the observed outcome, Z are (possibly invalid) instrument variables, and V is

independent with P(Z) and is normalized to have U[0, 1] distribution. We define the DMTE as

the expectation of treatment effect conditioning on V and P(Z) —the propensity score, that is,

DMTE(v, p) ≡ E[Y1 −Y0|V = v, P(Z) = p].2 We show that all the aforementioned conventional

policy parameters, including the MTE, can be expressed as a weighted average of the DMTE under

the threshold-crossing treatment selection rule only, making the DMTE a more primitive parameter

than the MTE. Unlike the MTE, the mapping between the DMTE and other policy parameters

does not require any element of Z to be a valid instrument. Furthermore, the weights are directly

identifiable from the data. Therefore, we can partially identify any of the conventional policy

parameters as long as the identified set for DMTE is available.

Secondly, we propose a Vine Copula approach to partially identify the DMTE. We show that under

the assumption that V is independent with P(Z) ≡ P, the dependence structure among variables

(Yd, P, V) is fully captured by two copula functions. The first one is the conditional copula of Yd

and V given P, i.e. CYd,V|P(., .). This copula characterizes the endogenous selection in the model.

If CYd,V|P(., .) takes a product form, then we have “selection on observables”. There is no issue

of endogenous selection once P is controlled; otherwise, “selection on unobservables” exists. The

other copula function is CYd,P(., .), which captures the dependence between the potential outcomes

and the propensity score. This copula measures the “quality of instruments” and is a key function

that we investigate in this paper. For example, if P(Z) is a valid instrument, as assumed in existing

literature, then it must be the case that CYd,P(x1, x2) = x1x2. Therefore, we can view the IV

independence assumption as a shape restriction on the unknown function CYd,P(x1, x2). Under the

copula formulation, we show that calculating the identified set of the DMTE boils down to finding

2Like the LATE, the DMTE itself is an instrument-dependent parameter. It is not used here for causal interpretation but
rather as an intermediary quantity to recover conventional policy parameters.
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the set of conditional bivariate copulas that respect a set of equality constraints and any additional

constraints that researchers would like to impose on CYd,P(x1, x2).

In our Vine Copula characterization, the identified set of DMTE depends on restrictions that we

impose on CYd,P(x1, x2) in an explicit way. At one extreme, when we impose the IV-independence

assumption, the set of equality constraints pins down a unique copula CYd,V|P(., .), which therefore

allows the point identification of the MTE and then other policy parameters. At the other extreme,

where we impose no restrictions on CYd,P(., .), our characterization recovers the sharp bounds on

the DMTE under only the single threshold crossing assumption. One can also impose restrictions

that are weaker than IV-independence. For instance, we show that imposing the Monotone IV

assumption—see Manski and Pepper (2000)— is equivalent to considering only the set of copulas

CYd,P(x1, x2) that are concave in x2. In this case, we recover the sharp identified set under monotone

IV. As we demonstrate in more detail in the main text, our approach, in general, provides empirical

researchers a very flexible way to derive the identified set on the DMTE under any dependence

restrictions she is willing to impose between the IV and the potential outcomes. From this perspective,

our method shares the same spirit as the layered policy analysis discussed in Manski (2011).

To make our approach more operational, we also consider a semi-parametric version of our

characterization by imposing parametric assumptions on the copulas but leaving the marginals entirely

nonparametric. In this case, we show that the identification analysis boils down to constructing

identified sets for only the copula function’s finite-dimensional parameters. As discussed in Chen,

Fan, and Tsyrennikov (2006), using this type of semi-parametric approach to study multivariate

distributions has gained popularity in diverse fields for its flexibility and ability to circumvents the

curse of dimensionality.

It is worth noting that the assumptions — IV-independence and monotonicity assumptions—

imposed by HV05 to identify the MTE have testable implications (see HV05 Appendix A). As a

by-product contribution, we provide a more tractable characterization of MTE assumptions’ sharp

testable implications. We show that the proposed characterization is sufficient to screen all possible

observable violations of the MTE assumptions, and one can test it using existing inferential methods,

e.g., Hsu, Liu, and Shi (2019). The rejection of the testable implication demands one to relax

some of the MTE assumptions, and in such cases, our proposed layered analysis provides a possible
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solution. Our approach can also be used to perform specification tests for various alternative imperfect

IV-related assumptions a researcher would like to consider.

Finally, we show that our identification strategy for MTE and PRTE also applies to models in

which multiple thresholds on multiple unobserved heterogeneities define the selection equation.

Therefore, this current paper (i) extends the Lee and Salanié (2018) identification approach to the

case when none of the existing continuous covariates satisfies the IV-independence assumption; and

(ii) also applies to the so-called "actual monotonicity" recently discussed in Mogstad, Torgovitsky,

and Walters (2019).

We organize the rest of the paper as follows. In Section 2, we introduce the intermediate quantity

DMTE and build its connection with other policy parameters. We characterize the identified set for

DMTE under various assumptions on the IV and also discuss the implementation of our method in a

semi-parametric setup in Section 3. We extend the analysis to a two-threshold model in Section 4.

Section 5 concludes the paper.

2. POLICY PARAMETERS AND DISAGGREGATED MTE

We adopt the framework of the potential outcomes model: Y = Y1D + Y0(1 − D), where

Y ∈ Y ⊆ R is the observed outcome taking values from the support Y , D ∈ {0, 1} is the observed

treatment indicator, and (Y1, Y0) are potential outcomes. Heckman and Vytlacil (1999) trace the

genealogy of this model, and we refer to them for terminology and attribution. Let Z be a vector of

covariates taking values from the support Z ⊆ Rdz for dz ≥ 1. The following Assumptions 1 and 2

are required for the point identification of the MTE nonparametrically:

Assumption 1 (Single Threshold-Crossing: STC). The selection mechanism is governed by the

following threshold crossing model D = 1{ν(Z) ≥ V} for some measurable and non-trivial

function ν, where V follows a uniform distribution over the interval [0, 1] and is statistically

independent of the vector of covariates Z, i.e., Z ⊥ V.3

Hereafter, we use the shorthand notation P(Z) for P(D = 1|Z), a quantity directly recoverable

from data. We can see that under Assumption 1, ν(·) is identified over the support of Z since

P(z) = P(V ≤ ν(z)|Z = z) = ν(z) for all z ∈ Z . When it cause no confuse, we will use the

3V follows uniform distribution is a normalization. Please see Vytlacil (2002) for primitive conditions under which this
normalization is without loss of generality.
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shorthand notation P or p to denote P(Z) or P(z), respectively. Let P ⊆ [0, 1] denote the support

of P(Z) and P(z) a generic element of P . For the main text, we restrict our attention to the cases

where the set of limit points of P , denoted by L(P), is non-empty. This excludes the case where P

is discrete.

Assumption 2 (IV Independence). Conditioning on the first stage unobserved variable V, the

propensity score P is statistically independent with the potential outcomes, i.e. P(Z) ⊥ Yd|V for

d = 0, 1.

Assumptions 1 and 2 and the whole remaining analysis, distributional assumptions and theoretical

results, are understood to be conditional on a set of observed covariates X, which will be omitted

from the notation for sake of simplicity. In the following, we will first review why MTE, or the

marginal treatment response (MTR), is not point identified without Assumption 2. Then we will

examine the restrictions that can be used for partial identification. Let g : Y → R be a real integrable

function such that E[|g(Yd)|] < ∞. Taking d = 1 as illustration and following the identification

strategy of HV05, for all p ∈ L(P):

E[g(Y)D|P = p] = E[g(Y1)|D = 1, P = p]P(D = 1|P = p)

= E[g(Y1)|V ≤ p, P = p]P(V ≤ p|P = p) = E[g(Y1)|V ≤ p, P = p]p

=
∫ p

0
E[g(Y1)|V = v, P = p]dFV|P=p =

∫ p

0
E[g(Y1)|V = v, P = p]dv,

where all equalities holds only under Assumption 1. The key equation is then:

E[g(Y)D|P = p] =
∫ p

0
E[g(Y1)|V = v, P = p]dv. (1)

By taking the derivative of the previous equation respect with p we obtain:

∂

∂p
E[g(Y)D|P = p] = E[g(Y1)|V = p, P = p] +

∫ p

0

∂

∂p
E[g(Y1)|V = v, P = p]dv. (2)

It can be seen that the left hand side of the equation, also known as the the Local IV (LIV) estimand

proposed by HV05, can no longer identify the MTR (and MTE) because (i) ∂
∂p E[g(Y1)|V = v, P =

p] 6= 0, and (ii) E[g(Y1)|V = p, P = p] is in general different from E[g(Y1)|V = p] when P

and Y1 are not independent conditioning on V. Nevertheless, Equation (1) still contains useful
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information about the quantity

θd
g(v, p) ≡ E[g(Yd)|V = v, P = p], d = 0, 1, (v, p) ∈ [0, 1]×P ,

which we refer in the rest of paper as the disaggregated marginal treatment responses with respect to

the function g and abbreviate it as DMTRg. Analogous to the relationship between MTR and MTE,

we define another intermediate quantity disaggregated marginal treatment effect (DMTE) as:

DMTE(v, p) ≡ E[Y1 −Y0|V = v, P = p], ∀(v, p) ∈ [0, 1]×P . (3)

DMTR implies DMTE since DMTE(v, p) = θ1
g(v, p)− θ0

g(v, p) with g(·) being chosen as the

identity function.4 5 It is apparent from Equation (3) that the identification of MTR (hence MTE) is

readily available once DMTR is recovered since

E[g(Yd)|V = v] =
∫ 1

0
E[g(Yd)|V = v, P = t] fP|V(t|v)dt =

∫
P

θd
g(v, t) fP(t)dt,

and

MTE(v) ≡ E[Y1 −Y0|V = v] =
∫
P

DMTE(v, t) fP(t)dt,

where fP|V = fP by Assumption 1 and the density fP of P is directly identified from data. Note that

when P(Z) ⊥ Yd|V as in HV05, the DMTE is exactly equal to the MTE and we have

DMTE(v, p) = DMTE(v, p′) = MTE(v), (4)

for all (p, p′) ∈ P × P and v ∈ [0, 1]. Therefore, although the DMTR and DMTE are not

necessarily parameters of direct interest—for being instrument-dependent—they do serve as useful

intermediate quantities to identify the MTR, MTE, and other useful policy parameters such as the

ATE, ATT, ATUT. Specifically, we will show in Theorem 1 below that all these mentioned parameters

can be expressed as a weighted average of DMTE under Assumption 1 only.

Another useful parameter that often draws interest is the policy relevant treatment effect (PRTEg):

4One can also recover its distributional version by choosing g(Yd) = 1[Yd ≤ y], i.e. P(Y1 ≤ y|V = v, P = p)−P(Y0 ≤
y|V = v, P = p), ∀(v, p) ∈ [0, 1]×P .
5It is worth-noting that our DMTE shares a superficial resemblance with the Redefined MTE (M̃TE) introduced in Zhou
and Xie (2019). In presence of a vector of exogenous covariates X, M̃TE(v, p) = E[Y1 − Y0|V = v, P(Z, X) = p]
while DMTE(v, p, x) = E[Y1 −Y0|V = v, P(Z, X) = p, X = x]. Unlike the DMTE, when X|P(X, Z) has a degenerate

distribution, M̃TE is equal to the MTE, please see Zhou and Xie (2019, Page 3076, eq 8).
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PRTEg ≡
E[g(Y)|a′]−E[g(Y)|a]

E[D|a′]−E[D|a] ,

where a′ and a denote the alternative policy under consideration and the baseline policy, respectively.

Please refer to Heckman and Vytlacil (2001), HV05, and Carneiro, Heckman, and Vytlacil (2010)

for a detailed discussion about the PRTE.

Hereafter, Let Ya
d denote the potential outcome when the agent is externally set to treatment d

under policy a. In HV05, the identification of PRTE rely on both Assumptions 1 and 2 and the

following policy invariant assumption:

Assumption 3 (HV05, Policy Invariance). (Ya′
d , Va′) ∼ (Ya

d , Va) for a 6= a′.

Under Assumptions 1 to 3, HV05 shows that

PRTEg =
∫ 1

0

FPa(v)− FPa′ (v)
EF

Pa′ [P]−EFPa [P]︸ ︷︷ ︸
wPRTE(v)

MTEg(v)dv.

The PRTE is designed by HV05 to evaluate a new policy that induces a change in P but keeping

the full joint distribution of latent variable unchanged from the baseline policy to the targeting

alternative policy, when Assumptions 1 to 3 hold. In the following, we will propose an alternative

policy invariance assumption and show that the PRTEg can be recovered even when Assumption 2

fails to hold.

Assumption 4 (Conditional Policy Invariance). Ya′
d |Va′ , Pa′ ∼ Ya

d |Va, Pa with Va′ ∼ U[0, 1],

Va ∼ U[0, 1] and Ya′
d ∼ Ya

d for a 6= a′.

In Assumption 4, we maintain the same normalization for the distribution of V in both baseline

policy and alternative policy environments. Notice that under Assumption 2, Assumption 4 holds if

and only if Assumption 3 holds. Therefore, if the independence assumption holds, our conditional

policy-invariance becomes equivalent to the HV05’s policy-invariance assumption. The difference is

that without the IV-independence assumption, Assumption 4 requires the DMTEa
g to be invariant

from a policy a to an alternative policy a′, namely DMTEa′
g =DMTEa

g. Unlike HV05, our conditional

policy-invariance assumption does not impose the invariance of the MTEa
g.
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Theorem 1 below shows that the PRTEg can be written as a weighted average of the DMTEg

under Assumptions 1 and 4. We now summarize the above discussion in the following Theorem.

Theorem 1. Suppose that Assumption 1 is satisifed, then

(i) MTEg(v) =
∫ 1

0 DMTEg(v, p) fP(p)dp;

(ii) for any s ∈ {ATEg, LATEg(u, u′), ATTg, ATUTg}6 and weights ωs(v, p) listed in Table 1

below, we have

s =
∫ 1

0

∫ 1

0
ωs(v, p)DMTE(v, p)dvdp. (5)

(iii) If in addition Assumption 4 holds, Equation (5) holds with s = PRTE.

TABLE 1. Policy Parameters and DMTE

Parameters weights ωs(v, p)
ATEg fP(p)

ATTg
fP(p)1{v<p}

E[P]

ATUTg
fP(p)1{v>p}

E[1−P]

LATEg(u, u′)
fP(p)1{u<v≤u′}

u′−u

PRTEg
[ f

Pa′ (p)− fPa (p)]1{v≤p}
EF

Pa′
[P]−EFPa [P]

Proof. See Appendix A.1. �

Notice that one can easily verify that when Assumption 2 holds, DMTEg(v, p) = DMTEg(v)

and then
∫ 1

0 ws(v, p)dp = ws(v) for any s ∈ {ATEg, LATEg(u, u′), ATTg, ATUTg, PRTEg}, with

ws(v) being exactly the weights derived in HV05. Although DMTEg itself may or may not be the

main parameter of interest, Theorem 1 shows that it plays an important role in the identification of

many common parameters of interest. Note that the weights are known and can be estimated for each

value (v, p) ∈ [0, 1]×P . Thus, we can readily recover the identified sets for any of the conventional

policy parameters once we have the identified set for the DMTRg (hence DMTEg). Therefore, our

main goal will be to provide a tractable characterization of the identified set for the DMTRs.

6Here LATEg(u, u′) represents the average treatment effect for the group of compliers when P is externally changed from
u to u′.
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Definition 1. Suppose that Assumption 1 is satisfied. For any integrable real function g(.), the

identified set ΘI,g for DMTRg is defined as follows:

ΘI,g =

{
(θ0

g, θ1
g) : [0, 1]× [0, 1]→ R2 such that

E[g(Y)1{D = d}|P = p] =
∫ p+(1−p)1{d=0}

p1{d=0}
θd

g(v, p)dv for d ∈ {0, 1}
}

.

In the main text, we focus on the half-interval class G ≡ {g(·) = 1[· ≤ y], y ∈ Y} when

identifying DMTRs. Under the half interval class, the DMTRd
g can then be expressed as

DMTRd
g(v, p) = P[Yd ≤ y|V = v, P = p] ≡ FYd|V,P(y|v, p) d ∈ {0, 1}.

Here, the DMTRd
g is just the conditional distribution function of Yd given P and V. Therefore, the

identification under the interval class recovers DMTRs for other classes of g functions.

3. IDENTIFICATION

In the previous section, we show that there exist intermediate quantities DMTEg or DMTRg,

which facilitate the partial identification of the MTEg and the MTRg without imposing the IV-

independence Assumption 2. In this section, we will take the STC structure (Assumption 1) as

given and characterize identified sets for the MTEg under a sequence of assumptions on the copula

of (P, Yd). In this sequence of assumptions, we have “no restrictions”7 and the “IV-independence

assumption” representing two extreme cases.

3.1. Identification under a single threshold-crossing selection rule. Once we focus on the half-

interval class of g functions, the primitive parameter of interest, as defined in Definition 1, is

the conditional distribution of Yd given V and P. While we do not know precisely the full joint

distribution, the STC structure (Assumption 1) does provide some restrictions. For instance, we know

(or can directly identify from data) the distribution of two of three marginal distributions, i.e., V

and P, and we know that they are independent. This feature suggests it is convenient to use copulas

decomposition to study the joint distribution of interest. Copula theory is useful to separate marginal

properties from properties related to the dependence structure. Here we cite Sklar (1959)’s result:

7We do, however, impose certain regularity conditions, as will be made clear later.
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Lemma 1 (Sklar (1959)’s Theorem). There exist a copula C : [0, 1]3 → [0, 1] such that

P(Yd ≤ y, V ≤ v, P ≤ p) = CYd,V,P(FY1(y), FV(v), FP(p)), for y, v, p ∈ [−∞, ∞].

Moreover, if the margins are continuous, then C is unique; otherwise it is uniquely determined on

RanFYd × RanFV × RanFP where RanFX = FX([−∞, ∞]) is the range of FX.

Using the Sklar’s result, we can decompose the joint trivariate distribution into three univariate

distributions and one trivariate copula CYd,V,P(FY1(y), FV(v), FP(p)). However, working directly

with the trivariate copula is not very convenient. Unlike the bivariate copula, the dependence of

trivariate copula can be less intuitive to interpret. Also, the number of multivariate (> 2) parametric

copula families with flexible dependence is limited. Furthermore, the STC assumption (Assumption 1)

already provides some restrictions, such as the independence of P and V, and their known marginals.

To fully take advantage of that information, we consider the Vine Copula approach, which was

introduced by Joe (1994) to break down the dependence structure of a multivariate copula into a

sequence of bivariate copulas and conditional bivariate copulas. The Vine copula approach has proven

to be useful in various existing problems such as (constrained) sampling of correlation matrices,

building non-parametric continuous Bayesian networks, and various applications in finance. Here,

we will make use of the Vine copula in our treatment effect context. To this end, we consider the

following regularity assumption:

Assumption 5. The joint distribution of (Yd, V, P) is absolutely continuous respect to the Lebesgue

measure.

Here we make Assumption 5 only for the ease of notation. V is continuous by definition, and

P is continuous if Z contains a continuous element. It is worth noting that we do not require Z be

valid instruments in the sense of being independent of Yd, d ∈ {0, 1}. Then the presence of any

continuous exogenous covariates in the selection equation ensures P is continuous. Therefore, the

main restriction of Assumption 5 is to focus the analysis on applications with continuous outcomes.

Lemma 2 and theorem 2 below can be straightforwardly extended to the case of discrete outcome

variables at the cost of additional notation, see Appendix A.9 for details.

Let CYd,V|P=p(FYd|P(y|p), FV|P(v|p); p) = FYd,V|P(y, v|p) be the conditional copula of (Yd, V)

given P = p. Note that given our assumption that V|P = p ∼ U[0, 1] for all p, the second term
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in the parenthesis can be simplified to v since FV|P(v|p) = v, that is, CYd,V|P=p(FYd|P(y|p), v; p).

Under Assumption 5, the following Lemma expresses all the conditional distributions in terms of

copulas.

Lemma 2 (Vine Copula). Under Assumptions 1 and 5, for d ∈ {0, 1} we have for each y ∈ Y and

p ∈ P ,

FYd|P(y|p) =
∂

∂x2
CYd,P(x1, x2)

∣∣∣
x1=FYd

(y),x2=FP(p)
≡ cd,FP(p)(FYd(y)), (6)

FYd|V,P(y|v, p) =
∂

∂x2
CYd,V|P=p(x1, x2)

∣∣∣
x1=FYd |P(y|p),x2=v

(7)

and there exists strictly increasing mappings Ψ1,p and Ψ0,p such that for each y ∈ Y and p ∈ P ,

P[Y ≤ y, D = 1|P = p] = Ψ1,p(FY1(y)) ≡ CY1,V|P=p

(
c1,FP(p)(FY1(y)), p; p

)
. (8)

P[Y ≤ y, D = 0|P = p] = Ψ0,p(FY0(y))

≡ c0,FP(p)(FY0(y))− CY0,V|P

(
c0,FP(p)(FY0(y)), p; p

)
. (9)

That is, the observed probability P[Y ≤ y, D = d|P = p] depends on y only through FYd(y).

Proof. See Appendix A.2. �

We have some remarks on the usefulness of the Lemma 2. First, by inserting Equation (6) to

Equation (7), we observe that the parameter of interest DMTR (which equals FYd|V,P(y|v, p) under

the half-interval class) can be considered as a composite mapping from FYd(y), where the mapping

depends only on the (partial derivatives of) two bivariate copula functions: CYd,V|P and CYd,P. Instead

of working with FYd|P,V , which involves with dependence structure of three variables, we can now

focus on two bivariate copulas. To be more specific, let F c be the set of continuous CDFs, Cc
d be

the set of conditional copulas for CYd,V|P, and Cd be the set of copulas for CYd,P, the identification

of DMTR is equivalent to the identification of θ̃ ≡
(

FY1 , FY0 , CY1,V|P, CY0,V|P, CY1,P, CY0,P
)
∈ Θ̃ ≡

F c × F c × Cc
1 × Cc

0 × C1 × C0 under only the STC structure (Assumption 1) and the regularity

condition (Assumption 5). This is important not only because bivariate copula are easier to model,

but also because CYd,P and CYd,V|P have appropriate economic interpretations, as we will see in the

next sessions.
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Secondly, Equations (8) and (9) in the second part of Lemma 2 provide a link between θ̃ and the

observed data distribution. Interestingly, given Ψd,p is invertible (see Appendix A.3), one can “solve”

FYd(y) = Ψ−1
d,p(P[Y ≤ y, D = d|P = p]) from Equations (8) and (9). So once the two bivariate

copula are fixed, FYd is uniquely determined. Meanwhile, since FYd(y) does not depends on p, it

should be the case that ∀p 6= p′ and d = 0, 1,

Ψ−1
d,p(P[Y ≤ y, D = d|P = p]) = Ψ−1

d,p′(P[Y ≤ y, D = d|P = p′]), (10)

for all y in the intersection of the conditioning supports of Y|D = d, P = p and Y|D = d, p = p′.8

Notice that the intersection is always non-empty when the IV is valid. One can show any pair of

copulas CYd,V|P and CYd,P that satisfy Equations (8) and (9) can be rationalized by the data and the

model structure. This indeed characterizes the identified set for θ̃, as we summarize in the following

theorem.

Theorem 2. Under Assumptions 1 and 5, the identified set ΘI,g in Definition 1 can be equiva-

lently expressed by the identified set ΘI of θ̃ ≡
(

FY1 , FY0 , CY1,V|P, CY0,V|P, CY1,P, CY0,P
)
, which is

characterized as follows:

ΘI =

{
θ̃ ∈ Θ̃ : For d ∈ {0, 1}, (CYd,V|P, CYd,P) ∈ Cc

d × Cd satisfies Equation (10)

and ∀y ∈ Yd,p, FYd(y) = Ψ−1
d,p(P[Y ≤ y, D = d|P = p])

}
,

where Yd,p is the conditioning support of Y|D = d, P = p.

Proof. See Appendix A.3. �

Theorem 2 characterizes the identified set for θ̃ under the STC restriction imposed on the treatment

selection alone. It says that any pair of copulas (CYd,V|P, CYd,P) such that the mapping Ψ−1
d,p produces

a flat function in p, can be rationalized by the observed data and the STC model. Meanwhile,

the theorem also provides a convenient characterization of the identified set for subvectors of

8It is possible that for all pair of p 6= p′, the conditioning supports of Y|D = d, P = p and Y|D = d, p = p′ do not
overlap. For instance, the distribution of Y|D = d, P = p is degenerate. In this case, we lose all the identification power.
We exclude such pathological scenarios throughout the paper and implicitly assume there exists at least one pair of (p, p′)
on which the support of Y|D = d, P = p and Y|D = d, p = p′ has an overlap.
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the parameters. For instance, the projection of the identified set for copulas are determined by

Equation (10), and once (CYd,V|P, CYd,P) are fixed, FYd is point identified. In particular, Equation (10)

essentially uses the fact that the marginal distribution of potential outcome is invariant to the

propensity score. This identification approach has some similarity with the identification restriction

of Arellano and Bonhomme (2017, Lemma 1) in their study of the sample selection model. Since

the marginal distributions of potential outcomes are uniquely determined given (CYd,V|P, CYd,P), one

can expect that the assumptions that one imposes on the dependence structure among these variables

largely determine the identification power of the model. Not surprisingly, Theorem 2 reduces to the

identification equation in HV05 when Assumption 2 holds, that is, when P is independent with Yd

given V. The following corollary summarizes this observation.

Corollary 1. Suppose Assumptions 1, 2 and 5 hold, then the identification equation postulated in

Theorem 2 coincides with the identification result of HV05, that is,

∂P[Y ≤ y, D = 1|P = p]
∂p

= P[Y1 ≤ y|V = p].

and

−∂P[Y ≤ y, D = 0|P = p]
∂p

= P[Y0 ≤ y|V = p].

Proof. See Appendix A.4.

Remark 1. (Selection on observables) In our framework, the selection on observables assumption

boils down to imposing that CYd,V|P(x1, x2) = x1x2. In such a case, we can easily see through

Lemma 2 that we recover the well known identification result under selection on observables, i.e.

FYd|P(y|p) = P(Y ≤ y|D = d, P = p).

3.2. Identification with Imperfect IVs. We previously characterized the identified set for the

DMTE by only imposing the STC assumption. We also showed that if we additionally impose

the independence assumption, we recover the HV05 point identification results for the MTE and

subsequent parameters. However, the validity of the independence assumption is very often subject to

significant controversy, see, for instance, Deaton, Heckman, and Imbens (2010). Therefore, Manski

and Pepper (2000) proposed to relax the IV assumption in order to have more credible and trustworthy

results.
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In this subsection, we will further explore in this direction and study the identification of DMTE

under imperfect IVs. Here, we refer to “imperfect IVs” as any covariates in the selection equation

that could be dependent on the potential outcomes, with the type of dependence being restricted by

the economic theory or the empirical context under study. We will show that these restrictions can

be easily implemented in our approach to derive sharp bounds on the DMTE and, therefore, on all

conventional policy parameters. Indeed, Manski and Pepper (2000) provide sharp bounds on the ATE

under the monotone IV (MIV) assumption. However, their approach is not immediately transferrable

in the sense that if an applied researcher is interested in other parameters or other deviations of the

IV assumptions, she has to derive the specific sharp bounds for this parameter of interest. Using

DMTE as a bridge, our unified approach allows the researcher to recover sharp bounds on a variety

of parameters of interest under a various IV dependence assumptions, a nice feature inherited from

the classical MTE framework. This will free applied researchers from case-by-case constructions.

Before visiting various imperfect IV restrictions, let us consider two empirical cases for illustration:

3.2.1. Violation of the exclusion restriction. Let us consider the following simple model:

Y = αD + γP + ε,

D = 1{P > V}

where P ⊥ (α, ε, V) and γ is a constant. As can be seen, the usual MTE assumptions are violated as

soon as γ 6= 0. This potential violation of the exclusion restriction is an important concern in many

empirical applications. We argue that even if γ 6= 0, it is possible to provide informative bounds on

MTE and PRTE parameters. Indeed, it can be easily shown that P(Yd ≤ y|P = p) = Fε+αd(y− γp)

for d ∈ {0, 1} which implies a monotone IV restriction, i.e. Yd|P = p �FSD Yd|P = p′ for all

p′ ≥ p or Yd|P = p �FSD Yd|P = p′ for all p′ ≤ p, depending on the sign of γ.

3.2.2. Misspecification in presence of multiple treatments. One recent and growing empirical appli-

cation using the MTE identification strategy is the Judge leniency IV designs.9 Consider a model

where two simultaneous treatments determine the outcome while researchers focus only on one

treatment and overlook the second one. This is a paramount concern that appears in the Judge

9See for instance Kling (2006); Aizer and Doyle Jr (2015); Di Tella and Schargrodsky (2013); Mueller-Smith (2015);
Dobbie, Goldin, and Yang (2018), and Bhuller, Dahl, Loken, and Mogstad (2019) among others.
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leniency IV design literature. In this literature, researchers are interested in the causal effect of

incarceration decisions on future outcomes such as recidivism, making abstraction of other potential

treatments. However, trial decisions are multidimensional, with judges deciding on incarceration,

fines, community service, etc.10 Let us consider the following model:

Y = [Y11D2 + Y10(1− D2)]︸ ︷︷ ︸
Y1

D1 + [Y01D2 + Y00(1− D2)]︸ ︷︷ ︸
Y0

(1− D1),

D1 = 1{P1 > V1}, D2 = 1{P2 > V2}.

where D1 denotes the incarceration decision and D2 is a second binary treatment that denotes if

the agent receives a fine or not. Yd1d2 denotes the potential outcome when the two treatments are

externally set to D1 = d1 and D2 = d2. P1 and P2 are measures of the judge’s stringency level for a

different punishment. Assuming that the judge’s assignment to cases is entirely random, we might

expect the following IV-independence assumption (V1, V2, Yd1d2) ⊥ (P1, P2) to hold. When D2 is

neglected, researchers essentially adopt the following model:

Y = Y1D1 + Y0(1− D1), (11)

D1 = 1{P1 > V1}. (12)

where Yd ≡ [Yd1D2 + Yd0(1− D2)] for d ∈ {0, 1}. When considering this simplified model, we

must be cautious about the causal interpretation of E[Y1 −Y0|V1 = v1]. Indeed, the latter quantity

does not capture the direct causal effect of incarceration (D1), but rather the total causal effect of the

incarceration —for an individual at the margin— that is mediated by the fines effect on the recidivism.

Please see Pearl (2013) for a detailed discussion. Now, let’s presume that we are interested in

the identification of the total effect. Under the IV independence (V1, V2, Yd1d2) ⊥ (P1, P2), where

d1 ∈ {0, 1}, d2 ∈ {0, 1}, we can show that for p1 ≤ p′1 (without loss of generality) and an arbitrary

y ∈ Y ,

P(Y1 ≤ y|P1 = p1)−P(Y1 ≤ y|P1 = p′1) = EP2|P1=p1
[Hy(P2)]−EP2|P1=p′1

[Hy(P2)],

where Hy(p2) ≡
∫ p2

0

{
P(Y11 ≤ y|V2 = v2) − P(Y10 ≤ y|V2 = v2)

}
dv2. This leads to the

following result:

10Please see Bhuller, Dahl, Loken, and Mogstad (2019)’s section 5.5) for a detailed discussion.
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Lemma 3. Considering the model (11, 12), where Yd ≡ [Yd1D2 + Yd0(1− D2)] for d ∈ {0, 1},

D2 = 1{P > V2} and (V1, V2, Yd1d2) ⊥ (P1, P2). We have,

(i) If P(Yd1 ≤ y|V2 = v2) = P(Yd0 ≤ y|V2 = v2) for all v2 and y, then Yd ⊥ P1.

(ii) If P1 ⊥ P2, then Yd ⊥ P1.

(iii) If for each v2 ∈ [0, 1] the conditional distribution of Yd0 given V2 = v2 first order stochastically

dominates the distribution of Yd1 given V2 = v2, i.e. Yd0|V2 = v2 �FSD Yd1|V2 = v2, and if

for any pair (p′1, p1) ∈ P2
1 such that p′1 ≥ p1, we have P2|P1 = p′1 �FSD P2|P = p1, then

Yd|P1 = p1 �FSD Yd|P1 = p′1.

Proof. See Appendix A.5

Lemma 3 (i) and (ii) provide two sufficient conditions under which ignoring D2 does not cause

the failure of IV-independence assumption (with respect to P1). In the misspecified model, Y1 is

essentially a mixture of Y11 and Y10—two random variables that are independent with P1. Condition

(i) says that these two random variables have the same distribution conditioning on V2; hence any

mixing between them does not change the distribution. The condition in (ii) says the mixing weights

are independent of P1, so the mixture of Y11 and Y10 is independent of P1 as well. However, in

applications, it is hard to justify Y11 and Y10 have the same distribution conditioning on V2, and we

also observe that P1 and P2 tend to be positively correlated. Therefore, if receiving a fine or not

has a direct causal impact on recidivism and if a judge’s stringency indexes for both treatments are

correlated, then the IV independence assumption in the misspecified model is violated. Bhuller, Dahl,

Loken, and Mogstad (2019) propose some suggestive ideas to screen for such violations; however,

it is worth noting their suggestive tests are not very informative to screen violations of the MTE

assumptions. In Appendix B, we propose a nonparametric specification test of the MTE assumptions.

We show that the test is sharp in the sense that it is the most informative one to screen all detectable

violations of the MTE assumptions.

Lemma 3 (iii) shows that while the IV independence assumption is violated, we can invoke a

monotone IV assumption under some reasonable restrictions. More precisely, Y10|V2 = v2 �FSD

Y11|V2 = v2 means that conditionally on V2, being externally assigned to both punishments (incar-

ceration and fines), make someone less likely to reoffend than someone who is externally assigned

to incarceration but with no fines. The second condition P2|P1 = p′1 �FSD P2|P = p1 for p′1 > p1
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suggests that the level of Judge’s stringency is positively dependent for two types of punishments.

Under those conditions, Lemma 3 (iii) suggests that P1 can be considered as monotone IV; that is,

being more stringent on incarceration leads to less recidivism. Below, we will show how we could

bound the MTE in such an empirical context using the monotone IV assumption.

3.2.3. Imperfect IVs. We will consider the following list of imperfect IVs:

Assumption 6 (Imperfect IVs).

(a) Affiliated IV: We say the propensity score P is an Affiliated IV if the joint density fP,Yd

of P and Yd satisfies fP,Yd(p, y) fP,Yd(p′, y′) ≥ fP,Yd(p, y′) fP,Yd(p′, y) for any p > p′ and

y > y′, where (p, y) and (p′, y′) belong to the joint support of (P, Yd)
11.

(b) IHRD IV: We say the propensity score P is an Inverse Hazard Rate Decreasing IV if
FYd |P(y|p)
fYd |P(y|p)

is non-increasing in p for all y.

(c) MIV: We say P is a monotone IV if for any pair (p′, p) ∈ P ×P such that p′ ≥ p, P = p,

i.e. Yd|P = p′ �FSD Yd|P = p. In other terms, P(Yd > y|P = p) is non-decreasing in p

for all y ∈ Y .12

(d) RTI-IV: We say the propensity score P is a right tail increasing IV, if Yd is right tail

increasing in P, i.e. RTI(Yd|P) meaning that P(Yd > y|P > p) is non-decreasing in p for

all y ∈ Y .

(e) LTD-IV: We say the propensity score P is a left tail decreasing IV, if Yd is left tail decreasing

in P, i.e. LTD(Yd|P) meaning that P(Yd ≤ y|P ≤ p) is non-increasing in p for all y ∈ Y .

(f) PQD-IV: We say the propensity score P is a positive quadrant dependent IV, if P(Yd >

y, P > p) ≥ P(Yd > y)P(P > p) for all (y, p) ∈ Y ×P .

We define the imperfect IV assumptions relative to the propensity score P. However, we can also

define it with respect to the vector of instruments.13 Affiliated IV means that it is more likely that the

pair of realizations of Yd and P simultaneously take high values or low values than for Yd to take

a high (resp. low) realization while P take a low (resp. high) realization. The MIV is a positive

11It is also referred as fP,Yd (y, p) being TP2 (Totally Positive of Order 2)
12This property is also referred as Yd being positively regression dependent on P.
13For instance, let “�" denotes the component-wise partial order when comparing vectors, then we can state: for any pair
z′ � z in the support of a vector of observable variables Z, the conditional distribution of Yd, d ∈ {0, 1} given Z = z′

first order stochastically dominates the distribution of Yd given Z = z, i.e. Yd|Z = z′ �FSD Yd|Z = z. Then the partial
ordering on Z induces an ordering on P which is what we considered in Assumption 6-(c).
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dependence restriction, which means that Yd is more likely to take on larger values when P increases.

The RTI-IV captures the fact that Yd is more likely to take on larger values when P takes high values

as well, while the LTD captures that Yd is more likely to take lower values when P takes low values

as well. Finally, the PQD-IV suggests that Yd and P are more likely to take large values together or

to be smaller together compare to the case if they were independent. The PQD type of assumption

has been discussed in Bhattacharya, Shaikh, and Vytlacil (2012). The relation between these positive

dependence concepts could be summarized as follows:14

Affiliated IV⇒ IHRD-IV⇒ MIV⇒ LTD-IV⇒ PQD-IV,

Affiliated IV⇒ IHRD-IV⇒ MIV⇒ RTI-IV⇒ PQD-IV.

The next result shows that all these imperfect IV restrictions can be equivalently written in terms

of restrictions only on the copula CYd,P(., .).

Lemma 4. Let Yd and P be two continuous variables satisfying Assumption 5, then

(a) P is an affiliated IV if and only if

cYd,P(x1, x2)cYd,P(x′1, x′2) ≥ cYd,P(x′1, x2)cYd,P(x1, x′2)

for all (x1, x2) ∈ [0, 1] and (x′1, x′2) ∈ [0, 1] such that x1 ≥ x′1 and x2 ≥ x′2, where

cYd,P(x1, x2) =
∂2CYd ,P(x1,x2)

∂x1∂x2
is the copula density.

(b) P is an IHRD IV if and only if for any x1 ∈ [0, 1],

∂2 log
∂CYd ,P(x1,x2)

∂x2

∂x1∂x2
≥ 0.

(c) P is an MIV if and only if CYd,P(x1, x2) is concave in x2 for all x1 ∈ [0, 1],

∂2CYd,P(x1, x2)

∂x2
2

≤ 0. (13)

(d) P is an RTI-IV if and only if for any x2 ∈ [0, 1] and almost all x1,

∂CYd,P(x1, x2)

∂x1
≥

[x2 − CYd,P(x1, x2)]

1− x1
. (14)

14The proof of those implications can be found in Joe (1997, Theorem 2.3).
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(e) P is an LTD-IV if and only if for any x2 ∈ [0, 1] and almost all x1,

∂CYd,P(x1, x2)

∂x1
≤

CYd,P(x1, x2)

x1
. (15)

(f) P is an PQD-IV if and only if for all (x1, x2) ∈ [0, 1]2,

CYd,P(x1, x2) ≥ x1x2. (16)

Proof. See Appendix A.6.

This proposition has a significant practical advantage since it allows us to see how the identified

set for the DMTRs under the STC assumption shrinks with each of the above assumptions. We do not

need to recompute the identified set for the DMTRs for each of these assumptions; instead, we only

have to intersect the set of copulas that rationalize the model under the STC with the set of copulas that

respect the IV restrictions that researchers would like to maintain. Notice that in this layered analysis,

only the copula CYd,P(., .) is involved. Let us denote by Cr
d the set of copulas CYd,P(., .) that respect a

given restriction r. More precisely, Cr
d ≡ {CYd,P(., .) ∈ Cd such that the restriction r is satisfied}.

Theorem 3. Suppose that Assumptions 1 and 5 are satisfied.

Θr
I =

{
θ̃ ∈ Θ̃ : For d ∈ {0, 1}, (CYd,V|P, CYd,P) ∈ Cc

d × Cr
d satisfies Equation (10)

and ∀y ∈ Yd,p, FYd(y) = Ψ−1
d,p(P[Y ≤ y, D = d|P = p])

}
,

whereYd,p is the conditioning support of Y|D = d, P = p, for r ∈ {Affiliated IV, MIV, RTI-IV, LTD-IV, PQD-IV}.

Remark 2. While we restrict the statement of Theorem 3 to the restrictions

r ∈ {Affiliated IV, MIV, RTI-IV, LTD-IV, PQD-IV} for the copula CYd,P(., .), it applies to any type of

restrictions the researcher would like to impose on either CYd,V|P(., .) or CYd,P(., .). For instance, the

HV05 identification assumptions, i.e. Assumptions 1 and 2 impose in our context that CYd,V|P(., .) =

CYd,V(., .) and CYd,P(x1, x2) = x1x2.

Notice that if we have a sequence of restrictions (r1, ..., rJ) on the copula CYd,P(., .) such that rj is

more restrictive than rl for l < j, we have the following: ΘrJ
I ⊆ .... ⊆ Θr1

I . For instance, we have
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ΘAffiliated IV
I ⊆ ΘMIV

I ⊆ ΘRTI-IV
I ⊆ ΘPQD-IV

I . An interesting feature of our approach is that the set of

equality restrictions that characterize the identified set does not change with Cc
d nor Cr

d. This feature

will ease the computation of the identified set of the DMTRs under different layers of assumptions.

As previously discussed, the identified set for
(

FY1 , FY0 , CY1,V|P, CY0,V|P, CY1,P, CY0,P
)

has a particular

structure that once the copulas are fixed, the marginal distributions of potential outcomes are uniquely

determined. The “size” or “volume” of the projected identified set for (FY1 , FY0) is then determined

by how many or what kind of restrictions one would like to impose on the copulas. For example, if

we assume Yd ⊥ P|V as in HV05, (FY1 , FY0) become point-identified, see Corollary 1. If we do not

make any assumptions on the dependence between Yd and P, either conditioning on V or not, then

we obtain the identified set as shown in Theorem 2. If we are willing to take a middle ground on the

“perfectness” of the instrument P or have prior information on the type of selection into treatment,

we can use an analogous version of Theorem 3 that applies to the context and then obtain directly the

identified set that corresponds to it.

3.3. Semi-parametric Identification. The identification results in Theorems 2 and 3 are fully non-

parametric. In this subsection, we will consider an alternative approach by parametrizing the copulas

with a finite-dimensional parameter θ. However, we will leave the marginals fully nonparametric.

From this perspective, we consider semi-parametric identification in this subsection. As discussed

in Chen, Fan, and Tsyrennikov (2006), such a semi-parametric approach has gained popularity in

studying some features of multivariate distributions in diverse fields. It is flexible and circumvents

the curse of dimensionality. It is worth-noting that the copula-based (partial) identification approach

we propose below significantly differs from the one proposed in Chen, Fan, and Tsyrennikov (2006)

and subsequent papers. In their models, all the marginals are nonparametrically (point) identified,

while in our case, the marginal potential outcomes FYd(y), d ∈ {0, 1} are not (point) identified. We

make the following assumption.

Assumption 7 (Parametric Copula). There exists θ = (α0, α1, δ1, δ0) ∈ Θc
0 × Θc

1 × Θ0 × Θ1 ≡

Θ ⊆ RT with T < ∞ such that CYd,P(x1, x2) = CYd,P(x1, x2; αd) and CYd,V|P=p(x1, x2) =

CYd,V(x1, x2; σd(p)) where σd(p) is known up to a finite number of parameters δd, d ∈ {0, 1}.

With this copula parametrization, our key unknown parameters of interest are θ and FYd(y), d ∈

{0, 1}. Let F c define the set of continuous CDFs. The mapping Ψ−1
d,p(P[Y ≤ y, D = d|P = p]; θ)
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is now known up to the finite dimensional parameter θ. The following theorem characterizes the

identified set for θ̃ ≡
(
θ, FY1(·), FY0(·)

)
∈ Θ×F c ×F c under the semi-parametric specification.

Theorem 4. Under Assumptions 1, 5 and 7, the semi-parametric identified set ΘSP
I of θ̃ ≡(

θ, FY1(·), FY0(·)
)

is characterized as follows:

ΘSP
I =

{
For d ∈ {0, 1}, θ ∈ Θ satisfying Equation (10),

and for all ∀y ∈ Yd,p, FYd(y) = Ψ−1
d,p(P[Y ≤ y, D = d|P = p]; θ)

}
.

If in addition, a restriction r is imposed on the copula CYd,P(., .), we have then:

ΘSP,r
I =

{
For d ∈ {0, 1}, θ ∈ Θc

0 ×Θc
1 ×Θr

0 ×Θr
1 satisfying Equation (10),

for all ∀y ∈ Yd,p, FYd(y) = Ψ−1
d,p(P[Y ≤ y, D = d|P = p]; θ)

}
,

for r ∈ {Affiliated IV, MIV, RTI-IV, LTD-IV, PQD-IV}.

Remark 3. As Theorem 4 shows, the identification of the infinite-dimensional parameter FYd boils

down to the identification of a finite-dimensional parameter θ. The sharp identification region of θ is

characterized by a set of equality constraints, which are easy to work with because they only contain

finite-dimensional parameters and known quantities.

Remark 4 (Specification tests). Recently, there have been an increasing number of papers that

develop specifications tests for the assumptions usually maintained to identify causal effects, see

for instance Kitagawa (2015), Huber and Mellace (2015), Mourifié and Wan (2017), and Kédagni

and Mourifié (2017), etc. Our approach provides a unified way to do specification tests for the

assumptions the researcher is willing to maintain. Indeed, each of the identified sets proposed in

Theorems 2 to 4 can be empty if we cannot find copulas that respects the equality constraints. The

“largest” identified set that imposes the minimum structure so far is the one derived in Theorem 3. If

empty, this means imposing the STC specification for treatment selection is too stringent for the data.
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In Section 4 below, we relax this assumption to allow for multi-dimensional unobserved heterogeneity

in the treatment selection.

3.3.1. Choice of Copulas: Frank copulas. In many applications, it is unknown ex-ante if there

is positive or negative selection into the treatment. In such contexts, it is essential to consider a

comprehensive copula family for CYd,V|P. Comprehensive parametric copulas are copulas that (i)

approach the countermonotonicity copula (resp. comonoticity copula), i.e., Fréchet Lower Bound

(resp. Fréchet Upper Bound copula) for certain values of their parameters in their permissible range,

(ii) and cover the entire domain between the Fréchet lower and upper copula bounds including the

product copula as special case. Using these copulas, we may test the absence of selection by checking

if the confidence region of σd(p) excludes the value that corresponds to the product copula, which

corresponds to the independence case. Comprehensive copulas, for instance Gaussian and Frank

copulas, parameterize the full range of dependence. On the other hand, non-comprehensive copulas

such as Farlie-Gumbel-Morgenstern (FGM), Clayton, Gumbel, and Joe copulas, are only able to

capture dependence in a limited manner. In practice, it will be useful to use a different family of

copula to analyze how sensitive the results are depending on the copula parametrization.

In Corollary 2 below, we show how the characterization of the identified set simplifies when

considering the Frank Copula. 15

Assumption 8 (Frank Copula). There exists θ = (α0, α1, δ1, δ0) ∈ Θ ⊆ RT with T < ∞ such that

CYd,P(x1, x2) = − 1
αd

ln
[
1 + (e−αd x1−1)(e−αd x2−1)

(e−αd−1)

]
for αd ∈ (−∞, 0) ∪ (0, ∞) and

CYd,V|P=p(x1, x2) = − 1
σd(p) ln

[
1+ (e−σd(p)x1−1)(e−σd(p)x2−1)

(e−σd(p)−1)

]
for σd(p) ∈ (−∞, 0)∪ (0,+∞), d ∈

{0, 1}, where σd(p) is known up to a finite number of parameters δd.

Corollary 2. Under Assumptions 1, 5, 6 and 8, the identified set ΘSP
I of θ̃ ≡

(
θ, (FYd(y) : d ∈

{0, 1}, y ∈ R)
)

is characterized as follows:

ΘSP
I =

{
For d ∈ {0, 1}, FYd(y; θ) = − 1

αd
ln
[
1 +

Hd(y, p, σd(p))(e−αd − 1)
e−αdFP(p) − Hd(y, p, σd(p))(e−αdFP(p) − 1)

]

and θ = (αd, δd) satisfies αd fP(p)(1− Hd)Hd +
∂Hd

∂p
= 0 for all p and y.

}
15In Appendix C we derive a similar characterization for the FGM copula.
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where

H1(y, p, σ1(p)) = − 1
σ1(p)

ln
[
1 +

(e−σ1(p)FY,D|P(y,1|p) − 1)(e−σ1(p) − 1)
(e−σ1(p)p − 1)

]
and

H0(y, p, σ0(p)) =
1

σ0(p)
ln
[
1 +

(eσ0(p)FYD|P(y,0|p) − 1)(e−σ0(p) − 1)
e−σ0(p) − e−σ0(p)p

]
and σd(p) is parameterized by δd: σd(p) ≡ σd(p; δd).

Proof. See Appendix C.3.

Remark 5. When the function σd (or its finite dimensional parameter δd) is given, αd is uniquely

determined. To see this, fixing an arbitrary y, and then integrating both side of αd fP(p)(1 −

Hd)Hd +
∂Hd
∂p = 0 from p to p with respect to p gives

αdE
[
{Hd(y, P, σd(P; δd))(1− Hd(y, P, σd(P; δd)))} 1{p < P ≤ p}

]
+
∫ p

p

∂Hd

∂p
dp = 0

⇒ αd = −
Hd(y, p, σd(p; δd))− Hd(y, p, σd(p; δd))

E
[
{Hd(y, P, σd(P; δd))(1− Hd(y, P, σd(P; δd)))} 1{p < P ≤ p}

]
where (with a abusing of notation) ∂Hd(p)

∂p denotes the total derivative of Hd(y, p, σd(p; δd))) with

respect to p. Then δd can be estimated using a minimum distance estimator by inserting pre-

estimated p̂ and f̂P. When inserting the true σd(·) into the right hand side of the above equation,

since Hd(y, P, σd(P; δd)) = FYd|P(y|P), we have

αd = −
FYd|P(y|p)− FYd|P(y|p)

E
[

FYd|P(y|P)(1− FYd|P(y|P))1{p < P ≤ p}
] .

This states that αd is positive iff Yd|P = p �FSD Yd|P = p for p ≥ p.

3.3.2. Choice of Copulas: Bernstein Copula. We now turn our attention to the Bernstein copula.

More precisely, let’s introduce the following assumption:

Assumption 9 (Bernstein Copulas).

(i)CYd,V|P(x1, x2) = CYd,V|P(x1, x2; αd) = KdLd

Kd

∑
k=1

Ld

∑
l=1

αd
kl Bk−1,Kd−1(x1)Bl−1,Ld−1(x2)
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(ii)CYd,P(x1, x2) = CYd,P(x1, x2; βd) = RdSd

Rd

∑
r=1

Sd

∑
s=1

βd
rsBr−1,Rd−1(x1)Bs−1,Sd−1(x2)

where Bi,I(u) =
∫ u

0 bi,I(t)dt for u ∈ [0, 1], bi,I(u) = (I
i)u

i(1− u)I−i, and αd
kl ≥ 0 and βd

rs ≥

0 are unknown parameters that satisfy Kd ∑Ld
l=1 αd

kl = 1, Ld ∑Kd
k=1 αd

kl = 1, Sd ∑Rd
r=1 βd

rs = 1,

Rd ∑S
s=1 βd

rs = 1.16

The Bernstein copula a is very useful and an important copula since because of the Weirstrass-

approximation theorem, we known that any copula can be approximated uniformly over [0, 1]2 for Kd

and Ld sufficiently large, see Kingsley (1951). Note that in Assumption 9-(i), the parameters αk` do

not depend on P, so it implicitly assumes that the joint distribution of Yd and V depends on P through

the marginal distribution FYd|P. One special case of Assumption 9-(i) is “selection on observable”,

which happens when Kd = Ld = 1, so that FYd,V|P = CYd,V|P(FYd|P, FV|P) = FYd|P × FV|P. On

the other hand, if we take Rd = Sd = 1, then Assumption 9-(ii) implies FYd,P = CYd,P(FYd , FP) =

FYd × FP. In this case, we have a valid instrument.

In Theorem 7 relegated in Appendix C.2, we characterize the identified set of the DMTRg for

arbitrary fixed values of Rd, Sd, Kd, Ld, d ∈ {0, 1}. For sake of simplicity, we present below the

special case where Rd = Sd = Kd = Ld = 2, for d ∈ {0, 1} and g(Y) = Y.

Let’s consider the following notations:

ψd
10(p) =

(
4βd

11 + 2(1− 4βd
11)FP(p)

)
4αd

11,

ψd
11(p) = (4βd

11 − 1)(4FP(p)− 2)4αd
11 + (4βd

11 + 2FP(p)(1− 4βd
11))

2(1− 4αd
11),

ψd
12(p) = (12βd

11 + 6(1− 4βd
11)FP(p))(1− 4αd

11)(4βd
11 − 1)(2FP(p)− 1),

ψd
13(p) = 2(4βd

11 − 1)2(2FP(p)− 1)2(1− 4αd
11),

with ψψψd
1(p) = (ψd

10(p), ψd
11(p), ψd

12(p), ψd
13(p))′, and

ψd
20(p) = −2

(
4βd

11 + 2(1− 4βd
11)FP(p)

)
,

ψd
21(p) = 4(4βd

11 + 2FP(p)(1− 4βd
11))

2 − 2(4βd
11 − 1)(4FP(p)− 2),

ψd
22(p) = (48βd

11 + 24(1− 4βd
11)FP(p))(4βd

11 − 1)(2FP(p)− 1),

ψd
23(p) = 8(4βd

11 − 1)2(2FP(p)− 1)2,

16Please see Dou et al (2016) for this formulation of the Bernstein copula.
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with ψψψd
2(p) = (ψd

20(p), ψd
21(p), ψd

22(p), ψd
23(p))′. In addition, let’s define

γγγd ≡ (γd
0 , γd

1 , γd
2 , γd

3) and then define the following sets:

ΘBC ≡
{
(α1

11, β1
11, α0

11, β0
11) : 0 ≤ αd

11 ≤
1
2

, 0 ≤ βd
11 ≤

1
2

, for d ∈ {0, 1}
}

Γ ≡
{
(γγγ1, γγγ0) : lim infY ≤ γd

j ≤ lim supY , for j ∈ {0, 1, 2, 3}, for d ∈ {0, 1}
}

.

In this special case the identified set of the DMTRs can be characterized as follows:

ΘI =

{(
E[Y1|V = v, P = p; θ̄], E[Y0|V = v, P = p; θ̄]

)
where

E[Yd|V = v, P = p; θ̄] = ψψψd
1(p) ·γγγd + (ψψψd

2(p) ·γγγd)v,

∀ θ̄ ≡
(

α1
11, β1

11, α0
11, β0

11, γγγ1, γγγ0
)
∈ ΘBC × Γ such that the following equations are satisfied

E[YD|P = p] = (ψψψ1
1(p) ·γγγ1)p + (ψψψ1

2(p) ·γγγ1)
p2

2

E[Y(1− D)|P = p] = (ψψψ0
1(p) ·γγγ0)(1− p) + (ψψψ0

2(p) ·γγγ0)(
1
2
− p2

2
)

}
.

Notice that in this special case, imposing a MIV restriction is equivalent to simply restrict the

range of βd
11, from 0 ≤ βd

11 ≤ 1
2 to 1

4 ≤ βd
11 ≤ 1

2 .

Remark 6. Our semi-parametric characterization of the DMTRg identified set using Bernstein

copula — Theorem 7 relegated in Appendix C.2, shows that when Rd = Sd = 1 (i.e. the IV is valid),

we have E[g(Yd)|V = v] = ∑Ld
l=1 θ

g
dlbl−1,Ld−1(v) and recover the parametric form Mogstad, Santos,

and Torgovitsky (2018) imposed on the MTR. Mogstad, Santos, and Torgovitsky (2018) approach

imposes E[g(Yd)|V = v] = ∑Ld
l=1 θ

g
dlbl−1,Ld−1(v) as a primitive. Here we show that under a valid

IV assumption —Assumption 2, imposing such a structure on the MTRs is equivalent to model the

“selection on unobservables” component of the dependence — CYd,V|P(x1, x2; αd)— using a Bernstein

copula of order Ld. This result has an important practical implication. As pointed out in Sancetta

and Satchell (2004), a limitation of the Bernstein copula is that it cannot be used to model strong tail

dependence behavior. So one might be concerned in using Mogstad, Santos, and Torgovitsky (2018)

approach when there are strong tails dependence. However, our method offers more flexibility in

that respect since we have a complete flexibility in our copula choice, we may consider the Gumbel

26



copula that is well suited to capture strong tails dependence or the Composite Bernstein Copula

—introduced in Yang et al (2014), that is comprehensive and also capture extreme tails dependence.

3.4. Implementation and Numerical illustration. We conclude this section with two numerical

examples on semiparametric identification.

3.4.1. DGP1: IV-independence Assumptions fails to hold. Let the marginals be specified as Y1 ∼

N(1, 1), Y0 ∼ N(0, 1), V ∼ U[0, 1], Z = P ∼ U[0, 1], and D = 1[V ≤ P]. We specify the

dependence among (Yd, P, V) using Frank copula:

CYd,P(x1, x2) = −
1
αd

ln
[
1 +

(e−αdx1 − 1)(e−αdx2 − 1)
(e−αd − 1)

]
,

CYd,V|P(x1, x2; σd(p)) = − 1
σd(p)

ln
[
1 +

(e−σd(p)x1 − 1)(e−σd(p)x2 − 1)
(e−σd(p) − 1)

]
,

where true parameter values are α1 = 2, σ1 = 3, α0 = σ0(p) = 0. In this case, P is not a valid

instrument because α1 6= 0. The endogeniety issue exists because Y1 is not independent with V

given P as σ1(p) 6= 0.

To evaluate the PRTE, we follow HV05 and consider a hypothetical policy intervention where

the new policy “subsidizes” large propensity: if Z > t, D = 1[Z(1 + t) − V ≥ 0]; else D =

1[Z− V ≥ 0]. For this exercise, we choose t = 0.2. The true parameter values are given by the

following table:

TABLE 2. True Values of Parameters in DGP1

Parameters True value
ATE 1.00

ATT 0.94

ATUT 1.06

PRTE 1.42

LATE(0.2,0.5) 0.78

We first demonstrate our main identification result in Theorems 2 and 4. Figure 1 plots the inverse

mapping Ψ−1
1,p(·, p; α, σ) as a function of y at different values of p ∈ {0.2, 0.3, · · · , 0.8} (each
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FIGURE 1. Plots of Ψ−1
1,p(·, p; α, σ) at different values of p and the true FY1 (DGP1)

dashed lines) as well as the true marginal CDF of Y1 (solid red line).17 In the right panel, we use a

false parameter value α1 = 0 (other parameters fixed at their true values). As we can see, when we

set α1 at a false value and vary p, the “identified” marginal CDF of Y1 varies. This shows that α1 = 0

can not be the true value. In the left panel, we set the parameter value α1 = 2. Now, regardless which

p value that we insert into the mapping Ψ−1
1,p(·, p; α, σ), its shape remains unchanged and is the same

as the true CDF of Y0. How Ψ−1
1,p responds to the change of p provides the identification power for

different parameter values. The left panel provides evidence that α1 = 0 should not be included in

the identified set, while the right panel suggests α1 = 2 should.

Next, we demonstrate how our identification strategy can be operationalized in practice. Let

P I = {p1, p2, · · · , pI} and Y J = {y1, y2, · · · , yJ} be grid points in the support of P and Y, chosen

by researchers. Define

κd(y, p; αd, σd) = Ψ−1
d,p(P[Y ≤ y, D = d|P = p]; αd, σd).

As shown by Theorem 4 and illustrated by Figure 1, when parameter are set to be the true values,

κd(y, p; αd, σd) is a flat function in p for any value of y. Therefore, the “sampling standard deviation”

of {κd(y, p1; αd, σd), · · · , κd(y, pI ; αd, σd)}, denoted by Sd(y; αd, σd), must be zero when evaluated

17The inverse mapping Ψ−1
1,p depends on P(Y ≤ y, D = 1|P = p), which we do not have the analytic solution. So we

approximate P(Y ≤ y, D = 1|P = p) using a kernel estimator and a very large sample size.
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at the true parameter values. Hence at the true values, we must have

Ld(αd, σd) ≡
J

∑
j=1

Sd(yj; αd, σd) = 0.

This motivates another representation of (the outer set) of the identified set for θ = (α1, σ1, α0, σ0)

as18

{θ ∈ Θ : L1(α1, σ1) + L0(α0, σ0) = 0} .

Equivalently, we can represent the identified set for (αd, σd) separately as Ad = {(α, σ) : Ld(α, σ) = 0} .

Remark 7. The above discussion motivates a set estimator as

Âd = {(α, σ) : Ld,n(α, σ) ≤ εn} ,

where Ld,n is the sample analog of Ld, and εn ↓ 0 is a tuning sequence converges to zero. In this

numerical illustration, we set ξn = cn−1 and consider a wide range of constant c. The results are

similar. The specific choice of ξn and the asymptotic behavior of set estimator Âd can be studied

in the general framework of Chernozhukov, Hong, and Tamer (2007). We leave these for future

research.

Figure 2 plots the approximated contour sets of L1 and the identified sets.19 The red dot is where

the true parameter value locates. The right panel plots the set of (α1, σ1) at which L1(α1, σ1) is

ε-away from its minimal value, where ε is a very small constant. Hence, this set can be viewed

as an approximation of the identified set (or its outer set). In this example, for the choice of the

infinitesimal constant ε, we can have a singleton as the approximated identified set. This is not

surprising because the parameters are point-identified in this DGP.

Next, we turn to the identified set of treatment parameters that are recovered from the identified

set of the copula parameters. Figure 3 draws the identified set for the MTE (again, it is a singleton

18This set may be the outer set because we only consider finite grid points in p and y.
19Again, because we do not have an analytical expression for Ld, we generated a huge sample and approx-
imated Ld by its sample analog Ld,n(αd, σd) = ∑J

j=1 Ŝd(yj; αd, σd), where Ŝd is the sample variance of

{κ̂d(y, p1; αd, σd), · · · , κ̂d(y, pI ; αd, σd)}, and

κ̂d(y, p; αd, σd) = Ψ−1
d,p(P̂[Y ≤ y, D = d|P = p]; αd, σd).

with the kernel estimator P̂[Y ≤ y, D = d|P = p] occurs in the place of the true conditional probability P[Y ≤ y, D =
d|P = p].
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FIGURE 2. Contour set of L1 and Approximated Identified Set (DGP1)

since the identified set for σd and αd is a singleton). The red line is the true MTE, and the blue line is

the identified MTE based on our copula approach. The green line what LIV would identify under the

(false) IV-independence assumption. Apparently, there is a notable bias.

Finally, Table 3 compares the treatment parameters estimates using the copula-based approach

vs. the LIV estimand (that assumes the IV-independence). We consider four different layers of the

IV-related assumption when using the copula-based approach: (a) We impose the IV-independence

assumption, i.e., (α1 = 0); (b) We impose that α1 ≤ 0, this restriction relaxes the IV-independence

assumption but imposes a negative regression dependence between the IV and the potential outcome,

i.e., P(Yd > y|P = p) is non-increasing in p, we denote MIV−; (c) We assume the MIV assumption

(positive regression dependence); and (d) we leave the dependence structure captured by α1 entirely

unrestricted. As can be seen, in the two first cases, the copula-based approach can detect that the two

related IV assumptions (IV-independence and MIV−) are not compatible with the observed data.

In the two latter cases, the copula-based approach can point-identify all our policy parameters of

interests even when the IV is not valid.
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FIGURE 3. Identified Set for MTE (DGP1)

On the other hand, the LIV estimand shows a considerable positive bias for various policy

parameters. Indeed, since the “MTE” identified from LIV has positive bias over most parts of the

unit interval, it is not surprising that the treatment parameters identified under the IV-independence

assumption have a positive bias. To the best of our knowledge, all the empirical papers that have

used the LIV approach have never implemented the specification test related to it; see Theorem 6

in Appendix B. In the case that the IV-independence assumption is indeed violated, their policy

recommendations could be significantly biased. An advantage of the copula-based approach is that

the identification strategy and the specification tests are implemented simultaneously. So, suppose

the IV-independence assumption is indeed not compatible with the observed data. In that case, the

copula-based approach will not return a biased estimate but will return an empty set that suggests a

relaxation of the IV-independence assumption is needed.

3.4.2. DGP2: Misspecified Copula. In this subsection, we would like to investigate the copula-based

approach’s performance in the presence of a misspecified copula. We consider a DGP2 in which

the IV-independence assumption holds, and the observed data is not generated using a Frank copula.

In other words, LIV would correctly identify MTE in this setup, and our copula-based method is

subject to the problem of misspecification. To be more specific, we consider the DGP entertained in

HV05 (page 683). The true parameter values and those identified from the copula-based approach

are summarized in Table 4.
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TABLE 3. Identified Values (DGP1)

True value Identified by Copula-based Approach LIV
Parameters IV (α1 = 0) MIV−(α1 ≤ 0) MIV+(α1 ≥ 0) (α1 ∈ R)

ATE 1.00 Empty Empty 1.00 1.00 1.52

ATT 0.94 Empty Empty 0.94 0.94 0.94

ATUT 1.06 Empty Empty 1.06 1.06 2.10

PRTE 1.42 Empty Empty 1.42 1.42 2.55

LATE(0.2,0.5) 0.78 Empty Empty 0.78 0.78 1.04

TABLE 4. Parameter Values (DGP2)

Parameters True value Identified by Copula-based Approach
ATE 0.200 0.200

ATT 0.235 0.248

ATUT 0.157 0.158

PRTE 0.155 0.158

LATE(0.2,0.5) 0.225 0.225

We can see from Table 4 that, while our semiparametric model is misspecified, the copula-based

approach has very small biases. Figure 4 shows why this is the case. In this example, we set the

parameter space for σ1 as [−20, 20]. In HV05’s example, Y1 and V are negatively correlated, and

the correlation coefficient equals −1. For this, our identification approach would push σ1 to −∞.

In HV05’s example, Y1 and V exhibits a perfect negative dependence; their dependence structure

is captured by the Fréchet lower bound copula. Since the Frank copula is comprehensive, it could

approximate this specific dependence when σ1 converges to −∞.

In the implementation, the search for true parameters ends at the lower boundary (-20) of the

parameter space of σ1. At the same time, the identified values of α1 and α0 are close to zeros, which

is also reflected in Figure 4. The α1 is not exactly zero because it needs to compensate for the fact

that we can not set σ1 to −∞. This example shows that even though we consider a semi-parametric
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FIGURE 4. Contour set of L1 and Approximated Identified Set (DGP2)

identification approach, the copula can still be flexible enough to capture the essential part of the

dependence structure among the latent variables.

Figure 5 plots the MTE that we construct based upon the identified (αd, σd) and the true MTE.

Except at the two boundaries, the semi-parametrically identified MTE is very close to the true

function. Again, the discrepancy at the two boundaries is because we can not set σd as ±∞ in

practice. However, we should expect a smaller discrepancy when we allow a larger parameter space.

4. EXTENSION: MULTIPLE THRESHOLD-CROSSING MODELS

There are many empirical applications where a model imposing only STC model cannot adequately

model the selection to the treatment. Various examples are given in Heckman and Pinto (2018). In

presence of multiple potential instruments, one way to relax the “strong" monotonicity assumption is

to consider the “AM monotonicity" —in the language of Mogstad, Torgovitsky and Walters (2019),

which can be modelled by considering the multiple hurdle model entertained in Lee and Salanié

(2018). Our approach can be applied to the case where selection into treatment is defined by a
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FIGURE 5. Identified Set for MTE (DGP2)

finite number of thresholds. However, for the sake of simplicity, we will consider the case with two

thresholds.

Assumption 10 (Double Hurdle (DH) model). The selection mechanism is governed by D =

1{Q1(Z) > V1, Q2(Z) > V2} for some measurable and non-trivial function (Q1, Q2), where

(V1, V2) has a joint continuous distribution over interval [0, 1]2 with marginal uniform distribu-

tions and are statistically independent of the vector of
(
Q1(Z), Q2(Z)

)
, i.e.

(
Q1(Z), Q2(Z)

)
⊥

(V1, V2).

Unlike in the STC model, Q1(Z) and Q2(Z) are not readily identified from the choice probability

P(D = 1|Z). Theorem 4.2 in Lee and Salanié (2018) provides conditions under which Q1(Z),

Q2(Z) and the joint distribution FV1,V2(v1, v2) are non-parametrically identified from the propensity

score P(D = 1|Z). Their non-parametric identification approach requires two continuous “exoge-

nous" covariates that generate all possible values of the thresholds. In our current approach, the

exogeneity refers only to the selection equation, i.e., (Z ⊥ (V1, V2)); Z could be correlated with

the potential outcomes. Without loss of generality, we use Z1 and Z2 to denote those exogenous
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covariates such that Q1(Z) ≡ Q1(Z1) does not depend Z2 and Q2(Z) ≡ Q2(Z2) does not depend

on Z1.20 Hereafter, we will assume that the regularity conditions of Lee and Salanié (2018, Theorem

4.2) are valid and that FV1,V2(v1, v2), Q1(Z1), and Q2(Z2) are identifiable from the data. To ease the

notation, we will write V = (V1, V2) and Q = (Q1, Q2). In the presence of multiple unobserved

heterogeneity in the selection mechanism, we define the DMTR as follows:

DMTRd
g(v, q) = P[Yd ≤ y|V = v, Q = q] ≡ FYd|V,Q(y|v, q),

for v ∈ [0, 1]2, q ∈ Q1 ×Q2, and d ∈ {0, 1}. First, we can show that all conventional policy

parameters can also be written as a weighted average of the DMTRd
g even in the presence of multiple

thresholds. Before doing so, let’s introduce the following assumption:

Assumption 11 (Conditional Policy Invariance). Ya′
d |Va′ , Qa′ ∼ Ya

d |Va, Qa with Va′ ∼ Va and

Ya′
d ∼ Ya

d for a 6= a′.

We have the following results for the double hurdle model.

Theorem 5. Suppose that Assumption 10 is satisfied, then

(i) MTE(v) =
∫

q fQ(q)DMTE(v, q)dq;

(ii) For any s ∈ {ATE, LATE(u,u′), ATT, ATUT}21 and weights ωs(v, q) listed in Table 5 below,

we have

s =
∫

v

∫
q

ωs(v, q)DMTE(v, q)dvdq. (17)

(iii) If in addition Assumption 11 holds, Equation (17) holds with s = PRTE.

(iv) If in addition, Lee and Salanié (2018, Assumption 4.2) holds, then all the weights ωs(v, q)

are point identified.

Proof. See Appendix A.7. �

Remark 8. In presence of valid IVs, i.e. (Z1, Z2) ⊥ Yd|V our weights ωs(v, q) for any s ∈

{ATE, ATT, ATUT, PRTE} collapse to the weights proposed by Lee and Salanié (2018) for the DH

20For the entire list of requirements please see Assumption 4.2 in Lee and Salanié (2018). They also discussed identification
under weaker conditions.
21Here LATE(u, u′) represents the average treatment effect for the group of compliers when P is externally changed from
u to u′: LATEg(u, u′) ≡ E[g(Y1)− g(Y0)|u1 < V1 ≤ u′1, u2 < V2 ≤ u′2].
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TABLE 5. Policy Parameters and DMTE in the multiple thresholds case.

Parameters weights ωs(v, q)
ATE fQ(q) fV(v)

ATT
fQ(q) fV(v)1{v∈[0,q1 ]×[0,q2 ]}

E[FV(Q)]

ATUT
fQ(q) fV(v)1{v/∈[0,q1 ]×[0,q2 ]}

E[1−FV(Q)]

LATE(u,u′)
fQ(q) fV(v)1{v∈[u1,u′1 ]×[u2,u′2 ]}

FV

(
v∈[u1,u′1]×[u2,u′2]

)
PRTE

[ f
Qa′ (q)− fQa (q)] fVa (v)1{v∈[0,q1 ]×[0,q2 ]}

E[FV(Qa′ )]−E[FV(Qa)]

model. If in addition both V and Q are scalar-valued random variable, then the weights in Table 5

reduce to the weights in Table 1.

Notice that LATEg(u, u′) ≡ E[g(Y1)− g(Y0)|u1 < V1 ≤ u′1, u2 < V2 ≤ u′2] is a generalization

of the LATE defined in Imbens and Angrist (1994) when the selection into treatment is defined by

two thresholds. This type of parameter has recently received attention from empirical researchers,

e.g. Arteaga (2018).

Assumption 12. The joint distribution of (Yd, V, Q) is absolutely continuous respect to the Lebesgue

measure.

Lemma 5. [Vine Copula] Under Assumptions 10 and 12, for d ∈ {0, 1} we have for each y ∈ Y

and q ∈ Q1 ×Q2,

FYd|Q1
(y|q1) =

∂

∂x2
CYd,Q1(x1, x2)

∣∣∣
x1=FYd

(y),x2=FQ1 (q1)
≡ cI

d,FQ1 (q1)

(
FYd(y)

)
, (18)

FYd|Q(y|q) =
∂

∂x2
CYd,Q1|Q2=q2

(x1, x2)
∣∣∣

x1=FYd |Q1
(y|q1),x2=FQ1 |Q2

(q1|q2)
≡ cI I

d,FQ1 |Q2
(FYd|Q1

(y|q1)), (19)

FYd|V2,Q(y|v2, Q) =
∂

∂x2
CYd,V2|Q=q(x1, x2)

∣∣∣
x1=FYd |Q(y|q),x2=v2

≡ cI I I
d,v2

(FYd|Q(y|q)), (20)

FYd|V,Q(y|v, Q) =
∂

∂x2
CYd,V1|V2=v2,Q=q(x1, x2)

∣∣∣
x1=FYd |V2,Q(y|v2,q),x2=FV1 |V2

(v1|v2)
, (21)
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and there exists monotone mapping Ψ1,q and Ψ0,q such that for each y ∈ Y and q ∈ Q1 ×Q2,

P[Y ≤ y, D = 1|Q = q] = Ψ1,q(FY1(y)), (22)

and

P[Y ≤ y, D = 0|Q = q] = Ψ0,q(FY0(y)) (23)

where the expressions for Ψd,q are collected in Appendix A.8.

Proof. See Appendix A.8. �

Given Lemma 5, the identified set for DMTR or DMTE can be constructed as in Theorems 2 to 4.

5. DISCUSSION AND FUTURE WORK

This paper shows how to use the MTE framework to perform the layered policy analysis when the

potential IVs are not necessarily valid. We focus on the case where the propensity score is continuous,

as assumed in HV05. While this condition is easier to be satisfied since we allow for imperfect IVs,

there are empirical applications in which all potential IVs are discrete. In the follow-up research, we

will extend our framework to incorporate discrete propensity score using the sub-copula approach

we entertained in Appendix A.9. Finally, this paper focuses on population-level analysis. We briefly

discuss estimation and inference in Section 3.4 and leave the complete analysis for future work.
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APPENDIX A. PROOFS OF RESULTS IN THE MAIN TEXT.

A.1. Proof of Theorem 1. It is easy to see that

MTEg(v) ≡ E[g(Y1)− g(Y0)|V = v] =
∫ 1

0
fP(p)DMTEg(v, p)dp,

and

ATEg ≡ E[g(Y1)− g(Y0)] =
∫ 1

0

∫ 1

0
fP(p)︸ ︷︷ ︸

wATE(v,p)

DMTEg(v, p)dpdv.

Regarding LATE,

LATEg(u, u′) ≡ E[g(Y1) − g(Y0)|u < V ≤ u′] =
∫ 1

0

∫ 1

0

fP(p)1{u<v≤u′}
u′ − u︸ ︷︷ ︸

wLATE(u,u′ )(v,p)

DMTEg(v, p)dvdp

For ATT, we have

ATTg ≡
∫ 1

0
E[g(Y1)− g(Y0)|D = 1, P = p]dFP|D=1(p)

=
∫ 1

0
E[g(Y1)− g(Y0)|V ≤ p, P = p]dFP|D=1(p) =

∫ 1

0

1
p

∫ p

0
E[g(Y1)− g(Y0)|V = v, P = p]dvdFP|D=1(p)

=
∫ 1

0

1
p

∫ p

0
DMTE(v, p)dv

p
P(D = 1)

fP(p)dp =
∫ 1

0

∫ 1

0
DMTE(v, p)dv

fP(p)1{v ≤ p}
P(D = 1)

dp

=
∫ 1

0

∫ 1

0

fP(p)1{v ≤ p}
E[P]︸ ︷︷ ︸

wATT(v,p)

DMTEg(v, p)dvdp,

where dFP|D=1(p) = p
P(D=1) fP(p)dp by Bayesian rule and P(D = 1) = E[E[D|P]] = E[P].

Following the similar derivation as ATT, we can show that

ATUTg ≡
∫ 1

0
E[g(Y1)− g(Y0)|D = 0, P = p]dFP|D=0(p)

=
∫ 1

0

∫ 1

0

fP(p)1{v > p}
E[1− P]︸ ︷︷ ︸
wATUT(v,p)

DMTEg(v, p)dvdp

Concerning the PRTEg, under Assumption 1 only, we have:

E[g(Ya)] =
∫ 1

0
E[g(Ya)|Pa = p]dFPa(p) =

∫ 1

0
E[(g(Ya

1 )− g(Ya
0 ))Da|Pa = p]dFPa(p) + E[g(Ya

0 )]

=
∫ 1

0

∫ 1

0
1{v ≤ p} fPa(p)E[g(Ya

1 )− g(Ya
0 )|Va = v, Pa = p]dpdv + E[g(Ya

0 )]

=
∫ 1

0

∫ 1

0
1{v ≤ p} fPa(p)DMTEa

g(v, p)dpdv + E[g(Ya
0 )]
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Since we have DMTEa′
g = DMTEa

g and E[g(Ya′
0 )] = E[g(Ya

0 )] under Assumption 4, then under both Assumptions 1

and 4 we have:

E[g(Ya′ )− g(Ya)] =
∫ 1

0

∫ 1

0
[ fPa′ (p)− fPa(p)]1{v ≤ p}DMTEa

g(v, p)dpdv

Therefore,

PRTEg =
∫ 1

0

∫ 1

0

[ fPa′ (p)− fPa(p)]1{v ≤ p}
EF

Pa′
[P]−EFPa [P]︸ ︷︷ ︸
wPRTE(v,p)

DMTEg(v, p)dpdv.

A.2. Proof of Lemma 2. To show Equation (6), note that first that

fYd ,P(y, p) =
∂2FYd ,P(t1, t2)

∂t1∂t2
|t1=y,t2=p =

∂2CYd ,P(x1, x2)

∂x1∂x2
|x1=FYd (y),x2=FP(p) fYd (y) fP(p)

Therefore,

FYd |P(y|p) =
∫ y

−∞
fYd |P(t|p)dt =

∫ y

−∞

fYd ,P(t, p)
fP(p)

dt

=
∫ y

−∞

∂2CYd ,P(x1,x2)

∂x1∂x2
|x1=FYd (t),x2=FP(p) fYd (t) fP(p)

fP(p)
dt =

∂CYd ,P(x1, x2)

∂x2
|x1=FYd (y),x2=FP(p)

≡ cd,FP(p)(FYd (y)),

where we write the RHS as cd,FP(p)(FYd (y)) since the RHS depends on y only through FYd (y) and the mapping cd,FP(p)

depends on the joint distribution of Yd and P. Note that for any given p, both FYd |P(y|p) and FYd (y) are strictly increasing

in y. Therefore, the mapping cd,FP(p)(·) is strictly increasing and we can express

FYd (y) = c−1
d,FP(p)

(
FYd |P(y|p)

)
. (24)

To see Equation (7), note that

fYd |V,P(y|v, p) =
fYd ,V|P(y, v|p)

fV|P(v|p)
=

∂2CYd ,V|P(x1,x2;p)
∂x1∂x2

|x1=FYd (y|p),x2=FV|P(v|p) fYd |P(y|p) fV|P(v|p)
fV|P(v|p)

=
∂2CYd ,V|P(x1, x2; p)

∂x1∂x2
|x1=FYd (y|p),x2=FV|P(v|p) fYd |P(y|p)

Therefore,

FYd |V,P(y|v, p) =
∫ y

−∞
fYd |V,P(t|v, p)dt

=
∫ y

−∞

∂2CYd ,V|P(x1, x2; p)
∂x1∂x2

|x1=FYd (t|p),x2=FV|P(v|p) fYd |P(t|p)dt =
∂CYd ,V|P(x1, x2; p)

∂x2
|x1=FYd (y|p),x2=v
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where again we use FV|P(v|p) = v.

At last, we consider Equations (8) and (9). Suppose d = 1

P[Y ≤ y, D = 1|P = p] = P[Y1 ≤ y, V ≤ p|P = p] = CY1,V|P(c1,FP(p)(FY1 (y)), p; p)

where we inserting Equation (24) to obtain the result. As discussed earlier u 7→ c1,FP(p)(u) is strictly increasing and

x1 7→ CY1,V|P(x1, x2; p) is also strictly increasing, therefore u 7→ CY1,V|P=p

(
c1,FP(p)(u), p; p

)
≡ Ψ1,p(u) is strictly

increasing. For d = 0,

P[Y ≤ y, D = 0|P = p] = P[Y0 ≤ y, V > p|P = p] = P[Y0 ≤ y|P = p]−P[Y0 ≤ y, V ≤ p|P = p]

= c0,FP(p)(FY0 (y))− CY0,V|P(c0,FP(p)(FY0 (y)), p; p) ≡ Ψ0,p(FY0 (y)),

where the mapping Ψ0,p(u) is strictly increasing in u because the left hand side of the equation above is strictly increasing

in y (by the definition of conditioning probability), and FY0 (y) is strictly increasing in y.

A.3. Proof of Theorem 2. Let P(Y ≤ y, D = d|P = p) be the distribution of observables. It is apparent from

Definition 1, (CYd ,V|P, CYd ,P, Fd) satisfy Equations (8) and (9), then they can rationalize the data and model; on the other

hand, if (CYd ,V|P, CYd ,P, Fd) are the true model parameters, they they must connect with the implied data distribution

through Equations (8) and (9). In this sense, the set defined in Definition 1 is sharp.

To verify the set defined in Theorem 2 is also sharp, it is sufficient to show that Equations (8) and (9) and Equation (10)

in Theorem 2 are equivalent. First, it is straightforward to see that Equations (8) and (9) imply Equation (10). Second,

suppose Equation (10) hold, that is, Ψ−1
d,p(P[Y ≤ y, D = d|P = p]) is flat in p and only varies as a function of y. Note that

under Assumption 5, FYd and FP are continuous and strictly increasing, and both CYd ,V|P and
∂CYd ,P(x1,x2)

∂x2
are increasing

in their first arguments. Therefore, Ψ−1
d,p is strictly increasing in y by construction.

Next from the definitions in Equations (8) and (9) we know that for any p > 0

p = CY1,V|P=p(1, p; p) 0 = CY1,V|P=p(0, p; p),

and

1 = cd,FP(p)(1), 0 = cd,FP(p)(0).

Therefore it is easy to see that Ψ−1
d,p(P[Y ≤ −∞, D = d|P = p]) = Ψ−1

d,p(0) = 0 and Ψ−1
d,p(P[Y ≤ ∞, D = d|P =

p]) = Ψ−1
d,p(P[D = d|P = p]) = 1. This says that Ψ−1(P[Y ≤ ·, D = d|P = p]), as a function of y, is a valid

distribution function, which we can choose as the counterfactual distribution FYd . This completes the proof.

A.4. Proof to Corollary 1. We take d = 1 as an example; the case for d = 0 is similar. Suppose for simplicity the

mapping Ψ−1 is differentiable with respect to p, and all inverse functions below are properly defined. Then the restriction

is equivalent to

∂
{

Ψ−1
1,p(P[Y ≤ y, D = 1|P = p])

}
∂p

= 0.
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On the other hand, P ⊥ Y1|V and P ⊥ V implies (Y1, V) ⊥ P. By the definition in Equation (8), the mapping Ψ1,p then

reduces to the following simple form:

Ψ1,p(FY1 (y)) = CY1,V

(
FY1 (y), p

)
.

Let C−1
1,Y1,V(·, x2) be the inverse of CY1,V(·, x2) with respect to the first argument, then,

0 =
∂
{

Ψ−1
1,p(P[Y ≤ y, D = 1|P = p])

}
∂p

=
∂
{

C−1
1,Y1,V

(
P[Y ≤ y, D = 1|P = p], p

)}
∂p

=
∂C−1

1,Y1,V

(
y, x2

)
∂y

|y=P[Y≤y,D=1|P=p],x2=p ×
∂P[Y ≤ y, D = 1|P = p]

∂p

+
∂C−1

1,Y1,V

(
y, x2

)
∂x2

|y=P[Y≤y,D=1|P=p],x2=p.

This implies

∂P[Y ≤ y, D = 1|P = p]
∂p

= −

∂C−1
1,Y1,V

(
y,x2

)
∂x2

|y=P[Y≤y,D=1|P=p],x2=p

∂C−1
1,Y1,V

(
y,x2

)
∂y |y=P[Y≤y,D=1|P=p],x2=p

=
∂CY1,V

(
x1, x2

)
∂x2

|x1=F1(y),x2=p = P[Y1 ≤ y|V = p],

where the first equality solves the previous displayed equation, the third equality is due to the definition of a copula and

V ∼ U[0, 1]. For the second equality, note first that C−1
1,Y1,V

(
CY1,V(x1, x2), x2

)
= x1 and differentiate both sides with

respect to x2 yields

∂C−1
1,Y1,V

(
CY1,V(x1, x2), x2

)
∂x2

+
∂C−1

1,Y1,V

(
CY1,V(x1, x2), x2

)
∂y

∂CY1,V

(
x1, x2

)
∂x2

= 0,

then the second equality holds by noticing CY1,V(F1(y), p) = P[Y ≤ y, D = 1|P = p] under the independence

Assumption 2.

A.5. Proof of Lemma 3. (i) and (ii) hold obviously, in which cases P(Y1 ≤ y|P1 = p1) = P(Y1 ≤ y|P1 = p′1)

for all y, p1 and p′1. To see (iii) holds, note first Yd0|V2 = v2 �FSD Yd1|V2 = v2 implies Hy(·) is an increasing

function. Since P2|P1 = p′1 �FSD P2|P = p1, it follows that EP2|P1=p1
[Hy(P2)]−EP2|P1=p′1

[Hy(P2)] ≤ 0. Therefore,

P(Y1 ≤ y|P1 = p1)− P(Y1 ≤ y|P1 = p′1) ≤ 0 for any p′1 ≥ p1, that is, Yd|P1 = p1 �FSD Yd|P1 = p′1 for any

p′1 ≥ p1. �

A.6. Proof of Lemma 4. For Property (c) see Nelsen (2007, Theorem 5.2.10). For Properties (d) and (e) see Nelsen

(2007, Corollary 5.2.6).
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Properties (a) and (f) are obvious. For property (b), note first that FYd |P(y|p) =
∂CYd ,P(FYd (y),FP(p))

∂x2
and fYd |P(y|p) =

∂2CYd ,P(FYd (y),FP(p))
∂x1∂x2

fYd (y). Therefore,

fYd |P(y|p)
FYd |P(y|p)

=

∂2CYd ,P(FYd (y),FP(p))
∂x1∂x2

fYd (y)
∂CYd ,P(FYd (y),FP(p))

∂x2

=
∂ log

∂CYd ,P(FYd (y),FP(p))
∂x2

∂x1
fYd (y).

If P is an IHRD IV, then
fYd |P(y|p)
FYd |P(y|p)

is non-decreasing in p for all y. Since fYd (y) > 0 and FP(p) is increasing in p, it is

equivalent to say
∂ log

∂CYd ,P (x1,x2)

∂x2
∂x1

is non-decreasing in x2.

A.7. Proof of Theorem 5. under Assumption 10 we have: fQ,V(q, v) = fQ(q) fV(v), this latter equality will be directly

used in all the derivations below. For (i) to (iii) we have:

MTEg(v) ≡ E[g(Y1)− g(Y0)|V = v] =
∫

q
fQ(q)DMTEg(v, q)dq

ATEg ≡ E[g(Y1)− g(Y0)] =
∫

v

∫
q

fQ(q) fV(v)︸ ︷︷ ︸
wATE(v,q)

DMTEg(v, q)dqdv

LATEg(u, u′) ≡ E[g(Y1)− g(Y0)|u1 < V1 ≤ u′1, u2 < V2 ≤ u′2]

=
∫

v

∫
q

fQ(q) fV(v)1{v∈[u1,u′1]×[u2,u′2]}

FV
(
v ∈ [u1, u′1]× [u2, u′2]

)︸ ︷︷ ︸
wLATE(u,u′ )(v,q)

DMTEg(v, q)dqdv

For vector a and b, let a ≤ b denote “component-wise smaller or equal to”. Then,

ATTg ≡
∫

q
E[g(Y1)− g(Y0)|D = 1, Q = q]dFQ|D=1(q)

=
∫

q
E[g(Y1)− g(Y0)|V ≤ q, Q = q]dFQ|D=1(q)

=
∫

q

∫
v≤q

1
FV(q)

E[g(Y1)− g(Y0)|V = v, Q = q]dFQ|D=1(q)

=
∫

v

∫
q

fQ(q) fV(v)1{v∈[0,q1]×[0,q2]}
E[FV(Q)]︸ ︷︷ ︸
wATT(v,q)

DMTEg(v, q)dqdv
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where dFQ|D=1(q) =
fQ(q)FV(q)

P(D=1) by Bayesian rule and P(D = 1) = E[E[D|Q]] = E[FV(Q)]. Likewise, we can

derive the ATUT weights as follows:

ATUTg ≡
∫

q
E[g(Y1)− g(Y0)|D = 0, Q = q]dFQ|D=0(q)

=
∫

v

∫
q

fQ(q) fV(v)1{v/∈[0,q1]×[0,q2]}
E[1− FV(Q)]︸ ︷︷ ︸

wATUT(v,q)

DMTEg(v, q)dqdv

Concerning the PRTEg, under Assumption 10 only, we have:

E[g(Ya)] =
∫

q
E[g(Ya)|Qa = q]dFQa (q) =

∫
q

E[(g(Ya
1 )− g(Ya

0 ))Da|Qa = q]dFQa (q) + E[g(Ya
0 )]

=
∫

v

∫
q

1{v∈[0,q1]×[0,q2]} fQa (q) fVa (v)E[g(Ya
1 )− g(Ya

0 )|Va = v, Qa = p]dpdv + E[g(Ya
0 )]

=
∫

v

∫
q

1{v∈[0,q1]×[0,q2]} fQa (q) fVa (v)DMTEa
gdqdv + E[g(Ya

0 )]

Since we have DMTEa′
g = DMTEa

g, fVa′ = fVa , and E[g(Ya′
0 )] = E[g(Ya

0 )] under Assumption 11, then under both

Assumptions 10 and 11 we have:

E[g(Ya′ )− g(Ya)] =
∫

v

∫
q
[ fQa′ (q)− fQa (q)] fVa (v)1{v∈[0,q1]×[0,q2]}DMTEa

gdqdv

Therefore,

PRTEg =
∫

v

∫
q

[ fQa′ (q)− fQa (q)] fVa (v)1{v∈[0,q1]×[0,q2]}
E[FV(Qa′ )]−E[FV(Qa)]︸ ︷︷ ︸

wPRTE(v,q)

DMTEa
gdqdv.

For (iv): Q1(Z1), Q2(Z1) and FV(v) are shown to be identified in Lee and Salanié (2018, Theorem 4.2). The

remaining point that we need to show is that the joint distribution FQ(q) is also point identified. Indeed, we have for

Z = (Z1, Z2),

FQ(q) = P(Q1(Z1) ≤ q1, Q2(Z2) ≤ q2)

= P
(
Z1 ≤ Q−1

1 (q1), Z2 ≤ Q−1
2 (q2)

)
= FZ

(
Q−1

1 (q1), Q−1
2 (q2)

)
where the joint distribution FZ(., .) is directly observed from the data. The invertibility of Q1 and Q2 is ensured by Lee

and Salanié (2018, Assumption 4.2).

A.8. Proof of Lemma 5. Equations (18) to (21) are direct applications of Joe (1996, Property 2), with some simplifications

due to the fact that Assumption 10 imposes that V ⊥ Q.
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Next we prove Equation (22). Given d = 1, y ∈ Y , and q ∈ Q1 ×Q2,

P[Y ≤ y, D = 1|Q = q] = P[Y1 ≤ y, V ≤ q|Q = q] = P[Y1 ≤ y, V1 ≤ q1|V2 ≤ q2, Q = q]q2

=
∫ q2

0
P[Y1 ≤ y, V1 ≤ q1|V2 = v2, Q = q]dFV2|Q(v2|q) =

∫ q2

0
P[Y1 ≤ y, V1 ≤ q1|V2 = v2, Q = q]dv2 (25)

For a given v2, the integrand P[Y1 ≤ y, V1 ≤ q1|V2 = v2, Q = q] can be handled in a similar way as in the STC case:

P[Y1 ≤ y, V1 ≤ q1|V2 = v2, Q = q] = CY1,V1|V2,Q

(
FY1|V2,Q(y|v2, q), FV1|V2,Q(q1|v2, q); v2, q

)
= CY1,V1|V2,Q

(
cI I I

1,v2
(FY1|Q(y|q)), FV1|V2

(q1|v2); v2, q
)
= CY1,V1|V2,Q

(
cI I I

1,v2
◦ cI I

1,FQ1 |Q2
(FY1|Q1

(y|q1)), FV1|V2
(q1|v2); v2, q

)
= CY1,V1|V2,Q

(
cI I I

1,v2
◦ cI I

1,FQ1 |Q2
◦ cI

1,FQ1 (q1)
(FY1 (y)), FV1|V2

(q1|v2); v2, q
)
≡ Ψ̃1,q(FY1 (y), v2). (26)

where the equalities hold by Equations 18, 19, and 20 and the assumption that Q ⊥ V, and the “◦” denotes composite

functions. Since for every y, q, and v2, the functions cI , cI I and cI I I are monotone, and CY1,V1|V2,Q is also monotone in its

first argument, then it follows that for each given y ∈ Y and q ∈ Q1 ×Q2,

P[Y ≤ y, D = 1|Q = q] =
∫ q2

0
Ψ̃1,q(FY1 (y), v2)dv2 ≡ Ψ1,q(FY1 (y))

is also a monotone function in FY1 (y).

Remark 9. If there was no V2 and Q2, that is, if the model is single threshold crossing model, then we would not have the

additional integration in Equation (25), and we do not need to use the two layers of vine-copula operation cI I I and cI for

V2 and Q2, respectively. In this case, the expression for Ψ1,q exactly reduces to the expression for Ψ1,p in Lemma 2.

For the case of d = 0, note that

P[Y ≤ y, D = 0|Q = q] = P[Y0 ≤ y|Q = q]−P[Y0 ≤ y, D = 1|Q = q]

= cI I
0,FQ1 |Q2

◦ cI
0,FQ1 (q1)

(FY0 (y))−
∫ q2

0
Ψ̃0,q(FY0 (y), v2)dv2 ≡ Ψ0,q(FY0 (y)),

where Ψ̃0,q is defined in the same way as Ψ̃1,q with index “1” being replaced by “0”.

A.9. Discrete Outcome Variables. In this subsection, we drop Assumption 5 and show how to extend Theorem 2 to the

case of discrete outcome variables.

Assumption 13. The joint density f(V,P)|Yd
(v, p|y)of (V, P) given Yd = y, d = 0, 1, exists and is positive for all

(v, p) ∈ [0, 1] × [0, 1] and all y ∈ Y = {y1, y2, · · · , yK}. Without loss of generality, assume the set Y is ordered:

yj < y` for j < `.

Assumption 13 says that the marginal distribution of Yd has finite support. Furthermore, the joint support of (Yd, P, V)

is “rectangular”. Let Td = {FYd (y1), FYd (y2), · · · , FYd (yK)} be the set of values that FYd can take. Similarly, defined

T p
d = {FYd |P(y1|p), FYd |P(y2|p), · · · , FYd |P(yK |p)} be the set of values that FYd |P(·|p) can take for each given p. Also
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define T Dp
d = {P(Y ≤ y1, D = d|P = p), · · · , P(Y ≤ yK , D = d|P = p)}. Again, let CYd ,V|P=p and CYd ,P be the

true copulas that generate the data. By Sklar’s theorem, they must be strictly increasing in the first argument over T p
d and

Td, respectively. Let Csub
Yd ,V|P=p and Csub

Yd ,P be two sub-copulas that coincide with the true copulas CYd ,V|P=p and CYd ,P

over T p
d and Td, respectively.

Lemma 6 (Vine Copula). Under Assumptions 1 and 13, for each y ∈ Y ,

FYd |P(y|p) =
∂

∂x2
Csub

Yd ,P(x1, x2)
∣∣∣
x1=FYd (y),x2=FP(p)

≡ csub
d,FP(p)(FYd (y)), (27)

FYd |V,P(y|v, p) =
∂

∂x2
Csub

Yd ,V|P=p(x1, x2)
∣∣∣
x1=FYd |P(y|p),x2=v

(28)

Also, for each given p, there exists strictly increasing mappings Γd,p: Td → T
Dp

d such that

P[Y ≤ y, D = 1|P = p] = Γ1,p(FY1 (y)) ≡ Csub
Y1,V|P=p

(
csub

1,FP(p)(FY1 (y)), p; p
)

, (29)

P[Y ≤ y, D = 0|P = p] = Γ0,p(FY0 (y)) ≡ csub
0,FP(p)(FY0 (y))− Csub

Y0,V|P

(
csub

0,FP(p)(FY0 (y)), p; p
)

. (30)

That is, the observed probability P[Y ≤ y, D = d|P = p] depends on y only through FYd (y).

Furthermore, fixing p, let Γ(−1)
d,p be defined as

Γ(−1)
d,p (t) = {u ∈ Td : Γd,p(u) = t},

then Γ(−1)
d,p (t) is singleton for any t ∈ T Dp

d . Furthermore,

Γ(−1)
d,p (P[Y ≤ y, D = d|P = p]) = Γ(−1)

d,p′ (P[Y ≤ y, D = d|P = p′]), (31)

Finally, the identified set is characterized by

ΘI =

{
θ̃ ∈ Θ̃ : For d ∈ {0, 1}, (CYd ,V|P, CYd ,P) ∈ Cc

d × Cd who admits subcopulas satisfying Equation (31)

and ∀y ∈ Y , FYd (y) = Γ(−1)
d,p (P[Y ≤ y, D = d|P = p])

}
.

Proof. First, we show that Equations (27) and (28) hold. By the Sklar (1959)’s theorem we known that there exists a copula

CYd ,P(x1, x2) such that P(Yd ≤ y, P ≤ p) = CYd ,P(FYd (y), FP(p)). Note that the copula CYd ,P may not be unique, but

the subcopula Csub
Yd ,P, which defined on Td × [0, 1], is uniquely determined. Then

FYd |P(y|p) = lim
δ→0

P(Yd ≤ y, P ≤ p + δ)−P(Yd ≤ y, P ≤ p− δ)

P(p− δ ≤ P ≤ p + δ)

= lim
δ→0

CYd ,P(FYd (y), FP(p + δ))− CYd ,P(FYd (y), FP(p− δ))

FP(p + δ)− FP(p− δ)

=
∂

∂x2
CYd ,P(x1, x2)

∣∣∣
x1=FYd (y),x2=FP(p)
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where by Nelsen (2007, Theorem 2.2.7) the partial derivative ∂
∂x2

CYd ,P(x1, x2) exists and is non-decreasing for almost

all x1 on [0, 1]. Because Csub
Yd ,P coincide with CYd ,P over Td × [0, 1], we must have ∂

∂x2
CYd ,P(x1, x2) =

∂
∂x2

Csub
Yd ,P(x1, x2)

for any x1 ∈ Td and x2 ∈ [0, 1]. Furthermore, ∂
∂x2

Csub
Yd ,P(x1, x2) must be strictly increasing in the first argument over

Td because ∂
∂x2

CYd ,P(x1, x2) is. This verifies Equation (27). Similarly, for almost all x1 ∈ [0, 1] there exists a partial

derivative ∂
∂x2

Csub
Yd ,V|P(x1, x2) that is non-decreasing x1 such that the following holds

FYd |V,P(y|v, p) =
∂

∂x2
Csub

Yd ,V|P=p(x1, x2)
∣∣∣
x1=FYd |P(y|p),x2=FV|P(v|p)

=
∂

∂x2
Csub

Yd ,V|P=p(x1, x2)
∣∣∣
x1=FYd |P(y|p),x2=v

where the last equality holds because FV|P(v|p) = v. This verifies Equation (7).

Now, fixing y, for d = 1

P[Y ≤ y, D = 1|P = p] = P[Y1 ≤ y, V ≤ p|P = p] = Csub
Y1,V|P(FYd |P(y|p), p; p)

= Csub
Y1,V|P(c

sub
1,FP(p)(FY1 (y)), p; p),

where the last equality holds by using Equation (27). As discussed earlier, over Td, u 7→ csub
1,FP(p)(u) is strictly increasing,

and over T p
d , x1 7→ Csub

Y1,V|P(x1, x2; p) is also strictly increasing, therefore u 7→ CY1,V|P=p

(
c1,FP(p)(u), p; p

)
≡ Ψ1,p(u)

is strictly increasing over Td. Similarly, for d = 0, then

P[Y ≤ y, D = 0|P = p] = P[Y0 ≤ y, V > p|P = p] = P[Y0 ≤ y|P = p]−P[Y0 ≤ y, V ≤ p|P = p]

= csub
0,FP(p)(FY0 (y))− Csub

Y0,V|P(c
sub
0,FP(p)(FY0 (y)), p; p) ≡ Γ0,p(FY0 (y)),

where the mapping Γ0,p(u) is strictly increasing in u over Td because the left hand side of the equation above is increasing

in y over Y (by the definition of conditioning probability), and FY0 (y) is increasing in y over Y . Because Γd,p(u) is

strictly increasing over Td, its inverse, as a subset of Td, must be a singleton. In the next step of the proof, we will show

that the identified set is characterized by Equation (31). To verify the set defined in Theorem 2 is sharp, it is sufficient

to show that Equations (29) and (30) and Equation (31) are equivalent. It is straightforward to see that Equations (29)

and (30) imply Equation (31), we will verify the reverse.

Take a pair of candidate copula functions CYd ,V|P=p and CYd ,P (that respect the support condition) and suppose their

subcopulas satisfy Equation (31), that is, Γ(−1)
d,p (P[Y ≤ y, D = d|P = p]) is flat in p for any y ∈ Y . Note by construction

and the definition of copula, Γ(−1)
d,p is strictly increasing in y over Y by construction.

Next from the definitions in Equations (29) and (30) we know that because 1 ∈ Td and 1 ∈ T p
d , we have

csub
1,FP(p)(1) = c1,FP(p)(1) = 1, Csub

Y1,V|P=p(1, p; p) = CY1,V|P=p(1, p; p) = p⇒ Γ−1
1,p(P[Y ≤ yK , D = 1|P = p]) = 1.
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Also,

csub
1,FP(p)(FY1 (y1)) = c1,FP(p)(FYd (y1)) > 0, Csub

Y1,V|P=p(FY1|P(y1|p), p; p) = CY1,V|P=p(FY1|P(y1|p), p; p) > 0

⇒ Γ−1
1,p(P[Y ≤ y1, D = 1|P = p]) > 0,

This says that Γ−1
1,p(P[Y ≤ ·, D = 1|P = p]), as a function of y, is positive, strictly increasing, and no bigger than 1 over

the set Y . Therefore, it is valid distribution function for a discrete random variable that takes values from Y , which we can

choose as the counterfactual distribution FY1 . Similar argument applies to FY0 . This completes the proof.

APPENDIX B. TESTING MTE ASSUMPTIONS

B.1. Testable Implication.

Theorem 6 (Sharp characterization of the MTE assumptions). Let Y, D, Y1, Y0, P(Z) define a potential outcome model

Y = Y1D + Y0(1− D). (i) If Assumptions 1 and 2 hold, then for all y, y′ ∈ Y , P(y < Y ≤ y′, D = 1|P = p) and

−P(y < Y ≤ y′, D = 0|P = p) are non-decreasing in p for all p ∈ P . (ii) If for all y, y′ ∈ Y P(y < Y ≤ y′, D =

1|P = p) and −P(y < Y ≤ y′, D = 0|P = p) are non-decreasing in p for all p ∈ P , there exists a joint distribution of

(Ṽ, Ỹ1, Ỹ0, P(Z)) such that Assumptions 1 and 2 hold, and (Ỹ, D̃, P(Z)) has the same distribution as (Y, D, P(Z)).

Proof. Theorem 6-(i) is a direct application of HV05 testable implications where G(Y) = 1{Y ∈ [y, y′]} for y ≤ y′.

We show (ii) is true. We will assume that ∂P(y<Y≤y′ ,D=1|P=p)
∂p is continuous over the set of limit points of P . First, we

construct Ṽ and D̃ as follows:

P(Ṽ ≤ t|P = p) = t ∀t ∈ [0, 1] and ∀p ∈ P . (32)

D̃ = 1{P(Z) ≥ Ṽ}. (33)

Note that by construction, Assumption 1 is satisfied. Let L(P) be the set of limit points of P , Lo(P) be a set of interior

point of P , and C(P) be the closure of P . Furthermore, let I(P) = C(P)/Lo(P) be the complement of Lo(P) in the

closure of P . So I(P) also contains isolation points. Note that Lo(P) can be written as a union of countable or finite

exclusive open intervals: Lo(P) = ∪J
j=1(aj, bj), where (aj, bj) ⊆ P , bj < aj+1, and J can be infinity. Let Ω(P) be a

collection of intervals belonging to (0, 1] defined as follows:

Ω(P) ≡
{
(p, p′] : p, p′ ∈ I(P) ∪ {0, 1} and @p̃ ∈ P , such that p < p̃ < p′

}
.

Then we again knows that Ω contains a generic element (ck, dk], where ck, dk ∈ I(P), dk ≤ ck+1, k = 1, 2, · · · , K with

K possibly taking ∞. Note that with above notation, for any v ∈ (0, 1], v must belongs to one of the following categories:

(i) an element of Lo(P) so that v ∈ (aj, bj) for some j, (ii) v ∈ L(P)/Lo(P), and (iii) there exist an integer k such that

v ∈ (ck, dk]. The following figure illustrates the partition of the unit interval.
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FIGURE 6. An illustration: P = {p1, p2, p5} ∪ [p3, p4] ∪ [p6, p7], Lo(P) =
(p3, p4) ∪ (p6, p7), and Ω(P) = {(0, p1], (p1, p2], (p4, p5], (p5, p6], (p7, 1]}.

Next, we propose the following distribution for Ỹ1|Ṽ, P. For any arbitrary p ∈ P and v ∈ (0, 1], we define

P(Ỹ1 ≤ y|Ṽ = v, P = p) =


∂
∂t P(Y ≤ y, D = 1|P = t)|t=v if v ∈ Lo(P)

limṽ→v
∂
∂t P(Y ≤ y, D = 1|P = t)|t=ṽ if v ∈ L(P)/Lo(P)

P(Y≤y,D=1|P=dk)−P(Y≤y,D=1|P=ck)
dk−ck

if v /∈ L(P) but v ∈ (ck, dk] ∈ Ω(P).

P(Ỹ0 ≤ y|Ṽ = v, P = p) =


− ∂

∂v P(Y ≤ y, D = 0|P = t)|t=v if v ∈ Lo(P)

− limṽ→v
∂

∂v P(Y ≤ y, D = 0|P = t)|t=ṽ if v ∈ Lo(P)
P(Y≤y,D=0|P=ck)−P(Y≤y,D=0|P=dk)

dk−ck
if v /∈ Lo(P) but v ∈ (ck, dk] ∈ Ω(P).

Note that the conditioning on Ṽ = v, the distribution of Ỹ1 does not depend on P. Hence, Assumption 2 is satisfied by

construction.

We now show that the distribution function constructed above is well defined. We focus on P(Ỹ1 ≤ y|Ṽ = v, P = p)

and the verification for P(Ỹ0 ≤ y|Ṽ = v, P = p) is analogous.

(1) P(Ỹ1 < y− ε|Ṽ = v, P = p) = 0 for all v ∈ [0, 1] and for any arbitrarily small ε > 0. To see this, suppose

v /∈ L(P), then there exists [ck, dk] ∈ Ω(P) such that v ∈ (ck, dk], therefore,

P(Ỹ1 ≤ y− ε|Ṽ = v, P = p)

=
P(Y ≤ y− ε, D = 1|P = dk)−P(Y ≤ y− ε, D = 1|P = ck)

dk − ck
=

0− 0
dk − ck

= 0.

On the other hand, if v ∈ Lo(P), then P(Y ≤ y− ε, D = 1|P = ṽ) = 0 for all ṽ in a small neighborhood of v,

which implies ∂
∂v P(Y ≤ y− ε, D = 1|P = v) = 0. The case that v ∈ Lo(P) follows straightforwardly.

(2) P(Ỹ1 ≤ y|Ṽ = v, P = p) = 1. First, if v ∈ Lo(P), then P(Y ≤ y, D = 1|P = v) = P(D = 1|P = v) =

v⇒ ∂
∂v P(Y ≤ y, D = 1|P = v) = 1. On the other hand, if v /∈ L(P), then

P(Ỹ1 ≤ y|Ṽ = v, P = p)

=
P(Y ≤ y, D = 1|P = dk)−P(Y ≤ y, D = 1|P = ck)

p′ − p
=

dk − ck
dk − ck

= 1.
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(3) P(Ỹ1 ≤ y|Ṽ = v, P = p) is nondecreasing in y. For y < y′ we have

P(Ỹ1 ≤ y′|Ṽ = v, P = p)−P(Ỹ1 ≤ y|Ṽ = v, P = p) =
∂
∂t P(y < Y ≤ y′, D = 1|P = t)|t=v ≥ 0 if v ∈ Lo(P),

limṽ→v
∂
∂t P(y < Y ≤ y, D = 1|P = t)|t=ṽ ≥ 0 if v ∈ L(P)/Lo(P)

P(y<Y≤y′ ,D=1|P=dk)−P(y<Y≤y′ ,D=1|P=ck)
dk−ck

≥ 0 if v /∈ Lo(P) but v ∈ [ck, dk] ∈ Ω(P),

where the last inequalities hold whenever the testable implications hold, i.e. P(y < Y ≤ y′, D = 1|P = p)

is a non-decreasing function for all p ∈ P and all y < y′, and by the continuously differentiability of

P(y < Y ≤ y′, D = 1|P = p) over L(P).

Finally, we show that (Ṽ, Ỹd, P(Z)), d ∈ {0, 1} is observationally equivalent to (V, Yd, P(Z)) d ∈ {0, 1}. For this,

we show that the joint distribution of (Ỹ, D̃, P(Z)) is the same as the joint distribution of (Y, D, P(Z)). Take an arbitrary

z ∈ Z and let p = p(z) ∈ P .

Suppose first p /∈ Lo(P), then (0, p] can be expressed as unions of exclusive intervals
(
∪J∗

j=1(aj, bj)
)
∪
(
∪K∗

k=1(ck, dk]
)

for some J∗ and K∗, where (aj, bj)s are connected subsets of P . Therefore,

P(Ỹ ≤ y, D̃ = 1|P = p) = P(Ỹ1 ≤ y, Ṽ ≤ p|P = p) =
∫ p

0
P(Ỹ1 ≤ y|Ṽ = v, P = p)dv

=
J∗

∑
j=1

∫ bj

aj

P(Ỹ1 ≤ y|Ṽ = v, P = p)dv +
K∗

∑
k=1

∫ dk

ck

P(Ỹ1 ≤ y|Ṽ = v, P = p)dv

=
J∗

∑
j=1

(
P(Y ≤ y, D = 1|P = bj)−P(Y ≤ y, D = 1|P = aj)

)

+
K∗

∑
k=1

(P(Y ≤ y, D = 1|P = dk)−P(Y ≤ y, D = 1|P = ck))

= P(Y ≤ y, D = 1|P = p)−P(Y ≤ y, D = 1|P = 0) = P(Y ≤ y, D = 1|P = p),

where the first equality is by definition, the second equality is by construction that Ṽ satisfies Assumption 1, the fourth

equality is obtained by inserting the constructed counterfactural distributions, and the second last equality holds because

(0, p] can be expressed as unions of exclusive intervals
(
∪J∗

j=1(aj, bj)
)
∪
(
∪K∗

k=1(ck, dk]
)
.

Suppose that p ∈ (aj∗ , bj∗ ) ⊆ L0(P) for some j∗, then the right hand side equals to
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P(Ỹ ≤ y, D̃ = 1|P = p) = P(Ỹ1 ≤ y, Ṽ ≤ p|P = p) =
∫ p

0
P(Ỹ1 ≤ y|Ṽ = v, P = p)dv

=
∫ aj∗

0
P(Ỹ1 ≤ y|Ṽ = v, P = p)dv +

∫ p

aj∗
P(Ỹ1 ≤ y|Ṽ = v, P = p)dv

= P(Y ≤ y, D = 1|P = aj∗ ) +
∫ p

aj∗

∂

∂v
P(Y ≤ y, D = 1|P = v)dv

= P(Y ≤ y, D = 1|P = aj∗ ) + P(Y ≤ y, D = 1|P = p)

−P(Y ≤ y, D = 1|P = aj∗ ) = P(Y ≤ y, D = 1|P = p),

where the fourth equality holds by the above argument and the fifth equality holds by inserting the constructed counterfac-

tural distributions. This completes the proof. �

It is worth noting that testable implications of the MTE assumptions has been previously derived in Heckman and

Vytlacil (2005, Appendix A). More precisely, HV05 derived testable implications of Assumptions 1 and 2 are: for any

non-negative measurable function, i.e. G+(.) : Y → R+ we have

∂

∂p
E[G+(Y)D|P = p] ≥ 0, (34)

∂

∂p
E[G+(Y)(1− D)|P = p] ≤ 0. (35)

The main contributions of Theorem 6 are (i) it shows that the testable implication is sharp, and (ii) it shows that we do

not need to visit all those non-negative measurable functions, but we can restricts our attention to a tractable sub-class

which is sufficient to screen all possible observable violations of the MTE assumptions. This tractable characterization has

the direct advantage to propose a formal statistical test to screen the violation of the MTE assumptions.

B.2. Testing Procedures. The sharp testable implications of the MTE assumptions can be summarized as follows:

P(y < Y ≤ y′, D = 1|P = p̃) ≥ P(y < Y ≤ y′, D = 1|P = p), (36)

−P(y < Y ≤ y′, D = 0|P = p̃) ≥ −P(y < Y ≤ y′, D = 0|P = p), (37)

for all p̃ ≥ p with ( p̃, p) ∈ P2 and y, y′ ∈ Y .

Recently, Hsu et al (2018) propose a uniform a valid test for null hypothesis of the type:

E[ f (1)(W, τ)|S = s̃, X = x] ≥ E[ f (2)(W, τ)|S = s, X = x], (38)

s̃ ≥ s with (s̃, s) ∈ S2, x ∈ X , and τ ∈ Ω,

where W is a vector of observed random variables that contains S and X as elements, f (1)(W, τ), f (2)(W, τ) are known

real valued functions indexed by τ ∈ Ω —which can be finite or infinite. By defining the following τ ≡ (d, k) ∈ Ω ≡{
(d, k) : d ∈ {0, 1}, k = (y, y′) : −∞ ≤ y ≤ y′ ≤ ∞

}
, f (1)(W, (1, k)) = f (2)(W, (1, k)) = 1{Y ∈ Ck}1{D = 1},
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f (1)(W, (0, k)) = f (2)(W, (0, k)) = −1{Y ∈ Ck}1{D = 0} with Ck ≡ [y, y′] ∩ Y , and P = S; we see that the MTE

sharp testable implications, i.e. eqs (36,37) could be recasted into Hsu, Liu, and Shi (2019) testing framework if P was

an observed random variable. In our context, P is not observed but could be consistently estimated. To test the MTE

testable implications one can proceed in two steps: (a) the first step consist in finding a consistent estimator for P, i.e. P̂,

(b) second consist in using Hsu, Liu, and Shi (2019) testing procedure with P̂. A theoretical challenge is to ensure that the

pre-estimation does not affect the statistical properties of Hsu, Liu, and Shi (2019) testing procedure.

APPENDIX C. ADDITIONAL RESULTS ON COPULAS

C.1. Farlie-Gumbel-Morgenstern (FGM) Copula.

Assumption 14 (FGM Copula). There exists θ = (α0, α1, δ1, δ0) ∈ Θ ⊆ RT with T < ∞ such that CYd ,P(x1, x2) =

x1x2
(
1 + αd(1 − x1)(1 − x2)

)
and CYd ,V|P=p(x1, x2) = x1x2

(
1 + σd(p)(1 − x1)(1 − x2)

)
for σd(p) ∈ [−1, 1],

d ∈ {0, 1}, where σd(p) is known up to a finite number of parameters δd.

Corollary 3. Under Assumptions 1, 5, 6 and 14, the identified set ΘSP
I of θ̃ ≡

(
θ, (FYd (y) : d ∈ {0, 1}, y ∈ R)

)
is

characterized as follows:

ΘSP
I =

{
For d ∈ {0, 1}, FYd (y; θ) =

αd(1− 2FP(p)) + 1−
√
(αd(1− 2FP(p)) + 1)2 − 4αd(1− 2FP(p))Hd

2αd(1− 2FP(p))

θ = (αd, δd) satisfies (∆d − ∆
1
2
d )

∂Bd
∂p

= Bd
∂∆d
∂p

for all p

}
,

where Bd = αd(1− 2FP(p)), ∆d = (Bd + 1)2 − 4Bd Hd, and

H1(y, p, σ1(p)) =
σ1(p)p(1− p) + p−

√
(σ1(p)p(1− p) + p)2 − 4σ1(p)p(1− p)FY,D|P(y, 1|p)

2σ1(p)p(1− p)
.

and

H0(y, p, σ0(p)) =
σ0(p)p(1− p) + p + 1 +

√
(σ0(p)p(1− p) + p + 1)2 + 4σ0(p)p(1− p)FY,D|P(y, 0|p)

2σ0(p)p(1− p)
.

Proof. Consider d = 1. Note first by equation (8) and assumption 14,

FY,D|P(y, 1|p) = c1,FP(p)(FY1 (y))p
(
1 + σ1(p)(1− c1,FP(p)(FY1 (y)))(1− p)

)
.

Let A = σ1(p)p(1− p). We focus on the case A 6= 0, that is, we do not consider p = 0 or p = 1 or values of p such

that σ1(p) = 0, because the solution is straightforward for those values. From the above equation, we have two possible

solutions for c1,FP(p)(FY1 (y)),

A + p +
√
(A + p)2 − 4AFY,D|P(y, 1|p)

2A
or

A + p−
√
(A + p)2 − 4AFY,D|P(y, 1|p)

2A
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The expression in the square root sign is always non-negative. This is obviously true when A < 0. When A > 0,

(A + p)2 − 4AFY,D|P(y, 1|p) = (A− p)2 + 4A(p− FY,D|P(y, 1|p)) ≥ 4A(p− FY,D|P(y, 1|p)) ≥ 0,

where the last inequality holds because p = P(D = 1|P = p) ≥ P(Y ≤ y, D = 1|P = p) = FY,D|P(y, 1|p).

Although both solutions are well defined, the first solution is not valid for this context. When σ1(p) > 0, we have

p > A > 0 (unless p = 0), and,

A + p +
√
(A + p)2 − 4AFY,D|P(y, 1|p)

2A
≥ A + p

2A
> 1.

When σ1(p) < 0, we have A < 0 and p + A > 0, and,

A + p +
√
(A + p)2 − 4AFY,D|P(y, 1|p)

2A
< 0

because the numerator and denominator have opposite sign. Therefore, the first solution can not be valid since

c1,FP(p)(FY1 (y)) = FYd |P(y, p) must takes values from [0, 1].

It remains to verify the second solution is valid. First consider the case A > 0. Let ∆ = (A + p)2− 4AFY,D|P(y, 1|p).

Then,

0 ≤ FY,D|P(y, 1|p) ≤ p⇒ (A− p)2 ≤ (A + p)2 − 4AFY,D|P(y, 1|p) ≤ (A + p)2

⇒ 0 ≤ A + p−
√

∆ ≤ 2A⇒ 0 ≤ A + p−
√

∆
2A

≤ 1

Next consider the case A < 0,

0 ≤ FY,D|P(y, 1|p) ≤ p⇒ (p + A)2 ≤ (A + p)2 − 4AFY,D|P(y, 1|p) ≤ (p− A)2

⇒ 2A ≤ A + p−
√

∆ ≤ 0⇒ 0 ≤ A + p−
√

∆
2A

≤ 1

To summarize, we have one valid solution

c1,FP(p)(FY1 (y)) =
σ1(p)p(1− p) + p−

√
(σ1(p)p(1− p) + p)2 − 4σ1(p)p(1− p)FY,D|P(y, 1|p)

2σ1(p)p(1− p)
≡ H1(y, p, σ1(p)).

The right hand side only depends on unknown finite dimensional parameters and quantities that can be identified from data.

Next, recall that

H1(y, p, σ1(p)) = c1,FP(p)(FY1 (y)) =
∂CY1,P(x1, x2)

∂x2
|x1=FY1 (y),x2=FP(p)

= x1 + α1x1(1− x1)(1− 2x2)|x1=FY1 (y),x2=FP(p) = FY1 (y) + α1FY1 (y)(1− FY1 (y))(1− 2FP(p))
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Solve FY1 (y) from the above equation, we get again two possible solutions.

B1 + 1 +
√
(B1 + 1)2 − 4B1H1

2B1
, or

B1 + 1−
√
(B1 + 1)2 − 4B1H1

2B1

where B1 = α1(1− 2FP(p)). Again, we restrict our attention to the case B1 6= 0, otherwise FY1 (y) has a unique solution

which equals to H1(y, p, σ1(p)). Note also that B1 ∈ [−1, 1], so B1 + 1 ≥ 2B1 and B1 + 1 ≥ 0. Following similar

argument as above (and use the fact that 0 ≤ H1 ≤ 1, we can show that the first solution is not valid while the second

solution is. Therefore, it must be the case that

FY1 (y) =
α1(1− 2FP(p)) + 1−

√
(α1(1− 2FP(p)) + 1)2 − 4α1(1− 2FP(p))H1(y, p, σ1(p))

2α1(1− 2FP(p))
,

where

H1 =
σ1(p)p(1− p) + p−

√
(σ1(p)p(1− p) + p)2 − 4σ1(p)p(1− p)FY,D|P(y, 1|p)

2σ1(p)p(1− p)
.

Now consider d = 0. Note first by equation (9) and assumption 14,

FY,D|P(y, 0|p) = c0,FP(p)(FY0 (y))− c0,FP(p)(FY0 (y))p
(
1 + σ0(p)(1− c0,FP(p)(FY0 (y)))(1− p)

)
.

From the above equation, we have two possible solutions for c0,FP(p)(FY0 (y)),

A0 + p− 1 +
√
(A0 + p− 1)2 + 4A0FY,D|P(y, 0|p)

2A0
or

A0 + p− 1−
√
(A0 + p− 1)2 + 4A0FY,D|P(y, 0|p)

2A0

where A0 = σ0(p)p(1− p), so A0 + p− 1 = (1− p)(σ0(p)p− 1) < 0. The term inside the square root is always

non-negative. It is obvious when A0 > 0. When A0 < 0, we have

(A0 + p− 1)2 + 4A0FY,D|P(y, 0|p) = (A0 − p + 1)2 + 4A0(FY,D|P(y, 0|p)− (1− p))

≥ 4A0(FY,D|P(y, 0|p)− (1− p)) = 4A0(P(Y > y, D = 1|P = p)− P(Y > y|P = p)) ≥ 0.

Although both solutions are well-defined, we will argue the second solution is not valid. To see this, when A0 > 0, the

numerator is negative and denominator is positive, implies

A0 + p− 1−
√
(A0 + p− 1)2 + 4A0FY,D|P(y, 0|p)

2A0
< 0.

When A0 < 0, since A0 + 1− p > 0 so 2A0 > A0 + p− 1, we have

A0 + p− 1−
√
(A0 + p− 1)2 + 4A0FY,D|P(y, 0|p)

2A0
≥ A0 + p− 1

2A0
>

2A0
2A0

= 1.
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On the other hand, the first solution always falls between 0 and 1. When σ0(p) > 0, A0 > 0, we have

A0 + p− 1 +
√
(A0 + p− 1)2 + 4A0FY,D|P(y, 0|p)

2A0
=

A0 + p− 1 +
√
(A0 − p + 1)2 + 4A0(FY,D|P(y, 0|p)− (1− p))

2A0

≤ A0 + p− 1 +
√
(A0 − p + 1)2

2A0
=

2A0
2A0

= 1,

and
A0 + p− 1 +

√
(A0 + p− 1)2 + 4A0FY,D|P(y, 0|p)

2A0
≥ A0 + p− 1 +

√
(A0 + p− 1)2

2A0
≥ 0.

When σ0(p) < 0, A0 < 0, we have

A0 + p− 1 +
√
(A0 + p− 1)2 + 4A0FY,D|P(y, 0|p)

2A0
≥ A0 + p− 1 +

√
(A0 + p− 1)2

2A0
=

0
2A0

= 0,

A0 + p− 1 +
√
(A0 + p− 1)2 + 4A0FY,D|P(y, 0|p)

2A0
=

A0 + p− 1 +
√
(A0 − p + 1)2 + 4A0(FY,D|P(y, 0|p)− (1− p))

2A0

≤ A0 + p− 1 +
√
(A0 − p + 1)2

2A0
=

2A0
2A0

= 1,

To conclude, we must have

c0,FP(p)(FY0 (y)) =
σ0 p(1− p) + p + 1 +

√
(σ0 p(1− p) + p + 1)2 + 4σ0 p(1− p)FY,D|P(y, 0|p)

2σ0 p(1− p)
≡ H0(y, p, σ0(p)).

Finally, repeating what we did for FY1 (y) and c1,FP(p)(FY1 (y)), we can do the same and obtain

FY0 (y) =
α0(1− 2FP(p)) + 1−

√
(α0(1− 2FP(p)) + 1)2 − 4α0(1− 2FP(p))H0(y, p, σ0(p))

2α0(1− 2FP(p))
.

�

C.2. Bernstein Copulas. The density of the Bernstein copula is given by:

cYd ,V|P(x1, x2; αd) = KdLd

Kd

∑
k=1

Ld

∑
l=1

αd
klbk−1,Kd−1(x1)bl−1,Ld−1(x2)

Note that bi,I(u) has an alternative representation:

bi,I(u) =
I

∑
j=i

(−1)j−i
(

I
j

)(
j
i

)
uj (39)
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First let assume that Assumptions 1 and 5 hold, then under Assumption 9(i), we have

E[g(Yd)|V = v, P = p] =
∫
Y

g(y)KdLd

Kd

∑
k=1

Ld

∑
l=1

αd
klbk−1,Kd−1

(
FYd |P(y|p)

)
bl−1,Ld−1(v) fYd |P(y|p)dy

= KdLd

Kd

∑
k=1

Ld

∑
l=1

αd
klbl−1,Ld−1(v)

∫
Y

g(y)bk−1,Kd−1(FYd |P(y|p)) fYd |P(y|p)dy.

In addition, under Assumption 9(ii) we can derive the following:

FYd |P(y|p) = RdSd

Rd

∑
r=1

Sd

∑
s=1

βd
rsBr−1,Rd−1(FYd (y))bs−1,Sd−1(FP(p))︸ ︷︷ ︸

χd
rs

,

fYd |P(y|p) = fYd (y)RdSd

Rd

∑
r=1

Sd

∑
s=1

βd
rsbr−1,Rd−1(FYd (y))bs−1,Sd−1(FP(p))︸ ︷︷ ︸

ζd
rs

.

To ease the notation, when there is no confusion we will make the following abuse of notation FP ≡ FP(p) and

FYd ≡ FYd (y).

bk−1,Kd−1(FYd |P(y|p)) =
Kd−1

∑
j=k−1

(−1)j−k+1
(

Kd − 1
j

)(
j

k− 1

)(
FYd |P(y|p)

)j

=
Kd−1

∑
j=k−1

(−1)j−k+1
(

Kd − 1
j

)(
j

k− 1

)(
RdSd

)j
(

Rd

∑
r=1

Sd

∑
s=1

χd
rs

)j

=
Kd−1

∑
j=k−1

(−1)j−k+1
(

Kd − 1
j

)(
j

k− 1

)(
RdSd

)j ∑
n11+n12+...+nRdSd=j

(
j

n11, n12, ..., nRdSd

)
(χd

11)
n11 (χd

12)
n12 · · · (χd

RdSd
)nRd Sd

and,

bk−1,Kd−1(FYd |P(y|p)) fYd |P(y|p) =
Rd

∑
r=1

Sd

∑
s=1

 Kd−1

∑
j=k−1

(−1)j−k+1
(

Kd − 1
j

)(
j

k− 1

)(
RdSd

)j+1

∑
n11+n12+...+nRdSd=j

(
j

n11, n12, ..., nRdSd

)
(χd

11)
n11 (χd

12)
n12 · · · (χd

RdSd
)nRdSd

 ζd
rs fYd (y)

We have the following factorization:

(χd
11)

n11 (χd
12)

n12 · · · (χd
RdSd

)nRdSd ζd
rs

= βd
rsbs−1,Sd−1(FP)

Rd ,Sd

∏
e=1, f=1

(
βd

e f
)ne f

Rd

∏
e=1

(
Be−1,Rd−1(FYd )

)ne·
Sd

∏
f=1

(
b f−1,Sd−1(FP)

)n· f br−1,Rd−1(FYd )
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where ne· = ∑Sd
f=1 ne f and n· f = ∑Rd

e=1 ne f . Then, we have

∫
Y

g(y)(χd
11)

n11 (χd
12)

n12 · · · (χd
RdSd

)nRdSd ζd
rs fYd (y)dy

= βd
rsbs−1,Sd−1(FP)

Sd

∏
f=1

(
b f−1,Sd−1(FP)

)n· f
Rd ,Sd

∏
e=1, f=1

(
βd

e f
)ne f E

[
g(Yd)

Rd

∏
e=1

(
Be−1,Rd−1(FYd )

)ne·br−1,Rd−1(FYd )
]

︸ ︷︷ ︸
γd,ne·

r−1,g

Therefore, we can write:

∫
Y

g(y)bk−1,Kd−1(FYd |P(y|p)) fYd |P(y|p)dy =
Rd

∑
r=1

Sd

∑
s=1

βd
rsbs−1,Sd−1(FP)

{
Kd−1

∑
j=k−1

(−1)j−k+1
(

Kd − 1
j

)(
j

k− 1

)(
RdSd

)j+1×

∑
n11+n12+...+nRd Sd=j

(
j

n11, n12, ..., nRdSd

) Rd ,Sd

∏
e=1, f=1

(
βd

e f
)ne f

Sd

∏
f=1

(
b f−1,Sd−1(FP)

)n· f γd,ne·
r−1,g

}

Finally, we have

E[g(Yd)|V = v, P = p] = KdLd

Kd

∑
k=1

Ld

∑
l=1

αd
klbl−1,Ld−1(v)

Rd

∑
r=1

Sd

∑
s=1

βd
rsbs−1,Sd−1(FP)

{
Kd−1

∑
j=k−1

(−1)j−k+1
(

Kd − 1
j

)(
j

k− 1

)(
RdSd

)j+1×

∑
n11+n12+...+nRd Sd=j

(
j

n11, n12, ..., nRdSd

) Rd ,Sd

∏
e=1, f=1

(
βd

e f
)ne f

Sd

∏
f=1

(
b f−1,Sd−1(FP)

)n· f γd,ne·
r−1,g

}
(40)

Remark that when Rd = Sd = 1, CYd ,P(x1, x2; βd) = x1x2 which is equivalent to Yd ⊥ P, in such a case Equation (40)

simplifies to

E[g(Yd)|V = v, P = p] = KdLd

Kd

∑
k=1

Ld

∑
l=1

αd
klbl−1,Ld−1(v)

∫
Y

g(y)bk−1,Kd−1(FYd (y)) fYd (y)dy︸ ︷︷ ︸
τd

g,k

=
Ld

∑
l=1

(
KdLd

Kd

∑
k=1

αd
klτ

d
g,k

)
︸ ︷︷ ︸

θ
g
dl

bl−1,Ld−1(v) =
Ld

∑
l=1

θ
g
dlbl−1,Ld−1(v) = E[g(Yd)|V = v]. (41)

As can be seen we recover the parametric form Mogstad, Santos, and Torgovitsky (2018) imposed on the MTR.

Mogstad, Santos, and Torgovitsky (2018) approach imposes E[g(Yd)|V = v] = ∑Ld
l=1 θ

g
dlbl−1,Ld−1(v) as a primitive,

while in contrast we show that under a valid IV assumption —Assumption 2, imposing such a structure on the MTRs is

equivalent to parametrize the “selection on unobservables” dependence — CYd ,V|P(x1, x2; αd)— using a Bernstein Copula

of order Ld.
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Going back to the general context, and by integrating the DMTEs we obtain the following model restriction:

E[g(Y)1{D = d}|P = p] =
∫ p+(1−p)1{d=0}

p1{d=0}
E[g(Yd)|V = v, P = p]dv

= KdLd

Kd

∑
k=1

Ld

∑
l=1

αd
kl

∫ p+(1−p)1{d=0}

p1{d=0}
bl−1,Ld−1(v)dv

Rd

∑
r=1

Sd

∑
s=1

βd
rsbs−1,Sd−1(FP)

{
Kd−1

∑
j=k−1

(−1)j−k+1
(

Kd − 1
j

)(
j

k− 1

)(
RdSd

)j+1×

∑
n11+n12+...+nRdSd=j

(
j

n11, n12, ..., nRdSd

) Rd ,Sd

∏
e=1, f=1

(
βd

e f
)ne f

Sd

∏
f=1

(
b f−1,Sd−1(FP)

)n· f γd,ne·
r−1,g

}

Remark, we can show that Bl−1,Ld−1(1) ≡
∫ 1

0 bl−1,Ld−1(v)dv = 1/Ld =
∫ p

0
bl−1,Ld−1(v)dv︸ ︷︷ ︸
Bl−1,Ld−1(p)

+
∫ 1

p bl−1,Ld−1(v)dv.

Therefore, we have:

E[g(Y)D|P = p] = K1L1

K1

∑
k=1

L1

∑
l=1

α1
kl Bl−1,L1−1(p)

R1

∑
r=1

S1

∑
s=1

β1
rsbs−1,S1−1(FP)

{
K1−1

∑
j=k−1

(−1)j−k+1
(

K1 − 1
j

)(
j

k− 1

)(
R1S1

)j+1×

∑
n11+n12+...+nR1S1=j

(
j

n11, n12, ..., nR1S1

) R1,S1

∏
e=1, f=1

(
β1

e f
)ne f

S1

∏
f=1

(
b f−1,Sd−1(FP)

)n· f γ1,ne·
r−1,g

}
(42)

and

E[g(Y)(1−D)|P = p] = K0L0

K0

∑
k=1

L0

∑
l=1

α0
kl(1/L0− Bl−1,L0−1(p))

R0

∑
r=1

S0

∑
s=1

β0
rsbs−1,S0−1(FP)

{
Kd−1

∑
j=k−1

(−1)j−k+1
(

K0 − 1
j

)(
j

k− 1

)(
R0S0

)j+1×

∑
n11+n12+...+nR0S0=j

(
j

n11, n12, ..., nR0S0

) R0,S0

∏
e=1, f=1

(
β0

e f
)ne f

S0

∏
f=1

(
b f−1,S0−1(FP)

)n· f γ0,ne·
r−1,g

}
. (43)

Restrictions on γ
d,je
r−1,g. Recall γ

d,je
r−1,g ≡ E

[
g(Yd)∏Rd

e=1
(

Be−1,Rd−1(FYd )
)je br−1,Rd−1(FYd )

]
for je ∈ {1, ..., Ld}.

γ
d,je
r−1,g is an unknown parameter to estimate, but the set of potential values it can take is restricted by the model.

In fact, each choice of g(.) imposes a restriction on γ
d,je
r−1,g, for instance for g(·) = 1{· ≤ y}, g(.) = 1{y < · ≤ y′},

g+ : Y → R+, or g− : Y → R− we have respectively

γ
d,je
r−1,y = E

[
1{Y ≤ y}

Rd

∏
e=1

(
Be−1,Rd−1(FYd )

)je br−1,Rd−1(FYd )
]
≥ 0, (44)

γ
d,je
r−1,y′ − γ

d,je
r−1,y = E

[
1{y < Y ≤ y′}

Rd

∏
e=1

(
Be−1,Rd−1(FYd )

)je br−1,Rd−1(FYd )
]
≥ 0 ∀y′ > y, (45)

γ
d,je
r−1,g+ = E

[
g+(Yd)

Rd

∏
e=1

(
Be−1,Rd−1(FYd )

)je br−1,Rd−1(FYd )
]
≥ 0, (46)

γ
d,je
r−1,g− = E

[
g−(Yd)

Rd

∏
e=1

(
Be−1,Rd−1(FYd )

)je br−1,Rd−1(FYd )
]
≤ 0. (47)
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Remark that, while the dimensionality of γ
d,je
r−1,g depends on the complexity of the g(.), the set of unknown parameters

θ = (α0, α1, β1, β0) ∈ ΘBC where

ΘBC ≡
{

αd
kl ≥ 0, βd

rs ≥ 0, 1 ≤ l ≤ Ld, 1 ≤ k ≤ Kd, 1 ≤ r ≤ Rd, 1 ≤ s ≤ Sd, such that

Kd

Ld

∑
l=1

αd
kl = 1, Ld

Kd

∑
k=1

αd
kl = 1, Sd

R

∑
r=1

βd
rs = 1, Rd

Sd

∑
s=1

βd
rs = 1, for d ∈ {0, 1}

}
is invariant to the choice of g(.). So choosing a more informative class of g(.), will provide a tighter identified set of the

copula parameters ΘBC
I . To do so, we will consider the half-interval class G ≡ {g(·) = 1[· ≤ y], y ∈ Y} which allow us

to recover the distributional DMTR FYd |V,P(y|v, p). We then consider (γje
r−1,y)y∈Y ≡ (γ

0,j
r−1,y, γ

1,j
r−1,y)y∈Y ∈ ΓBC where

ΓBC ≡
{

γ
d,je
r−1,y ≥ 0 ∀y ∈ Y such that γ

d,je
r−1,y′ − γ

d,je
r−1,y ≥ 0 ∀ ∞ ≥ y′ > y ≥ −∞, for d ∈ {0, 1}

}
.

Theorem 7. Under Assumptions 1, 5 and 9, the identified set of the Bernstein copulas parameters ΘBC
I of

(
θ, (γje

r−1,y)y∈Y
)
∈

ΘBC × ΓBC is characterized as follows:

ΘBC
I =

{(
θ, (γje

r−1,y)y∈Y
)
∈ ΘBC × ΓBC that satisfies Equations (42)and (43), for all g(.) ∈ G

}
,

and for any integrable real function g(.), the identified set ΘI,g for DMTRg is defined as follows:

ΘI,g =

{(
E[g(Y1)|V = v, P = p; θ̄], E[g(Y0)|V = v, P = p; θ̄]

)
such that

E[g(Yd)|V = v, P = p; θ̄] = KdLd

Kd

∑
k=1

Ld

∑
l=1

αd
klbl−1,Ld−1(v)

Rd

∑
r=1

Sd

∑
s=1

βd
rsbs−1,Sd−1(FP)

{
Kd−1

∑
j=k−1

(−1)j−k+1
(

Kd − 1
j

)(
j

k− 1

)(
RdSd

)j+1×

∑
n11+n12+...+nRd Sd=j

(
j

n11, n12, ..., nRdSd

) Rd ,Sd

∏
e=1, f=1

(
βd

e f
)ne f

Sd

∏
f=1

(
b f−1,Sd−1(FP)

)n· f γd,ne·
r−1,g

}

∀ θ̄ ≡
(

θ, (γje
r−1,y)y∈Y

)
∈ ΘBC

I

}
.

Example 1. Now we consider an example with Kd = Ld = Rd = Sd = 2. In this cases

b0,1(u) =
(

1
0

)
u0(1− u)1−0 = 1− u; b1,1(u) =

(
1
1

)
u1(1− u)1−1 = u.

B0,1(u) = u− u2

2
; B1,1(u) =

u2

2
.

Therefore, we have

CYd ,V|P(x1, x2; αd) = 4{αd
11B0,1(x1)B0,1(x2) + αd

12B0,1(x1)B1,1(x2) + αd
21B1,1(x1)B0,1(x2) + αd

22B1,1(x1)B1,1(x2)},
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where αd
kl ≥ 0 and βd

rs ≥ 0 satisfy 2(αd
11 + αd

12) = 1, 2(αd
21 + αd

22) = 1, 2(αd
11 + αd

21) = 1, 2(αd
12 + αd

22) = 1. In this

case, we can express other αs in terms of αd
11, that is, αd

22 = αd
11, αd

21 = αd
12 = 1

2 − αd
11. To ensures all the parameters are

greater or equal to zero, we need to have 0 ≤ αd
11 ≤

1
2 . Therefore, we can write

CYd ,V|P(x1, x2; αd) = 4

{
αd

11(x1 −
x2

1
2
)(x2 −

x2
2

2
) + (

1
2
− αd

11)(x1 −
x2

1
2
)

x2
2

2
+ (

1
2
− αd

11)(x2 −
x2

2
2
)

x2
1

2
+ αd

11
x2

1
2

x2
2

2

}
= 4αd

11x1x2 + (1− 4αd
11)(x1x2

2 + x2x2
1) + (4αd

11 − 1)x2
1x2

2.

cYd ,V|P(x1, x2; αd) = 4αd
11 + (1− 4αd

11)(2x1 + 2x2) + 4(4αd
11 − 1)x1x2.

Note that if we define 4αd
11 − 1 ≡ δ, then

CYd ,V|P(x1, x2; αd) = x1x2
(
1 + δ(1− x1)(1− x2)

)
which is the FGM copula with dependence parameter δ. If we impose α11 = 1

4 , then we are imposing the selection-on-

observable assumption.

Likewise, when Rd = Sd = 2, we have

CYd ,P(x1, x2; βd) = 4βd
11x1x2 + (1− 4βd

11)(x1x2
2 + x2x2

1) + (4βd
11 − 1)x2

1x2
2.

and

cYd ,P(x1, x2; βd) = 4βd
11 + (1− 4βd

11)(2x1 + 2x2) + 4(4βd
11 − 1)x1x2.

We need 0 ≤ βd
11 ≤

1
2 . When we impose βd

11 = 1
4 , it follows that CYd ,P(x1, x2; βd) = x1x2, that is, the IV independence

assumption is satisfied.

Recall that fYd |V,P(y|v, p) = cYd ,V|P(FYd |P(y|p), FV|P(v|p); αd) fYd |P fV|P(v|p) = cYd ,V|P(FYd |P(y|p), FV|P(v|p); αd) fYd |P,

we have

E[g(Yd)|V = v, P = p] =
∫
Y

g(y) fYd |V,P(y|v, p)dy

=
∫
Y

g(y)
{

4αd
11 + (1− 4αd

11)(2FYd |P(y|p) + 2v) + 4(4αd
11 − 1)FYd |P(y|p)v

}
fYd |P(y|p)dy

=
∫
Y

g(y) fYd |P(y|p)
(

4αd
11 + (1− 4αd

11)FYd |P
)

dy︸ ︷︷ ︸
RHS1d(p)

+v
∫
Y

g(y) fYd |P(y|p)
(

4αd
11 − 1

) (
4FYd |P − 2

)
dy︸ ︷︷ ︸

RHS2d(p)

(48)

So the RHS of the Equation (48) is linear in v. To proceed, recall that

FYd |P(y|p) =
CYd ,P(x1,x2)

∂x2
|x1=FYd (y),x2=FP(p) = 4βd

11FYd (y) + (1− 4βd
11)(2FYd FP + F2

Yd
) + 2(4βd

11 − 1)F2
Yd

FP

and

fYd |P(y|p) = fYd

(
4βd

11 + (1− 4βd
11)(2FYd + 2FP) + 4(4βd

11 − 1)FYd FP

)
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Insert the above two equations into the first RHS term of Equation (48) and re-arrange, we have

RHS1d(p) = ψd
10 E[g(Yd)]︸ ︷︷ ︸

γd
0(g)

+ψd
11 E[g(Yd)FYd (Yd)]︸ ︷︷ ︸

γd
1(g)

+ψd
12 E[g(Yd)F2

Yd
(Yd)]︸ ︷︷ ︸

γd
2(g)

+ψd
13 E[g(Yd)F3

Yd
(Yd)]︸ ︷︷ ︸

γd
3(g)

≡ ψψψd
1 ·γγγd(g),

where ψψψd
1(p) = (ψd

10(p), ψd
11(p), ψd

12(p), ψd
13(p))′,

ψd
10(p) =

(
4βd

11 + 2(1− 4βd
11)FP(p)

)
4αd

11

ψd
11(p) = (4βd

11 − 1)(4FP(p)− 2)4αd
11 + (4βd

11 + 2FP(p)(1− 4βd
11))

2(1− 4αd
11)

ψd
12(p) = (12βd

11 + 6(1− 4βd
11)FP(p))(1− 4αd

11)(4βd
11 − 1)(2FP(p)− 1)

ψd
13(p) = 2(4βd

11 − 1)2(2FP(p)− 1)2(1− 4αd
11)

The γ parameters are indexed by function g, and γγγd(g) = (γd
0(g), γd

1(g), γd
2(g), γd

3(g))′.

For the RHS2 term, we have

RHS2d(p) = ψd
20γd

0(g) + ψd
21γd

1(g) + ψd
22γd

2(g) + ψd
23γd

3(g) ≡ ψψψd
2 ·γγγd(g)

where ψψψd
2(p) = (ψd

20(p), ψd
21(p), ψd

22(p), ψd
23(p))′,

ψd
20(p) = −2

(
4βd

11 + 2(1− 4βd
11)FP(p)

)
ψd

21(p) = 4(4βd
11 + 2FP(p)(1− 4βd

11))
2 − 2(4βd

11 − 1)(4FP(p)− 2)

ψd
22(p) = (48βd

11 + 24(1− 4βd
11)FP(p))(4βd

11 − 1)(2FP(p)− 1)

ψd
23(p) = 8(4βd

11 − 1)2(2FP(p)− 1)2

Finally, consider

E[g(Y)1{D = d}|P = p] =
∫ p+(1−p)1{d=0}

p1{d=0}
E[g(Yd)|V = v, P = p]dv

= RHS1d(p)
∫ p+(1−p)1{d=0}

p1{d=0}
dv + RHS2d(p)

∫ p+(1−p)1{d=0}

p1{d=0}
vdv

Setting d = 1 and d = 0, respectively, we have

E[g(Y)1{D = 1}|P = p] = (ψψψ1
1(p) ·γγγ1(g))p + (ψψψ1

2(p) ·γγγ1(g))
p2

2
(49)

E[g(Y)1{D = 0}|P = p] = (ψψψ0
1(p) ·γγγ0(g))(1− p) + (ψψψ0

2(p) ·γγγ0(g))(
1
2
− p2

2
) (50)

In this case, the set

ΘBC ≡
{
(α1

11, β1
11, α0

11, β0
11) : 0 ≤ αd

11 ≤
1
2

, 0 ≤ βd
11 ≤

1
2

, for d ∈ {0, 1}
}
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If we consider the class of g functions to be G ≡ {g(·) = 1[· ≤ y], y ∈ Y}, then the set

ΓBC ≡
{
(γγγ1(y), γγγ0(y)) : γd

j (y) ≥ 0, γd
j (y) ≥ γd

j (y
′), for all y ≥ y′, for j ∈ {0, 1, 2, 3}, for d ∈ {0, 1}

}
.

The identified set of the Bernstein copulas parameters ΘBC
I of

(
αd

11, βd
11, γd

j (y)y∈Y
)
∈ ΘBC × ΓBC is characterized as

follows:

ΘBC
I =

{(
αd

11, βd
11, γd

j (y)y∈Y
)
∈ ΘBC × ΓBC that satisfies Equations (49)and (50)

}
,

and for any integrable real function g(.), the identified set ΘI,g for DMTRg is defined as follows:

ΘI,g =

{(
E[g(Y1)|V = v, P = p; θ̄], E[g(Y0)|V = v, P = p; θ̄]

)
such that

E[g(Yd)|V = v, P = p; θ̄] = ψψψd
1(p) ·γγγd(g)+ (ψψψd

2(p) ·γγγd(g))v, ∀ θ̄ ≡
(

α1
11, β1

11, α0
11, β0

11, γγγ1(y), γγγ0(y)
)
∈ ΘBC

I

}
.

Remark 10. It is possible to additionally impose some conditions listed in Lemma 4. In Example 1, further assuming MIV

is amount to assume the second derivative of CYd ,P with respect to x2 is non-positive, that is

∂2CYd ,P(x1, x2)

∂x2
2

= 2(4βd
11 − 1)(x2

1 − x1) ≤ 0, ∀x1 ∈ [0, 1]

This is satisfied if we assume 1
2 ≥ βd

11 ≥
1
4 .

C.3. Frank Copula: Proof of Corollary 2. Consider d = 1. Note first,

FY,D|P(y, 1|p) = − 1
σ1(p)

ln
[
1 +

(e−σ1(p)c1,FP (p)(FY1 (y)) − 1)(e−σ1(p)p − 1)
(e−σ1(p) − 1)

]
Solve c1,FP(p)(FY1 (y)) from the above equation we have

c1,FP(p)(FY1 (y)) = −
1

σ1(p)
ln
[
1 +

(e−σ1(p)FY,D|P(y,1|p) − 1)(e−σ1(p) − 1)
(e−σ1(p)p − 1)

]
≡ H1(y, p, σ1(p))

Here, the H1(y, p, σ1(p)) only depends on quantities that are directly identifiable from the data and the finite dimensional

parameters. Then recall that

H1(y, p, σ1(p)) = c1,FP(p)(FY1 (y)) =
∂CY1,P(x1, x2)

∂x2
|x1=FY1 (y),x2=FP(p)

=
(e−σ1 FY1 (y) − 1)e−σ1 FP(p)

(e−σ1 − 1) + (e−σ1 FY1 (y) − 1)(e−σ1 FP(p) − 1)
,
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Again, solving FY1 (y) from it yields

FY1 (y; θ) = − 1
α1

ln
[
1 +

H1(y, p, σ1(p))(e−α1 − 1)
e−α1 FP(p) − H1(y, p, σ1(p))(e−α1 FP(p) − 1)

]
Next consider d = 0. We know that

FYD|P(y, 0|p) = c0,FP(p)(FY0 (y)) +
1

σ0(p)
ln
[
1 +

(e−σ0(p)c0,FP (p)(FY0 (y)) − 1)(e−σ0(p)p − 1)
(e−σ0(p) − 1)

]
Solving c0,FP(p)(FY0 (y)) from the above equation we have

c0,FP(p)(FY0 (y)) =
1

σ0(p)
ln
[
1 +

(eσ0(p)FYD|P(y,0|p) − 1)(e−σ0(p) − 1)
e−σ0(p) − e−σ0(p)p

]
≡ H0(y, p, σ0(p))

Again, recall that

H0(y, p, σ0(p)) = c0,FP(p)(FY0 (y)) =
∂CY0,P(x1, x2)

∂x2
|x1=FY0 (y),x2=FP(p) =

(e−σ0 FY0 (y) − 1)e−σ0 FP(p)

(e−σ0 − 1) + (e−σ0 FY0 (y) − 1)(e−σ0 FP(p) − 1)

Solve FY0 (y) from the above equation yields

FY0 (y; θ) = − 1
α0

ln
[
1 +

H0(y, p, σ0(p))(e−α0 − 1)
e−α0 FP(p) − H0(y, p, σ0(p))(e−α0 FP(p) − 1)

]
.

Finally, since Fd(y; θ) does not depends on p, its partial derivative with respect to p must be flat at 0 for all value of p,

and so does the right hand side of the equation. Therefore, for all p, noticing e−αd FP(p) 6= 0 and Hd 6= 0,

∂

{
e−αd FP (p)−Hd(y,p,σd(p))(e−αd FP (p)−1)

Hd(y,p,σd(p))

}
∂p

= 0⇒ e−αd FP(p)
αd fP(p)(Hd − 1)Hd − ∂Hd

∂p

H2
d

= 0

⇒ αd fP(p)(1− Hd)Hd +
∂Hd
∂p

= 0.

To obtain the identified set for the distributional DMTR, simply note that Hd(y, p, σd(p)) = cd,FP(p)(FYd (y)) =

FYd |P(y|p), hence

FYd |P,V(y|p, v) =
∂CYd ,V|P(x1, x2)

∂x2
|x1=Hd ,x2=v =

(e−σd Hd − 1)e−σdv

(e−σd − 1) + (e−σd Hd − 1)(e−σdv − 1)
,

and restrict θ taking values from ΘSP
I and

E[Yd|P = p, V = v] =
∫

y fYd |P,V(y|p, v)dy =
∫

ycYd ,V|P(y, v|p) fYd |P(y|p)dy

=
∫

y
−σd(p)(e−σd(p) − 1)e−σd(p)(Hd+v)

(e−σd − 1) + (e−σd Hd − 1)(e−σdv − 1))2
∂Hd(y, p, σd(p))

∂y
dy
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