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ABSTRACT

Much of the analysis of panel data has been based on an assumption of strict exo-

geneity. Distributions are specified for outcome variables conditional on a latent individual

effect and conditional on observed predictor variables at all dates, with the future values

of the predictor variables assumed to have no effect on the conditional distribution. The

paper relaxes this assumption in order to allow for lagged dependent variables and, more

generally, for feedback from lagged dependent variables to current values of the predictor

variables. Such feedback would arise in an evaluation study if the treatment variable is

randomly assigned only conditional on the individual effect and on previous outcomes.

An information bound is derived for a semiparametric regression model with sequen-

tial moment restrictions, with the information set increasing over time. The bound is then

applied to a model with a (scalar) multiplicative random effect. The mean of the random

effect conditional on the predictor variables is not restricted, so that the random effect can

control for various omitted variables. This conditional mean is the nonparametric compo-

nent of the semiparametric regression model. There is a transformation that eliminates the

random effect and leads to a set of sequential moment restrictions in which the moment

function depends on only a finite-dimensional parameter. The information bound for this

simpler problem coincides with that of the original problem. The form of the optimal

instrumental variables is derived.

The paper also considers the identification problems that arise when the random effect

is a vector with two or more components.



FEEDBACK IN PANEL DATA MODELS

1. INTRODUCTION

Much of the analysis of panel data models has been based on an assumption of strict

exogeneity. A linear regression example is

E(yit | xi1, . . . , xiT , ci) = βxit + ci (i = 1, . . . , n; t = 1, . . . , T ).1

We observe (xi1, yi1, . . . , xiT , yiT ) for a random sample of n individuals. The individual

effect ci is not observed. The predictor variable x is strictly exogenous in that its values

at all dates t are simultaneously conditioned on in the regression specification. It then

follows that

E(yit − yi,t+1 | xi1, . . . , xiT ) = β(xit − xi,t+1).

So we have a regression specification that only involves observables, and a least-squares

regression of, for example, yi1−yi2 on xi1−xi2 provides a consistent (as n → ∞) estimate

of β.

In binary response models, strict exogeneity plays a key role in Rasch’s (1960, 1961)

conditional likelihood approach to logistic models. Strict exogeneity is also necessary in

Manski’s (1987) application of the maximum score estimator to models with unobserved

individual effects. Hausman, Hall, and Griliches (1984) consider panel data models for a

count variable. Their conditional likelihood estimators require strict exogeneity. The need

for distributional assumptions in those models is relaxed in Wooldridge (1990), but strict

exogeneity is still required. Likewise, strict exogeneity is needed in Chamberlain’s (1992a)

analysis of random coefficient models. Finally, Honoré’s (1992) treatment of panel data

models with censoring relies upon strict exogeneity.2

We would like to relax the strict exogeneity assumption and allow for lagged dependent

variables and, more generally, for feedback from lagged dependent variables to current
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values of the predictor variables. A linear regression example is

E(yit | xi1, yi0, . . . , xit, yi,t−1, ci) = βxit + γyi,t−1 + ci. (1.1)

This specification allows for xt to depend upon lagged y, but the feedback is not given a

parametric form.

A similar specification could arise in an evaluation study, where yit is earnings and

xit indicates whether or not the individual has received job training as of date t. Let y0it

denote earnings in the absence of training, and suppose that the training is administered

in period s, with xit = 0 for t < s and xit = xis for t ≥ s. If the training effect is the same

for everyone, we have

yit = y0it + βtxit (t = 1, . . . , s− 1, s+ 1, . . . , T ).

It is commonly observed that there is a dip in the pretraining earnings of participants in

job training programs (Ashenfelter (1978), Ashenfelter and Card (1985), LaLonde (1986)).

So we allow selection into training to depend upon previous earnings, as well as upon an

individual effect ci. Training is randomly assigned conditional upon previous earnings and

ci, in the following sense:

E(y0it | y0i0, . . . , y0i,t−1, ci, xit) = E(y0it | y0i0, . . . , y0i,t−1, ci).

To complete the model, we use the following specification for the dependence of y0it on

lagged values and ci:

E(y0it | y0i0, . . . , y0i,t−1, ci) = γy0i,t−1 + ci.

Then we have

E(yit | yi0, . . . , yi,t−1, ci, xit) = γyi,t−1 + ci + (βt − γβt−1)xit (1.2)

(t = 1, . . . , s− 1, s+ 2, . . . , T ),

E(yi,s+1 | yi0, . . . , yi,s−1, ci, xi,s+1) = γ2yi,s−1 + (1 + γ)ci + βs+1xi,s+1.
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Models with lagged dependent variables and individual effects have been considered

by, among others, Balestra and Nerlove (1966), Anderson and Hsiao (1982), Bhargava and

Sargan (1983), Chamberlain (1984), Holtz-Eakin, Newey, and Rosen (1988), Arellano and

Bond (1991), Arellano and Bover (1993), and Ahn and Schmidt (1993). Keane and Runkle

(1992) consider relaxing strict exogeneity in a panel data model with an additive individ-

ual effect; their motivation is work on the permanent income hypothesis and liquidity

constraints, as in Zeldes (1989).

We shall work with the following extension of (1.1):

dt(zi, θ0) = Rt(w
t
i , θ0)ci + vit (1.3)

E(vit |wt
i) = 0 (i = 1, . . . , n; t = 1, . . . , T ).

Here zi contains the data on the ith unit; wt
i ≡ (wi1, . . . , wit) is contained in zi. The scalar

random effect ci is not observed. dt and Rt are given functions. We are interested in θ0

and in φ0 ≡ E(ci). The relationship between the random effect and the predictor variables

is not restricted; in particular, we do not assume that E(ci |wT
i ) = E(ci). In this sense, the

“fixed effects” terminology would be appropriate. The feature that makes this nonlinear

model tractable is that the scalar random effect multiplies a known function of the data

wt
i and the parameter θ0.

One example is a linear model in which interactions are allowed:

yit = θ01xit + θ02yi,t−1 + ci + θ03xitci + vit.

Here we might have wit = (xit, yi,t−1) (with yi0 observed); we set dt(zi, θ) = yit − θ1xit −

θ2yi,t−1, and Rt(wt
i , θ) = 1 + θ3xit.

Another example, which would be of interest when y is a nonnegative random variable

such as a count, is

yit = exp(θ01xit + θ02yi,t−1 + αi) + vit,

with wit = (xit, yi,t−1). Here we set dt(zi, θ) = yit, Rt(wt
i , θ) = exp(θ1xit + θ2yi,t−1), and

ci = exp(αi).
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Our treatment of the random effects model in (1.3) is based on a semiparametric

regression model with sequential moment restrictions. That model, which is set up in

Section 2, has the following form:

E[ρt(zi, θ0, h0(w
T
i )) |wt

i ] = 0 (t = 1, . . . , T )

for some θ0 ∈ Rp and some scalar-valued function h0. Here ρt is a given function with

domain a subset of Rm × Rp × R. We derive an efficiency bound for θ0 and for φ0 ≡

E[h0(wT
i )]. These results are then applied in Section 3 to the multiplicative random effects

model. The link between the models is provided by setting h0(wT
i ) = E(ci |wT

i ).

Section 4 considers models in which the random effect is a vector with two or more

components. An example is

yit = θ0yi,t−1 + c1i + c2ixit + vit (1.4)

E(vit | xi1, yi0, . . . , xit, yi,t−1) = 0.

We show in Section 4 that although there can be positive results for some special cases, in

general there are severe identification problems in such models.
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2. SEQUENTIAL MOMENT RESTRICTIONS

The observations on the ith unit are contained in a m × 1 vector zi. We assume

that {zi}∞i=1 is a sequence of i.i.d. random vectors with probability measure P . The ran-

dom vectors wi1, . . . , wiT are components of zi. We shall simplify the notation by let-

ting z, w1, . . . , wT denote random vectors whose joint distribution coincides with that of

zi, wi1, . . . , wiT .

We are given functions ρt:Z×Θ×N → R, where Z ⊂ Rm contains the support of P ,

the parameter space Θ is an open subset of Rp, and N is an open subset of R. We assume

that ρt(·, θ, ·) is a measurable function for each θ ∈ Θ, and that ρt(a, ·, ·) is continuously

differentiable on Θ×N for each a ∈ Z. We shall consider triples (Q, θ, h) that satisfy the

following condition:

CONDITION (C). (i)Q is a probability measure whose support is a subset of Z; θ ∈ Θ; h is

a measurable function mapping the Q-support of (w1, . . . , wT ) into N . (ii) For t = 1, . . . , T ,

EQ[ρt(z, θ, h(w
T )) |wt] = 0,

where wt ≡ (w1, . . . , wt).

Suppose that (Q, θ, h) satisfies Condition (C). The analysis is simplified by the fol-

lowing transformation:

gt(z,α, β) ≡ ρt(z,α, β)−HtH
−1
T ρT (z,α, β) (t = 1, . . . , T − 1),

where

Ht = EQ[∂ρt(z, θ, h(w
T ))/∂h |wT ] (t = 1, . . . , T )

and we assume that Q{HT = 0} = 0. This transformation is useful because

EQ[∂gt(z, θ, h(w
T ))/∂h |wT ] = 0. (2.1)

5



After making the transformation, we apply a forward filter:

g̃T−1(z,α, β) = gT−1(z,α, β) (2.2)

g̃s(z,α, β) = gs(z,α, β)− Γs,s+1g̃s+1(z,α, β)

− . . .− Γs,T−1g̃T−1(z,α, β) (s = T − 2, . . . , 1),

where

Γst = EQ(gsg̃t |wt)[EQ(g̃
2
t |wt)]−1 (s < t)

with gs and g̃t evaluated at (z, θ, h(wT )).

The idea of the forward filter comes from Hayashi and Sims (1983). In our case

the coefficients Γst in the forward filter are stochastic, as in Hansen, Heaton, and Ogaki

(1988). The advantage of the forward filter is that it results in moment functions that are

conditionally orthogonal given the larger (of s and t) information set:

EQ[g̃s(z, θ, h(w
T ))g̃t(z, θ, h(w

T )) |wt] = 0 (s < t). (2.3)

The forward filter can be shown to solve the following prediction problem:

min
As+1,...,AT−1

EQ(gs − ĝs)
2

subject to

ĝs = As+1(w
s+1)gs+1 + . . .+AT−1(w

T−1)gT−1

is solved by setting

ĝs = Γs,s+1g̃s+1 + Γs,s+2g̃s+2 + . . .+ Γs,T−1g̃T−1

(where the g’s and g̃’s are evaluated at (z, θ, h(wT ))).

Define φ = EQ[h(wT )]. The following condition on the triple (Q, θ, h) will insure that

the information matrix for (θ,φ) is positive definite.

CONDITION (PD). (i) EQ[ρ2t (z, θ, h(w
T ))] < ∞ (t = 1, . . . , T ) and EQ[h2(wT )] < ∞. (ii)

Let q0 = h(wT )− φ and let qt = ρt(z, θ, h(wT )) for t = 1, . . . , T . Let q̃T = qT and

q̃s = qs −Ψs,s+1q̃s+1 − . . .−ΨsT q̃T (s = T − 1, . . . , 0),

where
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Ψst = EQ(qsq̃t |wt)[EQ(q̃
2
t |wt)]−1 (s < t).

Then EQ(q̃2t |wt) > 0 with Q-probability one (t = 0, . . . , T ), where w0 ≡ 1. (iii) HT is

nonzero with Q-probability one. (iv) Let

V (Q, θ, h) =

(

Vθ Vθφ
Vφθ Vφ

)

(2.4)

Vθ =

[T−1
∑

t=1

EQ(G̃
′

tΣ̃
−1
t G̃t)

]

−1

Vφθ = V ′

θφ = −KVθ

Vφ = VarQ

[

h−H−1
T ρT −

T−1
∑

t=1

Λtg̃t

]

+KVθK
′,

where

G̃t = EQ(∂g̃t/∂θ
′ |wt), Σ̃t = EQ(g̃

2
t |wt),

Λt = EQ[(h−H−1
T ρT )g̃t |wt]Σ̃−1

t , DT = EQ(∂ρT /∂θ
′ |wT ),

K =

T−1
∑

t=1

EQ(ΛtG̃t) +EQ(H
−1
T DT )

with g̃t and ρT evaluated at (z, θ, h(wT )). Then V (Q, θ, h) is well-defined; i.e., the relevant

expectations exist and are finite, Q{Σ̃t > 0} = 1, and
∑T−1

t=1 EQ(G̃′

tΣ̃
−1
t G̃t) is positive

definite.

We shall assume that (P, θ0, h0) satisfies Conditions (C) and (PD), and we let φ0 =

EP [h0(wT )]. Define

V0 = V (P, θ0, h0). (2.5)

If the distribution of z is multinomial with known, finite support, then the estimation

problem becomes parametric. The unknown parameters are the probabilities of the dif-

ferent values for z, and these probabilities are restricted by Condition (C). The following

theorem is based on evaluating the Fisher information matrix in the multinomial case.
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It shows that V0 is the variance bound for (θ0,φ0). Theorem 2 in the Appendix uses

multinomial approximation to extend the result to more general distributions.

THEOREM 1. Suppose that P has known, finite support and that (P, θ0, h0) satisfies

Conditions (C) and (PD). Then evaluating the Fisher information matrix gives V0 as the

variance bound for (θ0,φ0). (Proof in the Appendix.)

To interpret the bound for θ0, note that3

E[g̃t(z, θ0, h0(w
T )) |wt] = 0 (t = 1, . . . , T − 1). (2.6)

Since, from (2.1), g̃t does not depend upon h to first order, the information bound based

on (2.6) in period t is E(G̃′

tΣ̃
−1
t G̃t)—i.e., we proceed as if h0 were known. Then, given

the conditional orthogonality in (2.3), we simply add up the information bounds for each

period.

In order to interpret the bound for φ0, suppose that θ0 is known—the term KVθK ′

accounts for the additional variance due to the estimation of θ0. Then consider

Var(h0 −H−1
T ρT ) = Var(h0) + Var(H−1

T ρT )

(since E(ρT |wT ) = 0). The term Var(h0) reflects the variance in estimating E[h0(wT )]

when h0 is known and the wT distribution is unknown. The term Var(H−1
T ρT ) accounts

for the sampling variability in estimating h0 when the wT distribution is known, and when

the estimation is based solely on the terminal period moment condition, E(ρT |wT ) = 0.

To see this, consider the discrete case with mass points for wT at τ1, . . . , τJ . Then

E[ρT (z, θ0, h0(τj)) |wT = τj] = 0

suggests the sample analog

1

nj

∑

i:wT
i
=τj

ρT (zi, θ0, ĥ0(τj)) = 0
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(with nj equal to the number of observations with wT
i = τj), which leads to

√
n[ĥ0(τj)− h0(τj)]

∼= −
[

1

nj

∑

i:wT
i
=τj

∂ρT (zi, θ0, h0(τj))/∂h

]

−1√
n

nj

∑

i:wT
i
=τj

ρT (zi, θ0, h0(τj)).

Then

√
n

J
∑

j=1

P{wT
i = τj}[ĥ0(τj)− h0(τj)]

∼= −
1√
n

J
∑

j=1

P{wT
i = τj}

n

nj

∑

i:wT
i
=τj

H−1
T ρT (zi, θ0, h0(τj))

∼= −
1√
n

n
∑

i=1

H−1
T ρT (zi, θ0, h0(w

T
i )).

Now note that E(g̃t |wt) = 0 implies that E(Λtg̃t) = 0, provided that Λt is a function

of wt. So including the term
∑

t Λtg̃t does not add bias, and the weights Λt can be chosen

to reduce variance. In fact we have

Vφ = min
A1,...,AT−1

E[h0 −H−1
T ρT − φ0 −

T−1
∑

t=1

At(w
t)gt]

2 +KVθK
′. (2.7)

Here the variance reducing term is expressed in terms of the gt’s instead of the forward-

filtered residuals g̃t. The conditional orthogonality of the g̃t allows a simple explicit ex-

pression for the minimization problem in (2.7). So we can think of the terminal period T

as providing a direct estimate of φ0, say φ̂(T ). Then the earlier periods are used to form

mean-zero statistics that are correlated with φ̂(T ); a linear combination of these statistics

can be added to φ̂(T ) to obtain the efficient estimate—see (3.3) in the next section for an

example of this.

The variance bound in Theorem 1 extends the bound in Chamberlain (1992a) to the

case of sequential moment restrictions. The framework here is, however, quite restrictive:
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h is a scalar-valued function of wT , instead of a vector whose components are allowed

to depend on various functions of wT . Nevertheless, this framework does encompass an

interesting set of panel data models with multiplicative random effects. The next section

shows how these panel data models fit into our semiparametric regression framework.
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3. MULTIPLICATIVE RANDOM EFFECTS

The general model is

dt(zi, θ0) = Rt(w
t
i , θ0)ci + vit (3.1)

E(vit |wt
i) = 0 (i = 1, . . . , n; t = 1, . . . , T ),

where dt and Rt are given functions, and ci is a scalar latent variable that is free to vary

over the cross section but is constant over time. We are interested in θ0 and in φ0 ≡ E(ci).

This model fits into the Section 2 framework as follows: dropping the i subscripts, let

ρt(z, θ, h) ≡ dt(z, θ)−Rt(w
t, θ)h

h0(w
T ) ≡ E(c |wT ).

Then

ρt(z, θ0, h0(w
T )) = Rt(w

t, θ0)[c− h0(w
T )] + vt,

and so

E[ρt(z, θ0, h0(w
T )) |wt] = 0.

As in the general case, there is a simplifying transformation. Note that

Ht ≡ E[∂ρt(z, θ0, h0(w
T ))/∂h |wT ] = −Rt(w

t, θ0).

It will facilitate developing operational estimators if we do not evaluate Rt at θ0, as in the

transformation in Section 2. Instead we shall use the following transformation:

λt(z, θ) = ρt(z, θ, h)−Rt(w
t, θ)R−1

T (wT , θ)ρT (z, θ, h)

= dt(z, θ)−Rt(w
t, θ)R−1

T (wT , θ)dT (z, θ).

This transformation eliminates h, not just to first order as in Section 2. Versions of this

transformation have been used by Wooldridge (1991) and Chamberlain (1992b).
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Now we have sequential moment restrictions without having to deal with the non-

parametric function h:

E[λt(z, θ0) |wt] = 0 (t = 1, . . . , T − 1). (3.2)

The variance bound for θ0 is obtained by forward filtering:

λ̃T−1(z, θ) = λT−1(z, θ),

λ̃s(z, θ) = λs(z, θ)− Γs,s+1λ̃s+1(z, θ)

− . . .− Γs,T−1λ̃T−1(z, θ) (s = T − 2, . . . , 1),

where

Γst = E[λs(z, θ0)λ̃t(z, θ0) |wt]
[

E[λ̃2t (z, θ0) |wt]
]

−1
(s < t).

Then we have

Vθ =

[T−1
∑

t=1

E

[

E
[∂λ̃t(z, θ0)

∂θ
|wt

]

[

E[λ̃2t (z, θ0) |wt]
]

−1
E
[∂λ̃t(z, θ0)

∂θ′
|wt

]

]]

−1

.

This coincides with the variance bound in (2.5) because

λ̃t(z, θ0) = g̃t(z, θ0, h0(w
T ))

and

E[∂λ̃t(z, θ0)/∂θ
′ |wt] = E[∂g̃t(z, θ0, h0(w

T ))/∂θ′ |wt].

The conditional moment restrictions in (3.2) lead directly to consistent, instrumental-

variable estimators. We can choose a function Mt that maps the support of wt into Rp

(t = 1, . . . , T − 1). Then we can form the moment function

ψ(z, θ) =
T−1
∑

t=1

Mt(w
t)λt(z, θ),

where ψ is p× 1 (as is θ) and Eψ(z, θ0) = 0. Hence, under suitable regularity conditions

(see Hansen (1982)), the solution θ̂ to
∑n

i=1 ψ(zi, θ) = 0 satisfies
√
n(θ̂−θ0)

D−→ N(0,Λψ),

where

Λψ =

[

E
∂ψ(z, θ0)

∂θ′

]

−1

[Eψ(z, θ0)ψ
′(z, θ0)]

[

E
∂ψ′(z, θ0)

∂θ

]

−1

.
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An optimal instrumental-variable estimator has Λψ = Vθ. The solution in terms of

the λ̃t is

M̃t(w
t) = E

[

∂λ̃t(z, θ0)

∂θ
|wt

]

[

E[λ̃2t (z, θ0) |wt]
]

−1
.

Then we can recursively obtain M1 = M̃1 and

Mt = M̃t −Mt−1Γt−1,t − · · ·−M1Γ1t

for t = 2, . . . , T − 1. These optimal instrumental variables involve various conditional

expectation functions. They would have to be estimated using nonparametric techniques

such as those developed by Robinson (1987, 1991) and Newey (1990, 1992).

An alternative approach uses a sequence of generalized method-of-moments (GMM)

estimators based on an expanding set of instrumental variables, such as polynomials in wt.

Chamberlain (1992b) provides conditions on the sequence of instrumental variables such

that the asymptotic variance of the GMM estimator based on k instrumental variables

converges to Vθ as k → ∞. Hahn (1991) shows how k should be chosen as a function

of n in order for the sequence of GMM estimators based on k(n) instrumental variables

to have a limiting normal distribution with Vθ as the covariance matrix. This extends a

result Newey (1992) obtained for the case in which the conditional moment restrictions all

involve the same set of conditioning variables (i.e., wt = w for all t).

As for φ0, evaluating h0 −H−1
T ρT in (2.7) gives

h0(w
T )−H−1

T ρT (z, θ0, h0(w
T )) = R−1

T (wT , θ0)dT (z, θ0).

If θ0 were known, we could use the following estimator of φ0:

φ̂ =
1

n

n
∑

i=1

[

R−1
T (wT

i , θ0)dT (zi, θ0)−
T−1
∑

t=1

At(w
t
i)λt(zi, θ0)

]

(3.3)

→ φ0 a.s. as n → ∞
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since

E[R−1
T (wT

i , θ0)dT (zi, θ0)] = E(ci) = φ0

and

E[λt(zi, θ0) |wt
i ] = 0.

Then the asymptotic variance of φ̂ could be reduced to

min
A1,...,AT−1

E

[

R−1
T (wT

i , θ0)dT (zi, θ0)− φ0 −
T−1
∑

t=1

At(w
t
i)λt(zi, θ0)

]2

,

which gives the first term in (2.7).

Note that our analysis has been based on the restriction that E(vit |wt
i) = 0 in (3.1).

It would be of interest to derive an efficiency bound under the stronger restriction that

E(vit |wt
i , ci) = 0. Ahn and Schmidt (1993) show that such an assumption can lead to

additional moment restrictions on the observable variables.

14



4. IDENTIFICATION PROBLEMS

Suppose now that the random effect is not scalar, but has two (or more) components.

We shall try to extend the transformation that was used in Section 3 to eliminate the

random effect. It turns out, however, that it is not possible, in general, to construct such

a transformation. This suggests there are identification problems in feedback models with

a vector of random effects. We shall provide some examples to illustrate these problems.

Let the vector of random effects be denoted by c′i = (c1i, . . . , cJi) and write the model

as follows:

d(zi, θ0) = R(wT
i , θ0)ci + vi

E(vit |wt
i) = 0 (t = 1, . . . , T ),

where d(zi, θ) is a T × 1 vector, and R(wT
i , θ) is a T × J matrix with tth row equal to

(Rt1(wt
i , θ), . . . , RtJ(wt

i , θ)).

We would like to construct a (T − J) × T transformation matrix of rank T − J

such that (dropping the i subscripts): (i) Q(wT , θ) is upper-triangular (i.e., Qts(wT , θ),

the (t, s) element of Q(wT , θ), is 0 for t > s); (ii) Qts(wT , θ) depends only on ws; (iii)

Q(wT , θ)R(wT , θ) = 0. Then

Q(wT , θ0)d(z, θ0) = Q(wT , θ0)v ≡ ṽ

with

ṽt =
T
∑

s=t

Qts(w
s, θ0)vs

and

E(ṽt |wt) = 0 (t = 1, . . . , T − J).

Define

λt(z, θ) =
T
∑

s=t

Qts(w
s, θ)ds(z, θ);
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then we have

E[λt(z, θ0) |wt] = 0 (t = 1, . . . , T − J).

So the problem reduces to a sequential set of conditional moment restrictions in which the

nonparametric component has been eliminated.

There is no problem in constructing such a transformation when J = dim(c) = 1 and

RT (wT , θ) ≡ RT1(wT , θ) ≠ 0 with probability one. For example, we can use

Q(wT , θ) =

⎛

⎜

⎜

⎝

1 0 . . . 0 −R1(w1, θ)R−1
T (wT , θ)

0 1 . . . 0 −R2(w2, θ)R−1
T (wT , θ)

...
...

...
...

0 0 . . . 1 −RT−1(wT−1, θ)R−1
T (wT , θ)

⎞

⎟

⎟

⎠

,

which gives the transformation used in Section 3.

Satisfying the three requirements for Q is not, however, possible in general when

dim(c) = 2. Setting the last row of Q(wT , θ)R(wT , θ) equal to zero gives

T
∑

s=T−2

QT−2,s(w
s, θ)Rs1(w

s, θ) = 0,
T
∑

s=T−2

QT−2,s(w
s, θ)Rs2(w

s, θ) = 0,

and so both QT−2,T (wT , θ)RT1(wT , θ) and QT−2,T (wT , θ)RT2(wT , θ) must be functions of

wT−1, which implies that RT1(wT , θ)/RT2(wT , θ) must be a function of wT−1; but this

would not be true in general.

The following example illustrates some of the identification issues:

yi1 = c1i + c2ixi1 + vi1, E(vi1 | xi1) = 0 (4.1)

yi2 = θ0 + c1i + c2ixi2 + vi2, E(vi2 | xi1, xi2) = 0. (4.2)

Consider the following moment restrictions (dropping the i subscripts):

E(y1 − y2 + θ0 − c2(x1 − x2) | x1) = 0 (4.3)

E(y2 − θ0 − c1 − c2x2 | x1, x2) = 0. (4.4)
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These are equivalent to the moment restrictions in (4.1) and (4.2) because E(v2 | x1, x2) = 0

implies that E(v2 | x1) = 0, which, combined with E(v1 − v2 | x1) = 0, implies that

E(v1 | x1) = 0. Since E(c1 | x1, x2) is unrestricted, only (4.3) is relevant for the identi-

fication of θ0 and a conditional mean of c2.

Suppose that x1 and x2 are binary variables, equal to 0 or 1. Then identification must

be based on the following two equations:

E(y1 − y2 | x1 = 0) = −θ0 − P (x2 = 1 | x1 = 0)E(c2 | x1 = 0, x2 = 1)

E(y1 − y2 | x1 = 1) = −θ0 + P (x2 = 0 | x1 = 1)E(c2 | x1 = 1, x2 = 0).

These two equations are not sufficient to identify any of the three parameters θ0, E(c2 | x1 =

0, x2 = 1), or E(c2 | x1 = 1, x2 = 0). We can, however, identify a certain convex combina-

tion of the c2 conditional means:

[p1|0E(c2 | x1 = 0, x2 = 1) + p0|1E(c2|x1 = 1, x2 = 0)]/(p1|0 + p0|1)

= [E(y1 − y2 | x1 = 1)−E(y1 − y2 | x1 = 0)]/(p1|0 + p0|1),

where pa|b ≡ P (x2 = a | x1 = b). The corresponding estimator is the instrumental-variable

estimator that uses (1, x1) as instrumental variables with y1−y2 as the dependent variable

and with (1, x1 − x2) as the explanatory variables.

Next we shall extend this example to show that the failure of identification for θ0 is

quite general. We shall also gain some insight into when it is possible to identify some

convex combination of the c2 conditional means.

Consider the following model:

yit = θ′0rit + c1i + c2ixit + vit (4.5)

E(vit |wt
i) = 0 (t = 1, . . . , T ).

Here rit is p × 1, xit is scalar, w′

it = (r′it, xit), and wt
i = (wi1, . . . , wit); rit can include

lagged values of the outcome variable as well as period effects.
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The moment restrictions in (4.5) have the following implications (dropping the i sub-

scripts):

E[yt − yt+1 − θ′0(rt − rt+1)− c2(xt − xt+1) |wt] = 0 (t = 1, . . . , T − 1) (4.6)

E[yT − θ′0rT − c1 − c2xT |wT ] = 0. (4.7)

Note that (4.6) and (4.7) imply that

E(vT |wT−1) = 0, E(vT−1 − vT |wT−1) = 0,

and so E(vT−1 |wT−1) = 0. Continuing recursively in this fashion shows that the moment

restrictions in (4.6) and (4.7) are equivalent to the moment restrictions in (4.5). In addition,

since E(c1 |wT ) is unrestricted, only (4.6) is relevant for the identification of θ0.

PROPOSITION 1. Suppose that xt has finite support (t = 1, . . . , T ) and that for any point

a in the support of wt, the distribution of xt+1 conditional on wt = a is not degenerate

(t ≤ T − 1). Then θ0 is not identified.

PROOF. Let the support of xt be {δ1t, . . . , δLtt}. We shall show that given an arbitrary

point θ̃ ∈ Rp, we can construct E(c̃2 |wT ) such that (4.6) is satisfied with θ̃ replacing θ0

and with E(c̃2 |wT ) replacing E(c2 |wT ).

Set E(c̃2 |w1) = 0. We shall recursively construct E(c̃2 |wt+1) given E(c̃2 |wt). We

can write (4.6) as

E[yt − yt+1 − θ̃′(rt − rt+1) |wt]

=

Lt+1
∑

j=1

P (xt+1 = δj,t+1 |wt)(xt − δj,t+1)E(c̃2 |wt, xt+1 = δj,t+1). (4.8)

There are at least two distinct values for xt+1 that have positive probability conditional

on wt; denote these values by δk,t+1 and δl,t+1 (where k and l depend upon wt). Let

E(c̃2 |wt, xt+1 = δj,t+1) = 0 for j ≠ k or l

and
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(

E(c̃2 |wt, xt+1 = δk,t+1)
E(c̃2 |wt, xt+1 = δl,t+1)

)

=

(

P (xt+1 = δk,t+1 |wt)(xt − δk,t+1) P (xt+1 = δl,t+1 |wt)(xt − δl,t+1)
P (xt+1 = δk,t+1 |wt) P (xt+1 = δl,t+1 |wt)

)

−1

×
(

E[yt − yt+1 − θ̃′(rt − rt+1) |wt]
E(c̃2 |wt)

)

.

The matrix is nonsingular because P (xt+1 = δk,t+1 |wt) and P (xt+1 = δl,t+1 |wt) are

positive and δk,t+1 ≠ δl,t+1.

Now we have constructed E(c̃2 |wt, xt+1) such that (4.8) is satisfied and

E(c̃2 |wt) = E[E(c̃2 |wt, xt+1) |wt].

Complete the construction of E(c̃2 |wt+1) by setting

E(c̃2 |wt, rt+1, xt+1) = E(c̃2 |wt, xt+1).

Then

E(c̃2 |wt) = E[E(c̃2 |wt+1) |wt].

Continue in this way until finally E(c̃2 |wT ) is constructed from E(c̃2 |wT−1). Then θ̃ and

E(c̃2 |wT ) satisfy (4.8) for t = 1, . . . , T − 1. Q.E.D.

Even if θ0 were identified, we may not be able to identify a convex combination of

conditional means of c2. The problem is that (xt − δj,t+1) in (4.8) generally changes

sign as we run through the support of xt+1. Conditioning on wt = a provides a convex

combination of E(c2 |wt = a, xt+1 = δj,t+1) only if

P (xt ≤ xt+1 |wt = a) = 1 or P (xt ≥ xt+1 |wt = a) = 1. (4.9)

Our first example had xt = 0 or 1 for t = 1, 2. Hence (4.9) was satisfied. But if, for example,

the support of x2 conditional on x1 = 0 is {−1, 1}, and the support of x2 conditional on

x1 = 1 is {0, 2}, then we would not be able to identify a convex combination of the

E(c2 | x1, x2) values. More generally, the identification prospects diminish as the support

of xt becomes richer.
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APPENDIX

A.1 Proof of Theorem 1

The conditional moment restrictions in Condition (C) are, in the multinomial case,

equivalent to a finite set of unconditional moment restrictions. We show this by setting

up dummy indicator variables that pick out the support points of the distribution of wt.

Let Xt = {τt1, . . . , τtlt} be the support of the distribution of wt. Define dtj :Xt → R by

dtj(a) = 1 if a = τtj and = 0 otherwise. Define

ψ(z, θ,λ,φ) =

⎛

⎜

⎜

⎝

ψ1(z, θ,λ)
...

ψT (z, θ,λ)
ψT+1(z,λ,φ)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

d1(w1)ρ1(z, θ,
∑lT

j=1 λjdTj(wT ))

...
dT (wT )ρT (z, θ,

∑lT
j=1 λjdTj(wT ))

φ−
∑lT

j=1 λjdTj(wT )

⎞

⎟

⎟

⎟

⎟

⎠

,

where d′t = (dt1, . . . , dtlt). Then for t = 1, . . . , T ,4

E[ψt(z, θ,λ)] = E
[

dt(w
t)E[ρt(z, θ,

lT
∑

j=1

λjdTj(w
T )) |wt]

]

=

⎛

⎜

⎝

P{wt = τt1}E[ρt(z, θ,
∑lT

j=1 λjdTj(wT )) |wt = τt1]
...

P{wt = τtlt}E[ρt(z, θ,
∑lT

j=1 λjdTj(wT )) |wt = τtlt ]

⎞

⎟

⎠
,

and

E[ψT+1(z,λ,φ)] = φ−
lT
∑

j=1

P{wT = τTj}λj .

So if we set h(τTj) = λj , then E[ψt(z, θ,λ)] = 0 implies that

E[ρt(z, θ, h(w
T )) |wt] = 0,

and E[ψT+1(z,λ,φ)] = 0 implies that

φ = E[h(wT )].
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In addition, with λ0j = h0(τTj), Condition (C) implies that

E[ψ(z, θ0,λ0,φ0)] = 0.

It is shown in Chamberlain (1987, Lemma 2) that, in the multinomial case, the Fisher

information bound for µ0 under the restriction that E[ψ(z, µ0)] = 0 is

Jψ ≡ E

[

∂ψ(z, µ0)

∂µ′

]

′

[Eψ(z, µ0)ψ
′(z, µ0)]

−1E

[

∂ψ(z, µ0)

∂µ′

]

.

This lemma requires that E[ψ(z, µ0)ψ′(z, µ0)] is nonsingular and that E[∂ψ(z, µ0)/∂µ′]

has full column rank; (PD) implies that these conditions hold.

Let µ′

0 = (θ′0,λ
′

0,φ0). We shall construct an equivalent moment function, ψ̃(z, µ) =

Aψ(z, µ), where the matrix A is nonsingular, so that Jψ̃ = Jψ .

Define A1 such that

A1ψ =

⎛

⎜

⎜

⎜

⎜

⎝

ψ1 −B1ψT

ψ2
...
ψT

ψT+1

⎞

⎟

⎟

⎟

⎟

⎠

,

where ψ is evaluated at (z, µ) with µ′ = (θ′,λ′,φ). Define B∗

1 to be a matrix of 0’s and 1’s

such that B∗

1dT (w
T ) = d1(w1) and let

B1 = B∗

1diag{H1(τT1)H
−1
T (τT1), . . . , H1(τT lT )H

−1
T (τT lT )},

where Ht(a) ≡ E[∂ρt(z, θ0, h0(wT ))/∂h |wT = a]. Then

B1dT (w
T )ρT = B∗

1

⎛

⎜

⎝

H1(τT1)H
−1
T (τT1)dT1(wT )

...
H1(τT lT )H

−1
T (τT lT )dT lT (w

T )

⎞

⎟

⎠
ρT

= B∗

1dT (w
T )H1(w

T )H−1
T (wT )ρT

= d1(w
1)H1(w

T )H−1
T (wT )ρT ,
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and so

ψ1 −B1ψT = d1(w
1)[ρ1 −H1(w

T )H−1
T (wT )ρT ]

= d1(w
1)g1,

where ρ1, ρT , and g1 are evaluated at (z, θ,
∑lT

j=1 λjdTj(wT )).

With A2, . . . , AT−1 defined in a similar fashion, we have

AT−1 × · · ·× A1ψ =

⎛

⎜

⎜

⎜

⎜

⎝

d1g1
...

dT−1gT−1

dT ρT
ψT+1

⎞

⎟

⎟

⎟

⎟

⎠

≡ ψ∗ .

Note that AT−1 × · · · × A1 is nonsingular, since it is upper triangular with ones on the

diagonal.

It is shown in Chamberlain (1992b, p. 24) that there is a nonsingular matrix A∗ such

that

ψ̃ ≡ A∗ ψ∗ =

⎛

⎜

⎜

⎜

⎜

⎝

d1g̃1
...

dT−1g̃T−1

dTρT
ψT+1

⎞

⎟

⎟

⎟

⎟

⎠

,

where g̃t is defined in (2.2).

Since E[∂g̃t(z, θ0, h0(wT ))/∂h |wt] = 0, we have

E[∂ψ̃(z, µ0)/∂µ
′] =

(

Γ1 0
Γ2 Γ3

)

where

G̃t(a) = E[∂g̃t(z, θ0, h0(w
T ))/∂θ′ |wt = a],

Nt = E[dt(w
t)G̃t(w

t)] =

⎛

⎜

⎝

P (τt1)G̃t(τt1)
...

P (τtlt)G̃t(τtlt)

⎞

⎟

⎠
,

Γ1 =

⎛

⎝

N1
...

NT−1

⎞

⎠ ,
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with P (τtj) = P{wt = τtj};

DT (a) = E[∂ρT (z, θ0, h0(w
T ))/∂θ′ |wT = a],

M = E[dT (w
T )DT (w

T )] =

⎛

⎜

⎝

P (τT1)DT (τT1)
...

P (τT lT )DT (τT lT )

⎞

⎟

⎠
,

Γ2 =

(

M
0

)

;

c′ = −E[d′T (w
T )] = −[P (τT1), . . . , P (τT lT )],

Q = E
[

E[∂ρT (z, θ0, h0(w
T ))/∂h |wT ]dT (w

T )d′T (w
T )]

= diag{P (τT1)HT (τT1), . . . , P (τT lT )HT (τT lT )},

Γ3 =

(

Q 0
c′ 1

)

.

Next we shall derive E(ψ̃ψ̃′). g̃t and ρT are evaluated at (z, θ0, h0(wT )), and h0 is

evaluated at wT . We shall also simplify notation by lettingE( · | τtj) denote E( · |wt = τtj);

for example, E(g̃th0 | τtj) denotes E(g̃th0 |wt = τtj).

E[ψ̃(z, µ0)ψ̃
′(z, µ0)] = Ψ =

(

Ψ11 Ψ12

Ψ21 Ψ22

)

where

Ψ11 = diag{P (τ11)Σ̃1(τ11), . . . , P (τ1l1)Σ̃1(τ1l1), . . . ,

P (τT−1,1)Σ̃T−1(τT−1,1), . . . , P (τT−1,lT−1
)Σ̃T−1(τT−1,lT−1

)}

(since E(g̃sg̃t |wt) = 0 for s < t), where Σ̃t(a) = E(g̃2t |wt = a). Order the support points

so that τt+1,1, . . . , τt+1,k1
each has τt1 as the first set of components, τt+1,k1+1, . . . , τt+1,k2

each has τt2 as the first set of components, and so on; then

Ψ12 = Ψ′

21 =

⎛

⎝

C1 F1
...

...
CT−1 FT−1

⎞

⎠

where
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Ct =

⎛

⎜

⎜

⎝

q′t1 0 . . . 0
0 q′t2 . . . 0
...

...
. . .

...
0 0 . . . q′tlt

⎞

⎟

⎟

⎠

, Ft = −

⎛

⎜

⎝

P (τt1)E(g̃th0 | τt1)
...

P (τtlt)E(g̃th0 | τtlt)

⎞

⎟

⎠
,

with qtj a column vector with elements of the form P (τT l)E(g̃tρT | τT l) for l such that

τT l has τtj for its first set of components—which we denote by τtj ∈ τT l, so that qtj =

(P (τT l)E(g̃tρT | τT l)){ l:τtj∈τTl}
.

Ψ22 =

(

diag{P (τTj)E(ρ2T | τTj)}lTj=1 0
0 Var(h0)

)

.

Let

Ω =

(

Ω11 Ω12

Ω21 Ω22

)

=

(

Γ1 0
Γ2 Γ3

)

′

Ψ−1

(

Γ1 0
Γ2 Γ3

)

, (A.1)

and let Ωjk denote the (j, k) block of Ω−1. Then (see Chamberlain (1992b, lemma 1))

V −1
θ = (Ω11)−1 = Γ′

1Ψ
−1
11 Γ1

=

T−1
∑

t=1

N ′

tdiag{P−1(τtj)Σ̃
−1
t (τtj)}ltj=1Nt

=

T−1
∑

t=1

lt
∑

j=1

P (τtj)G̃
′

t(τtj)Σ̃
−1
t (τtj)G̃t(τtj)

=

T−1
∑

t=1

E(G̃′

tΣ̃
−1
t G̃t),

where G̃t = E(∂g̃t/∂θ′ |wt) and Σ̃t = E(g̃2t |wt) with g̃t evaluated at (z, θ0, h0(wT )).

Let Ψjk denote the (j, k) block of Ψ−1 (j, k = 1, 2). We shall derive Ψ22.

Ψ22 = (Ψ22 −Ψ21Ψ
−1
11 Ψ12)

−1;

Ψ21Ψ
−1
11 Ψ12 =

(

W11 W12

W21 W22

)

where
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W11 =

T−1
∑

t=1

diag{P−1(τt1)Σ̃
−1
t (τt1)qt1q

′

t1, . . . , P
−1(τtlt)Σ̃

−1
t (τtlt)qtltq

′

tlt},

W12 = W ′

21 = −
T−1
∑

t=1

⎛

⎜

⎝

qt1Σ̃
−1
t (τt1)E(g̃th0 | τt1)

...
qtltΣ̃

−1
t (τtlt)E(g̃th0 | τtlt)

⎞

⎟

⎠
,

W22 =

T−1
∑

t=1

E
[

[E(g̃th0 |wt)]2Σ̃−1
t

]

.

Let

M =

(

M11 M12

M21 M22

)

= Ψ22 −Ψ21Ψ
−1
11 Ψ12.

Then

M11 = diag{P (τTj)E(ρ2T | τTj)}lTj=1 −W11,

M12 = M ′

21 = −W12,

M22 = Var(h0)−
T−1
∑

t=1

E
[

[E(g̃th0 |wt)]2Σ̃−1
t

]

.

If a and b are functions mapping the support of wT into R, and if

a′ = (a(τT1), . . . , a(τT lT ))

b′ = (b(τT1), . . . , b(τT lT )),

then

a′M11b = E[a(wT )b(wT )ρ2T ]

−
T−1
∑

t=1

E
[

E[a(wT )g̃tρT |wt]Σ̃−1
t E[b(wT )g̃tρT |wt]

]

and

a′M12 =

T−1
∑

t=1

E
[

E(g̃th0 |wt)E[a(wT )g̃tρT |wt]Σ̃−1
t

]

.
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Next we shall derive Ω−1
22 .

Ω22 = Γ′

3Ψ
22Γ3

=

(

Q c
0 1

)(

M11 M12

M21 M22

)

−1 (
Q 0
c′ 1

)

,

Ω−1
22 =

(

Q−1 0
−c′Q−1 1

)(

M11 M12

M21 M22

)(

Q−1 −Q−1c
0 1

)

,

(Ω−1
22 )22 = M22 + c′Q−1M11Q

−1c−M21Q
−1c− c′Q−1M12,

where (Ω−1
22 )22 denotes the element of Ω−1

22 in the lower-right corner.

c′Q−1 = −[H−1
T (τT1), . . . , H

−1
T (τT lT )],

c′Q−1M11Q
−1c = E(H−2

T ρ2T )

−
T−1
∑

t=1

E
[

[E(H−1
T g̃tρT |wt)]2Σ̃−1

t

]

,

−c′Q−1M12 =

T−1
∑

t=1

E
[

E(g̃th0 |wt)E(H−1
T g̃tρT |wt)Σ̃−1

t

]

,

where HT = HT (wT ). Hence

(Ω−1
22 )22 = Var

[

h0 −H−1
T ρT −

T−1
∑

t=1

Λtg̃t

]

where

Λt = E[(h0 −H−1
T ρT )g̃t |wt]Σ̃−1

t .

Next we shall derive Ω22.

Ω22 = Ω−1
22 + Ω−1

22 Ω21Ω
11Ω12Ω

−1
22

where

Ω−1
22 Ω21 = (Γ′

3Ψ
22Γ3)

−1(Γ′

3Ψ
21Γ1 + Γ′

3Ψ
22Γ2)

= −Γ−1
3 Ψ21Ψ

−1
11 Γ1 + Γ−1

3 Γ2;
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−Γ−1
3 Ψ21Ψ

−1
11 Γ1 = −

T−1
∑

t=1

(

Q−1 0
−c′Q−1 1

)

⎛

⎜

⎜

⎝

qt1Σ̃
−1
t (τt1)G̃t(τt1)

...
qtlt Σ̃

−1
t (τtlt)G̃t(τtlt)

−E
[

E(g̃th0 |wt)Σ̃−1
t G̃t

]

⎞

⎟

⎟

⎠

=

(

L
∑T−1

t=1 E
[

E[(h0 −H−1
T ρT )g̃t |wt]Σ̃−1

t G̃t

]

)

(we shall not need to evaluate L);

Γ−1
3 Γ2 =

(

Q−1 0
−c′Q−1 1

)(

M
0

)

=

(

Q−1M
−c′Q−1M

)

;

−c′Q−1M = E(H−1
T DT ),

where DT = DT (wT ).

Since Ω11 = Vθ, we have

Vφ = (Ω22)22 = Var

[

h0 −H−1
T ρT −

T−1
∑

t=1

Λtg̃t

]

+KVθK
′

where

K =

T−1
∑

t=1

E(ΛtG̃t) + E(H−1
T DT ).

Finally, we shall obtain Vφθ.

Ω21 = −Ω−1
22 Ω21Ω

11.

Hence

Vφθ = V ′

θφ = −KVθ. Q.E.D.

A.2 The Minimax Bound for the General Case

We have shown that V0 is the variance bound in the multinomial case. Since we can

construct such a multinomial distribution in any neighborhood of a general distribution

P , we can show that V0 is the local minimax bound in the general case.
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We shall need to consider neighborhoods of (P, θ0, h0). The neighborhoods of P are

defined as follows: let D be the set of all probability measures on the Borel subsets of Rm;

we define the basic neighborhoods of P to be sets of the form

{Q ∈ D: |
∫

fj dQ−
∫

fj dP | < ϵj , j = 1, . . . , k },

where ϵj > 0, k is some integer, and the fj :Rm → R are measurable functions such that
∫

|fj| dP < ∞. An arbitrary neighborhood of P is formed by taking unions of sets of this

form.

The neighborhoods of h0 are assumed to satisfy the following property: given any

neighborhood Ψ of h0 and given a finite subset {a1, . . . , ak} of the P -support of wT ,

there is an ϵ > 0 such that if ζj ∈ R and |ζj| < ϵ, then there is an h ∈ Ψ such that

h(aj) = h0(aj) + ζj for j = 1, . . . , k. (Sup-norm neighborhoods will do: if Ψ consists of

the measurable h mapping the P -support of wT into R such that ∥h − h0∥ < ϵ̄, then

if ϵ < ϵ̄ we can set h(aj) = h0(aj) + ζj and h(a) = h0(a) for a /∈ {a1, . . . , ak}.) Then,

with Euclidean neighborhoods for θ0, the neighborhoods of (P, θ0, h0) are formed using the

product topology.

We shall use the following class L of loss functions: l ∈ L if for all α, β ∈ R,

l(α) = l(|α|);(i)

|α| ≤ |β| implies l(α) ≤ l(β);(ii)
∫

∞

−∞

l(α) exp(−1
2λα

2) dα < ∞ for λ > 0;(iii)

l(0) = 0.(iv)

THEOREM 2. Suppose that (P, θ0, h0) satisfies Conditions (C) and (PD). Let Ψ be any

neighborhood of (P, θ0, h0) and let Γ be the subset of Ψ such that Conditions (C) and (PD)

are satisfied for all (Q, θ, h) in Γ. Define φ = EQ[h(wT )]. Let αs be the sth component of

α′ ≡ (θ′,φ) and let Tn(z1, . . . , zn) be any (measurable) estimator of αs. Then for any loss
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function l ∈ L, we have

lim inf
n→∞

sup
(Q,θ,h)∈Γ

EQ{l[
√
n(Tn − αs)]}

≥ (2π)−1/2

∫

∞

−∞

l(σ0u) exp(−1
2u

2) du,

where σ2
0 is the (s, s) element of V0.

The proof of Theorem 2 is similar to that of Theorem 1 in Chamberlain (1992a). It

relies on the following auxiliary results.

LEMMA 1. Let z be a m-dimensional random vector; let wt be a set of components of z

and define wt = (w1, . . . , wt) for t = 1, . . . , T . Then given a probability measure P defined

on the Borel subsets of Rm and a measurable function f :Rm → Ru with EP ∥f∥ < ∞,

there exists a probability measure M , with support a finite subset of the support of P ,

such that

EM (f) = EP (f), (A.2)

and for each point a in the M -support of wt

EM (f |wt = a) = EP (f |wt = a); (A.3)

furthermore, given any Borel set A with P{wt ∈ A} = 1, the M -support of wt can be

chosen to be a subset of A (t = 1, . . . , T ).

PROOF. For a in the P -support of wt, define qt(a) = EP (f |wt = a). From Cham-

berlain (1992a, Lemma A1), given a Borel set A with P{w1 ∈ A} = 1, we can con-

struct a probability measure M1 with support a finite subset of A such that EM1
(q1) =

EP [q1(w1)]. Given Mt and a point a in the support of Mt, construct the probability

measure Mt+1(dwt+1 |wt = a) with finite support such that

EMt+1
(qt+1 |wt = a) = EP [qt+1(w

t+1) |wt = a].
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Then define the probability measure Mt+1 by Mt+1(dwt+1) = Mt+1(dwt+1 |wt)Mt(dwt).

Given a Borel set A with P{wt+1 ∈ A} = 1, we can choose the support of

Mt+1(dwt+1 |wt = a)

so that the support of Mt+1 is a subset of A. (See the proof of Lemma 1 in Chamberlain

(1992a).) In this way we construct M2, . . . ,MT .

Given a point a in the support of MT , construct the probability measure M(dz |wT =

a) with finite support such that

EM (f |wT = a) = EP (f |wT = a). (A.4)

Then define the probability measure M by M(dz) = M(dz |wT )MT (dwT ). We can choose

the support of M(dz |wT = a) such that the support of M is a subset of the support of P .

Now check that M satisfies (A.2) and (A.3). It follows from (A.4) that (A.3) holds

for t = T . Suppose that (A.3) holds for s = T, . . . , t + 1; then for each point a in the

M -support of wt,

EM (f |wt = a) = EM [EM (f |wt+1) |wt = a]

= EM [EP (f |wt+1) |wt = a]

= EMt+1
(qt+1 |wt = a)

= EP [qt+1(w
t+1) |wt = a]

= EP [EP (f |wt+1) |wt = a]

= EP (f |wt = a).

Hence (A.3) holds for t = 1, . . . , T . As for (A.2),

EM (f) = EM [EM(f |w1)] = EM [EP (f |w1)]

= EM1
(q1) = EP [q1(w

1)] = EP (f). Q.E.D.

We are given a Borel subset Z ⊂ Rm, an open subset Φ ⊂ Rw, and a function

ψ:Z × Φ → Ra such that for each µ ∈ Φ, ψ(·, µ):Z → Ra is measurable, and for each
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z ∈ Z, ∂ψ/∂µ′ is continuous on Φ. Let Q be a probability measure whose support is a

subset of Z. We shall consider pairs (Q, µ) that satisfy the following condition:

CONDITION (C1). (i) µ ∈ Φ; (ii) EQ[ψ(z, µ)] = 0; (iii) EQ[ψ(z, µ)ψ′(z, µ)] is positive-

definite; (iv) rankEQ[∂ψ(z, µ)/∂µ′] = w.

Lemma 2 is taken from Chamberlain (1987, Lemma 1). (The continuity in z of ψ and

∂ψ/∂µ′ was assumed but not used in the proof.)

LEMMA 2. Suppose that (M,µ0) satisfies Condition (C1) and that M has finite support

{η1, . . . , ηr}. Then there is an open set A ⊂ Rs (s = r − (a − w) − 1) and a family

of probability measures {Mγ : γ ∈ A} such that for all γ ∈ A: (i) Mγ has support

{η1, . . . , ηr}; (ii) (Mγ, γ1) satisfies Condition (C1), where γ1 contains the first w elements

of γ; (iii) there is a γ0 ∈ A with γ10 = µ0 and Mγ0 = M ; (iv) πj(γ) ≡ Mγ{ηj} is a

continuously differentiable function of γ (j = 1, . . . , r), and

Jγ =

r
∑

j=1

π−1
j (γ)

∂πj(γ)

∂γ

∂πj(γ)

∂γ′

is positive definite.

PROOF OF THEOREM 2. Use Lemma 1 to construct M with finite support such that

(M, θ0, h0) ∈ Γ and V (M, θ0, h0) = V0. With ψ and µ0 defined as in the proof of Theorem

1, it follows that (M,µ0) satisfies Condition (C1). Hence we can use Lemma 2 to construct

a family of probability measures {Mγ, γ ∈ A} such that (Mγ, γ1) satisfies Condition (C1).

Partition γ1 into γ1
′

= (θ′,λ′,φ), where θ is p×1, λ is lT ×1, and φ is scalar. The support

of Mγ coincides with that of M and so the Mγ-support of wt is {τt1, . . . , τtlt} (using the

notation in the proof of Theorem 1). EMγ
ψ(z, γ1) = 0 implies that EMγ

[ρt(z, θ, h(wT )) |

wt = τtj ] = 0 for j = 1, . . . , lt provided that h is defined so that h(τTj) = λj (j = 1, . . . , lT ).

Hence there is a δ > 0 such that (Mγ, θ, h) ∈ Γ if ||γ−γ0|| < δ. Let ζ be the sth component
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of γ1 if s ≤ p; otherwise ζ is the final component. Then

lim inf
n→∞

sup
(Q,θ,h)∈Γ

EQ{l[
√
n(Tn − αs)]}

≥ lim inf
n→∞

sup
∥γ−γ0∥<δ

EMγ{l[
√
n(Tn − ζ)]}

≥ (2π)−1/2

∫

∞

−∞

l(σ0u) exp(−1
2u

2) du,

where σ2
0 is the (s, s) component of Ω−1 in (A.1) if s ≤ p; otherwise σ2

0 is the component

in the lower-right corner. The second inequality follows from Theorem 1 in Chamberlain

(1987), which shows that the information bound is given by Ω in the multinomial case.

Then the proof of Theorem 1 shows that σ2
0 is the (s, s) element of V0. Q.E.D.
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FOOTNOTES

∗ I am grateful to Ronald Gallant, Guido Imbens, Jinyong Hahn, Bo Honoré, and

Whitney Newey for helpful discussions and comments. Financial support was provided by

the National Science Foundation.

1 We shall generally omit the “with probability one” qualifier when we specify a

conditional expectation.

2 Honoré (1990) extends this approach to include a lagged dependent variable.

3 We shall simplify the notation by omitting the P subscript from the expectation

(E = EP ).

4 We shall simplify the notation by letting E denote EP .

33



BIBLIOGRAPHY

Ahn, S. and P. Schmidt (1993): “Efficient Estimation of Models for Dynamic Panel Data,”

Journal of Econometrics, forthcoming.

Andersen, E. B. (1970): “Asymptotic Properties of Conditional Maximum Likelihood Es-

timators,” Journal of the Royal Statistical Society, Series B, 32, 283–301.

Anderson, T. W. and C. Hsiao (1982): “Formulation and Estimation of Dynamic Models

Using Panel Data,” Journal of Econometrics, 18, 47–82.

Arellano, M. and S. Bond (1991): “Some Tests of Specification for Panel Data: Monte

Carlo Evidence and an Application to Employment Equations,” Review of Economic
Studies, 58, 277–297.

Arellano, M. and O. Bover (1993): “Another Look at the Instrumental-Variable Estimation

of Error-Components Models,” unpublished manuscript, CEMFI, Madrid.

Ashenfelter, O. (1978): “Estimating the Effect of Training Programs on Earnings,” Review

of Economics and Statistics, 60, 47–57.

Ashenfelter, O. and D. Card (1985): “Using the Longitudinal Structure of Earnings to

Estimate the Effect of Training Programs,” Review of Economics and Statistics, 67,
648–660.

Balestra, P. and M. Nerlove (1966): “Pooling Cross Section and Time Series Data in the

Estimation of a Dynamic Model: The Demand for Natural Gas,” Econometrica, 34,
585–612.

Bhargava, A. and J. D. Sargan (1983): “Estimating Dynamic Random Effects Models from

Panel Data Covering Short Time Periods,” Econometrica, 51, 1635–1659.

Chamberlain, G. (1984): “Panel Data,” in Z. Griliches and M. Intriligator, eds., Handbook

of Econometrics, vol. 2, Amsterdam: North-Holland.

Chamberlain, G. (1987): “Asymptotic Efficiency in Estimation with Conditional Moment

Restrictions,” Journal of Econometrics, 34, 305–334.

Chamberlain, G. (1992a): “Efficiency Bounds for Semiparametric Regression,” Economet-
rica, 60, 567–596.

Chamberlain, G. (1992b): “Comment: Sequential Moment Restrictions in Panel Data,”

Journal of Business and Economic Statistics, 10, 20–26.

Hahn, J. (1991): “Efficient Estimation of Panel Data Models with Sequential Moment

34



Restrictions,” unpublished manuscript, Harvard University.

Hansen, L. P. (1982): “Large Sample Properties of Generalized Method of Moments Esti-

mators,” Econometrica, 50, 1029–1054.

Hansen, L. P., J. Heaton, and M. Ogaki (1988): “Efficiency Bounds Implied by Multiperiod

Conditional Moment Restrictions,” Journal of the American Statistical Association,
83, 863–871.

Hausman, J., B. Hall, and Z. Griliches (1984): “Econometric Models for Count Data with

an Application to the Patents–R&D Relationship,” Econometrica, 52, 909–938.

Hayashi, F. and C. Sims (1983): “Nearly Efficient Estimation of Time Series Models with

Predetermined, But Not Exogenous, Instruments,” Econometrica, 51, 783–798.

Holtz-Eakin, D., W. Newey, and H. Rosen (1988): “Estimating Vector Autoregressions

with Panel Data,” Econometrica, 56, 1371–1395.
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