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Abstract

In this paper we analyze a discrete choice model for partially ordered alternatives.

The alternatives are differentiated along two dimensions, the first an unordered “hori-

zontal” dimension, and the second an ordered “vertical” dimension. The model can be

used in circumstances in which individuals choose amongst products of different brands,

wherein each brand offers an ordered choice menu, for example by offering products of

varying quality. The unordered-ordered nature of the discrete choice problem is used

to characterize the identified set of model parameters. Following an initial nonpara-

metric analysis that relies on shape restrictions inherent in the ordered dimension of

the problem, we then provide a specialized analysis for parametric specifications that

generalize common ordered choice models. We characterize conditional choice proba-

bilities as a function of model primitives with particular analysis focusing on cases in
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which unobservable taste for quality of each brand offering is multivariate normally

distributed. We provide explicit formulae used for estimation and inference via max-

imum likelihood, and we consider inference based on Wald and quasi-likelihood ratio

statistics, the latter of which can be robust to a possible lack of point identification. An

empirical illustration is conducted using consumer purchase data in the UK to study

consumers’ choice of razor blades in which each brand has product offerings vertically

differentiated by quality.

JEL classification: C01, C31, C35.

1 Introduction

In this paper we study a discrete choice model in which alternatives are distinguished by

two dimensions. The alternatives are first horizontally differentiated according to one of a

number of unordered categories. In the context of a consumer choice problem the alterna-

tives could be products differentiated by brands b = 1, ..., b̄. Within each such category,

alternatives are vertically differentiated by quality y = 1, 2, ..., yb. Individuals are assumed

to have ordered preferences over the vertical quality dimension, within each horizontally

differentiated category, but preferences across horizontal categories are unordered.

There are several real-world examples of product markets that feature multiple firms

competing to sell vertically differentiated alternatives to consumers. For example, airlines sell

seat tickets for routes that are vertically differentiated by travel class. Cable and streaming

television packages offered by different providers are often vertically-differentiated, with more

expensive offerings providing more viewing options or live channels. Cellular phone providers

offer vertically differentiated data and cellular plans. Competing ride-share companies offer

regular and premium transportation services. Automobile dealers sell quality differentiated

cars, for example luxury versus economy, offered by horizontally differentiated manufacturers.

These all lead to the type of vertically and horizontally differentiated choice menus that our

model aims to capture.

As initially set out by McFadden (1974), and as is now standard in the discrete choice

literature, we assume that each consumer chooses the brand-quality combination that max-

imizes her latent utility. Our model differs from standard models of discrete choice by

explicitly incorporating both the horizontal and vertical dimensions of differentiation. Mod-

els that consider choice amongst unordered discrete alternatives, such as those of McFadden

(1974) and Hausman and Wise (1978), allow for horizontal differentiation by brand but do
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not incorporate vertical differentiation. Models for choice amongst totally ordered alterna-

tives can be used to estimate demand for vertically differentiated products, as in Bresnahan

(1987). Nested choice models such as that of Goldberg (1995) allow flexible substitution

patterns across nests, but feature unordered (e.g. logit) differentiation within nests.

Our goal here is to combine features of models for ordered and unordered choice in

order to incorporate both horizontal and vertical aspects of differentiation. Relative to

existing methods, this approach allows the model to respect the unordered-ordered nature

of the choice problem when both kinds of differentiation are present. This may be useful for

accurately estimating important features of substitution patterns in such scenarios.

A related line of research, and an important area of potential application, is the model-

ing of consumer choice in oligopoly markets in which competing firms each offer vertically

differentiated products. Some empirical work in this area includes Davies, Waddams, and

Wilson (2009) and Song (2015). Davies, Waddams, and Wilson (2009) focus on two-part

tariffs and bundling in the British gas and electricity markets, and use linear panel data

regression and instrumental variables to investigate whether the market operates in accord

with economic theory. Song (2015) develops an explicit model of consumer demand for ver-

tically and horizontally differentiated products, but our model and Song’s model are quite

distinct and suited for different contexts. Song’s (2015) model is a hybrid of those of Berry,

Levinsohn, and Pakes (1995) and Berry and Pakes (2007) and is well-suited to settings where

products span multiple markets. Moreover, Song (2015) models demand for attributes in

characteristics space, and is thus capable of handling a large product space. Our model is

instead focused at the consumer level, requiring individual-specific choice data, and is best

suited to competition among relatively few brands, or firms, with vertically differentiated

product offerings, where demand depends on individual characteristics as well as on product

attributes.

In our model, if attention is restricted to any single brand b, the quality of the utility-

maximizing option offered by that brand for a given consumer is determined by a standard

ordered choice structure. That is, the shape of the latent utility function results in an ordered

choice model, e.g. ordered probit or logit, when consumers’ choices are restricted to brand

b. From a modeling standpoint, this can be used to recover an indirect utility function for

each brand b. The solution to the problem of choosing the best brand-quality offering from

among all products can then be recovered as the brand that maximizes the indirect utility

function, and the quality level that maximizes the corresponding brand-specific utility.

The structure of the problem is thus analogous to that of the mixed discrete-continuous
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choice model of Dubin and McFadden (1984). However, due to the discrete nature of both

dimensions of choice, one cannot use differential arguments and in particular Roy’s Identity

to characterize the optimal choice of either dimension. Nonetheless, the model is complete

in that conditional on any value of exogenous variables, there is a unique solution to the

consumer choice problem with probability one. This is because the model is for a single-

agent decision problem, rather than a simultaneous move game with strategic interactions

and multiple equilibria, as encountered for instance in simultaneous equations model for

ordered actions considered by Aradillas-Lopez and Rosen (2021).

The paper proceeds as follows. In Section 2 we layout our econometric model for partially

ordered response in its most general form, providing shape restrictions on individuals’ un-

derlying utility functions that deliver the within-brand ordered choice structure. In Section

3 we characterize conditional choice probabilities and provide identification analysis. The

most general formulation of these restrictions offers minimal requirements for this structure

but will in general yield set identification, where the identified set of model primitives can

be characterized as the set of maximizers of the expected log-likelihood. In Section 4 we

consider additional parametric restrictions that preserve the unordered-ordered nature of the

underlying choice problem. These lend tractability to the log-likelihood and narrow the size

of the identified set, and may result in point identification. Section 5 provides details for

computation of the log-likelihoods and the construction of confidence intervals, and Monte

Carlo analysis illustrating the relative performance of inference employing both the Wald

and QLR tests, the latter having been shown to be robust to partial identification by Chen,

Christensen, and Tamer (2018) under certain conditions not formally verified here.1 Section

6 presents an application to the market for women’s razor blades using consumer data from

the United Kingdom in the early 2000s. Section 7 concludes and discusses directions of

continuing research. Proofs of propositions and theorems are provided in the Appendix.

2 The Model

Each individual in the population is characterized by observables (Y,B,X) and an unob-

servable vector V . It is assumed that each individual chooses either an ordered alternative

Y ∈ Yb ≡ {1, ..., ȳb} of some type B ∈ B ≡
{

1, ..., b̄
}

, or an outside alternative denoted

1Further results on the distribution of likelihood ratio statistics when point identification fails include
those of Liu and Shao (2003) for parametric likelihood models and Chen, Tamer, and Torgovitsky (2011) for
semi-parametric models.
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by (B, Y ) = (0, 0). The set MBY ≡ {(b, y) : B ∈ B, Y ∈ Yb} ∪ {(0, 0)} denotes the joint

support of (B, Y ). The set X denotes the support of observable covariates X, such as indi-

vidual characteristics. The vector V ∈ Rb̄ represents unobserved heterogeneity that affects

individuals’ preferences, and the distribution of V is denoted G (·) so that for any set V ⊆ Rb̄,

G (V) ≡ Pr [V ∈ V ].

The utility obtained by an individual with covariates x and unobservable v from any

choice (b, y) ∈MBY is given by

Uby ≡ u (b, y, x, vb) if (b, y) 6= (0, 0), U00 ≡ 0, (2.1)

where u (b, y, x, vb) is strictly increasing in vb for each (b, y, x) and the utility from the outside

alternative is normalized to zero.

We assume that each individual chooses the alternative that maximizes her utility.2 For

any b ∈ B define Ȳb ≡ Yb ∪ {0} and Ub0 ≡ 0, and let

U∗b ≡ max
y∈Ȳb

Uby, Y ∗b ≡ argmax
y∈Ȳb

Uby,

denote the indirect utility and optimal choice of Y , respectively, if the individual’s alterna-

tives were limited to only those of type b or the outside alternative. The structure of the

model will be such that for any fixed b, the choice of the ordered outcome Y produces a

standard model of ordered response, in the sense that this choice is weakly increasing in Vb.

For example, if Vb is normally distributed, independent of X, and the consumer may only

purchase from brand b, then we have an ordered probit model. A consumer who has the

option to choose any quality level from any brand then chooses

B = 1

[
max
b∈B

U∗b > 0

]
· argmax

b∈B
U∗b , Y = 1

[
max
b∈B

U∗b > 0

]
· Y ∗B. (2.2)

Restriction A1: (Probability space) (B, Y,X, V ) are defined on a probability space (Ω,F ,P),

where F contains the Borel sets. The support of (X, V ) is X ×Rb̄, and the support of (B, Y )

is MBY ≡ {(b, y) : B ∈ B, Y ∈ Yb} ∪ {(0, 0)}.
2Under Restriction A3 below ties in the utility obtained from different alternatives occur with zero

probability conditional on any realization of x. How ties are handled is therefore of no consequence in the
determination of conditional choice probabilities, but to simplify notation we adopt the convention that if
alternatives (b, y) and (b, y′), y < y′, achieve the same utility, then (b, y) is chosen, and if (b, y) 6= (b′, y′),
b < b′ achieve the same utility, then (b′, y′) is chosen.
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Restriction A2: (Identification of f 0
x (b, y)) For each value x ∈ X there is a proper condi-

tional distribution of (B, Y ) given X = x and f 0
x (b, y) ≡ P [B = b ∧ Y = y|X = x] is point

identified over the support of (B, Y ) for almost every x ∈ X .

Restriction A3: (Distribution of unobserved heterogeneity) The conditional distribution of

V given X = x is absolutely continuous with respect to Lebesgue measure with everywhere

positive density on Rb̄.

Restriction A4: (Independence) X and V are stochastically independent.

Restriction A5: (Admissible structures) Structure S ≡ (u,G) belongs to a known collection

S of pairs of utility functions and distributions of unobserved heterogeneity, (u,G).

Restriction A6: (Utility maximization) Given (X, V ), (B, Y ) are chosen to maximize

u (B, Y,X, Vb), where u belongs to a known class of functions U satisfying (i) u (0, 0, x, vb) = 0

for all (x, vb), (ii) for all (b, y) 6= (0, 0) and all x, u (b, y, x, vb) is strictly increasing and

continuous in vb, and (iii) for each (b, x) ∈ B×X , {u (b, y, x, vb) : vb ∈ R} satisfies the single-

crossing property in (y, vb), namely that if v′b > vb and y′ > y, then

u (b, y′, x, vb)− u (b, y, x, vb) ≥ (>) 0⇒ u (b, y′, x, v′b)− u (b, y, x, v′b) ≥ (>) 0.

Restrictions A1-A3 are standard. Restriction A1 defines the underlying probability space

and notation for the support of random variables (B, Y,X, V ). Restriction A2 stipulates

that the conditional distribution of (B, Y ) given covariates x is point identified for almost

every x ∈ X , as is the case for example under random sampling. Restriction A3 requires

that unobserved heterogeneity V is absolutely continuously distributed with full support in

Euclidean space.

Restriction A4 imposes independence of X and V . This is an important restriction. If

X includes prices, then it requires that prices are exogenous, ruling out the possibility that

unobserved components of individual utility are correlated with prices. This could be violated

if different sellers offer different prices for the products being sold and if some individuals

choose where to shop based on these prices. This assumption may still be appropriate

however if the price of the product makes up only a small fraction of total expenditure – as

is the case in our application to razor blade purchases – such that individuals are unlikely

to choose where to shop for a basket of many goods (e.g. groceries and household products)

based on this one product’s price. In applications with individual level variation in which

prices are thought to be endogenous, one could instead use an instrumental variable approach
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applicable to models of discrete choice such as those of Chesher, Rosen, and Smolinski (2013)

and Chesher and Rosen (2017). This precludes the likelihood approach to inference employed

here, resulting in moment inequality characterizations of identified sets, such as those used in

applications to IV models for ordered response and models of interdependent binary outcomes

in Chesher, Rosen, and Siddique (2019) and Chesher and Rosen (2020), respectively.

Restriction A5 defines a structure S as a utility function and distribution of unobserved

heterogeneity, assumed to belong to some class of admissible pairs S. Note that any given

structure S gives rise to a collection of conditional distributions f 0
x (b, y) for almost every

x ∈ X . The identification problem is to determine the set of structures that can generate

the observed distributions f 0
x (b, y). The set of structures S admitted by the model can be

restricted to a parametric, semiparametric, or nonparametric class.

The underlying structure S maps to conditional distributions f 0
x (b, y) through the spec-

ification of the individual choice problem. Restriction A6 specifies that individuals choose

(B, Y ) to maximize utility u (B, Y,X, Vb), on which we impose some conditions. First, the

specification (2.1) requires that there is a single, separate component of unobserved het-

erogeneity for each brand b, and through Restriction A6(ii) that utility from each product

of this brand is weakly increasing in the associated unobservable. The components of V

may however be jointly dependent, allowing for potential correlation across brand prefer-

ences, and quality tastes across brands. With Restriction A6(i) we normalize the utility

from the outside option to zero. Restriction A6(iii) requires that the utility function sat-

isfies the single-crossing property in (y, vb). By Milgrom and Shannon (1994) Theorem 4

this guarantees that for all consumers and all b ∈ B, the optimal choice within brand b, Y ∗b ,

is nondecreasing in vb, so that quality-choice within any brand b assumes the structure of

an ordered choice problem. This combined with the within brand monotonicity given by

Restriction A6(ii) allows for characterizations of regions of unobservables that give rise to

conditional choice probabilities for each brand-quality combination. This plays a key role in

the identification of structure S.

3 Identification

We begin this section by characterizing in Section 3.1 the form of the multivariate integral

delivering conditional choice probabilities as a function of the underlying structure S. In

Section 3.2 we then provide a general characterization of the identified set of structures

compatible with Restrictions A1-A6, and we show that if the model is correctly specified,
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the identified set can be written as the maximizers of the expected log-likelihood. In Section

4 we then provide specialized identification results for a class of parametric models.

3.1 Conditional Choice Probabilities

The utility maximization hypothesis together with the shape restrictions in Restriction A6

enable concise characterization of the conditional choice probabilities

℘by (x;S) ≡ G (Vby (x;u))

for brand-quality pair (b, y) given X = x, considered as a function of any structure S =

(u,G). Without parametric restrictions on u, the monotonicity and single-crossing conditions

suffice to establish the representation of each choice probability ℘by (x;S) as a particular form

of a b̄-variate integral. Thus, given a specific (u,G), ℘by (x;S) can be computed by either

numerical integration or simulation. The formal result follows.

Theorem 1 Let Restriction A6 hold. Then for each (b, y, x) ∈ MBY × X , the region

Vby (x;u) is a convex polytope in Rb̄ defined by the inequalities

Vb ∈ (gb (y) , gb (y + 1)] , (3.1)

∀k < b, Vk ≤ hb,k (y) , and (3.2)

∀k > b, Vk < hb,k (y) , (3.3)

and the conditional choice probability ℘by (x;S) takes the form

℘by (x;S) =

gb(y+1)∫
gb(y)

 ∫
H(b,y)

dGV−b|Vb (v−b|vb)

 dGVb (vb) , (3.4)

where

H(b, y) ≡ {r ∈ Rb̄−1 : r1 ≤ hb,1(y), . . . , rb−1 ≤ hb,b−1(y), rb ≤ hb,b+1(y), . . . , rb̄−1 ≤ hb,b̄(y)}

with {hb,k (y) : k 6= b} cross-brand threshold functions, and {gb (y) : y = (0, ..., ȳb + 1)} within-

brand threshold functions satisfying gb (0) ≡ −∞ and gb (ȳb + 1) ≡ ∞. Here GV−b(·|vb) and

GVb(·) denote the conditional distribution of V−b given Vb = vb and the marginal distribu-
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tion of Vb, respectively. The threshold function gb (·) may depend on x and each function

hb,k (·) : k 6= b, may depend on both vb and x.

3.2 General Characterization of the Identified Set

Before adding further restrictions we first characterize the identified set of structures S under

Restrictions A1-A6, denoted S0 and defined as

S0 ≡
{

(u,G) ∈ S : ∀ (b, y) ∈MBY , G (Vby (x;u)) = f 0
x (b, y) a.e. x ∈ X

}
, (3.5)

where Vby (x;u) denotes the set of values of V defined by (3.1)–(3.3) in Theorem 1. In

words, S0 is the set of admissible structures (u,G) that generate identified conditional choice

probabilities f 0
x (b, y) for all (b, y) and almost every x ∈ X . Given the absolute continuity of

the distribution of V and the continuity of utility in unobserved heterogeneity, sets Vby (x;u)

and Vb̃ỹ (x;u),
(
b̃, ỹ
)
6= (b, y), overlap at most on a set of Lebesgue measure zero, so that

there is a unique utility maximizing pair (b, y) with probability one given any x ∈ X . Hence

G (Vby (x;u)) is the conditional probability of observing (b, y) given X = x when the utility

function is u and V ∼ G. Structures (u,G) that do not belong in the identified set S0 in

(3.5) are those such that the set

X ∗ (u,G) ≡
{
x ∈ X : ∃ (b, y) ∈MBY s.t. G (Vby (x;u)) 6= f 0

x (b, y)
}

, (3.6)

has positive measure PX .

Given the representation of the identified set through the equalities G (Vby (x;u)) =

f 0
x (b, y) we can equivalently characterize the identified set as those structures that maximize

the log-likelihood. For this we require that the model is correctly specified, formalized with

the following additional assumption.

Restriction A7: (Correct Specification) ∃S∗ ∈ S, S∗ ≡ (u∗, G∗) such that ∀ (b, y) ∈MBY

G∗ (Vby (x;u∗)) = f 0
x (b, y) a.e. x ∈ X .

Consider the expected log-likelihood function

Q (u,G) ≡ E [lnG (VBY (X;u))] ,

where the expectation is taken with respect to population measure P. It follows by arguments

identical to those with singleton S0 (X ) that Q (u,G) attains its maximum at all (u,G) ∈ S0,
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since by definition these all produce the same probabilities G (Vby (x;u)) for almost every x.

The general observation that when point identification is lacking the set of maximizers of the

expected log-likelihood are precisely those observationally equivalent to the population data

generating structure has been made previously, see e.g. Bowden (1973) and Redner (1981).

The formal statement in the present setting, a proof of which is included in the appendix

for completeness, is made in the following Proposition.

Proposition 1 Let restrictions A1-A7 hold. Then S0 = argmax
(u,G)∈S

Q (u,G).

Unless sufficiently strong parametric restrictions on S are imposed, S0 may not be a

singleton, so that there may not be point identification. When sufficiently strong restrictions

for point identification do hold, estimation and inference can proceed under the classical

maximum likelihood paradigm. When these restrictions do not hold, the classical results

do not apply. But the characterization of S0 as the (set of) maximizers of the expected

log-likelihood enables us to apply inference techniques for maximum likelihood estimators

when point identification is lacking. The subsequent characterization of choice probabilities

G (Vby (x;u)) under parametric restrictions enables derivation of some sufficient conditions

for point identification, as well as computation of set estimates and inferential statistics when

point identification fails.

4 Identification under Parametric Restrictions

In this section we consider a parametric restriction on the underlying utility functions with

b̄ firms b ∈ B ≡
{

1, 2, ..., b̄
}

, each selling a low-quality product offering (Y = 1) and a

high-quality product offering (Y = 2), so that for all b ∈ B, Yb ≡ {1, 2}.3 Specifically, we

specify

u (b, y, x, vb) ≡ y × (xbβb + vb)− αby, α00 ≡ 0, (4.1)

for each (b, y) ∈MBY , x ∈ X , and vb ∈ R.

The parameters αby capture that component of utility from choice (b, y) not restricted

to scale linearly with y. These in turn determine thresholds λby for individuals’ within-

brand ordered choice preferences as described in (4.2) below. We consider variants of our

3Extension of the analysis to the case where firms sell more than two product offerings is conceptually
straightforward. We focus on the case where each brand has two ordered product offerings to economize on
notation and also because this is the setting encountered in our application.
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model in which αby are fixed parameters for each (b, y), as well as cases where they may

be parametrically specified functions of observable covariates, such as prices. This will lead

to generalizations of ordered choice models in which threshold parameters may or may not

depend on observable exogenous variables.

This model generalizes a three-choice ordered response model, such as ordered probit or

logit, in that for any fixed b ∈ B we have

Y ∗b = 0⇔ λb0 < Vb ≤ λb1 −Xbβb, (4.2)

Y ∗b = 1⇔ λb1 −Xbβb < Vb ≤ λb2 −Xbβb,

Y ∗b = 2⇔ λb2 −Xbβb < Vb,

where

λb0 ≡ −∞, λb1 ≡ min
{
αb1,

αb2
2

}
, λb2 ≡ max

{
αb2 − αb1,

αb2
2

}
. (4.3)

denote threshold parameters. Some algebra reveals that

αb2 > 2αb1 ⇒ λb1 = αb1, and λb2 = αb2 − αb1, (4.4)

while

αb2 ≤ 2αb1 ⇒ λb1 = λb2 =
αb2
2

. (4.5)

The inequality on the left hand side of (4.4) ensures that for each b,

P [αb1 −Xbβb ≤ Vb ≤ αb2 − αb1 −Xbβb|X = x] > 0,

or equivalently that some randomly chosen individuals prefer y = 1 to both the other alter-

native of type b and the outside alternative. When instead the inequality on the left hand

side of (4.5) holds, then the probability of this event is zero. In this case, if one were to

imagine taking a randomly selected individual and increasing their unobservable Vb contin-

uously from −∞ to ∞, that individual would choose the outside alternative for values of Vb

up to αb2
2
−Xbβb, and then switch to Y = 2 for all Vb >

αb2
2
−Xbβb, respecting the ordered

nature of the quality dimension y, but skipping over the lower quality alternative y = 1.

Given the parametric specification (4.1) for u, the resulting regions of unobserved vari-

ables Vby defined by (3.1)–(3.1) in Theorem 1 take the form of convex polytopes in Rb̄. Figure

1 gives an example illustrating these regions for a case in which b̄ = 2 with a particular pa-

rameter vector θ and a given value of the conditioning variables x in which the inequality
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αb2 > 2αb1 on the left hand side of (4.4) holds.

V
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V
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(2,1)

(2,2)

(1,1)
(0,0)

(1,2)

α
22

 - α
21

 - x
2
β

2

Figure 1: Regions of unobservables V resulting in each choice of (b, y) ∈ MBY with utility
as specified in (4.1).

The specification considered so far has implicitly treated (α11, α12, ..., αb̄1, αb̄2) as fixed

parameters to be estimated. Fixed threshold specifications for ordered response models

are common, but it is straightforward to allow thresholds to be functions of observable

variables. This is important in our application, where observed prices may affect the utility

of purchasing each product.

Here and in our application for each b ∈ B and y ∈ {1, 2}, αby is specified by

αby = δb + k (pby, γb) , k (pby, γb) = γbpby, (4.6)

where the observed variable pby ∈ R denotes the price of alternative (b, y), and δb and γb

denote parameters on the real line. More generally, pby could be used to denote any vector of

observable variables thought to influence αby. As before the utility of the outside alternative

is normalized to zero. The optimal choice Y ∗b for fixed brand b is still determined by (4.2)

and (4.3), but with thresholds determined by (4.6).4

With price now entering the utility function, the possibility of values of exogenous vari-

ables that imply that consumers never choose quality offering Y = 1 for a given brand

4We focus here on a linear specification for k (pby, γb), but alternative specifications are possible. For

instance, one could use the CRRA or isoelastic utility specification k (pby, γb) = (1− γb)
−1
p

1−γb

by with
γb > 0, or the exponential utility specification k (pby, γb) = 1− exp (−γbpby) for some γb ∈ R.
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B = b becomes particularly relevant. This is because unlike the brand-specific covariates

Xb, prices vary across the vertical dimension y within brand. For ease of exposition, let

Zb ≡ (Xb, Pb1, Pb2) and Z ≡ (Z1, ..., Zb̄), and let Z replace X as observable utility shifters in

all that follows, with support Z. In contrast to the fixed threshold specification, it is possible

now that there are values of the conditioning variables Z = z such that the conditional choice

probability P [(B, Y ) = (b, 1) |Z = z] equals zero for either b, while conditional on other val-

ues Z = z̃, P [(B, Y ) = (b, 1) |Z = z̃] > 0. This is practically relevant because there may be

consumers who face prices such that the higher quality product offering will always be more

desirable than the lower product quality offering no matter their realization of unobservables

V , as could happen when a firm introduces a sale for the high quality offering in order to

induce consumers to try it. Thus both cases (4.4) and (4.5) are allowed in all that follows,

depending on the value of conditioning variables Z.

We now specialize the characterization of the set S0 from Proposition 1 and the form of

the conditional choice probabilities given in Theorem 1 to models in which utilities satisfy

(4.1) such that formally S ≡ U × G, where

U ≡

{
u : B × Y × Z × Rb̄ → R : u (b, y, z, v; θ) ≡ y (xbβb + vb)− δb − γbpby

for some θ ≡ {(δb, γb, βb) : b ∈ B} ∈ Θ.

}
, (4.7)

where Θ is a compact subset of Euclidean space and G denotes a collection of distribution

functions for V indexed by parameter Σ, belonging to compact parameter space Λ. The

utility function and distribution pair (u,G) is completely specified given ζ, so we define ζ ≡
(θ,Σ) and use the full parameter vector ζ to denote the corresponding structure (u,G) ∈ S,

henceforth writing G (·; Σ) to denote the distribution G indicated by parameter Σ. Define

Vby (z; θ) ≡
{
v ∈ Rb̄ : ∀ (b′, y′) 6= (b, y) , u (b, y, z, v; θ) ≥ u (b′, y′, z, v; θ)

}
to be the set of values of v for which choice (b, y) is optimal for parameter value θ and

℘by (z; ζ) ≡ G (Vby (z; θ) ; Σ) ,

to be the conditional probability that B = b and Y = y given Z = z implied by ζ.5 Then

5The set Vby (z; θ) is equivalent to the set Vby (x;u) with the additional parametric restrictions imposed
in this section, up to a set of Lebesgue measure zero.
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by definition the identified set for ζ is

S0 ≡
{
ζ ∈ Θ×Λ : ∀ (b, y) ∈MBY , ℘by (z; ζ) = f 0

z (b, y) a.e. z ∈ Z
}

,

where f 0
z (b, y) is the population probability that B = b and Y = y.

Application of Proposition 1 gives the likelihood characterization of the identified set

S0 ≡ argmax
ζ∈Θ×Λ

E [ln℘BY (Z; ζ)] = EzE [ln℘BY (Z; ζ) |Z = z] .

Using the parametric structure set out above together with Theorem 1 we have

℘by (z; ζ) =

gb(y+1;z,θ)∫
gb(y;z,θ)

 ∫
H(y,z,vb,θ)

dGV−b|Vb=vb(v−b; Σ)

 dGVb(vb; Σ),

where

gb (y; z, θ) ≡ λby −Xbβb, (4.8)

with each λby as defined by (4.3) and (4.6), and where the region of integration H(b, y, vb, θ)

in the inner integral is the set of r ∈ Rb̄−1 such that

r1 ≤ hb,1(y, z, vb, θ), ..., rb−1 ≤ hb,b−1(y, z, vb, θ), rb ≤ hb,b+1(y, z, vb, θ), ..., rb̄−1 ≤ hb,b̄(y, z, vb, θ),

where for all d 6= b,

hb,d (y, z, v, θ) ≡ min
ỹ∈{1,...,ȳd}

1

ỹ
[y (xbβb + vb)− (αby − αdỹ)]− xdβd, (4.9)

with αby as specified in (4.6). Thus each ℘by (z; ζ) takes the form of an integral over a region

defined by inequalities that are linear in θ. Written in this form it is straightforward to verify

that ℘by (z; ζ) = ℘by (z; (θ,Σ)) is log-concave in θ for any fixed Σ and each value (b, y, z) if

G is a known log-concave distribution with density fV (·,Σ). This in turn implies that the

maximizers of L (ζ) for any fixed Σ comprise a convex set.

Theorem 2 Suppose that Restrictions A1-A7 hold, that u ∈ U defined in (4.7), and that

G(·) = G(·; Σ) with known Σ such that G(·; Σ) has log-concave density fV (·,Σ). Then the

identified set for θ is

Θ∗(Σ) ≡ argmax
θ∈Θ

L (θ,Σ) ,
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with the expected log-likelihood

L (θ,Σ) ≡
∑

(b,y)∈MBY

f 0
z (b, y) ln

∫
Rb̄

fV (v,Σ) 1 [v ∈ Vby (z; θ)] dv,

concave in θ.

Many commonly used distributions are log-concave, with the multivariate normal dis-

tribution a leading example. If the distribution G is not known, but the elements of the

admissible set of distributions G are all log-concave, for example if all such distributions are

multivariate normal but with different variances, then it follows that the identified set for θ

is contained in a union of convex sets, namely the union of sets delivered by Theorem 2 for

each G ∈ G.

Under some additional conditions on the variation in observable variables Z, a known G

can deliver point identification, as stated in Theorem 3 below. The Theorem is a general-

ization of a result in Theorem 2 of Aradillas-Lopez and Rosen (2021), up to minor changes

in notation, allowing for b̄ > 2 and also focusing on regions of the parameter space in which

for all b αb2 > 2αb1, equivalently ℘b1 (z; ζ) > 0. Accordingly, define this region as

Z∗ ≡ {z ∈ Z : ∀b ∈ B, ℘b1 (z; ζ) > 0} .

The reason the result from Aradillas-Lopez and Rosen (2021) applies with b̄ = 2 is the

equivalence of the conditional probability of consumer choosing not to purchase, i.e. ℘0 (z; ζ)

in the present model, to the conditional probability that (0, 0) is an equilibrium in the

ordered outcome simultaneous equations model studied by Aradillas-Lopez and Rosen (2021).

While both models feature the same conditional probabilities for these outcomes, the rest of

their observable implications differ. The simultaneous equations model of Aradillas-Lopez

and Rosen (2021) produces inequalities on the conditional probabilities of other outcomes,

due to the presence of strategic interactions and multiple equilibria. They then combine

the conditional moment equality from the probability of outcome (0, 0) with conditional

moment inequalities to produce a test statistic for inference. In the single agent decision

problem studied here, the model delivers equalities for the conditional probabilities of all

outcomes. The formal result is now provided, wherein Θb is used to denote the projection of

the parameter space for θ onto the space of admissible (δb, γb, βb).
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Theorem 3 Suppose that Restrictions A1-A7 hold, that P {Z ∈ Z∗} > 0, and that we have

the parametric structure S = U × G given in (4.7) with singleton G so that Σ is known.

Then if (i) conditional on Z ∈ Z∗ for each b ∈ B there exists no proper linear subspace

of the support of Z̃b ≡ (1, Pb1,−Xb) that contains Z̃b with probability one, and (ii) for all

conformable column vectors c1, ..., cb̄ satisfying cb ∈ {θb − θ̃b : θb ∈ Θb, θ̃b ∈ Θb} for each b,

with cb 6= 0 for some b, we have that at least one of

P
{
Z̃1c1 ≤ 0, . . . , Z̃b̄cb̄ ≤ 0|Z̃bcb < 0, Z ∈ Z∗

}
> 0 with P

{
Z̃bcb < 0, Z ∈ Z∗

}
> 0, (4.10)

or

P
{
Z̃1c1 ≥ 0, ..., Z̃b̄cb̄ ≥ 0|Z̃bcb > 0, Z ∈ Z∗

}
> 0 with P

{
Z̃bcb > 0, Z ∈ Z∗

}
> 0 (4.11)

holds then θ is point identified.

The theorem above shows that under conditions that guarantee sufficient variation in

exogenous variables, θ is point identified. The first requirement is that P {Z ∈ Z∗} > 0, i.e.

that there is positive probability of values of exogenous variables such that P [B = b, Y = 1|Z = z] >

0 for all b. The subsequent statements (i) and (ii) are then made conditional on Z ∈ Z∗.
Condition (i), is standard. Note that this requires that each Xb contains no constant com-

ponents. Condition (ii) implies that conditional on Z̃bcb negative (positive), each Z̃dcd, d 6= b

takes nonpositive (nonnegative) values with nonzero probability. This condition helps to

achieve identification because it ensures that for any θ̃ 6= θ there exist values of z such that

as a function of θ̃ the indices that define the cutoffs for the outside option are all either

above or below the corresponding indices at θ̃, with the comparison being strict for at least

one index. This implies that the implied conditional probabilities of choosing the outside

alternative for the two values θ̃ and θ differ for such values of Z.

The support requirement of condition (ii) will in general depend on the specification of

the parameter space Θ. If the parameter space is an arbitrary compact subset of Euclidean

space with no restrictions imposed on θb = (δb, γb, βb) across b it will hold under standard

large support assumptions requiring each Zb to have a component taking arbitrarily large

values with positive probability conditional on Z ∈ Z∗. In this case it is difficult to come

up with general weaker support conditions that will imply (ii). However, in models in which

there are restrictions involving both θb and θb′ , b 6= b′, weaker conditions can suffice. For

example, if the parameters θb relevant to the V00(z; θ) region are restricted to be the same
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for all b, as is the case in the application of Aradillas-Lopez and Rosen (2021) in which

b̄ = 2, then this condition can be satisfied even if each Z̃b has a discrete distribution. In

this case θb = θ for all b, so we can also write cb = c for each b. Condition (4.10) then

becomes P
{
Z̃1c ≤ 0, ..., Z̃b̄c ≤ 0|Z̃bc < 0, Z ∈ Z∗

}
> 0, which is easier to satisfy. It is trivial

for instance if Z̃b = Z̃ for all b.

Notably, the theorem hinges only on implied differences in the conditional probability of

Y = 0 given Z, and exploits no additional information from the conditional probabilities of

other brand-quality combinations. The conditions are shown to be sufficient, but are not

shown to be necessary, so point identification may hold under weaker conditions.

Although the conditions of Theorem 3 are not directly applicable to specifications in

which G is restricted to belong to a family of admissible distributions G, it still carries

meaningful implications in such contexts, and it is useful for understanding what type of

variation is helpful for identification. Under the other conditions of the Theorem, associated

with each possible G′ ∈ G there can be only a singleton identified set for θ, say θ (G′). Thus

the identified set can only consist of parameter values for θ that are θ (G′) for some G′ ∈ G.

This implies that with a parametric specification in which G is parameterized by Σ, each

element of the identified set for θ must maximize L (ζ) = L (θ,Σ) for some Σ.

A leading example of a model for which this Theorem is applicable is a partially ordered

logit model in which unobservable variables V1, ..., Vb̄ are assumed to be i.i.d. logit variates.

This restriction would simplify computation, but at the cost of imposing that unobservable

taste for the vertical dimension is independent of unobservable taste in the horizontal dimen-

sion. While this may be reasonable in some settings, in our application this would require

unobserved preference for quality to be independent of brand preferences. Thus, we employ

a specification in which the unobservables are restricted to be multivariate normal, with

variance governed by parameters to be estimated. When allowance for potential correlation

among unobservables is desired other parametric specifications for their joint distribution

could also be used, such as the Farlie-Gumbel-Morgenstern copula in conjunction with logit

marginals employed by Aradillas-Lopez and Rosen (2021).6

6This would retain the convenience of logit marginals while allowing unobservables to be correlated, but
only to a limited extent relative to the bivariate normal specification employed in our application.
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5 CCPs for the Partially Ordered Probit Model

In this section ζ will be used to denote the full vector of model parameters of a bivari-

ate probit model with b̄ = ȳ = 2 and utility function as specified by (4.7), and G(·; Σ)

corresponding to a bivariate normal distribution with variance matrix Σ with Σ11 normal-

ized to one, Σ22 = σ and Σ12 = Σ21 = ρσ, where ρ, σ are unknown parameters. Thus

ζ ≡ (γ1, γ2, δ1, δ2, β1, β2, ρ, σ), where each βb is a vector of coefficients on variables Xb that

affect utility from alternatives from brand b. This is the specification used in our application

in Section 6. The parameter space for ζ is denoted Υ, the parameter space for ζk is denoted

Υk, and Υ coincides with the product of Υk across k = 1, ..., dim (ζ). We focus attention

on the partially ordered probit model, but other specifications for the distribution of un-

observable heterogeneity could be used as alternatives, such as the partially ordered logit

specification discussed at the end of the previous section.

The choice probabilities ℘by (z, ζ) implied by the partially ordered probit model must be

computed in order to compute the likelihood. These are of the form set out in (3.4), which

with b̄ = 2 take the form of a bivariate integral and can thus be computed using numerical

integration or simulation for any given (ζ, zi). Although we experimented with implementing

both approaches, maximization of the log-likelihood was found to perform relatively slowly

using these methods. With (ρ, σ) unknown the log-likelihood is generally not concave in

parameters.

To compute the choice probabilities (and therefore the log-likelihood) more quickly, we

used results from Owen (1980) that allow us to show equivalence of the choice probabilities

to a closed form expression that does not involve integration. This alternative formula-

tion involves univariate and bivariate normal CDFs evaluated at functions of parameters

and observable variables. Software was used that vectorizes function evaluation to compute

the CDF at each value of zi in one function call.7 This enabled computing likelihood con-

tributions significantly more quickly than performing numerical integration or computing

simulated probabilities separately for each observation. The details of how the conditional

choice probabilities were manipulated to bypass the need for explicitly computing or simu-

lating integrals are now set out. Section 6.2 then explains how inference was implemented.

The finite sample performance of inference methods using both Wald and quasi-likelihood

ratio (QLR) statistics is investigated in Monte Carlo experiments reported in Appendix D.

In the partially ordered probit model in which G(·; Σ) is the bivariate normal distribution,

7We used the pbivnorm R package Kenkel (2015), which is based on Azzalini and Genz (2016).
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application of (3.4) gives the following representation for the conditional choice probabilities:

∀ (b, y) ∈MBY , ℘by (z, ζ) =
1

σb

gb(y+1;z,θ)∫
gb(y;z,θ)

Φ

(
hb (y, z, v, θ)− ρσd

σb
v

σd
√

1− ρ2

)
φ

(
v

σb

)
dv, (5.1)

hb (y, z, v, θ) ≡ min
ỹ∈{1,...,ȳd}

1

ỹ
[y (xbβb + vb)− (αby − αdỹ)]− xdβd, (5.2)

where d = 3− b denotes the brand other than b.8

To remove the need to simulate or numerically approximate the above integral, condi-

tional choice probabilities ℘by (z, ζ) can be further simplified using formulas for integrals of

normal densities and distribution functions collected in Owen (1980). The representation so

obtained is given in the following Proposition.

Proposition 2 Let Restrictions A1-A7 hold with b̄ = 2, ȳb = 2 for each b, and

u (b, y, z, vb) ≡ y × (xbβb + vb)− αby,

as in (4.1) with α00 ≡ 0 and V = (V1, V2) normally distributed with mean zero and vari-

ance matrix Σ =

(
1 ρσ

ρσ σ2

)
with unknown parameters ρ ∈ [−1, 1] and σ > 0. Then the

conditional choice probabilities for each b = 1, 2 and y = 1, 2 can be expressed as

℘by (z, ζ) =

(
1
[
z∗by < gb(y + 1; z, θ)

]
∆
(
σ−1
b max

{
z∗by, gb(y; z, θ)

}
, σ−1

b gb(y + 1; z, θ),m+
1 ,m

+
2

)
+1
[
z∗by > gb(y; z, θ)

]
∆
(
σ−1
b gb(y; z, θ), σ−1

b min
{
z∗by, gb(y + 1; z, θ)

}
,m−1 ,m

−
2

) )
,

(5.3)

where gb(·; z, θ) is as defined in (4.8) and for any h, k,m1,m2,

∆ (h, k,m1,m2) ≡ Φ2 (k,m1;m2)− Φ2 (h,m1;m2) , (5.4)

where Φ2 (·, ·, ρ) denotes the CDF of a bivariate normal random vector Z with mean zero and

unit variance components with correlation ρ, and for d = 3− b,

z∗by ≡
αd2 + αby − 2αd1

y
− xbβb,

8Here hb (y, z, v, θ) is equal to hb,d (y, z, v, θ) defined in (4.9) with d = 3− b since there are only two firms.
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and

m+
1 ≡ yxbβb + αd2 − αby − 2xdβd√

σ2
by

2 − 4ρσbσdy + 4σ2
d

, m+
2 ≡

2ρσd − σby√
σ2
by

2 − 4ρσbσdy + 4σ2
d

, (5.5)

m−1 ≡ yxbβb + αd1 − αby − xdβd√
σ2
by

2 − 2ρσbσdy + σ2
d

, m−2 ≡
ρσd − σby√

σ2
by

2 − 2ρσbσdy + σ2
d

. (5.6)

6 Application to Razor Blade Purchases

This section presents an application of the parametric bivariate probit model in Section 5 to

the market for women’s razor blades using consumer data from the United Kingdom in the

early 2000s. We discuss the data, computational details, and empirical results in turn.

6.1 Data

We use purchase data for a rolling panel of households from the Kantar Worldpanel. The data

comprise a representative sample of UK households observed making repeated purchases,

obtained by a handheld scanner used to record all household grocery purchases at the UPC

level. Data on razor blade purchases is used for the years 2004 − 2005.9 In particular we

focus on consumers’ decisions to buy a double or triple blade cartridge from one of the two

leading razor blade brands in the UK, Gillette and Wilkinson Sword.

In our application, we consider households observed purchasing either razor blade car-

tridges for a reusable non-electric women’s razor (which we refer to as “system blades”) or

disposable women’s razors, where the main shopper of the household is a female between the

age of 18 and 50 years old. The outside alternative is the purchase of a disposable razor. The

total sample size consists of 4842 observations. Table 1 shows the observed market shares

of Gillette and Wilkinson Sword system blades and disposable razors. Out of the 4842 ob-

servations, 1973 observations correspond to system blade purchases and Table 2 shows the

observed market shares conditional on buying either double or triple blade cartridges from

either Gillette or Wilkinson Sword.

The covariates used for each household are indicators for age of the main shopper being

31-40 and 41-50, indicators for the main shopper’s marital and employment status, and an

indicator specifying the presence of more than one female in the household. Table 3 provides

descriptive statistics. Further details are provided in Appendix B.

9Razor blades can be purchased in three forms: as disposable razors, as reusable razors sold with razor
blade cartridges, or as razor blade cartridges for use with a previously purchased handle.
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Razor Blade Type Market Share

Gillette Blades 29.82%
Wilkinson Sword Blades 10.93%

Disposable Razors 59.25%

Table 1: 2004–2005 market shares.

Trading Company Blade Type Total
Double Blade Triple Blade

Gillette 17.74% 55.45% 73.19%
Wilkinson Sword 9.22% 17.59% 26.81%

Total 26.96% 73.04% 100.00%

Table 2: Market shares conditional on purchasing double or triple blade cartridges from
Gillette or Wilkinson Sword in 2004-2005.

For each observation in the sample the brand (b)-quality (y) combination of cartridges

purchased is observed, in addition to the individual characteristics. For each purchase we

observe the amount spent (w), the quantity purchased (q) and the specific pack size (v), as

well as the month (m) and store (s) of purchase. The average per cartridge price pbymsv,

defined as the total amount spent divided by the total quantity purchased in a specific month

and store, for each specific brand-quality combination and each pack size was computed as

pbymsv =

∑Nbymsv

i=1 wbymsv,i∑Nbymsv

i=1 qbymsv,i
. (6.1)

where i = 1, . . . , N bymsv and N bymsv is the number of observations for each bymsv combina-

tion. Regarding the unit prices faced by the consumers of the cartridges not bought, since

these are not observed, we estimated them using the best linear predictor (BLP) under two

different specifications,

pbymsv = β0 +1[b = 2]β1 +1[y = 2]β2 +

24∑
m̃=2

1[m = m̃]κm+

15∑
s̃=2

1[s = s̃]τ s+

3∑
ṽ=2

1[v = ṽ]µv+ε, (6.2)

Age group Marital status Employment status Number of females

18-30 34.30% Married 61.83% Employed 70.76% One female 43.04%
31-40 40.75% Other 38.17% Unemployed 29.24% More than one 56.96%
41-50 24.95%

Table 3: Main shopper characteristics for 2004-2005.

21



pbymsv = β0 + 1[b = 2]β1 + 1[y = 2]β2 +
24∑
m̃=2

1[m = m̃]κm +
15∑
s̃=2

1[s = s̃]τ s + ε, (6.3)

where ε denotes the residual of the BLP regression, b = 2 corresponds to Wilkinson Sword

system blades, and y = 2 corresponds to triple blade cartridges. The intercept, β0, corre-

sponds to the price of a Gillette double blade cartridge sold in January 2004 in the store

group category “All other” and for specification (6.2) in the small pack size. All of the other

Greek letters denote BLP coefficients. These were estimated using all 1973 observations of

cartridge purchases in our data for the 24 months spanning 2004−2005, 15 stores, and three

different pack sizes. To impute counterfactual prices for the brand-quality combination of

system blades not purchased, the best linear predictors were matched to each observation

according to the actual month, store and (in the case of specification (6.2)) pack size pur-

chased. The difference in specification (6.2) and specification (6.3) is that in the former we

also control for pack size. We chose to differentiate between the two specifications as not

all the blade-types and/or brands offer all (original) pack sizes. For example, double blade

razors were only offered in five cartridge packs. In order to deal with this, pack size was

categorized according to small, medium and large. See Appendix B for further details.

Using this data our application employs the partially ordered probit specification with

b̄ = 2 and ȳb = 2 for each b considered in Section 5 with

Uby ≡ Y (Xβb + Vb)− δb − γbPby if (b, y) 6= (0, 0), U00 ≡ 0,

where X are the individual specific indicators for the household’s main shopper’s age cate-

gories, marital status, employment, and the presence of multiple females in the household as

previously described, and which here do not vary across brand. Prices Pby on the other hand

vary at both the product and individual level. The index Xβb + Vb captures the marginal

effect on utility from an increase in quality Y when choosing brand b. All else equal, a

higher value of this index increases both the utility of choosing the higher quality option

(Y = 2) relative to the lower quality option (Y = 1) of brand b. It also increases the relative

utility of brand b’s offerings relative to those of its rival. The distribution of V ≡ (V1, V2) is

multivariate normal with parameters as indicated in Proposition 2. Thus, a positive value

of the correlation parameter ρ indicates positive correlation in the taste for higher quality

cartridges across the different brands, as would be expected if individuals who have higher

unobserved taste for Gillette’s triple blade cartridges also have higher unobserved taste for
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Wilkinson Sword’s triple blade cartridges.

6.2 Empirical Implementation

Estimation and inference were carried out by maximum likelihood. Specifically, we report

point estimates obtained by maximizing the likelihood

Ln (ζ) ≡
n∑
i=1

[ln℘biyi (zi; ζ)] (6.4)

with respect to ζ, and 95% confidence intervals for each parameter component ζk obtained

using both Wald and QLR statistics. Wald confidence intervals are computed as those

values that come within 1.96 estimated standard deviations of the point estimate, where

the Hessian form of the information matrix was used to estimate the asymptotic variance.

The QLR confidence intervals are more time consuming to compute, but can be robust to a

possible lack of point identification under certain conditions as shown by Chen, Christensen,

and Tamer (2018), which are not verified here.10 With point identification, both approaches

are valid under standard conditions. In Appendix D we report the results of several Monte

Carlo experiments comparing the two approaches.

The steps taken to compute the QLR confidence intervals CLRα,k were as follows, for each

k = 1, ..., dim (ζ) with α = 0.95. First the quasi-likelihood ratio statistic

Qk,n (µ) ≡ inf
ζ∈Υ:ζk=µ

2n [L∗n − Ln (ζ)] , (6.5)

10See Chen, Christensen, and Tamer (2018) for sufficient conditions for asymptotic validity of profile
QLR confidence intervals for the identified set of parameter components ζk, each k, when ζk is not point
identified. Note that a confidence interval that guarantees coverage of the entire identified set for ζk with
pre-specified probability asymptotically is also guaranteed to contain the parameter ζk itself with at least
the same probability asymptotically. This ensures that the confidence sets are asymptotically valid for ζk,
although for coverage of the true parameter value only, it may in principle be possible to establish either
weaker sufficient conditions or strictly smaller confidence intervals. Furthermore, while Chen, Christensen,
and Tamer (2018) provide sufficient conditions for profile QLR confidence intervals to achieve at least the
desired asymptotic coverage for identified sets of univariate components of the structural parameter, one
could consider using the likelihood ratio statistic for inference on other objects, such as partial effects or
various counterfactuals, although we are unaware of sufficient conditions for this to achieve valid inference
under partial identification. These are questions we leave open to future research.
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was computed at values of µ over a grid of values M.11 The values

µ0 ≡ min
{
µ ∈M : Qk,n (µ) ≤ χ2

1,α

}
, µ0 ≡ max {µ ∈M : µ < µ0} ,

µ1 ≡ max
{
µ ∈M : Qk,n (µ) ≤ χ2

1,α

}
, µ1 ≡ min

{
µ ∈M : µ > µ1

}
,

were recorded, with χ2
1,α the α quantile of the chi-square distribution with one degree of

freedom. Here µ0 and µ1 are the lowest and greatest values of µ on the grid M that pass

the criterion Qk,n (µ) ≤ χ2
1,α required for µ ∈ CLRα,k . The value µ0 is the next lowest value to

µ0 on M while µ1 is the next highest value to µ1 on the grid. Then a minimal tolerance

ε > 0 was set for the desired precision within which to compute each endpoint of CLRα,k and

the following steps were iterated.

1. Set µ̃ ≡
(
µ0 + µ0

)
/2 the halfway point between µ0 and µ0. Compute Qk,n (µ̃).

2. If Qk,n (µ̃) ≤ χ2
1,α then set µ0 ≡ µ̃. Otherwise set µ0 ≡ µ̃.

3. If
∣∣∣µ0 − µ0

∣∣∣ > ε then return to step 1 and continue. Otherwise set the terminal value

µ0 ≡ µ0 and stop iterating.

Then the same steps were carried out for the upper bound of CLRα,k by setting µ̃ ≡(
µ1 + µ1

)
/2 and replacing µ0 with µ1 and µ0 with µ1 in the subsequent step. Here we

let the terminal value be denoted µ1. When the procedure is done, µ0 and µ1 serve as lower

and upper bounds for CLRα,k .

6.3 Empirical Results

Tables 4 and 5 report maximum likelihood point estimates and confidence intervals con-

structed as described above using specifications (6.2) and (6.3), respectively, for counterfac-

tual prices. The results in Table 4 lead to several observations. The coefficients γ1 and γ2

on price are positive, so that utility is measured to be decreasing in price. The coefficient

γ1 on price for Gillette is considerably smaller than the coefficient γ2 for Wilkinson Sword,

even after scaling by the estimate of σ2. The coefficient on the dummy variables for both

age groups 31-40 and 41-50 are negative, as are their associated confidence intervals, with

the exception of the coefficient on the 31-40 age group for Wilkinson Sword. This indicates

a lower utility of system blade purchases of these age groups relative to the 18-30 age group.

11The likelihood Ln (ζ) is as defined in (6.4) with ℘by (zi; ζ) defined in (5.3).
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Likewise, the estimated coefficient on the more females indicator for both brands is nega-

tive. Coefficient estimates for employment and married dummy variables are negative and

statistically indistinguishable from zero for both brands.

The estimated correlation coefficient between brand-specific unobservables is effectively

one, indicating perfect correlation in unobserved preference for quality as reflected by blades

per cartridge across the two different brands.12 This indicates that consumers who have

higher unobservable taste for the high quality product of one brand have higher unobservable

taste for the higher quality product of the other brand too. This reflects choice patterns

delivered by our fitted conditional choice probabilities with respect to variations in price,

and is consistent with a setting in which consumers purchasing the higher quality offering of

one brand would likely choose the higher quality offering of the rival brand if their chosen

brand’s product was not available or was prohibitively high-priced. While a high correlation

in unobserved taste in the quality dimension thus seems reasonable in this application, a

value of ρ̂ ≈ 1 indicates roughly perfect correlation in unobserved taste for quality across

brands. It also suggests that the population parameter ρ may be on the boundary of the

parameter space, which can be problematic for inference. Indeed, the Hessian of the log-

likelihood computed at the maximizing parameter vector was singular. Consequently, Wald

confidence intervals are not reported for this specification. The QLR statistic can still be

computed and the confidence intervals reported here use the χ2
1 critical value which is valid

if the parameter is on the interior of the parameter space.13 The QLR confidence interval

obtained for ρ is very tightly concentrated around 1.

Table 5 reports results obtained using specification (6.3) for counterfactual prices. The

estimate of the correlation coefficient ρ between brand-specific unobservables is again very

close to one, again indicating near perfect correlation in preference for quality (blades per

cartridge) across the two different brands. However, the likelihood-maximizing value of ρ

was slightly lower than was found using specification (6.2) for counterfactual prices. The

Hessian was nonsingular and both Wald and QLR confidence intervals for each parameter are

reported.14 The point estimate for γ1, the price coefficient for Gillette, is negative, indicating

that utility is increasing in price, although its magnitude is small and the confidence intervals

indicate it is nearly statistically indistinguishable from zero. The coefficient estimate on price

12The maximum likelihood estimate was 0.99999992, effectively indistinguishable from 1.
13If in fact the population value of ρ is one, alternative critical values are needed, see for example Self and

Liang (1987) and Andrews (1999).
14Small perturbations of ρ near the maximizing parameter vector were investigated and confirmed to result

in a decrease in the log-likelihood.
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for Wilkinson Sword is positive, and statistically significantly different from zero, indicating

that utility from purchasing these products is decreasing in price. For the most part, the

signs of coefficient estimates and confidence intervals on other variables accord qualitatively

with those of the prior specification. Two slight exceptions are that although β2Age31−40

and β2married are again estimated to be negative, their associated confidence intervals now

lie fully below zero. The estimate of σ2 is slightly larger than it was using the previous

specification, but of similar magnitude.

Parameter ML Point Estimate QLR 95% CI

γ1 0.0617 [-0.0380, 0.1737]
γ2 4.2788 [3.4006, 5.6788]
δ1 -0.202 [-0.2485, -0.2020]
δ2 -4.0525 [-5.3889, -3.3035]

β1Age31−40 -0.1566 [-0.2358, -0.0772]

β1Age41−50 -0.2264 [-0.3202, -0.1323]

β1Married -0.0444 [-0.1092, 0.0202]
β1Employed -0.0382 [-0.1072, 0.0320]

β1Females -0.2236 [-0.2920, -0.1559]
β2Age31−40 -0.2392 [-0.4837, 0.0042]

β2Age41−50 -0.3644 [-0.6418, -0.0868]

β2Married -0.1864 [-0.3953, 0.0128]
β2Employed -0.1157 [-0.3316, 0.0915]

β2Females -0.6098 [-0.8768, -0.4080]
ρ 1.0000 [0.9994, 1.0000]
σ2 2.6941 [2.3474, 3.3302]

Table 4: 95% confidence intervals with prices as specified in (6.2).

Table 6 reports features of the estimated own- and cross-price elasticities

ηbykl(zi; ζ) ≡ ∂℘by(zi; ζ)

∂pk`
· pk`
℘by(zi; ζ)

for each (b, y) product combination and for the outside good implied by the parameter

estimates reported in Table 4. For each household i the corresponding elasticity of the

choice probability with respect to each price was computed. Table 6 displays the resulting

means and 0.2, 0.5, and 0.8 quantiles of these elasticities.15 Relative to the means, the

15Fitted shares less than 10−8 were rounded to zero, and corresponding elasticity estimates were likewise
set to zero to avoid approximation error. Code for computing these elasticities is included with the code used
to compute the likelihood and produce the Monte Carlo results in Appendix D, which can be downloaded
at https://sites.google.com/site/amr331/home/por-code. An additional link on this page provides a
pdf web supplement that derives the expressions that were used to compute the elasticities.
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Parameter ML Point Estimate Wald 95% CI QLR 95% CI

γ1 -0.0643 [-0.1274, -0.0013] [-0.1157, -0.0036]
γ2 2.6258 [2.3479, 2.9037] [2.3449, 2.9131]
δ1 -0.1650 [-0.1862, -0.1438] [-0.1850, -0.1467]
δ2 -2.5891 [-2.7832, -2.3951] [-2.7805, -2.3872]

β1Age31−40 -0.1595 [-0.2378, -0.0813] [-0.2369, -0.0822]

β1Age41−50 -0.2162 [-0.3079, -0.1246] [-0.3087, -0.1240]

β1Married -0.0814 [-0.1435, -0.0194] [-0.1435, -0.01923]
β1Employed -0.0585 [-0.1321, 0.0152] [-0.1266, 0.0098]

β1Females -0.2378 [-0.3085, -0.1670] [-0.3045,-0.1710]
β2Age31−40 -0.3057 [-0.4779, -0.1335] [-0.4763, -0.1361]

β2Age41−50 -0.4181 [-0.6207, -0.2154] [-0.6209, -0.2171]

β2Married -0.1937 [-0.3342, -0.0532] [-0.3319 ,-0.0553]
β2Employed -0.1126 [-0.2741, 0.0488] [-0.262 ,0.0369]

β2Females -0.5249 [-0.6796, -0.3702] [-0.6719, -0.3800]
ρ 0.9998 [0.9996, 1.0000] [0.9996, 1.0000]
σ2 2.1580 [2.0505, 2.2655] [2.0334, 2.2734]

Table 5: 95% confidence intervals with prices as specified in (6.3).

quantiles illustrate considerable heterogeneity in household substitution patterns. Focusing

first on mean own-price elasticities, Gillette products (B = 1) appear to be less sensitive

to changes in own-price than Wilkinson products (B = 2). However, shifting focus to the

quantiles of elasticities shows a more nuanced picture. For example, the estimated mean

own-price elasticity for alternative (2, 1) is roughly -45, which is extremely high, but the

estimated median elasticity is zero and the estimated 0.2 quantile is -2.143. In addition, the

0.1 and 0.05 quantiles (not reported in the table) are roughly -32 and -66, respectively. This

reflects that the majority of households are not considering this product at the margin. For

these households ℘21(zi; ζ) is unaffected by a local change in price. However there is a small

subset of households that in fact are quite sensitive to a change in the price of this product.

Indeed this is consistent with this product offering having by far the smallest market share

in our data. A small price increase that leads to even a handful of households no longer

purchasing can produce a large percentage change in the share purchasing.

A qualitatively similar observation holds for η2122; the purchase probability ℘21 is insen-

sitive to a change in p22 for households not locally considering product (2, 1), but purchase

probabilities for the segment of households that are purchasing or are locally close to pur-

chasing this product respond considerably to changes in p22. For these households, product

(2, 2) appears to be the closest substitute. The large estimated mean own-price elasticity of

−3.885 for ℘22 presents a more uniform level of sensitivity to price changes, as the quantiles
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are much less disperse. This product has nearly double the market share of product (2, 1)

and is generally the most expensive product available.

Cross-price elasticity estimates reflect various additional substitution patterns. For in-

stance, the elasticity estimates for Gillette’s double blade offering (1, 1) with respect to

Wilkinson blade cartridges (B = 2) are zero for most consumers, up to at least the 0.8

quantile. However, the substantially higher mean estimate with respect to p21 illustrates

that there is a segment of consumers who are locally sensitive to price changes in Wilkin-

son’s double blade razors; in this sense product (2, 1) is a closer substitute for (1, 1) than is

product (2, 2). On the other hand, for Gillette’s triple blade razors, product (1, 2), there are

more consumers sensitive to price changes in Wilkinson’s triple blade cartridges (2, 2) than

Wilkinson’s double blade cartridges (2, 1). Given the ordered nature of the product offerings,

the probability of purchasing the outside good, disposable razors, is somewhat sensitive to

changes in the price of double blade razors (Y = 1), but is insensitive to changes in the price

of triple blade razors (Y = 2).

Before concluding, it should be noted that these observations come with at least two

important caveats. First of all, our model is static. We do not model consumers’ purchase or

prior possession of handle for any brand/quality offering. Ownership of a handle for product

(b, y) that is not compatible with other products may be an important factor in consumer

demand and observed substitution patterns. Addressing this would require a dynamic model

and data on handle purchases that may have occurred well in the past, which we do not

have. Second, we do not actually observe the menu of products each consumer faces when

making their purchase. Even if we are able to accurately impute counterfactual prices based

on prices paid by other consumers in a given store and month, it is possible that products a

consumer did not purchase were actually not available in the store at the time the consumer

was shopping. This could be problematic if some stores regularly did not carry or sold out

of certain products, rendering imputed prices invalid.

Despite these caveats, the application illustrates the ability of the partially ordered re-

sponse model to produce consumer substitution patterns that accord with the dual horizontal

and vertical dimensions of product differentiation. To illustrate this point, for the sake of

comparison we report in Table 15 in Appendix C elasticities instead obtained using the al-

ternative specific conditional logit model of McFadden (1974), implemented as the asclogit

command in Stata, using price specification (6.2). Relative to our model, this model ignores

the vertical dimension of differentiation, thus treating all products as horizontally differen-

tiated. In comparison to the average elasticities in Table 6, the magnitude of the average
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own-price elasticities for Gillette products (B = 1) in Table 15 is larger, indicating a greater

average substitution effect following an increase in own price, while the reverse is true for

Wilkson products (B = 2). Comparing the quantiles the picture is also quite different. An

implication of the logit model is that no matter what the value of zi for a household, there is

a strictly positive probability that a marginal change in the price of the product it purchases

will induce it to switch to any one of the other alternatives. Consequently, at each quantile

of price elasticities, there is a non-zero proportion of households considering each product.

An even more striking difference is with respect to the cross-price elasticities. While in our

model the cross-price elasticities are different, the cross-price elasticities for product (b, y)

with respect to pk` implied by the alternative specific conditional logit model are the same

regardless of (b, y). For example, the mean cross-price elasticity of product (b, y) induced

by a change in the price of the Gillette double blade cartridge (product (1, 1)) reported in

Table 15 is estimated as 0.0874, across all (b, y) 6= (1, 1). This is restrictive, as we would

expect individuals to respond to price changes of a given product (e.g. (1, 1)) differently

depending on which product they are currently purchasing.16 Our model allows this, as the

first column of Table 6 indicates that the share of (1, 2) and the outside alternative are both

locally sensitive to changes in p11, although the corresponding cross-price elasticities differ.

Furthermore, Table 6 indicates consumers choosing the shares of (2, 1) and (2, 2) are locally

insensitive to changes in p11. More generally it is easy to see from the columns of Table 6

that cross-price elasticities reported with respect to any given product price may vary.

The estimated elasticities further indicate interesting substitution patterns within and

across brands. Looking at the rows for ℘11 and ℘12, we generally see non-zero cross-price

elasticities for consumers choosing Gillette’s alternative product offering, but zero quantiles

of many of the cross-price elasticities with respect to Wilkinson’s products. This suggests

most consumers who purchase Gillette cartridges are more responsive to local changes in

the price of Gillette’s other product than they are to local changes in Wilkinson’s prices.

Considering instead the rows for ℘21 and ℘22 we instead see that consumers purchasing

Wilkinson’s products are comparatively insensitive to changes in the prices of other products,

with exceptions at some quantiles of estimated cross-price elasticities.

16This issue as well as other implications of the the logit elasticities have been previously discussed in the
literature, for example in Nevo (2000).
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Price Elasticities

∂ log℘by

∂ log pk`
p11 p12 p21 p22

℘11

mean -0.589 0.400 2.891 0.001
quantiles -0.600 -0.546 -0.425 0.364 0.424 0.457 0.000 0.000 0.000 0.000 0.000 0.000

℘12

mean 0.159 -0.508 14.825 1.141
quantiles 0.062 0.073 0.081 -0.153 -0.135 -0.117 0.000 0.000 0.000 0.000 1.332 1.629

℘21

mean 0.000 0.563 -45.376 13.450
quantiles 0.000 0.000 0.000 0.000 0.000 0.000 -2.143 0.000 0.000 0.000 0.000 1.016

℘22

mean 0.000 0.033 0.566 -3.885
quantiles 0.000 0.000 0.000 0.000 0.040 0.046 0.000 0.000 2.243 -4.241 -3.845 -3.445

℘0

mean 0.033 0.000 0.025 0.000
quantiles 0.028 0.033 0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 6: Estimated means and 0.2, 0.5, and 0.8 quantiles of household elasticities.

7 Conclusion

In this paper we proposed a new discrete choice model for partially ordered alternatives,

applicable when discrete choices are differentiated along both vertical and horizontal dimen-

sions. We provided general characterizations of the identified set of structures admitted

by the model and conditional choice probabilities under mild shape restrictions that induce

an ordered (i.e. vertically differentiated) choice problem holding the horizontal dimension

of choice fixed. We considered specialized results for a partially ordered probit model in

which brand-specific unobservables are restricted to be multivariate normal with parame-

terized covariance matrix. Closed form expressions for choice probabilities were obtained in

a duopoly (two-brand) setting, useful for computing the log-likelihood. An empirical illus-

tration was provided using data on razor blade cartridge purchases in the United Kingdom,

a setting that features two dominant competing firms with vertically differentiated prod-

ucts. The application demonstrated the model’s ability to capture interesting substitution
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patterns commensurate with the two levels of differentiation, and which reflect underlying

heterogeneity in preferences.

Estimating such patterns as accurately as possible can be important for measuring wel-

fare, predicting reactions to the introduction of new products, and for modeling firm com-

petition. Indeed, future analysis combining demand modeled by way of a vertically and

horizontally ordered choice model with a model of equilibrium firm behavior could be useful

for estimating such quantities. In this way, the choice model developed here could poten-

tially be applied to study equilibrium pricing by multiproduct firms engaging in second

degree price discrimination. This could in turn be used to empirically measure the direction

and magnitude of welfare effects of competition in markets with non-linear pricing, for which

the incorporation of both horizontal and vertical differentiation is important.
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A Proofs

Proof of Proposition 1. First consider any (u0, G0) ∈ S0. By the same argument as when

there is point identification we have for almost every x ∈ X ,

E [lnG0 (VBY (x;u0)) |x] ≥ E [lnG (VBY (x;u)) |x] (A.1)
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for all (u,G) ∈ S. Thus S0 is contained in the set of maximizers of Q (u,G). Consider now(
ũ, G̃

)
/∈ S0. Then for some (b, y) ∈ MBY there exists a positive measure set X ∗

(
ũ, G̃

)
as

defined in (3.6) on which G̃ (Vby (x; ũ)) 6= G0 (VBY (x;u0)) = f 0
x (b, y) for at least one (b, y)

pair. We therefore have

∀x ∈ X ∗
(
ũ, G̃

)
, E [lnG0 (VBY (x;u0)) |x] > E

[
ln G̃ (VBY (x; ũ)) |x

]
.

Combining this with (A.1) it follows that Q (u0, G0) > Q
(
ũ, G̃

)
, completing the proof. �

Proof of Theorem 1. From the utility maximization hypothesis, (b, y) is chosen if and only

if it maximizes u (b, y, x, vb). This is so if and only (i) (b, y) provides higher utility than that

delivered by all within brand options {u (b, ỹ, x, vb) : ỹ 6= y}, and (ii) (b, y) provides higher

utility than that delivered by all alternative brand options
{
u
(
b̃, ỹ, x, vb̃

)
:
(
b̃, ỹ
)
6= (b, y)

}
.

Condition (i) requires that y maximizes u (b, ·, x, vb) for the stated brand b, that is Y ∗b = y.

Given the single-crossing property of Restriction A6(iii) we can apply Theorem 4 of Milgrom

and Shannon (1994), implying that Y ∗b is nondecreasing in vb. It follows that for each

y ∈ {0, ..., ȳb + 1}, there is a nondecreasing sequence of thresholds {gb (y) : y = (0, ..., ȳb + 1)}
such that Y ∗b = y if and only if vb ∈ (gb (y) , gb (y + 1)], where possibly gb (y) = gb (y + 1) if

alternative (b, y) is never chosen. That gb (0) ≡ −∞ and gb (ȳb + 1) ≡ ∞ follows from y = 0

and ȳb being the lowest and highest feasible values of y.

Condition (ii) stems from Restriction A6(ii), strict monotonicity of u (b, y, x, vb) in vb for

each b. The consumer will choose brand b if and only if for any other brand d, the utility

from choosing (b, Y ∗b ) exceeds that from choosing (d, Y ∗d ), that is if

u (b, Y ∗b , x, vb) > max
y∈Yd

u (d, y, x, vd) , if b < d, (A.2)

u (b, Y ∗b , x, vb) ≥ max
y∈Yd

u (d, y, x, vd) , if b > d. (A.3)

By A6(ii) it follows that

u∗d (x, vd) ≡ max
y∈Yd

u (d, y, x, vd)

is strictly monotone and thus invertible in vd. Inequalities (A.2) and (A.3) thus simplify to

qd {u (b, Y ∗b , x, vb) ;x} > vd, if b < d,

qd {u (b, Y ∗b , x, vb) ;x} ≥ vd, if b > d,
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where qd (·;x) denotes the inverse of u∗d (x, vd) with respect to vd, i.e. for any (x, vd),

qd (u∗d (x, vd) ;x) = vd.

Then we have the inequalities (3.2) and (3.3) with

hb,d (y) ≡ qd {u (b, Y ∗b , x, vb) ;x} ,

for each pair b 6= d. The integral (3.4) for the conditional choice probabilities then follows

immediately from their definition ℘by (x;S) ≡ G (Vby (x;u)) . �

Proof of Theorem 2. It is straightforward to verify that the function

h (v, θ) ≡ g (v) 1 [v ∈ Vby (z; θ)]

is log-concave in (v, θ). This follows from log-concavity of g (v) and log-concavity of 1 [v ∈ Vby (z; θ)]

in (v, θ), which is easy to establish given Vby (z; θ) comprises a system of linear inequalities

in (v, θ). By Theorem 6 of Prekopa (1973) it then follows that∫
h (v, θ) dv

is log-concave in θ and concavity of L (θ,G) follows. �

Proof of Theorem 3. Let θ̃ 6= θ and for each b ∈ B let θb ≡ (δb, γb, β
′
b)
′

and θ̃b ≡(
δ̃b, γ̃b, β̃

′
b

)′
, θ−b ≡

(
θ′1, ..., θ

′
b−1, θ

′
b+1, ..., θ

′
b̄

)′
, and likewise for θ̃−b. Let kb denote the number

of components of θb.

Let

z ≡


z̃1,1 · · · z̃1,k1 0 · · · · · · · · · · · · · · · 0

0 · · · 0 z̃2,1 · · · z̃2,k2 0 · · · 0
...

0 · · · · · · · · · · · · 0
. . . 0 · · · 0

0 · · · · · · · · · · · · · · · 0 z̃b̄,1 · · · z̃b̄,kb̄


and let z−b denote the matrix z with the bth row removed. Let zb denote the bth row of z

excluding zero entries. As in the main text, z (not in bold font) is used to denote a realization

of all exogenous variables excluding repetitions.

Define the sets

S+
b ≡

{
z ∈ Z∗ : zb

(
θ̃b − θb

)
> 0 ∧ z−b

(
θ̃−b − θ−b

)
≥ 0
}

,
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S−b ≡
{
z ∈ Z∗ : zb

(
θ̃b − θb

)
< 0 ∧ z−b

(
θ̃−b − θ−b

)
≤ 0
}

.

Let Φb̄ (zθ; Σ) denote the cumulative distribution function for the b̄-variate distribution

G(·,Σ). For any z ∈ S+
b we have that

Φb̄

(
zθ̃; Σ

)
> Φb̄ (zθ; Σ) = f 0

x (0) , (A.4)

and likewise for any z ∈ S−b ,

Φb̄

(
zθ̃; Σ

)
< Φb̄ (zθ; Σ) = f 0

x (0) , (A.5)

where f 0
x (0) = P {Y = 0|X = x}. The probability that Z ∈ Sb ≡ S+

b ∪ S
−
b is

P {Z ∈ Sb} = P
{
Z ∈ S+

b

}
+ P

{
Z ∈ S−b

}
=

 P
{

Z−b

(
θ̃−b − θ−b

)
≥ 0|Zb

(
θ̃b − θb

)
> 0, Z ∈ Z∗

}
P
{

Zb

(
θ̃b − θb

)
> 0, Z ∈ Z∗

}
+P
{

Z−b

(
θ̃−b − θ−b

)
≤ 0|Zb

(
θ̃b − θb

)
< 0, Z ∈ Z∗

}
P
{

Zb

(
θ̃b − θb

)
< 0, Z ∈ Z∗

}  .

At least one of P
{

Zb

(
θ̃b − θb

)
> 0, Z ∈ Z∗

}
and P

{
Zb

(
θ̃b − θb

)
< 0, Z ∈ Z∗

}
are strictly

positive because of condition (i), and P {Z ∈ Z∗} > 0, and it follows that at least one of

P
{

Z−b

(
θ̃−b − θ−b

)
≥ 0|Zb

(
θ̃b − θb

)
> 0, Z ∈ Z∗

}
P
{

Zb

(
θ̃b − θb

)
> 0, Z ∈ Z∗

}
,

P
{

Z−b

(
θ̃−b − θ−b

)
≤ 0|Zb

(
θ̃b − θb

)
< 0, Z ∈ Z∗

}
P
{

Zb

(
θ̃b − θb

)
< 0, Z ∈ Z∗

}
,

or both must be strictly positive by condition (ii). Therefore P {Z ∈ Sb} > 0, implying that

θ̃ is observationally distinct from θ since for each z ∈ Sb, f 0
x (0) 6= Φb̄

(
zθ̃; Σ

)
. �

Before proving Proposition 2, the following Lemma is first proven.

Lemma 1 When ȳb = 2 for each b, then (5.2) can be simplified to

hb (y, z, v, θ) = 1
[
vb < z∗by

]
m−by (z, vb, θ) + 1

[
vb ≥ z∗by

]
m+
by (z, vb, θ) , (A.6)

where

m−by (z, vb, θ) ≡ y (xbβb + vb) + αd1 − αby − xdβd, (A.7)

m+
by (z, vb, θ) ≡

1

2
[y (xbβb + vb) + αd2 − αby]− xdβd, (A.8)
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Proof. Since ȳb = 2, (5.2) simplifies to

hb (y, z, v, θ) = min
ỹ∈{1,...,ȳd}

1

ỹ
[y (xbβb + vb)− (αby − αdỹ)]− xdβd (A.9)

= min
{
m−by (z, vb, θ) ,m

+
by (z, vb, θ)

}
. (A.10)

Bothm−by (z, vb, θ) andm+
by (z, vb, θ) are linear and strictly increasing in vb. Settingm−by (z, vb, θ) =

m+
by (z, vb, θ) reveals that the two functions are equal at

vb = z∗by ≡
αd2 + αby − 2αd1

y
− xbβb,

and since m−by (z, vb, θ) has a larger slope with respect to vb, it follows that for all vb < z∗by,

m−by (z, vb, θ) < m+
by (z, vb, θ), while for all vb > z∗by, m

−
by (z, vb, θ) > m+

by (z, vb, θ). Thus (A.10)

simplifies to (A.6), completing the proof. �

Proof of Proposition 2. The starting point is (5.1):

℘by (z, ζ) =
1

σb

gb(y+1;z,θ)∫
gb(y;z,θ)

Φ

(
hb (y, z, v, θ)− ρσd

σb
v

σd
√

1− ρ2

)
φ

(
v

σb

)
dv,

which is broken into three cases, depending on whether z∗by lies below, inside, or above the

interval [gb(y; z, θ), gb(y + 1; z, θ)] on which the integral is to be evaluated.

1. gb(y; z, θ) < z∗by < gb(y + 1; z, θ).

℘by (z, ζ) = σ−1
b

z∗by∫
gb(y;z,θ)

Φ

(
m−by (z, v, θ)− ρσd

σb
v

σd
√

1− ρ2

)
φ

(
v

σb

)
dv

+ σ−1
b

gb(y+1;z,θ)∫
z∗by

Φ

(
m+
by (z, v, θ)− ρσd

σb
v

σd
√

1− ρ2

)
φ

(
v

σb

)
dv (A.11)

2. gb(y; z, θ) ≤ gb(y + 1; z, θ) ≤ z∗by.

℘by (z, ζ) = σ−1
b

gb(y+1;z,θ)∫
gb(y;z,θ)

Φ

(
m−by (z, v, θ)− ρσd

σb
v

σd
√

1− ρ2

)
φ

(
v

σb

)
dv (A.12)
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3. z∗by ≤ gb(y; z, θ) ≤ gb(y + 1; z, θ).

℘by (z, ζ) = σ−1
b

gb(y+1;z,θ)∫
gb(y;z,θ)

Φ

(
m+
by (z, v, θ)− ρσd

σb
v

σd
√

1− ρ2

)
φ

(
v

σb

)
dv (A.13)

The expressions in each case simplify as follows, using (A.7) and (A.8) and a change of

variables substitution for v
σb

.

σ−1
b

z∗by∫
gb(y;z,θ)

Φ

(
m−by (z, v, θ)− ρσd

σb
v

σd
√

1− ρ2

)
φ

(
v

σb

)
dv

=

σ−1
b z∗by∫

σ−1
b gb(y;z,θ)

Φ

(
yxbβb + αd1 − αby − xdβd + (σby − ρσd) v

σd
√

1− ρ2

)
φ (v) dv (A.14)

σ−1
b

gb(y+1;z,θ)∫
z∗by

Φ

(
m+
by (z, v, θ)− ρσd

σb
v

σd
√

1− ρ2

)
φ

(
v

σb

)
dv

=

σ−1
b gb(y+1;z,θ)∫
σ−1
b z∗by

Φ

(
1
2

[yxbβb + αd2 − αby]− xdβd +
(

1
2
σby − ρσd

)
v

σd
√

1− ρ2

)
φ (v) dv. (A.15)

σ−1
b

gb(y+1;z,θ)∫
gb(y;z,θ)

Φ

(
m−by (z, v, θ)− ρσd

σb
v

σd
√

1− ρ2

)
φ

(
v

σb

)
dv

=

σ−1
b gb(y+1;z,θ)∫
σ−1
b gb(y;z,θ)

Φ

(
yxbβb + αd1 − αby − xdβd + (σby − ρσd) v

σd
√

1− ρ2

)
φ (v) dv (A.16)
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σ−1
b

gb(y+1;z,θ)∫
gb(y;z,θ)

Φ

(
m+
by (z, v, θ)− ρσd

σb
v

σd
√

1− ρ2

)
φ

(
v

σb

)
dv

=

σ−1
b gb(y+1;z,θ)∫
σ−1
b gb(y;z,θ)

Φ

(
1
2

[yxβb + αd2 − αby]− xdβd +
(

1
2
σby − ρσd

)
v

σd
√

1− ρ2

)
φ (v) dv (A.17)

Page 403 of Owen (1980) gives us formula 10,010.4:

k∫
h

Φ (c1 + c2z)φ (z) dz = Λ (k, c1, c2)− Λ (h, c1, c2) (A.18)

where the function Λ (·, ·, ·) is given by

Λ (k, c1, c2) =

c1√
c22+1∫

−∞

φ (z) Φ

(
k
√
c2

2 + 1 + c2z

)
dz. (A.19)

Formula 10,010.1 on page 402 of Owen (1980) is

y∫
−∞

φ (z) Φ (a+ bz) dz = Φ2

(
a√

1 + b2
, y;

−b√
1 + b2

)
. (A.20)

Applying this formula to (A.19) with

a = k
√
c2

2 + 1, b = c2

gives

Λ (k, c1, c2) = Φ2

(
k,

c1√
c2

2 + 1
;
−c2√
1 + c2

2

)
.

Define now

c−1 ≡ yxbβb + αd1 − αby − xdβd
σd
√

1− ρ2
, c−2 ≡

σby − ρσd
σd
√

1− ρ2
,

c+
1 ≡ yxbβb + αd2 − αby − 2xdβd

2σd
√

1− ρ2
, c+

2 ≡
σby − 2ρσd

2σd
√

1− ρ2
.
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as well as

∆̃ (h, k, c1, c2) ≡ Λ (k, c1, c2)− Λ (h, c1, c2) .

Referring back to (A.18), substitution of c2 with those coefficients multiplying v and sub-

stitution of c1 with those terms not multiplying v in the integrands on the rights hand

side of (A.14) - (A.17) combined with (A.11) - (A.13) gives the following expression for

conditional choice probabilities according to where z∗by lies with respect to the interval

[gb(y; z, θ), gb(y + 1; z, θ)].

1. gb(y; z, θ) < z∗by < gb(y + 1; z, θ).

℘by (z, ζ) = σ−1
b



z∗by∫
gb(y;z,θ)

Φ

(
m−by(z,v,θ)−ρσd

σb
v

σd
√

1−ρ2

)
φ
(
v
σb

)
dv

+

gb(y+1;z,θ)∫
z∗by

Φ

(
m+
by(z,v,θ)−ρσd

σb
v

σd
√

1−ρ2

)
φ
(
v
σb

)
dv


= ∆̃

(
σ−1
b gb(y; z, θ), σ−1

b z∗by, c
−
1 , c

−
2

)
+ ∆̃

(
σ−1
b z∗by, σ

−1
b gb(y + 1; z, θ), c+

1 , c
+
2

)
.

2. gb(y; z, θ) ≤ gb(y + 1; z, θ) ≤ z∗by.

℘by (z, ζ) = σ−1
b

gb(y+1;z,θ)∫
gb(y;z,θ)

Φ

(
m−by (z, v, θ)− ρσd

σb
v

σd
√

1− ρ2

)
φ

(
v

σb

)
dv

= ∆̃
(
σ−1
b gb(y; z, θ), σ−1

b gb(y + 1; z, θ), c−1 , c
−
2

)
.

3. z∗by ≤ gb(y; z, θ) ≤ gb(y + 1; z, θ).

℘by (z, ζ) = σ−1
b

gb(y+1;z,θ)∫
gb(y;z,θ)

Φ

(
m+
by (z, v, θ)− ρσd

σb
v

σd
√

1− ρ2

)
φ

(
v

σb

)
dv

= ∆̃
(
σ−1
b gb(y; z, θ), σ−1

b gb(y + 1; z, θ), c+
1 , c

+
2

)
.

Using indicators for whether z∗by < gb(y + 1; z, θ) and z∗by > gb(y; z, θ) to cover each of
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these cases gives

℘by (z, ζ) =

(
1
[
z∗by < gb(y + 1; z, θ)

]
∆̃
(
σ−1
b max

{
z∗by, gb(y; z, θ)

}
, σ−1

b gb(y + 1; z, θ), c+
1 , c

+
2

)
+1
[
z∗by > gb(y; z, θ)

]
∆̃
(
σ−1
b gb(y; z, θ), σ−1

b min
{
z∗by, gb(y + 1; z, θ)

}
, c−1 , c

−
2

) )
.

(A.21)

This produces (5.3) by noting that the variables defined in (5.5) and (5.6) satisfy

m+
1 =

c+
1√(

c+
2

)2
+ 1

, m+
2 = − c+

2√(
c+

2

)2
+ 1

,

m−1 =
c−1√(
c−2
)2

+ 1
, m−2 = − c−2√(

c−2
)2

+ 1
,

from which it follows that ℘by (z, ζ) in (A.21) is equal to (5.3) in the statement of the

Proposition for each b and y ∈ {1, 2}. �

B Data

In the application in Section 6 we used data on purchases of women’s razor blades for the

years 2004-2005 in the UK. The razor blade market is divided into three different sectors:

cartridges bought with a razor (referred to as “system razors”), cartridges bought alone

(referred to as “system blades”), and disposable razors. The original data consists of 7234

observations in which the main shopper was a female. Table 7 shows the observed market

share of the three sectors in 2004-2005.

Sector Total

System razors 16.80%
System blades 33.67%

Disposable razors 49.53%

Table 7: Market shares of the sectors System razors, System blades and Disposable razors
in 2004-2005

For the application we concentrate on the market for system blades, where consumers

buy a set of cartridges to use with a handle they already own. We define the outside option

as the purchase of a disposable razor. On average in our sample, using equation (6.1) for the

per-cartridge price of system places, a double blade cartridge costs £0.79 and a triple blade
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cartridge costs £1.45. Table 8 provides the average unit price per cartridge for each (b, y)

combination of cartridges in our sample as estimated using equation (6.1).

As discussed in Section 2, Restriction A4 requires the explanatory variables and the

unobservables to be stochastically independent. In our application prices are included as

exogenous variable, so the independence assumption requires price to be independent of

unobservable heterogeneity. Given the relatively small cost of razor blades as indicated in

Table 8 it seems reasonable to assume that this cost makes up only a small fraction of total

expenditure, such that consumers are unlikely to choose where to shop for their groceries

and personal care items on the basis of razor blade prices. Thus we think the assumption of

price exogeneity is reasonable in this context.

Trading Company Blade Type
Double Blade Triple Blade

Gillette £0.75 £1.32
(0.0786) (0.1028)

Wilkinson Sword £0.85 £1.86
(0.0421) (0.2398)

Table 8: Average unit prices of system blade cartridges in 2004-2005. Standard deviations
in parentheses.

The women’s market for reusable razors for the years 2004 − 2005 is dominated by two

firms, Gillette and Wilkinson Sword, each offering razors and cartridges with two or three

blades.17 Gillette’s twin-blade reusable razor, Sensor for Women, was launched in 1992 and

the three-blade reusable razor, Venus, was introduced in 2001. Wilkinson Sword introduced

the double blade reusable razor, Lady Protector, in 1994, and the triple blade reusable razor,

Intuition, in 2003.18

We use households in which the main shopper of the household is a female between 18-50

years old who is active in the labor force. This includes women who work full time, work

part time, are unemployed or not working, or in full time education.19 In the analysis we also

17Some stores offer own-label reusable razors but these were dropped from the sample as they accounted
for only 4.41% of the market share for system blades used in our analysis.

18Datta (2019) and Women’s Razors, Shavers & Shaving Products UK | Wilkinson Sword (source:
www.wilkinsonsword.com/en-gb/womens/). In 1992 Schick-Wilkinson Sword was formed and the Schick
name was use in North America and elsewhere, while the Wilkinson Sword name was used in Europe (History
of Wilkinson Sword Ltd. FundingUniverse, source: www.fundinguniverse.com/company-histories/wilkinson-
sword-ltd-history/. )

19Retired individuals were excluded from the sample. In our analysis “Employed” corresponds to working
some hours while “Unemployed” corresponds to either unemployed/not working or full time education.
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include the marital status of the main shopper,20 and a variable indicating whether there is

more than one female in the household. The sample used in our analysis consists of 4842

observations. Table 9 gives summary statistics of the main shopper characteristics.

Employment status Marital status No of females

Works more than 30 hours 39.20% Married 61.83% One female 43.04%
Works 8-29 hours 29.18% Single 31.50% More than one 56.96%

Works less than 8 hours 2.38% Divorced/Widowed/Separated 6.67%
Unemployed/not working 28.13%

Full time education 1.12%

Table 9: Main shopper characteristics for 2004-2005.

For each observation in the sample we observe whether they purchased cartridges for

reusable razors or disposable razors and the type of blade they bought, as well as the total

amount they spent, the pack size of the product they bought, the month they made the

purchase, and the store in which the purchase was made. As shown in Table 10, cartridges

of system blades were offered in pack sizes of 3-8 cartridges, with double blade cartridges

only offered in a pack size of 5. In the calculation of the average price in equation (6.1) and

of the counterfactual prices in equation (6.2) the pack sizes were redefined as small (S) if

they contained 3 or 4 cartridges, medium (M) if they contained 5 or 6 cartridges, and large

(L) if they contained 8 or more cartridges, as shown in Table 11.

Pack size System Blades Disposables
Double Blade Triple Blade Gillette Wilkinson Sword

3 22.00% 59.92% 0.10%
4 72.80% 72.65% 23.74%
5 100.00% 24.24% 34.40% 43.67%
6 3.05% 0.97% 5.67% 3.62%
8 2.15% 2.15% 13.21%

more than 8 15.65%

Table 10: Pack sizes offered.

The counterfactual prices in equations (6.2) and (6.3) were calculated by conditioning

and not conditioning on the pack size of the product purchased, respectively. As is evident

from Table 10 not all blade types and not all brands offer all pack sizes. Table 13 gives the

estimates of regressions (6.2) and (6.3). For the calculation of the average price in equation

20The not married category in our analysis corresponds to either single or divorced/widowed/separated.
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Pack size System Blades Total

S 69.23% 42.34%
M 29.19% 39.92%
L 1.57% 17.74%

Table 11: Pack size grouping.

(6.1) and of the counterfactual prices in equations (6.2) and (6.3), the individual shops were

grouped using the company groups in Table 12.

Company group Total

Asda 22.24%
Boots 8.57%
Co-op 0.48%

Kwiksave 0.56%
Morrisons 7.95%
Safeway 1.47%

Sainsbury’s 7.97%
Savacentre 0.64%
Somerfield 0.91%
Superdrug 3.90%

Tesco 25.20%
Waitrose 0.33%

Wilkinsons 13.78%
Default21 3.61%
All other 2.40%

Table 12: Company groups of stores observed.

C Alternative Specific Conditional Logit Model

In this section the results in Section 6.3 are compared to the standard alternative specific

conditional logit (asclogit) model. Following McFadden (1974) choice probabilities of the

asclogit model are specified as:

℘by(z; ζ) =
exp(pbyγ1 + 1[y = 2]γ2 + 1[b = 2]γ3 + xβby)∑

(b′,y′)∈MBY
exp(pb′y′γ1 + 1[y′ = 2]γ2 + 1[b′ = 2]γ3 + xβb′y′)

,

21This category contains stores such as Savers and Bodycare/Grahams, among others.
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Specification (6.2) Specification (6.3)
Wilkinson Sword 0.4048*** 0.3961***

(0.008) (0.0081)
Triple blade 0.5043*** 0.6948***

(0.024) (0.0082)
Medium pack size -0.1988***

(0.0236)
Large pack size -0.0205

(0.0277)
Constant 0.7385*** 0.5456***

(0.0429) (0.037)

Notes: Monthly and store dummies are suppressed. Standard
errors in parentheses. *** denotes significance at 1%.

Table 13: OLS estimates of (6.2) and (6.3) conditional on system blade purchases

where x denotes the same individual characteristics as in our model and pby is the price for

each of the four system blades alternatives each individual would have faced at the time

of purchase. The specification includes both brand and high-quality (triple blade) product-

specific dummy variables 1(b = 2) and 1(y = 2), respectively.22 The mean value of the

utility of the outside good, disposable razors, is imposed to be zero by setting the value of

each of the alternative specific covariates, i.e. the price and the quality and brand dummies,

for option (0, 0) to zero. The estimated coefficients using only specification (6.2) are given

in Table 14. These results were then used to calculate the predicted own and cross price

elasticities, which following e.g. Cameron and Trivedi (2009) take the form:

ηibykl =

{
γ1[1− ℘by(zi; β, γ)]piby if (b, y) = (k, l),

−γ1℘kl(zi; β, γ)pikl if (b, y) 6= (k, l).

Table 15 gives the estimates of the average and the 0.2, 0.5 and 0.8 quantiles of household

own- and cross-price elasticities. For example, the mean own price elasticity of a Gillette

double blade cartridge, (1, 1), is −0.8872, while the mean cross-price elasticity of the proba-

bility of choosing any other alternative with respect to the price of the Gillette double blade

is 0.0874.

22Constant terms are excluded from the alternative-specific utilities as these would not be identified with
the inclusion of the brand and quality dummy variables.
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Specification (6.2)
γ β11 β12 β21 β22

Price -1.2552***
(0.125)

Triple Blade 0.5211***
(0.1582)

Wilkinson Sword -1.3581***
(0.1651)

Age31-40 -0.2304** -0.1439* -0.3202* 0.2973**
(0.1172) (0.0854) (0.1831) (0.1443)

Age41-50 -0.6835*** -0.43*** -0.1935 0.1617
(0.1567) (0.1014) (0.2013) (0.164)

Married -0.1051 0.168** 0.1166 0.2867**
(0.1066) (0.0769) (0.1589) (0.1259)

Employed -0.3357*** 0.3436*** 0.1396 0.8254***
(0.1034) (0.0812) (0.1558) (0.1416)

Females -0.7163*** -0.0819 0.2128 -0.2498**
(0.1077) (0.0754) (0.1572) (0.1199)

Notes: Estimates of Alternative Specific Conditional Logit Regression. Standard
errors in parentheses. *significant at 10%; ** significant at 5%; *** significant
at 1%

Table 14: Alternative specific conditional logit regression estimates 2004-2005

Own Price Elasticities Cross Price Elasticities

Specification (6.2)
(1,1)
mean -0.8872 0.0874

quantiles -1.0055 -0.9075 -0.7555 0.0514 0.0797 0.1207
(1,2)
Mean -1.2302 0.3584

Median -1.3571 -1.2364 -1.0943 0.3131 0.3563 0.405
(2,1)
mean -1.4075 0.0562

quantiles -1.5374 -1.4533 -1.2661 0.0489 0.0546 0.0685
(2,2)
mean -1.9678 0.1478

quantiles -2.1031 -1.9762 -1.8039 0.094 0.1551 0.1953

Notes: Estimates of Own and Cross Price Elasticities as the av-
erage and the 0.2, 0.5 and 0.8 quantiles across all observations

Table 15: Estimated means and 0.2, 0.5 and 0.8 quantiles of household elasticities 2004-2005
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D Monte Carlo Experiments

In this Appendix we report the results of Monte Carlo experiments to compare the finite sam-

ple performance of Wald and profile QLR confidence intervals for inference with our model.23

For these experiments we generated data from the partially ordered probit model, with the

number of parameters matching those employed in the subsequent application. There were

five individual-specific dummy variables with corresponding coefficients βb1, ..., βb5 for each

b = 1, 2. Each product offering had a price pby generated differently in each of the three

data generation processes (DGPs) – referred to as DGP1, DGP2, and DGP3 – as described

below. The linear-in-price specification described by (4.6) was used.

To simulate data population parameter values were set as follows.

γ1 = 1, γ2 = 0.8, δ1 = −1.5, δ2 = −1.2, ρ = 0.5, σ = 1, (D.1)

β1 = (1.3, 0.3,−0.1,−0.3, 0.7)′ , β2 = (1.0, 0.3,−0.1,−0.3, 0.7)′ .

In our application the first two components of X, X1 and X2, are dummy variables indicating

whether age of a female shopper is from 31-40, or 41-50, with 18-30 denoting the base

category. These variables were drawn such that Pr [X1 = 1] = 0.426, Pr [X2 = 1] = 0.234,

and X1 + X2 ≤ 1. The remaining components of X are dummy variables for marriage,

employment, and a variable “more females” indicating the presence of more than one female

in the household. These were generated from the Bernoulli distribution with parameters 0.4,

0.85, and 0.554, respectively. The age variable from which X1 and X2 were generated and

the remaining dummy variables were drawn independently of one another.

Prices (p11, p12, p21, p22) were generated independently of X, as follows. First, for each

DGP and for each observation a vector ε was drawn from the bivariate normal distribution

with each component having mean zero and variance one, with correlation 0.25. In DGP1

prices p11 and p21 were generated independently, and uniformly on the intervals [1, 4] and

[1.35, 2.15], respectively. Prices p12 and p22 were then set to p12 = p11 +ε1 and p22 = p21 +ε2.

In this DGP, prices p12 and p22 thus both have positive density on all of R conditional

on all other variables. This implies that there is positive probability that the price of the

higher quality product for either brand b undercuts the price of the lower quality product,

i.e. pb2 < pb1, as could happen under a promotion for the higher quality product. In such

cases the conditional probability of choosing the lower quality product for the brand will be

23Code for the Monte Carlo experiments is available at https://sites.google.com/site/amr331/home/
por-code.
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zero. Moreover, the large support for both p12 and p22 imply that this happens with positive

probability for both brands, in which case the choice problem reduces to a simple multinomial

choice setting between each brand’s higher quality product and the outside option. Thus,

the large support of these variables, artificial though it may be, demonstrates a setting in

which point identification may be achieved. This is borne out in the Monte Carlo simulations

below.

In practice prices will not have support on the entire real line, and neither DGP2 nor

DGP3 have this feature. In DGP2 p11 and p21 were generated independently from the

uniform distribution on [1, 2] and [1.35, 2.15], respectively, and each pb2 was set to pb1 +

max {1,min {|εb| , 2}}. Thus the higher quality product for each brand always has a higher

price than the lower quality product of that brand. Moreover, all prices have continuous, but

bounded support. In DGP3 p11 and p21 were generated the same way, but the term added

on to pb1 to determine pb2 was instead rounded to the nearest integer (which was either one

or two) before adding. In this design prices again have bounded continuous support, but for

each b the conditional support of pb2 given pb1 is discrete.

With variables X and prices P = (p11, p12, p21, p22) generated as described above, and

unobservables V = (V1, V2) drawn from the bivariate normal distribution with parameters

ρ and σ, data (bi, yi, xi, pi) were generated with each (bi, yi) solving the individual choice

problem with the corresponding (xi, pi, vi) and utility parameters as in (D.1). The expres-

sion (5.3) obtained for choice probabilities in Proposition 2 was used in the log-likelihood

function based on n observations in each experiment, with n ∈ {200, 500, 1000, 2000}. In

preliminary investigation, choice probabilities computed using (5.3) conditional on several

values of observable variables were compared to those obtained using the integral formula

(5.1) and those obtained by simulation, and these were all found to be in close agreement

up to negligible computation difference.

In order to compare the empirical coverage frequencies of the Wald and QLR confidence

intervals in each repetition of our Monte Carlo simulations, we carried out the following

steps. First, the R package Ghalanos and Stefan (2015) was used to minimize −Ln (ζ) with

respect to the full parameter vector ζ, producing an optimizing vector ζ̂ML and an optimal

value L∗n. To ensure accuracy 500 randomly generated starting values were employed using

the function gosolnp.24 The optimization routine also returned a numerical approximation

24In Monte Carlo simulations the population parameter value was also used as an additional starting
value. The number of randomly generated starting values was chosen based on experimentation; increasing
it further was not found to be beneficial.
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to the Hessian at the optimal value, and this was used to compute asymptotic variance

estimators v̂ar(ζ̂k) for each component of the maximum likelihood estimator ζ̂ML. There

is no guarantee that ζ is point identified. If it is point identified confidence intervals for

each parameter component based on the usual asymptotic normal approximation should be

expected to perform well, but if it is not point identified the classical theory will be invalid.

Nonetheless QLR confidence intervals can sometimes remain valid under partial identification

as shown by Chen, Christensen, and Tamer (2018).25

In Monte Carlo experiments where the true population parameter is known, the same

routine was also used to compute the maximum likelihood estimator taking the values of ρ

and σ fixed at their population values. In our application ρ and σ are not known, so this

approach is infeasible. However, with these parameters known, the rest of the parameters

are point identified under mild conditions on the variation in observable payoff shifters.

Thus, these confidence intervals should be expected to perform well, and in our Monte Carlo

experiments this was indeed the case. In our reported results, we refer to confidence intervals

for each ζk based on the maximum likelihood estimator ζ̂k plus or minus 1.96 ×
√
v̂ar(ζ̂k)

as Wald confidence intervals, considering both cases where maximum likelihood was carried

out with ρ and σ fixed at their population values, as well as with ρ and σ as additional

parameters to estimate. Only the latter approach is feasible if the population values of ρ

and σ are unknown. In order to compute Monte Carlo coverage frequencies of CLRα,k for ζk we

additionally computed Qk,n (ζk) as defined in (6.5) at the population value of ζk and checked

whether Qk,n (µ) ≤ χ2
1,α in each simulation.26

The empirical coverage frequency of the three different procedures for DGPs 1-3 out of

1000 Monte Carlo repetitions for each sample size are reported in Tables 16, 17, and 18.

The target coverage level in each case was 0.95. All procedures performed reasonably well,

although coverage probabilities for the distributional parameters are substantially below the

nominal level at smaller sample sizes. This is particularly so for the Wald procedure in which

ρ and σ are treated as unknown parameters, while under-coverage from the QLR procedure

is less severe at smaller sample sizes.

25All reported coverage frequencies are for individual parameters ζk. Chen, Christensen, and Tamer (2018)
provide sufficient conditions for the QLR confidence interval to achieve asymptotic coverage for the identified
set for ζk, which also guarantee at least as high a level of asymptotic coverage for ζk.

26Our implementation employed the solnp function from the package Ghalanos and Stefan (2015) to com-
pute supζ∈Υ:ζk=µ Ln (ζ). In the constrained optimizations conducted with solnp, the population value of
ζ−k was used as a starting value to speed up computations. In terms of coverage frequency for ζk, this was
found to produce the same results in a subset of the Monte Carlo iterations attempted when as many of 500
random starting values were used.
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DGP 1 Realized Coverage Probability, n = 200, 500, 1000, 2000
Parameter Wald (ρ, σ known) Wald (ρ, σ unknown) QLR

γ1 .935 .939 .954 .950 .952 .951 .950 .944 .929 .941 .947 .935
γ2 .944 .954 .950 .961 .934 .956 .951 .937 .938 .949 .947 .934
δ1 .927 .952 .951 .958 .937 .960 .963 .954 .943 .955 .953 .950
δ2 .940 .949 .954 .957 .907 .945 .947 .939 .932 .948 .941 .937
β11 .957 .952 .951 .949 .951 .956 .946 .950 .942 .948 .939 .942
β12 .947 .961 .944 .949 .950 .963 .955 .945 .933 .954 .949 .933
β13 .959 .953 .951 .949 .961 .961 .953 .950 .947 .956 .944 .943
β14 .954 .948 .959 .952 .962 .950 .960 .953 .942 .941 .959 .946
β15 .954 .956 .957 .952 .949 .968 .961 .956 .945 .962 .956 .948
β21 .960 .963 .958 .957 .922 .943 .938 .942 .938 .946 .946 .941
β22 .942 .956 .947 .953 .938 .961 .961 .952 .931 .950 .947 .941
β23 .953 .949 .961 .959 .969 .955 .964 .963 .951 .946 .951 .951
β24 .964 .946 .941 .962 .930 .940 .926 .951 .945 .937 .931 .942
β25 .957 .957 .956 .961 .924 .952 .957 .941 .955 .955 .953 .938
ρ – .899 .928 .934 .944 .933 .940 .940 .941
σ – .908 .941 .956 .927 .942 .947 .957 .923

Table 16: Monte Carlo coverage frequencies out of 1000 simulations for sample sizes n =
200, 500, 1000, 2000 for DGP1, as described in the text.
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DGP 2 Realized Coverage Probability, n = 200, 500, 1000, 2000
Parameter Wald (ρ, σ known) Wald (ρ, σ unknown) QLR

γ1 .956 .956 .957 .944 .936 .961 .958 .942 .936 .951 .955 .939
γ2 .955 .947 .954 .948 .836 .905 .926 .943 .899 .935 .942 .948
δ1 .962 .960 .955 .957 .923 .957 .958 .963 .939 .963 .956 .959
δ2 .961 .945 .951 .950 .812 .897 .923 .940 .892 .921 .941 .942
β11 .942 .962 .953 .955 .928 .947 .942 .952 .939 .958 .946 .959
β12 .942 .950 .953 .944 .951 .953 .951 .942 .943 .953 .953 .942
β13 .953 .950 .951 .956 .951 .952 .952 .950 .948 .949 .949 .949
β14 .949 .950 .946 .963 .961 .956 .948 .957 .949 .955 .947 .956
β15 .940 .958 .938 .957 .927 .938 .934 .949 .934 .952 .938 .948
β21 .942 .956 .958 .941 .852 .905 .926 .934 .912 .939 .945 .937
β22 .948 .957 .947 .941 .900 .937 .940 .946 .927 .947 .945 .943
β23 .931 .960 .947 .935 .949 .966 .959 .952 .927 .954 .951 .943
β24 .946 .939 .947 .962 .894 .933 .932 .962 .925 .947 .940 .953
β25 .940 .948 .941 .941 .866 .915 .932 .938 .925 .933 .942 .936
ρ – .710 .840 .885 .904 .899 .929 .938 .942
σ – .843 .910 .928 .955 .896 .929 .940 .950

Table 17: Monte Carlo coverage frequencies out of 1000 simulations for sample sizes n =
200, 500, 1000, 2000 for DGP2, as described in the text.
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DGP 3 Realized Coverage Probability, n = 200, 500, 1000, 2000
Parameter Wald (ρ, σ known) Wald (ρ, σ unknown) QLR

γ1 .948 .958 .939 .952 .954 .964 .948 .950 .947 .958 .947 .947
γ2 .949 .955 .945 .943 .911 .930 .951 .950 .929 .946 .944 .952
δ1 .954 .950 .950 .956 .955 .959 .956 .958 .951 .963 .956 .960
δ2 .960 .944 .948 .948 .907 .932 .953 .953 .923 .931 .957 .941
β11 .936 .945 .948 .952 .937 .953 .958 .954 .938 .954 .958 .951
β12 .949 .950 .956 .948 .956 .954 .959 .940 .952 .948 .953 .937
β13 .948 .936 .954 .951 .955 .944 .950 .950 .951 .941 .947 .947
β14 .939 .953 .954 .956 .940 .950 .954 .960 .935 .950 .951 .955
β15 .941 .952 .943 .946 .941 .957 .954 .959 .944 .953 .952 .956
β21 .938 .945 .953 .954 .917 .948 .953 .943 .934 .953 .950 .940
β22 .942 .956 .943 .948 .947 .961 .952 .947 .946 .956 .950 .951
β23 .945 .959 .942 .944 .968 .965 .959 .946 .931 .953 .942 .944
β24 .948 .945 .950 .963 .923 .950 .943 .960 .936 .948 .944 .961
β25 .938 .945 .946 .948 .931 .933 .949 .947 .950 .941 .954 .946
ρ – .795 .897 .925 .923 .916 .943 .947 .937
σ – .918 .939 .957 .949 .927 .932 .950 .943

Table 18: Monte Carlo coverage frequencies out of 1000 simulations for sample sizes n =
200, 500, 1000, 2000 for DGP3, as described in the text.
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