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unobservables, such as moments of individual fixed-effects, or average partial effects
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tion of unobservables. In addition, we introduce a measure of informativeness of the
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1 Introduction

In many settings, applied researchers wish to estimate population averages with respect to

a distribution of unobservables. This includes moments of individual fixed-effects in panel

data, and average partial effects in discrete choice models, which are expectations with

respect to some distribution of shocks or heterogeneity. The standard approach in applied

work is to assume a parametric form for the distribution of unobservables, and to compute

the average effect under that assumption. For example, in binary choice, researchers often

assume normality of the error term, and compute average partial effects under normality.

This “model-based” estimation of average effects is justified under the assumption that the

parametric model is correctly specified.

In this paper, we consider a different approach, where the average effect is computed

conditional on the observation sample. We refer to such estimators as “posterior average

effects” (PAE). Posterior averaging is appealing for prediction purposes, and it plays a central

role in Bayesian and empirical Bayes approaches (e.g., Berger, 1980, Morris, 1983). Here we

focus instead on the estimation of population expectations. Our goal is twofold: to propose

a novel class of estimators, and to provide a frequentist framework to understand when and

why posterior conditioning may be useful in estimation. Our main result will show that PAE

have robustness properties when the parametric model is misspecified.

PAE are closely related to empirical Bayes (EB) estimators, which are increasingly pop-

ular in applied economics. Consider a fixed-effects model of teacher quality, which is our

main example. When the number of observations per teacher is small, the dispersion of

teacher fixed-effects is likely to overstate that of true teacher quality, since teacher effects

are estimated with noise. An alternative approach is to postulate a prior distribution for

teacher quality — typically, a normal — and report posterior estimates, holding fixed the

values of the mean and variance parameters. The hope is that such EB estimates, which are

shrunk toward the prior, are less affected by noise than the teacher fixed-effects (e.g., Kane

and Staiger, 2008, Chetty et al., 2014, Angrist et al., 2017). However, while EB estimates

are well-justified predictors of the quality of individual teachers, it is not obvious how to

aggregate them across teachers when the goal is to estimate a population average such as a

moment or a distribution function.

As an example, suppose we wish to estimate the distribution function of teacher quality

evaluated at a point. Since this quantity is an average of indicator functions, the PAE
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is simply an average of posterior means — that is, of EB estimates — of the indicator

functions. This estimator is available in closed form. However, the PAE differs from the

empirical distribution of the EB estimates of teacher effects. In particular, while the variance

of EB estimates is too small relative to that of latent teacher quality, the PAE has the correct

variance. Related applications of PAE include settings involving neighborhood/place effects

(Chetty and Hendren, 2017, Finkelstein et al., 2017) or hospital quality (Hull, 2018).

Importantly, although posterior averages have desirable properties for predicting individ-

ual parameters, their usefulness for estimating population average quantities is not evident.

For example, suppose that teacher quality is normally distributed. In this case, a model-

based normal estimator of the distribution of teacher quality is consistent. Moreover, it is

asymptotically efficient when means and variances are estimated by maximum likelihood.

Hence, in the correctly specified case, there is no reason to deviate from the standard model-

based approach and compute posterior estimators. The main insight of this paper is that,

under misspecification — e.g., when teacher quality is not normally distributed — condi-

tioning on the data using PAE can be beneficial.

To study estimators under misspecification, we focus on specification error, which is the

population discrepancy between the probability limit of an estimator and the true parameter

value. In our main results, we show that PAE have minimum worst-case specification error,

where the worst case is computed in a nonparametric neighborhood of the reference paramet-

ric distribution (e.g., a normal). Specifically, we show that, when neighborhoods are defined

in terms of the Pearson chi-squared divergence, PAE have minimum worst-case specification

error within a large class of estimators, for any neighborhood size smaller than a threshold

value that we characterize. In addition, when broadening the class of neighborhoods to φ-

divergences, we show that, while PAE do not have minimum worst-case specification error

in general in fixed-size neighborhoods, they achieve minimum worst-case specification error

under local misspecification, i.e. when the size of the neighborhood tends to zero.

In our examples and illustrations, we find that the information contained in the posterior

conditioning is setting-specific. This is intuitive, since although PAE have minimum worst-

case specification error under our conditions, the specification error is not zero in general and

it varies between applications. PAE tend to behave better when the realizations of outcome

variables (such as test scores) are more informative about the values of the unobservables

(such as the quality of a teacher). Consistently with this intuition, our local result suggests
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quantifying the “informativeness” of the posterior conditioning using an easily computable

R2 coefficient.

While our theoretical results focus on population specification error, in practice PAE are

also affected by sampling error, due to the fact that the sample size — e.g., the number of

teachers — is not infinite. A common approach to account for both sampling variability and

specification error is to focus on mean squared error. In general, PAE do not have minimum

mean squared error: indeed, in finite samples, model-based estimators can have smaller mean

squared error than PAE. In Bonhomme and Weidner (2018), we show how to construct esti-

mators that minimize mean squared error under local asymptotic misspecification. However,

such estimators depend on the neighborhood size. In contrast, PAE do not require taking a

stand on the degree of misspecification through the size of the neighborhood, and they are

simple to implement and do not depend on tuning parameters. To complement the theory,

we report the results of a Monte Carlo simulation, where we compare the performance of

the PAE to those of a model-based estimator and a nonparametric deconvolution-based es-

timator. We find that, while the model-based estimator tends to perform best under correct

specification, the performance of the PAE appears less sensitive to misspecification than

those of the model-based and nonparametric estimators.

To illustrate the scope of PAE for applications, we then consider two empirical settings.

In the first one, we study the estimation of neighborhood/place effects in the US. Chetty

and Hendren (2017) report estimates of the variance of neighborhood effects, as well as

EB estimates of those effects. Our goal is to estimate the distribution of effects across

neighborhoods. We find that, when using a normal prior as in Chetty and Hendren (2017),

our posterior estimator of the distribution function of neighborhood effects across commuting

zones is not normal. However, we also show through simulations and computation of our

posterior informativeness measure that the signal-to-noise ratio in the data is not high enough

to be confident about the exact shape of the distribution. Hence, in this setting, PAE inform

our knowledge of the distribution of neighborhood effects, and motivate future analyses using

more flexible model specifications and individual-level data.

In the second empirical illustration, our goal is to estimate the distributions of latent

components in a permanent-transitory model of income dynamics (e.g., Hall and Mishkin,

1982, Blundell et al., 2008), where log-income is the sum of a random-walk component

and a component that is independent over time. Researchers often estimate the covariance
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structure of the latent components in a first step. Then, in order to document distributions

or to use the income process in a consumption-saving model, they often assume Gaussianity.

However, there is increasing evidence that income components are not Gaussian (e.g., Geweke

and Keane, 2000, Hirano, 2002, Bonhomme and Robin, 2010, Guvenen et al., 2016). We

estimate posterior distribution functions of permanent and transitory income components

using recent waves from the Panel Study of Income Dynamics (PSID). Our PAE estimates

suggest some departure from Gaussianity, especially for the transitory income component.

We analyze several extensions. First, we describe the form of PAE in several models,

including binary choice and censored regression. Second, we discuss how to construct con-

fidence intervals and specification tests based on PAE. Lastly, we revisit the question of

optimality of EB estimates for predicting individual parameters. By extending our misspec-

ification analysis from worst-case specification error of sample averages to worst-case mean

squared prediction error, we show that EB estimators remain optimal, up to small-order

terms, under local deviations from normality.

Related literature and outline. PAE are closely related to parametric EB estimators

(Efron and Morris, 1973, Morris, 1983). For recent econometric applications of shrink-

age methods (James and Stein, 1961, Efron, 2012), see Hansen (2016), Fessler and Kasy

(2018), and Abadie and Kasy (2018). Recent contributions to nonparametric EB methods

are Koenker and Mizera (2014) and Ignatiadis and Wager (2019).

Our analysis is also related to deconvolution and other nonparametric approaches. How-

ever, in our framework we allow for forms of misspecification under which the quantity of

interest is not consistently estimable, and we search for estimators that have the smallest

specification error.

In panel data settings, Arellano and Bonhomme (2009) study the asymptotic properties

of random-effects estimators of averages of functions of covariates and individual effects.

They show that, when the distribution of individual effects is misspecified whereas the other

features of the model are correctly specified, PAE are consistent as n and T tend to infinity.

By contrast, in our setup, only n tends to infinity, and misspecification may affect the entire

joint distribution of unobservables.

Our analysis also connects to the literature on robustness to model misspecification (e.g.,

Huber and Ronchetti, 2009, Kitamura et al., 2013, Andrews et al., 2017, 2020, Armstrong
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and Kolesár, 2018, Bonhomme and Weidner, 2018, Christensen and Connault, 2019). Here

our aim is to propose and justify a class of simple, practical estimators.

The plan of the paper is as follows. In Section 2 we motivate the analysis by considering a

fixed-effects model of teacher quality. In Section 3 we present our framework and derive our

main theoretical results. In Section 4 we illustrate the use of PAE in two empirical settings.

In Section 5 we describe several extensions. Finally, we conclude in Section 6. Replication

codes are available as online material.

2 Motivating example: a fixed-effects model

To motivate the analysis, we start by considering the following model

Yij = αi + εij, i = 1, ..., n, j = 1, ..., J. (1)

To fix ideas, we will think of Yij as an average test score of teacher i in classroom j, αi

as the quality of teacher i, and εij as a classroom-specific shock. There are n teachers

and J observations per teacher. For simplicity, we abstract away from covariates (such as

students’ past test scores), but those will be present in the framework we will introduce in

the next section. Although here we focus on teacher effects, this model is of interest in other

settings, such as the study of neighborhood effects, school effectiveness, or hospital quality,

for example.

Suppose we wish to estimate a feature of the distribution of teacher quality α. As an

example, here we consider the distribution function of α at a particular point a,

Fα(a) = E [1{α ≤ a}] ,

which is the percentage of teachers whose quality is below a. A first estimator is the empirical

distribution of the fixed-effects estimates α̂i = Y i = 1
J

∑J
j=1 Yij, for all teachers i = 1, ..., n;

that is,

F̂FE
α (a) =

1

n

n∑
i=1

1{Y i ≤ a}, (2)

where FE stands for “fixed-effects”. An obvious issue with this estimator is that Y i = αi+εi

is a noisy estimate of αi, where εi = 1
J

∑J
j=1 εij. Indeed, due to the presence of noise, for

fixed J and n tends to infinity the distribution F̂FE
α tends to be too dispersed relative to

Fα (although one can show that F̂FE
α (a) is consistent for Fα(a) as J tends to infinity jointly

with n under mild conditions, see Jochmans and Weidner, 2018).
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A different strategy is to model the joint distribution of α, ε1, ..., εJ . A simple specification

is a multivariate normal distribution with means µα and µε = 0, and variances s2
α and s2

ε.

This specification can easily be made more flexible by allowing for different s2
εj

’s across

j, for correlation between the different εj’s, or for means and variances being functions of

covariates, for example. Under the assumption that all components are uncorrelated, µα, s2
α

and s2
ε can be consistently estimated for fixed J as n tends to infinity, using quasi-maximum

likelihood or minimum distance based on mean and covariance restrictions.

Given estimates µ̂α, ŝ2
α, ŝ2

ε, we can compute empirical Bayes (EB) estimates (Morris,

1983) of the αi as

E [α |Y = Yi] = µ̂α + ρ̂(Y i − µ̂α), i = 1, ..., n, (3)

where the expectation is taken with respect to the posterior distribution of α given Y = Yi

for µ̂α, ŝ2
α, ŝ2

ε fixed, and ρ̂ = ŝ2α
ŝ2α+ŝ2ε/J

is a shrinkage factor. Here, Yi are vectors containing

all Yij, j = 1, ..., J . The EB estimates in (3) are well-justified as predictors of the αi, since

(when treating µ̂α, ŝ2
α, ŝ2

ε as fixed) µ̂α + ρ̂(Y i − µ̂α) is the minimum mean squared error

predictor of αi under normality.

Given their rationale for prediction purposes, it is appealing to try and aggregate the EB

estimates in order to estimate our target quantity Fα(a). A possible estimator is

F̂PM
α (a) =

1

n

n∑
i=1

1
{
µ̂α + ρ̂(Y i − µ̂α) ≤ a

}
, (4)

where PM stands for “posterior means”. For fixed J as n tends to infinity, the EB estimates

tend to be less dispersed than the true αi, and F̂PM
α (a) is inconsistent in general. Indeed,

while in large samples the variance of the fixed-effects estimates is ρ−1s2
α > s2

α, the variance

of the EB estimates is ρs2
α < s2

α, where ρ = s2α
s2α+s2ε/J

.

Instead of computing the distribution of EB estimates as in (4), a related idea is to

compute the posterior distribution estimator

F̂P
α (a) =

1

n

n∑
i=1

E [1{α ≤ a} |Y = Yi] ,

where P stands for “posterior”. Using the normality assumption, we obtain

F̂P
α (a) =

1

n

n∑
i=1

Φ

(
a− µ̂α − ρ̂(Y i − µ̂α)

ŝα
√

1− ρ̂

)
, (5)

where Φ denotes the distribution function of the standard normal. F̂P
α (a) is an example of

a posterior average effect (PAE). One can check that it is consistent for fixed J as n tends
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to infinity, when the distribution of α, ε1, ..., εJ is normal. Under non-normality, F̂P
α (a) is

generally inconsistent for fixed J as n tends to infinity. Moreover, the mean and variance of

F̂P
α are (1− ρ̂)µ̂α + ρ̂ 1

n

∑n
i=1 Y i and (1− ρ̂)ŝ2

α + ρ̂2
[

1
n

∑n
i=1 Y

2

i − ( 1
n

∑n
i=1 Y i)

2
]
, respectively,

which are consistent for µα and s2
α for fixed J as n tends to infinity.

The last estimator we consider here is directly based on the normal specification for α,

F̂M
α (a) = Φ

(
a− µ̂α
ŝα

)
, (6)

where M stands for “model”. This estimator enjoys attractive properties when the distribu-

tion of α, ε1, ..., εJ is indeed normal. In this case, F̂M
α (a) is consistent for fixed J as n tends

to infinity, and it is efficient when µ̂α and ŝ2
α are maximum likelihood estimates. Moreover,

the mean and variance of F̂M
α are µ̂α and ŝ2

α, which are consistent irrespective of normality.

However, when α, ε1, ..., εJ is not normally distributed, F̂M
α (a) is generally inconsistent for

fixed J as n tends to infinity. Moreover, F̂M
α (a) only depends on the data through the mean

µ̂α and the variance ŝ2
α. In particular, F̂M

α is always normal, even when the data show clear

evidence of non-normality.

Which one of these estimators should one use? The answer is not obvious, since they are

all inconsistent as n tends to infinity for fixed J in general. In a framework that allows for

misspecification of the normal distribution of α, ε1, ..., εJ , we will show that the PAE F̂P
α (a)

has minimum worst-case specification error in certain neighborhoods around the normal

reference distribution. To our knowledge, unlike the other three estimators above, posterior

estimators of distributions are novel to practitioners. They are easy to implement, and do

not depend on additional tuning parameters. Our characterization provides a rationale for

reporting them in applications, alongside other parametric and semi-parametric estimators.

Note that one may wish to relax normality by making the specification of α, and possibly

εj, more flexible. Deconvolution and nonparametric maximum likelihood estimators are

often used for this purpose (e.g., Delaigle et al., 2008, Bonhomme and Robin, 2010, Koenker

and Mizera, 2014). While these estimators may be consistent even when α is not normal,

consistency relies on additional restrictions on the model. For example, the assumptions in

Kotlarski (1967) require that α, ε1, . . . , εJ be mutually independent. By contrast, we do

not impose any such additional conditions in our framework. In Section 3, we will show that

asymptotically linear estimators have larger specification error than PAE under the form of

misspecification that we consider.

To illustrate that an independence assumption among α, ε1, . . . , εJ can be restrictive,
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consider a situation where the researcher is concerned that the variance of εj depends on

α. For instance, the variance of classroom-level shocks may depend on teacher quality. The

presence of such conditional heteroskedasticity would invalidate conventional nonparametric

deconvolution estimators. By contrast, we will show that F̂P
α (a) has minimum specification

error in neighborhoods of distributions that allow for conditional heteroskedasticity. In

Section 4 and the appendix, we will compare the finite-sample behavior of the parametric

model-based estimator, the PAE, and a nonparametric deconvolution estimator, in data

simulated from various specifications of model (1).

In model (1), the researcher may be interested in estimating other quantities. As an

example, consider the coefficient in the population regression of teacher quality α on a

vector of covariates W ; that is,

δ = (E[WW ′])
−1 E[Wα]. (7)

In applications, it is common to regress fixed-effects estimates on covariates to help interpret

them (as in Dobbie and Fryer, 2013, among many others), and to compute

δ̂
FE

=

(
n∑
i=1

WiW
′
i

)−1 n∑
i=1

WiY i. (8)

Alternatively, one may regress the EB estimates of αi, as given by (3), on covariates (as in

Angrist et al., 2017, and Hull, 2018, for example), and compute

δ̂
P

=

(
n∑
i=1

WiW
′
i

)−1 n∑
i=1

Wi

(
µ̂α + ρ̂(Y i − µ̂α)

)
, (9)

which is a PAE based on a normal reference specification for α. We will see that, in our

framework, the rationale for reporting δ̂
P

or δ̂
FE

depends on the form of misspecification

that the researcher is concerned about.

The framework we describe next applies to the estimation of different quantities in a

variety of settings. In Section 4 we apply PAE to model (1) and estimate the distribution

of neighborhood/place effects in the US (Chetty and Hendren, 2017). In addition, we show

that the permanent-transitory model of income dynamics (e.g., Hall and Mishkin, 1982) has

a structure similar to model (1), and we report PAE estimates in this context. Lastly, in

other models — such as static or dynamic discrete choice models and models with censored

outcomes — our results motivate the use of PAE as complements to other estimators that

researchers commonly report, and we provide examples in Section 5 and analyze them in the

appendix.
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3 Framework and main results

In this section we describe our framework to study PAE, and present our main results.

3.1 Model-based estimators and PAE

We consider the following class of models,

Yi = gβ(Ui, Xi), (10)

where outcomes Yi and covariates Xi are observed by the researcher, and Ui are unobserved.

The function gβ is known up to the finite-dimensional parameter β. Our aim is to estimate

an average effect of the form

δ = Ef0 [δβ(U,X)] , (11)

where δβ is scalar, and known given β. Here f0 denotes the true density of U |X. The

expectation is taken with respect to the product f0fX , where fX is the marginal density of

X. For conciseness we leave the dependence on fX implicit. While we focus on a scalar δβ,

our results continue to hold in the vector-valued case, as we show at the end of this section.

In Appendix S5, we discuss how to estimate quantities that depend on f0 nonlinearly.

While the researcher does not know the true f0, she has a reference parametric density

fσ for U |X, which depends on a finite-dimensional parameter σ. We will allow fσ to be

misspecified, in the sense that f0 may not belong to {fσ}. However, we will always assume

that gβ is correctly specified. In other words, misspecification will only affect the distribution

of U and its dependence on X, not the structural link between (U,X) and outcomes.

To estimate δ in (11), we assume that the researcher has an estimator β̂ that remains

consistent for β under misspecification of fσ. More precisely, we will only consider potential

true densities f0 such that β̂ tends in probability to the true value β under f0. For example,

in the fixed-effects model (1), consistent estimates of means and variances can be obtained

in the absence of normality.

To map model (1) to the general notation of this section, note that in this case there are

no covariates X, and the vector of unobservables U is

U =

(
α− µα
sα

,
ε1

sε
, ...,

εJ
sε

)′
.

The vector β is β = (µα, s
2
α, s

2
ε)
′. The reference distribution for U is a standard multivariate

normal, so the reference density fσ is known in this case — in other words, the parameter
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σ in fσ can be omitted. We assume that the researcher has computed an estimator β̂, for

example by quasi-maximum likelihood or minimum distance, which remains consistent for

β when U is not normally distributed.

In certain applications, the reference density depends on some parameters σ that cannot

be consistently estimated absent parametric assumptions. In Appendix S6, we describe

discrete choice and censored regression models that have this structure. In such settings, we

assume that the researcher has an estimator σ̂ that tends in probability to some σ∗ under

f0. Unlike β, the parameter σ∗ is a model-specific “pseudo-true value” that is not assumed

to have generated the data. However, in our leading example of model (1), as well as in

the model’s generalizations that we study in our empirical illustrations in Section 4, the

references to σ̂ and σ∗ can be omitted from all subsequent statements and derivations.

Given β̂, σ̂, a sample {Yi, Xi, i = 1, ..., n} from (Y,X), and the parametric density fσ, a

model-based estimator of δ is

δ̂
M

=
1

n

n∑
i=1

Efσ̂
[
δβ̂(U,X)

∣∣X = Xi

]
, (12)

where, with some abuse of notation, the expectation with respect to fσ̂ is computed only

over U . When not available in closed form, this estimator can be computed by numerical

integration or simulation under the parametric density fσ̂. It is easy to see that, under

standard conditions, δ̂
M

is consistent for δ under correct specification; that is, when fσ∗ is

the true density of U |X.

To construct a posterior estimator, consider the posterior density pβ,σ of U |Y,X. This

posterior density is computed using Bayes rule, based on the prior fσ on U |X and the

likelihood of Y |U,X implied by gβ. Formally, let U(y, x, β) = {u : y = gβ(u, x)}. We

define, whenever the denominator is non-zero,

pβ,σ(u | y, x) =
fσ(u |x)1{u ∈ U(y, x, β)}∫
fσ(v |x)1{v ∈ U(y, x, β)}dv

. (13)

We will compute pβ,σ analytically in our examples. In Appendix S5 we describe a simulation-

based computational approach when an analytical expression is not available. We define the

posterior average effect (PAE) as the posterior estimator

δ̂
P

=
1

n

n∑
i=1

Ep
β̂,σ̂

[
δβ̂(U,X)

∣∣∣Y = Yi, X = Xi

]
, (14)

where, again, the expectation is only taken over U . Under standard regularity conditions, it

is easy to see that, like δ̂
M

, the PAE δ̂
P

is consistent for δ under correct specification.
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From a Bayesian perspective, δ̂
P

is a natural estimator to consider when β and σ are

known. Indeed, δ̂
P

is then the posterior mean of 1
n

∑n
i=1 δβ(Ui, Xi), where the prior on Ui is

fσ, independent across i. An alternative Bayesian interpretation is obtained by specifying

a nonparametric prior on f0, and computing the posterior mean of δ under this prior, as

we discuss in Appendix S5 in the case where U has finite support. However, a frequentist

justification for δ̂
P

appears to be lacking in the literature. Indeed, under correct specification

of fσ, both estimators δ̂
P

and δ̂
M

are consistent, and, as we pointed out in the previous

section, δ̂
P

may have a higher variance than δ̂
M

. The key difference between model-based

and posterior estimators is that δ̂
P

is conditional on the observation sample. An intuitive

rationale for the conditioning is the recognition that realizations Yi may be informative

about the values of the unknown Ui’s. We next formalize this intuition in a framework that

accounts for specification error.

3.2 Neighborhoods, estimators, and worst-case specification error

Let P (β, f0) denote the true density of (Y, U,X), where as before we omit the reference to

the marginal density of X for conciseness. We assume that, under P (β, f0), β̂ is consis-

tent for the true β, and σ̂ is consistent for a model-specific “pseudo-true” value σ∗, where

EP (β,f0)[ψβ,σ∗(Y,X)] = 0 for some moment function ψ. For example, β̂ and σ̂ may be the

method-of-moments estimators that solve
∑n

i=1 ψβ̂,σ̂(Yi, Xi) = 0. In models with no σ pa-

rameters, such as model (1) and its generalizations, we only assume that β̂ is consistent for

β, and that EP (β,f0)[ψβ(Y,X)] = 0 for some ψ. Throughout, we take the estimators β̂ (and

possibly σ̂), and the moment function ψ, as given. In particular, we do not address the

question of optimal estimation of β under misspecification.

Given a distance measure d and a scalar ε ≥ 0, we define the following neighborhood of

the reference density fσ:

Γε =
{
f0 : d(f0, fσ∗) ≤ ε, EP (β,f0)[ψβ,σ∗(Y,X)] = 0

}
.

This neighborhood consists of densities of U |X that are at most ε away from fσ∗ , and

under which β̂ and σ̂ converge asymptotically to β and σ∗, respectively. The case ε = 0

corresponds to correct specification of the reference density, whereas ε > 0 corresponds to

misspecification.

For ease of notation we omit the dependence of Γε on β, σ∗, and ψ, all of which we

consider fixed and given in this section. Indeed, we assume that the researcher has chosen
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an estimator β̂, and, depending on the setting, an estimator σ̂ — our theory is silent about

where these choices come from — and that she has already observed their realized values in a

large sample. The moment function ψ is determined by this choice of estimators. Moreover,

in large samples, the population values β and σ∗ are arbitrarily close to the observed values

β̂ and σ̂. In our setup, we only consider densities of unobservables f0 that are consistent

with those values, in the sense that the moment restriction EP (β,f0)[ψβ,σ∗(Y,X)] = 0 holds.

This large-sample logic is consistent with our focus on specification error; see (16) below.

Note that the same logic might suggest imposing that other features of the joint popula-

tion distribution of the data (Y,X), such as means, covariances, higher-order moments, or

even the entire distribution, be kept constant for all f0 ∈ Γε. Restricting neighborhoods in

this way does not affect the results in this section, because those are valid for all possible ψ,

and one could thus impose additional moment restrictions on f0.

Let us denote the supports of X and U as X and U , respectively. We assume that d is a

φ-divergence of the form

d(f0, fσ) =

∫
X

∫
U
φ

(
f0(u |x)

fσ(u |x)

)
fσ(u |x) fX(x) du dx,

where φ is a convex function that satisfies φ(1) = 0 and φ′′(1) > 0. This family contains

as special cases the χ2 divergence (averaged over X), the Kullback-Leibler divergence, the

Hellinger distance, and more generally the members of the Cressie-Read family of divergences

(Cressie and Read, 1984). It is commonly used to measure misspecification, see Andrews et

al. (2020) and Christensen and Connault (2019) for recent examples.

We focus on asymptotically linear estimators of δ that satisfy, for a scalar non-stochastic

function γ and as n tends to infinity,

δ̂γ =
1

n

n∑
i=1

γβ̂,σ̂(Yi, Xi) + oP (β,f0)(1). (15)

Note that δ̂γ depends on β̂, σ̂, but for conciseness we leave the dependence implicit in the

notation. Many estimators can be written in this form (see, e.g., Bickel et al., 1993). Given

an estimator δ̂γ, we define its ε-worst-case specification error as

bε(γ) = sup
f0∈Γε

∣∣EP (β,f0)[γβ,σ∗(Y,X)]− Ef0 [δβ(U,X)]
∣∣ . (16)

We will take the worst-case specification error bε(γ) to be our measure of how well an estima-

tor δ̂γ performs under misspecification. It quantifies the maximum discrepancy, under any

12



possible f0 in the neighborhood Γε, between the probability limit of the estimator and the true

parameter value. Under suitable regularity conditions, EP (β,f0)[γβ,σ∗(Y,X)] − Ef0 [δβ(U,X)]

in (16) is the asymptotic bias of δ̂γ under P (β, f0).

By focusing on the worst-case specification error bε(γ), we abstract from other sources

of estimation error. Importantly, we do not account for sampling variability. In Bonhomme

and Weidner (2018), we study an alternative approach that consists in minimizing worst-

case mean squared error under a local asymptotic — i.e., as ε tends to zero, n tends to

infinity, and εn tends to a positive constant. Applying this approach to the present case

gives estimators that have a smaller worst-case mean squared error than PAE in general.

However, unlike PAE, minimum-MSE estimators depend on ε, as we will discuss Subsection

3.5 below. Relative to such estimators, PAE do not require the researcher to take a stand

on the degree of misspecification ε, and they are easy to implement.

3.3 Result under small-ε misspecification

Before stating our first main result, we first characterize the worst-case specification error

bε(γ) of estimators δ̂γ for small ε. For conciseness, in the remainder of this section we suppress

the reference to β, σ∗ from the notation, and we denote as E∗ and Var∗ expectations and

variances that are taken under the reference model P (β, fσ∗). All proofs are in Appendix

S1.

Lemma 1. Let ψ̃(y, x) = ψ(y, x) − E∗
[
ψ(Y,X)

∣∣X = x
]
. Suppose that one of the following

conditions holds:

(i) φ(1) = 0, φ(r) is four times continuously differentiable with φ′′(r) > 0 for all r >

0, E∗[ψ(Y,X)] = 0, E∗
[
ψ̃(Y,X) ψ̃(Y,X)′

]
> 0, and |γ(y, x)|, |δ(u, x)|, |ψ(y, x)| are

bounded over the domain of Y , U , X.

(ii) Condition (ii) of Lemma S1 in Appendix S1 holds (this alternative condition allows for

unbounded γ, δ, ψ, but at the cost of stronger assumptions on φ(r)).

Then, as ε tends to zero we have

bε(γ) = |E∗[γ(Y,X)− δ(U,X)]|

+ ε
1
2

{
2

φ′′(1)
Var∗

(
γ(Y,X)− δ(U,X)− E∗ [γ(Y,X)− δ(U,X) |X]− λ′ψ̃(Y,X)

)} 1
2

+O(ε),

where λ =
{
E∗
[
ψ̃(Y,X) ψ̃(Y,X)′

]}−1

E∗
[
(γ(Y,X)− δ(U,X)) ψ̃(Y,X)

]
.
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To derive the formula for the worst-case specification error in Lemma 1, we maximize

the specification error with respect to f0 subject to three contraints: f0 belongs to an ε-

neighborhood of f∗, it is such that the moment condition is satisfied at (β, σ∗), and it is a

density. In part (i) we focus on the case where γ, δ and ψ are bounded. This is satisfied,

for example, if those functions and g(u, x) are all continuous, and the domain of U and X is

bounded. To accommodate situations where supports are unbounded, such as the example

of Section 2, in part (ii) we allow for unbounded functions γ, δ and ψ, which only requires

existence of third moments under the reference distribution. To guarantee that bε(γ) is well-

defined in the unbounded case, we require a regularization of the function φ(r) for large

values of r.

Lemma 1 implies that the small-ε specification error of the PAE is, up to smaller-order

terms, proportional to the within-(Y,X) standard deviation of δ(U,X) under the reference

model:

bε(γ
P) = ε

1
2

{
2

φ′′(1)
Var∗ (δ(U,X)− E∗[δ(U,X) |Y,X])

} 1
2

+O(ε).

In the fixed-effects model (1) of teacher quality, the worst-case specification error of the PAE

F̂P
α (a) is

bε(γ
P) = ε

1
2

{
4

φ′′(1)
T

(
a− µα
σα

,

√
1− ρ
1 + ρ

)} 1
2

+O(ε),

where T (a, b) = ϕ(a)
∫ b

0
ϕ(az)
1+z2

dz is Owen’s T function (Owen, 1956), and ϕ is the standard

normal density. The specification error decreases as the number J of observations per teacher

increases, and tends to zero as J tends to infinity and the shrinkage factor ρ tends to one.

The next theorem, which holds for all functions γ(y, x), subject to regularity conditions,

shows that the PAE has minimum worst-case specification error locally.

Theorem 1. Suppose that the conditions of Lemma 1 hold, and let

γP(y, x) = E∗[δ(U,X) |Y = y,X = x]. (17)

Then, as ε tends to zero we have

bε(γ
P) ≤ bε(γ) +O(ε).

3.4 Result under fixed-ε misspecification

To show our second main result, let us now focus on the case φ(t) = 1
2
(t − 1)2; that is, we

choose the distance measure d(f0, fσ) to be the Pearson χ2 divergence. For this quadratic

14



distance measure, we show that PAE satisfy a fixed-ε optimality result, which is valid for all

values of ε that are smaller than

ε =
Var∗

[
δ(U,X)− γP(Y,X)

]
2 supu,x

[
δ(u, x)− γP(g(u, x), x)

]2 , (18)

where γP(y, x) is given by (17).

Theorem 2. Assume that E∗[ψ(Y,X)] = 0, φ(t) = 1
2
(t− 1)2, and that γ(Y,X) and δ(U,X)

have finite second moments under the reference model. Then, for 0 < ε ≤ ε, we have

bε(γ
P) ≤ bε(γ).

In Theorem 2 we show that γP is an exact minimizer of the function bε(γ). This is in

contrast with Theorem 1, where we relied on a small-ε approximation. The condition ε ≤ ε

guarantees that, for γ = γP, the constraint f0(u |x) ≥ 0 is non-binding in the optimization

problem over f0 in (16), implying that the problem has a simple analytic solution. Although,

in many settings such as model (1), the parameter of interest δ is not consistently estimable

under our assumptions, Theorem 2 shows that PAE achieve the smallest possible worst-

case specification error when the true distribution f0 lies sufficiently close to the reference

distribution fσ∗ , as measured according to the χ2 divergence.

If the distance measure d(f0, fσ) is not a χ2-divergence, or if ε > ε, then γP is not the

exact minimizer of worst-case specification error bε(γ). Moreover, in such cases the estimator

with minimum worst-case specification error depends on ε in general. However, one can still

establish a fixed-ε bound on worst-case specification error, as the next result shows.

Theorem 3. Let γP be as in (17), and assume that φ(r) is convex with φ(1) = 0. Then, for

all ε > 0,

bε(γ
P) ≤ 2 inf

γ
bε(γ).

In Theorem 3 we establish a fixed-ε bound on the worst-case specification error of PAE,

which holds for all ε > 0 and all φ-divergences such that φ is convex with φ(1) = 0. The

infimum is taken over all possible functions γ(y, x), subject to measurability conditions,

which we implicitly assume throughout the paper. Although δ̂
P

may not minimize worst-

case specification error for finite ε, Theorem 3 shows that its worst-case specification error is

never larger than twice the minimum worst-case specification error. In addition, the factor

two in Theorem 3 cannot be improved upon in general, as we show in Appendix S5 in the

context of a simple binary choice model.
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3.5 Discussion

In this subsection, we discuss several features and implications of our main results given by

Theorems 1 and 2.

Uniqueness. In the absence of covariates and for known parameters β, σ∗, the proof of

Theorem 1 shows that γP is the unique minimizer of the first-order worst-case specification

error. Likewise, γP is also unique in Theorem 2. More generally, if covariates are present and

the parameters β, σ∗ are estimated, then the leading order contribution of bε(γ) is minimized

if and only if γ(Y,X) = γP(Y,X) + ω(X) + λ′ψ(Y,X) + oP∗(1), for some λ and ω such that

EfX [ω(X)] = 0 — see part (ii) of Theorem S1 in Appendix S1 for a formal statement.

Hence, while the PAE is not the unique minimizer of the local worst-case specification error

in this case, any minimizer differs from the PAE by a zero-mean function of X and a linear

combination of the moment function ψ. In addition, δ̂
P

has smallest variance within the

class of minimum worst-case specification error estimators.

Form of misspecification. Theorems 1 and 2 rely on specific distance measures, χ2

divergence for the latter and any member of the φ-divergence family for the former. Under

other distance measures, the PAE will not have minimum worst-case specification error in

general.

Given a distance measure, the theorems are based on nonparametric neighborhoods that

consist of unrestricted distributions of U |X, except for the moment conditions that pin

down β and σ∗. However, if one is willing to make additional assumptions on f0 that further

restrict the neighborhood, then one can construct estimators that are more robust than δ̂
P

within a particular class. As an example, consider the fixed-effects model (1). Suppose

that, in addition to assuming that α, ε1, ..., εJ are mutually uncorrelated, the researcher is

willing to assume that they are fully independent. In that case, the distribution of α can

be consistently estimated under suitable regularity conditions, provided J ≥ 2 (Kotlarski,

1967, Li and Vuong, 1998). However, the PAE in (5) is inconsistent for fixed J as n tends

to infinity. As a consequence, the PAE does not minimize worst-case specification error in a

semi-parametric neighborhood that consists of distributions with independent marginals.

To elaborate further on this point, consider the coefficient δ in the population regression

of α on a covariates vector W , see (7). A possible estimator is the coefficient δ̂
FE

in the
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regression of the fixed-effects estimates Y i on Wi, see (8). Under correct specification of the

reference model, δ̂
FE

is consistent for δ. However, δ̂
FE

may be inconsistent under the type of

misspecification that we allow for, since εj and W may be correlated under f0. For example,

W (e.g., teacher absenteeism) may be influenced by α and factors that correlate with εj.

Theorem 1 shows that, under such misspecification, the PAE δ̂
P

in (9) has minimum worst-

case specification error locally. Nevertheless, if the researcher is confident that W should

not enter the outcome equation, and that it is independent of εj, then it is natural to report

the consistent estimator δ̂
FE

.

Posterior informativeness. Our small-ε calculations can be used to compare the worst-

case specification errors of the PAE δ̂
P

to that of the model-based estimator δ̂
M

. To see

this, let γM
β,σ(x) = Efσ [δβ(U,X) |X = x]. Using Lemma 1, the ratio of the two worst-case

specification errors satisfies

lim
ε→0

bε(γ
P)

bε(γM)
=
{Var∗ (v(U,X)− E∗[v(U,X) |Y,X])}

1
2

{Var∗ (v(U,X))}
1
2

, (19)

where v(U,X) is the population residual of (δ(U,X)− γM(X)) on ψ̃(Y,X), under the para-

metric reference model; that is, v(u, x) = δ(u, x)−γM(x)+λ′ψ̃(g(u, x), x), where all functions

are evaluated at β, σ∗, and λ is as defined in Lemma 1 for the case γ = γM. Intuitively, the

robustness of δ̂
P

relative to δ̂
M

depends on how informative the outcome values Yi are for

the latent individual parameters δ(Ui, Xi).

In practice, we will report an empirical counterpart to the small-ε limit of 1− b2ε (γ
P)

b2ε (γ
M)

. This

quantity can be simply expressed as the R2 in the population nonparametric regression of

v(U,X) on Y,X under the reference model; that is,

R2 =
Var∗ (E∗[v(U,X) |Y,X])

Var∗ (v(U,X))
, (20)

where with some abuse of notation here v(U,X) denotes the sample residual of (δβ̂(U,X)−

γM
β̂,σ̂

(X)) on ψ̃β̂,σ̂(Y,X), and expectations and variances are taken with respect to P (β̂, fσ̂).

Using a term from Andrews et al. (2020) — albeit in a different setting — we refer to R2 in

(20) as a measure of the “informativeness” of the posterior conditioning, and we will report

it in our illustrations. As an example, for F̂P
α (a) in model (1), the informativeness of the

posterior conditioning is

R2 = 1−
2T
(
a−µ̂α
ŝα

,
√

1−ρ̂
1+ρ̂

)
Φ
(
a−µ̂α
ŝα

) [
1− Φ

(
a−µ̂α
ŝα

)] . (21)
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In this case the R2 increases with the number J of observations per teacher, and it tends to

one as J tends to infinity.

Multi-dimensional PAE. For simplicity, in this section we have focused on the case

where the target parameter δ in (11) is scalar. However, our results can be extended to

multi-dimensional parameters. The definition of worst-case specification error in (16) is

then modified to

bε(γ) = sup
f0∈Γε

∥∥EP (β,f0)[γ(Y,X)]− Ef0 [δ(U,X)]
∥∥ ,

where ‖ · ‖ is a norm over the vector space in which γ(Y,X) and δ(U,X) take values.

If ‖·‖∗ denotes the corresponding dual norm, then we can rewrite bε(γ) = sup‖v‖∗=1 bε(γ, v),

where bε(γ, v) = supf0∈Γε

∣∣EP (β,f0)[v
′γ(Y,X)] − Ef0 [v′δ(U,X)]

∣∣. Our minimum worst-case

specification error results for PAE for scalar δ then apply to bε(γ, v) for every given vector

v, and the minimum-specification error properties are preserved after taking the supremum

over the set of vectors v with ‖v‖∗ = 1. Thus, in the multi-dimensional case, PAE minimize

worst-case specification error for small ε in the sense of Theorem 1, and for fixed ε under

the conditions of Theorem 2. In our leading example of Section 2, suppose we are interested

in the entire distribution function Fα. In this case, the average effect is a function indexed

by a. Taking the supremum norm ‖ · ‖∞ over distribution functions, we obtain that, as an

estimator of Fα, the PAE minimizes worst-case specification error under suitable conditions.

Mean squared error. While we have shown that PAE minimize worst-case specification

error locally under the conditions of Theorem 1, and for fixed ε under the conditions of

Theorem 2, PAE generally do not have minimum mean squared error (MSE). To see this,

let us assume that β and σ∗ are known. In a local asymptotic framework where n tends to

infinity, ε tends to zero, and nε tends to a positive constant, and under suitable regularity

conditions, we show in Appendix S5 that the estimator with minimum worst-case MSE is

given by

δ̂
MMSE

= [1− wnε] δ̂
M

+ wnε δ̂
P
, wnε :=

(
1 +

φ′′(1)

2nε

)−1

, (22)

which is a linear combination between the model-based estimator and the PAE. The model-

based estimator δ̂
M

, which has the smallest asymptotic variance, will be preferred when ε is

small relative to 1/n, while the PAE, which has smallest specification error, will be preferred
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when ε is large relative to 1/n. However, in order to implement such estimators δ̂
MMSE

that

minimize worst-case MSE, knowledge of ε is required. See Bonhomme and Weidner (2018)

for an approach to minimum-MSE estimation.

4 Simulations and empirical illustrations

In this section, we study two empirical applications: we estimate the distribution of income

neighborhood effects in the US, and the distributions of permanent and transitory earnings

components in the PSID. We start the section by summarizing the results of a Monte Carlo

simulation exercise, in samples generated from various specifications of model (1).

4.1 Monte Carlo simulation: summary of results

While Theorems 1 and 2 show that PAE minimize worst-case specification error under small-

ε and fixed-ε misspecification, respectively, they are silent about other forms of estimation

error. In Appendix S4 we report the results of a Monte Carlo simulation exercise, where

we compare the performance of PAE and other estimators in finite sample in the fixed-

effects model (1), for various specifications. Here we briefly summarize the results from the

simulation exercise.

We compare the performance of four estimators: the fixed-effects estimator given by (2),

the PAE given by (5), the model-based estimator given by (6), and a nonparametric kernel

deconvolution estimator with normal errors (Stefanski and Carroll, 1990). We analyze two

sets of data generating processes. When the reference normal distribution for αi is correctly

specified, the model-based estimator performs best, as expected. We find that, while the

PAE has both larger bias and variance than the model-based estimator in this case, it is less

biased and less variable than both the nonparametric deconvolution estimator and the fixed-

effects estimator, especially when the number of measurements J is small (see Appendix

Figure S1).

We next turn to data generating processes where αi is not normal, drawn from a skewed

Beta distribution. We find that the model-based estimator is substantially biased in this

case. The nonparametric deconvolution estimator has smallest bias when errors are normally

distributed, but it is heavily biased when errors are non-normal. By contrast, although it

has no consistency guarantees in these settings, the PAE tends to perform comparatively

well in all situations, for bias and variance (see Appendix Figure S2).
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Overall, the simulations complement our theory by highlighting that, beyond specifica-

tion error, other sources of estimation error matter in practice. Under correct specification

of the reference distribution, the model-based estimator should be preferred. At the same

time, our results suggest that, at least in the particular settings we focus on, the perfor-

mance of the PAE appears less sensitive to misspecification than those of the model-based

and nonparametric deconvolution estimators. Moreover, we find that the robustness gains

provided by the PAE depend on the signal-to-noise ratio and the informativeness of the

posterior conditioning. We provide details on the simulations in Appendix S4.

4.2 Neighborhood effects

In this subsection and the next, we revisit two applications of models with latent variables.

In our first illustration, we focus on a model of neighborhood effects following Chetty and

Hendren (2017), using data for the US that these authors made public. In our second il-

lustration, we study a permanent-transitory model of income dynamics (Hall and Mishkin,

1982, Blundell et al., 2008) using the PSID. In both cases, we rely on a normal reference spec-

ification and assess how and by how much the posterior conditioning informs the estimates

of the parameters of interest.

Here we start with estimates of neighborhood (or “place”) effects reported in Chetty and

Hendren (2017, CH hereafter). Those were obtained using individuals who moved between

different commuting zones at different ages. The outcome variable that we focus on is the

causal estimate of the income rank at age 26 of a child whose parents are at the 25 percentile

of the income distribution. This is CH’s preferred measure of place effect.

CH report an estimate of the variance of neighborhood effects, corrected for noise. In

addition, they report individual predictors. Here we are interested in documenting the entire

distribution of place effects. To do so, we consider the model µ̂c = µc+εc, for each commuting

zone c, where µ̂c is a neighborhood-specific fixed-effects reported by CH, µc is the true effect

of neighborhood c, and εc is additive estimation noise. CH also report estimates ŝ2
c of the

variances of εc for every c. When weighted by population, the fixed-effects estimates µ̂c

have mean zero. We treat neighborhoods as independent observations. The statistics we use

for calculations are available at: https://opportunityinsights.org/paper/neighborhoodsii/.

Given the aggregate data at hand, we necessarily need to assume that estimates µ̂c are

independent across neighborhoods c, although this might be restrictive in this setting.
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We first estimate the variance of place effects µc, following CH. We trim the top 1%

percentile of ŝ2
c , and weigh all results by population weights. While this differs slightly from

CH’s approach, which is based on 1/ŝ2
c precision weights and no trimming, we replicated the

analysis using precision weights in the un-trimmed sample and found similar results. We have

information about place effects in C = 590 commuting zones c in our sample, compared to

595 in the sample without trimming. We estimate a sizable variance of neighborhood fixed-

effects: Var(µ̂c) = .077. In turn, the mean of ŝ2
c weighted by population is ŝ2

ε = .047. Given

those, we estimate the variance of place effects as ŝ2
µ = Var(µ̂c)− ŝ2

ε = .030. In this setting,

the shrinkage factor ρ̂c = ŝ2
µ/(ŝ

2
µ + ŝ2

c) exhibits substantial heterogeneity across commuting

zones. Indeed, the mean of ρ̂c is .62, and its 10% and 90% percentiles are .21 and .93,

respectively.

We use a normal with zero mean and variance ŝ2
µ as a prior for µc. Then, we estimate

the distribution function of neighborhood effects µc using the PAE given by (5); that is,

F̂P
µ (a) =

1∑C
c=1 πc

C∑
c=1

πcΦ

(
a− ρ̂cµ̂c
ŝµ
√

1− ρ̂c

)
,

where πc are population weights. In addition, in order to ease the visualization of the results,

we will also report estimates of densities, which are the derivatives of the PAE of distribution

functions. Note that the density of µ at a can be approximated for arbitrarily small h > 0 by

the expectation of 1{|µ− a|/h}/2h. Taking the limit of the corresponding PAE as h tends

to zero gives the derivative of F̂P
µ at a. We thus expect derivatives of PAE of distribution

functions to enjoy similar minimum-worst-case specification error properties as PAE, but we

do not formalize the required assumptions here.

In the top panel of Figure 1, we report several estimates of distribution functions. In

the bottom panel, we report the corresponding density estimates. In the left graphs, we

show nonparametric kernel estimates of the distribution function (respectively, density) of

the fixed-effects µ̂c, weighted by population (in solid), together with the best-fitting normal

(in dashed). The graphs show substantial non-normality of the fixed-effects estimates. In

particular, the large variance appears to be driven by some large positive and negative es-

timates µ̂c. In the right graphs, we report the PAE F̂P
µ of the distribution function of true

place effects µc, with the associated density (in solid). In addition, we show the normal

prior, with zero mean and variance ŝ2
µ (in dashed). The posterior distribution of neigh-

borhood effects differs from the normal prior, although the two estimators have the same
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variance by construction. In comparison, neighborhood-specific empirical Bayes estimates

have a substantially lower dispersion. In Appendix Figure S5 we report an estimate of their

distribution function F̂PM
µ and associated density. While ŝ2

µ = .030 and the variance associ-

ated with F̂P
µ is .030, the variance of the empirical Bayes estimates is only .010. In addition,

a specification test that compares model-based estimator and PAE, which we describe in

Appendix S5, suggests that these differences are statistically significant. Indeed, assuming

independence across commuting zones, we obtain p-values below .01 at all deciles except the

bottom two.

To assess how likely it is that the posterior estimator approximates the shape of the

distribution of true neighborhood effects, we next perform two different exercises, based on

a simulation and on numerical calculations motivated by our theory. We start with a Monte

Carlo simulation, where µc, for c = 1, ..., Csim, are log-normally distributed with zero mean

and variance ŝ2
µ, and εc are normally distributed independent of µc with zero mean. We

consider three scenarios for the noise variances ŝ2
c : the estimates from CH, one-third of those

values, and one-tenth of those values. In this exercise we again weigh by population. We

show the results for Csim = 100, 000 simulated neighborhoods. In the left graphs of Figure

2 we see that, when the noise variances are the ones from the data, the posterior density is

more skewed than the normal, yet the posterior shape is quite different from the true log-

normal distribution of µc. When reducing the noise variances in the middle and right graphs,

the posterior distribution function and density estimates get closer to the log-normal ones.

In the right graphs, where the shrinkage factor is .90 on average (as opposed to .62 in the

data), the posterior distribution function and density approximate the highly non-normal

shape of the true distribution of neighborhood effects very well.

We next turn to our posterior informativeness measure, which is given by equation (21).

Note the R2 coefficient varies along the distribution. We find that the weighted average R2

across values of a is 28%, where we weigh across cutoff values a by the reference distribution

for α. This value is consistent with the message of Figure 2, since it suggests that, while

the posterior conditioning informs the shape of the distribution of neighborhood effects, the

signal-to-noise ratio is not high enough to be confident about the exact shape.

Lastly, we perform two additional exercises as robustness checks. Firstly, we incorporate

the mean income yc of permanent residents in county c at the 25% percentile as a covariate.

CH rely on information on permanent residents’ income to improve the accuracy of individual
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Figure 1: Distribution of neighborhood effects
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Notes: In the left graphs, we show the distribution of fixed-effects estimates µ̂c (solid) and its normal

fit (dashed). In the right graphs, we show the posterior distribution of µc (solid) and the prior

distribution (dashed). The distribution functions are shown in the top panel, the implied densities

are shown in the bottom panel. Calculations are based on statistics available on the Equality of

Opportunity website.

predictions. Here we use it to refine the reference distribution and to improve the estimation

of the distribution of neighborhood effects. Specifically, our reference model for µc is then

a correlated random-effects specification, where the mean depends on yc linearly. Appendix

Figure S6 shows small differences with our baseline estimates. Secondly, we re-do our main

analysis at the county level, instead of the commuting zone level. In that case, the signal-

to-noise ratio is lower, our posterior informativeness R2 measure is 17% on average, and
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Figure 2: Simulated data with log-normal µc
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Notes: Simulation with µc log-normal and εc normal. The posterior distribution is shown in solid,

the prior distribution is shown in dashed. The distribution functions are shown in the top panel, the

implied densities are shown in the bottom panel. The left graphs correspond to the noise variances

ŝ2
c of the data, the middle ones correspond to the noise variances divided by 3, and the right graphs

correspond to the noise variances divided by 10.

Appendix Figure S7 shows that the normal prior and the posterior distributions are closer

to each other than in the case of commuting zones.

4.3 Income dynamics

In this subsection, we consider the following permanent-transitory model of household log-

income,

Yit = ηit + εit, ηit = ηi,t−1 + Vit, i = 1, ..., n, t = 1, ..., T,

where εit and Vit are independent at all lags and leads, and independent of ηi0. This process

is commonly used as an input for life-cycle consumption/savings models. Researchers often

estimate covariances in a first step using minimum distance, and then impose a normality

assumption for further analysis. However, there is increasing evidence that income compo-

nents are not normally distributed. Instead of using a more flexible model — as has been

done by Carlton and Hall (1978) and a large subsequent literature — here we compute pos-

terior average effects. The advantages of this approach are that no additional assumptions
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are needed, and that implementation is straightforward.

We focus on six recent waves of the PSID 1999-2009 (every other year), see Blundell et

al. (2016) for a description of the data. We use the same sample selection as in Arellano

et al. (2017), and work with a balanced panel of n = 792 households over T = 6 periods.

Yit are residuals of log total pre-tax household labor earnings on a set of demographics,

which include cohort interacted with education categories for both household members,

race, state, and large-city dummies, a family size indicator, number of kids, a dummy for

income recipient other than husband and wife, and a dummy for kids out of the household.

Our aim is to estimate the distributions of ηit and εit. To do so, we compare normal model-

based estimates with posterior estimates, by plotting distribution functions as well as the

implied densities. The model’s structure is similar to that of the fixed-effects model (1), and

analytical expressions for posterior estimators are easy to derive.

In the left graphs of Figure 3, we show the distribution of the permanent component

ηit. In the right graphs, we show the distribution of the transitory component εit. We show

PAE in solid, and model-based estimators in dashed. In the top panel we report estimates

of distribution functions, and in the bottom panel we report the implied density estimates.

The estimates show mild deviation from Gaussianity for the permanent component, and

stronger evidence of non-Gaussianity for the transitory component. In particular, the latter

shows excess kurtosis (i.e., “peakedness”) relative to the normal.

Several papers have already documented the presence of excess kurtosis in income compo-

nents, particularly in transitory innovations, using parametric or semi-parametric methods.

The estimates in Figure 3 share some qualitative similarities with recent findings in the liter-

ature. For example, the estimates of a flexible non-normal and non-linear model in Arellano

et al. (2017, Figure 3) are quite similar to the PAE estimates in Figure 3 for permanent

components. At the same time, their estimates of the distribution of transitory components

show substantially more pronounced non-Gaussianity and excess kurtosis relative to PAE.

This finding is in agreement with our posterior informativeness measure R2, which is 12%

on average along the distribution for the permanent component, and 8% on average for the

transitory component. This degree of informativeness suggests that posterior estimates may

suffer from substantial specification error when the reference distribution is misspecified.

Overall, these empirical illustrations give two examples where, starting from a normal

prior, the posterior conditioning is informative about the true unknown distributions. In
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Figure 3: Distribution of income components
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Notes: The top panel shows PAE estimates of distribution functions (in solid), and model-based

estimates (in dashed), and the bottom panel shows the associated density estimates. The left graphs

correspond to the permanent income component ηit, the right graphs to the transitory income com-

ponent εit. Sample from the PSID, 1999-2009.

both settings, PAE are not normal. Yet, as indicated by the R2 values we report, the signal-

to-noise ratios are not high enough to be certain about the exact shapes of the distributions

of interest, thus motivating further analyses using non-normal specifications. PAE should be

useful in other environments where model (1) and its extensions are widely used, for example

in teacher value-added applications, where the signal-to-noise ratio is driven by the number

of observations per teacher. Moreover, PAE are also applicable to other — nonlinear —

econometric models, as we describe in the next section.
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5 Complements and extensions

In this section, we outline several complements and extensions that we analyze in detail in

the appendix.

5.1 PAE in other models

PAE are applicable to a variety of settings. In many econometric models, semi-parametric

estimators — i.e., robust to distributional assumptions on unobservables — of β parameters

are available; see Powell (1994) for examples. In such models, PAE provide estimators of

average effects that enjoy robustness properties when parametric assumptions are violated.

In Appendix S6 we study static binary and ordered choice models, censored regression mod-

els, and panel data binary choice models. We also show how the White (1980) formula for

robust standard errors in linear regression can be interpreted as a PAE.

5.2 Confidence intervals and specification test

Under correct specification of the reference model, it is easy to derive the asymptotic dis-

tributions of δ̂
M

and δ̂
P

using standard arguments. Moreover, under local misspecification,

confidence intervals that account for both model uncertainty and sampling uncertainty can

be constructed following Armstrong and Kolesár (2018) and Bonhomme and Weidner (2018).

However, such confidence intervals require the researcher to set a value for the degree of mis-

specification ε. In Appendix S5, we provide details on confidence intervals calculations. In

addition, we explain how to construct a specification test of the reference model based on

the difference δ̂
P
− δ̂

M
.

5.3 Robustness in prediction

In applications such as the fixed-effects model (1) of teacher quality, researchers are often

interested in predicting the quality αi of teacher i. Although our focus in this paper is

on the estimation of population averages, it is interesting to see how different predictors

perform under misspecification of the reference distribution. It is well-known that EB esti-

mators minimize mean squared prediction error when the normal reference model is correctly

specified. However, when normality fails, the best predictor is a different posterior mean,

which does not generally coincide with the EB estimate based on a normal prior. Intuitively,

conditioning on nonlinear functions of the data may improve prediction accuracy.
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In Appendix S3 we use our framework — applied to worst-case mean squared prediction

error instead of worst-case specification error of a sample average — to provide results on the

robustness of EB estimators in the presence of misspecification. We show that EB estimators

have minimum worst-case mean squared prediction error, up to smaller-order terms, under

local deviations from normality. In addition, we derive a fixed-ε, non-local risk bound in the

spirit of Theorem 3.

6 Conclusion

Posterior averages are commonly used to predict individual parameters, such as teacher

quality or neighborhood effects, and they play a central role in Bayesian and empirical

Bayes approaches. In this paper, we have provided a frequentist justification for posterior

conditioning when the goal of the researcher is to estimate a population average quantity.

We have shown that posterior average effects (PAE) have minimum worst-case specification

error under various forms of misspecification of parametric assumptions. PAE are simple to

implement, and our analysis provides a rationale for reporting them in applications alongside

other parametric and semi-parametric estimators, as well as a simple way to assess the

informativeness of the posterior conditioning. As an example, Arnold et al. (2020) recently

reported PAE to document judge heterogeneity in the context of bail decisions. While we

have used a linear fixed-effects model as a running example due to its popularity, there are

other possible applications, some of which we discuss in the appendix.
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APPENDIX

S1 Proofs of Lemma 1, and Theorem 1 and 2

The following is an extended version of Lemma 1 and Theorem 1 in the main text, which

also covers the case of unbounded functions γβ,σ∗(y, x), δβ(u, x) and ψβ,σ∗(y, x). In addition,

we make explicit again the dependence on β and σ∗, which we suppressed in the main text.

Lemma S1. In addition to defining ψ̃(y, x) = ψ(y, x) − EP (β,fσ∗ )

[
ψ(Y,X)

∣∣X = x
]
, let

γ̃(y, x) = γ(y, x)−EP (β,fσ∗ )

[
γ(Y,X)

∣∣X = x
]

and δ̃(u, x) = δ(u, x)−EP (β,fσ∗ )

[
δ(U,X)

∣∣X = x
]
.

Suppose that φ(r) = φ(r) + ν (r − 1)2, with ν ≥ 0, and a function φ(r) that is four times

continuously differentiable with φ(1) = 0 and φ
′′
(r) > 0, for all r ∈ (0,∞). Assume

EP (β,fσ∗ )ψβ,σ∗(Y,X) = 0 and EP (β,fσ∗ )

[
ψ̃β,σ∗(Y,X) ψ̃β,σ∗(Y,X)′

]
> 0. Furthermore, assume

that one of the following holds:

(i) ν = 0, and the functions
∣∣γβ,σ∗(y, x)

∣∣, |δβ(u, x)| and
∣∣ψβ,σ∗(y, x)

∣∣ are bounded over the

domain of Y , U , X.

(ii) ν > 0, and EP (β,fσ∗ )

∣∣γβ,σ∗(Y,X)− δβ(U,X)
∣∣3 <∞, and EP (β,fσ∗ )

∣∣ψβ,σ∗(Y,X)
∣∣3 <∞.

Then, as ε→ 0 we have

bε(γ) =
∣∣EP (β,fσ∗ )[γβ,σ∗(Y,X)]− Efσ∗ [δβ(U,X)]

∣∣
+ ε

1
2

{
2

φ′′(1)
VarP (β,fσ∗ )

[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

]} 1
2

+O(ε),

where

λ =
{
EP (β,fσ∗ )

[
ψ̃β,σ∗(Y,X) ψ̃β,σ∗(Y,X)′

]}−1

EP (β,fσ∗ )

[(
γβ,σ∗(Y,X)− δβ(U,X)

)
ψ̃β,σ∗(Y,X)

]
.

Theorem S1. Suppose that the conditions of Lemma S1 hold, and let

γP
β,σ∗(y, x) = Epβ,σ∗ [δβ(U,X) |Y = y,X = x]. (S1)

Then the following results hold as ε tends to zero.

(i) We have

bε(γ
P
β,σ∗) ≤ bε(γ) +O(ε).

1



(ii) If we have bε(γ) = bε(γ
P
β,σ∗

) + o(ε1/2), then there exist λ ∈ Rdimψ and a function

ω : X → R with EfX [ω(X)] = 0 such that

γβ,σ∗(Y,X) = γP
β,σ∗(Y,X) + ω(X) + λ′ ψβ,σ∗(Y,X) + oP (β,fσ∗ )(1).

Notice that Theorem S1 in the main text is a special case of part (i) of Theorem S1.

Part (ii) of Theorem S1 is discussed in Subsection 3.5 of the main text. The proof of

Theorem S1 provides explicit expressions for λ and ω(X) that appear in part (ii), namely λ

is the same as in the last line of Lemma S1, and ω(x) = EP (β,fσ∗ )

[
γβ,σ∗(Y,X)− δβ(U,X)−

λ′ ψβ,σ∗(Y,X)
∣∣X = x

]
− EP (β,fσ∗ )

[
γβ,σ∗(Y,X)− δβ(U,X)− λ′ ψβ,σ∗(Y,X)

]
.

S1.1 Proof of Lemma S1 (containing Lemma 1 as a special case)

We first introduce some additional notation and establish some helpful intermediate results.

We write B and S for the set of possible values of the parameters β and σ, respectively.

Lemma S1 is for given values β ∈ B and σ∗ ∈ S, and given functions γβ,σ∗(y, x), δβ(u, x),

ψβ,σ∗(y, x), and those values and functions are also taken as given in following two inter-

mediate lemmas. Remember also that Γε depends on the function φ : [0,∞) → R ∪ {∞},

which is assumed to be strictly convex in Lemma S1. We define the corresponding function

ρ : R→ R ∪ {∞} by

ρ(t) :=

{
argmaxr≥0 [r t− φ(r)] if this “argmax” exists,

∞ otherwise.
(S2)

For t = φ′(r) we have ρ(t) = r, that is, for those values of t the function ρ(t) is simply

the inverse function of the first derivative φ′. For t < infr>0 φ
′(r) we have ρ(t) = 0, and

for t > supr>0 φ
′(r) the value of ρ(t) is defined to be ∞. The following lemma provides a

characterization of the ε-worst-case specification error bε(γ) that was defined in (16).

Lemma S2. Let ε > 0. Assume that φ(r) is strictly convex with φ(1) = 0. Suppose that for

s ∈ {−1, 1} and x ∈ X there exists λ
(1)
β,σ∗

(s, x) ∈ R, λ
(2)
β,σ∗

(s) > 0, λ
(3)
β,σ∗

(s) ∈ Rdimψ such that

tβ,σ∗(u, x|s) := λ
(1)
β,σ∗

(s, x)+s λ
(2)
β,σ∗

(s)
[
γβ,σ∗(gβ(u, x), x)− δβ(u, x)

]
+λ

(3) ′
β,σ∗

(s)ψβ,σ∗(gβ(u, x), x))

satisfies

∀x ∈ X : EP (β,fσ∗ )

{
ρ [tβ,σ∗(U,X|s)]

∣∣∣X = x
}

= 1,

EP (β,fσ∗ ) φ {ρ [tβ,σ∗(U,X|s)]} = ε,

EP (β,fσ∗ )

{
ψβ,σ∗(Y,X) ρ [tβ,σ∗(U,X|s)]

}
= 0. (S3)
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Then the maximizer (s = +1) and minimizer (s = −1) of EP (β,f0)

[
γβ,σ∗(Y,X)− δβ(U,X)

]
over f0 ∈ Γε are given by

f
(s)
0 (u|x) = fσ∗(u|x) ρ [tβ,σ∗(u, x|s)] ,

and for the worst-case absolute specification error we therefore have

bε(γ) = max
s∈{−1,1}

{
s EP (β,fσ∗ )

[[
γβ,σ∗(Y,X)− δβ(U,X)

]
ρ [tβ,σ∗(U,X|s)]

]}
.

The proof of Lemma S2 is given in Section S2. Notice that for φ(r) = r[log(r) − 1], when

d(f0, fσ∗) is the Kullback-Leibler divergence, we have ρ(t) = exp(t), and the worst case

densities f
(s)
0 (u|x) in Lemma S2 are exponentially tilted versions of the reference density

fσ∗(u|x). Lemma S2 shows that, more generally, the required “tilting function” is given by

ρ(t).

We impose φ(1) = 0 throughout the paper to guarantee that d(f0, fσ∗) ≥ 0 (by an

application of Jensen’s inequality). In addition, we now impose the normalization φ′(1) = 0.

This is without loss of generality, because we can always redefine φ(r) 7→ φ(r)− (r−1)φ′(1),

which has no effect on d(f0, fσ∗) and guarantees φ′(1) = 0 for the redefined function.

The goal of the following lemma is to establish Taylor expansions of ρ(t) and φ(ρ(t))

around t = 0 of the form

ρ(t) = 1 +
t

φ′′(1)
+ t2R1(t), φ(ρ(t)) =

t2

2φ′′(1)
+ t3R2(t), (S4)

where the remainder terms are defined by

R1(t) :=

{
t−2 [ρ(t)− 1− t/φ′′(1)] if t 6= 0,

−φ′′′(1)/{2 [φ′′(1)]3} if t = 0,

R2(t) :=

{
t−3 [φ(ρ(t))− t2/{2φ′′(1)}] if t 6= 0,

−φ′′′(1)/{3 [φ′′(1)]3} if t = 0.

Notice that the expansions (S4) are trivially true by definition of R1(t) and R2(t), but the

following lemma provides bounds on R1(t) and R2(t), which are useful for the proof of

Lemma S1 afterwards.

Lemma S3. For all r ≥ 0 let φ(r) = φ(r)+ν (r−1)2, for ν ≥ 0, and a function φ : [0,∞)→

R ∪ {∞} that is four times continuously differentiable with φ(1) = φ
′
(1) = 0 and φ

′′
(r) > 0,

for all r ∈ (0,∞). The lemma has two parts:

3



(i) Assume in addition that ν = 0. Then, there exist constants c1 > 0, c2 > 0 and η > 0

such that for all t ∈ [−η, η] we have

|R1(t)| ≤ c1, and |R2(t)| ≤ c2, (S5)

and the functions R1(t) and R2(t) are continuous within [−η, η].

(ii) Assume in addition that ν > 0. Then, there exist constants c1 > 0 and c2 > 0 such

that the two inequalities in (S5) hold for all t ∈ R, and the functions R1(t) and R2(t)

are everywhere continuous.

The proof of Lemma S3 is given in Section S2.

Comment: Part (i) and part (ii) of Lemma S3 give the same approximations of ρ(t) and

φ(ρ(t)), but the difference is that in part (i) the result only holds locally in a neighborhood

of t = 0, while in part (ii) the inequalities are established globally for all t ∈ R. Notice that

the result of part (ii) cannot hold under the assumptions of part (i) only, because ρ(t) is

equal to infinity for all t > tsup, where tsup = supr∈(0,∞) φ
′(r) can be finite. The regularization

φ(r) = φ(r) + ν (r − 1)2, with ν > 0, guarantees that ρ(t) is finite and well-defined for all

t ∈ R. This property of the regularized φ(r) is key whenever the moment functions γ, δ, ψ

are unbounded (i.e., for case (ii) of the assumptions of Lemma S1).

Using the intermediate Lemmas S2 and S3 we can now show Lemma S1, which contains

Lemma 1 as a special case. In the following proofs we again drop the arguments β and σ∗

everywhere for ease notation, and we write E∗ and Var∗ for expectations and variances under

the reference density P (β, fσ∗). We also continue to use the normalization φ′(1) = 0, which

is without loss of generality, as explained above.

Proof of Lemma S1. # Additional notation and definitions: Let λ ∈ Rdimψ be as defined

in the statement of the lemma, and furthermore define

κ =

Var∗

[
γ̃(Y,X)− δ̃(U,X)− λ′ ψ̃(Y,X)

]
2φ′′(1)


1/2

.

For s ∈ {−1,+1} and ε > 0, let

t(u, x|s) = λ(1)(s, x) + s λ(2)(s) [γ(g(u, x), x)− δ(u, x)] + λ(3) ′(s)ψ(g(u, x), x),
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with

λ(1)(s, x) = −ε1/2 s κ−1 E∗
[
γ(Y,X)− δ(U,X)− λ′ ψ(Y,X)

∣∣X = x
]

+ ε
{
λ(1)

rem(s, x)− s λ(2)
rem(s)E∗

[
γ(Y,X)− δ(U,X)− λ′ ψ(Y,X)

∣∣X = x
]}
,

λ(2)(s) = ε1/2κ−1 + ε λ(2)
rem(s),

λ(3)(s) = −ε1/2 s κ−1 λ+ ε
[
λ(3)

rem(s)− s λ(2)
rem(s)λ

]
.

Here, we are explicit about the leading order terms (of order ε1/2), but the higher order terms

(of order ε) contain the coefficients λ(1)
rem(s) ∈ R, λ(2)

rem(s) ∈ R, and λ(3)
rem(s) ∈ Rdimψ, which

will only be specified in (S8) below. We can rewrite

t(u, x|s) = ε1/2t(0)(u, x|s) + ε trem(u, x|s), (S6)

with

t(0)(u, x|s) = s κ−1
[
γ̃(g(u, x), x)− δ̃(u, x)− λ′ ψ̃(g(u, x), x)

]
,

trem(u, x|s) = λ(1)
rem(s, x) + λ(2)

rem(s)κ t(0)(u, x|s) + λ(3) ′
rem(s)ψ(g(u, x), x).

Here, t(u, x|s), λ(1)(s, x), λ(2)(s), etc, also depend on ε, but we do not make this dependence

explicit in our notation. Our goal is to apply Lemma S2 with tβ,σ∗(u, x|s) in the lemma

equal to t(u, x|s) as defined here. However, in order to apply that lemma we need to satisfy

the conditions (S3), which in current notation read

E∗
{
ρ[t(U,X|s)]

∣∣X = x
}

= 1, E∗ φ {ρ [t(U,X|s)]} = ε, E∗
{
ψ(Y,X) ρ [t(U,X|s)]

}
= 0.

(S7)

The definition of t(u, x|s) above is already designed to satisfy (S7) to leading order in ε, but

we still need to find λ(1)
rem(s, x), λ(2)

rem(s), λ(3)
rem(s) such that (S7) holds exactly. Plugging the ex-

pansions (S4) into (S7), using the definition of t(u, x|s), as well as E∗
[
t(0)(U,X|s)

∣∣X = x
]

=

0, E∗
{

[t(0)(U,X|s)]2
}

= 2φ′′(1), and E∗ψ(Y,X) t(0)(U,X|s) = 0, we obtain

E∗

{
ε trem(U,X|s)

φ′′(1)
+ [t(U,X|s)]2R1 [t(U,X|s)]

∣∣∣∣∣X = x

}
= 0,

E∗
{

2 ε3/2 trem(U,X|s) t(0)(U,X|s) + ε2 [trem(U,X|s)]2

2φ′′(1)
+ [t(U,X|s)]3R2 [t(U,X|s)]

}
= 0,

E∗
{
ε ψ(Y,X) trem(U,X|s)

φ′′(1)
+ ψ(Y,X) [t(U,X|s)]2R1 [t(U,X|s)]

}
= 0.
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Those conditions can be rewritten as follows

λ(1)
rem(s, x) = −φ′′(1)E∗

{[
t(0)(U,X|s) + ε1/2trem(U,X|s)

]2
R1 [t(U,X|s)]

∣∣∣∣∣X = x

}
,

λ(2)
rem(s) = − 1

2κ
E∗
{[
t(0)(U,X|s) + ε1/2trem(U,X|s)

]3
R2 [t(U,X|s)] +

ε1/2 [trem(U,X|s)]2

2φ′′(1)

}
,

λ(3)
rem(s) = −φ′′(1) {E∗ [ψ(Y,X)ψ(Y,X)′]}−1

× E∗
{
ψ(Y,X)

[
t(0)(U,X|s) + ε1/2trem(U,X|s)

]2
R1 [t(U,X|s)]

}
.

(S8)

Thus, as ε→ 0 we have

λ(1)
rem(s, x) = −2[φ′′(1)]2R1(0)

Var∗

[
γ̃(Y,X)− δ̃(U,X)− λ′ ψ̃(Y,X)

∣∣∣X = x
]

Var∗

[
γ̃(Y,X)− δ̃(U,X)− λ′ ψ̃(Y,X)

] +O(ε1/2),

λ(2)
rem(s) = − 1

2κ
E∗
[
t(0)(U,X|s)

]3
R2(0) +O(ε1/2),

λ(3)
rem(s) = −φ′′(1) {E∗ [ψ(Y,X)ψ(Y,X)′]}−1 E∗

{
ψ(Y,X)

[
t(0)(U,X|s)

]2}
R1(0) +O(ε1/2).

(S9)

Notice that λ(1)
rem(s, x), λ(2)

rem(s), λ(3)
rem(s) also appear implicitly on the right-hand sides of the

equations (S8), because trem(u, x|s) depends on those parameters, and (S8) is therefore a

system of equations for λ(1)
rem(s, x), λ(2)

rem(s), λ(3)
rem(s). Our assumptions guarantee that the

system (S8) has a solution for sufficiently small ε, as will be explained below for the two

different cases distinguished in the lemma.

# Proof for case (i): The assumptions for this case guarantee that t(u, x|s) is uniformly

bounded over u and x. Part (i) of Lemma S3 guarantees existence of c1 > 0, c2 > 0, η > 0

such that for all t ∈ [−η, η] we have |R1(t)| ≤ c1 and |R2(t)| ≤ c2. For sufficiently small ε

we have t(u, x|s) ∈ [−η, η] for all u and x, implying that as ε→ 0 there exists a solution of

(S8) that satisfies (S9), which in particular implies

sup
x∈X

∣∣∣λ(1)(s, x)
∣∣∣ = O(1), λ(2)(s) = O(1), λ(3)(s) = O(1), (S10)

and by construction the conditions (S7) are satisfied for that solution. Thus, for sufficiently

small ε the t(u, x|s) defined above satisfies the conditions of Lemma S2. Applying that

lemma we thus obtain that, for sufficiently small ε, we have

bε(γ) = max
s∈{−1,1}

{
s E∗

[
[γ(Y,X)− δ(U,X)] ρ [t(U,X|s)]

]}
.
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Again applying the expansion for ρ(t) in (S4), and part (i) of Lemma S3 we thus obtain that

bε(γ) = max
s∈{−1,1}

{sE∗ [γ(Y,X)− δ(U,X)]}

+ ε1/2
{

2

φ′′(1)
Var∗

[
γ̃(Y,X)− δ̃(U,X)− λ′ ψ̃(Y,X)

]}1/2

+O(ε)

= |E∗ [γ(Y,X)− δ(U,X)]|+ ε1/2
{

2

φ′′(1)
Var∗

[
γ̃(Y,X)− δ̃(U,X)− λ′ ψ̃(Y,X)

]}1/2

+O(ε).

(S11)

This is what we wanted to show.

# Proof for case (ii): In this case, according to part (ii) of Lemma S3 the functions R1(t)

and R2(t) are continuous and bounded over all t ∈ R. In addition, we have assumed that

E∗ |γ(Y,X)− δ(U,X)|3 < ∞, and E∗ |ψ(Y,X)|3 < ∞, which guarantees that all of the

expectations in (S8) are finite. We therefore again conclude that for small ε the equations

(S8) have a solution such that (S10) holds. The remainder of the proof is equivalent to the

proof of part (i), that is, we again apply Lemma S2 and Lemma S3 to obtain (S11).

S1.2 Proof of Theorem S1 (containing Theorem 1 as a special
case)

# Part (i): We first want to show that bε(γ
P
β,σ∗

) ≤ bε(γ) +O(ε). By applying Lemma S1 to

both γβ,σ∗(y, x) and γP
β,σ∗

(y, x) = Epβ,σ∗ [δβ(U,X) |Y = y,X = x] we obtain, as ε→ 0,

bε(γ) =
∣∣EP (β,fσ∗ )[γβ,σ∗(Y,X)]− Efσ∗ [δβ(U,X)]

∣∣
+ ε

1
2

{
2

φ′′(1)
EP (β,fσ∗ )

[(
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

)2
]} 1

2

+O(ε),

bε(γ
P) = ε

1
2

{
2

φ′′(1)
EP (β,fσ∗ )

[(
γP
β,σ∗(Y,X)− δβ(U,X)

)2
]} 1

2

+O(ε), (S12)

where

λ =
{
EP (β,fσ∗ )

[
ψ̃β,σ∗(Y,X) ψ̃β,σ∗(Y,X)′

]}−1

EP (β,fσ∗ )

[(
γβ,σ∗(Y,X)− δβ(U,X)

)
ψ̃β,σ∗(Y,X)

]
,

Here, to simplify bε(γ
P) we used that by the law of iterated expectations we have that

EP (β,fσ∗ )[γ
P
β,σ∗

(Y,X)] − Efσ∗ [δβ(U,X)] = 0 (that is, the first term in bε(γ) is not present in

bε(γ
P)) and also EP (β,fσ∗ )

[(
γP
β,σ∗

(Y,X)− δβ(U,X)
)
ψ̃β,σ∗(Y,X)

]
= 0 (that is, the vector λ is

equal to zero for γP). We also use that under the reference model γ̃β,σ∗(Y,X)− δ̃β(U,X)−

λ′ ψ̃β,σ∗(Y,X) has zero mean, implying that its variance equals its second moment.
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For any γβ,σ∗(y, x) with EP (β,fσ∗ )[γβ,σ∗(Y,X)]−Efσ∗ [δβ(U,X)] 6= 0 we have bε(γ
P) ≤ bε(γ)

for sufficiently small ε, and the statement of the theorem thus holds in that case. In the

following we therefore consider the case that EP (β,fσ∗ )[γβ,σ∗(Y,X)]−Efσ∗ [δβ(U,X)] = 0. The

expression for bε(γ) then simplifies to

bε(γ) = ε
1
2

{
2

φ′′(1)
EP (β,fσ∗ )

[(
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

)2
]} 1

2

+O(ε).

Again applying the law of iterated expectations we find that

EP (β,fσ∗ )

[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

] [
γP
β,σ∗(Y,X)− δβ(U,X)

]
= EP (β,fσ∗ ) [−δβ(U,X)]

[
γP
β,σ∗(Y,X)− δβ(U,X)

]
= EP (β,fσ∗ )

[
γP
β,σ∗(Y,X)− δβ(U,X)

] [
γP
β,σ∗(Y,X)− δβ(U,X)

]
= EP (β,fσ∗ )

[
γP
β,σ∗(Y,X)− δβ(U,X)

]2
.

Using this we obtain

EP (β,fσ∗ )

{[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

]
−
[
γP
β,σ∗(Y,X)− δβ(U,X)

]}2

= EP (β,fσ∗ )

[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

]2

+ EP (β,fσ∗ )

[
γP
β,σ∗(Y,X)− δβ(U,X)

]2
− 2EP (β,fσ∗ )

[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

] [
γP
β,σ∗(Y,X)− δβ(U,X)

]
= EP (β,fσ∗ )

[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

]2

− EP (β,fσ∗ )

[
γP
β,σ∗(Y,X)− δβ(U,X)

]2
.

(S13)

Since EP (β,fσ∗ )

{[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

]
−
[
γP
β,σ∗

(Y,X)− δβ(U,X)
]}2

≥ 0

we thus conclude that

EP (β,fσ∗ )

[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

]2

≥ EP (β,fσ∗ )

[
γP
β,σ∗(Y,X)− δβ(U,X)

]2
,

and therefore we obtain that

bε(γ
P
β,σ∗) ≤ bε(γ) +O(ε).

This is the first statement of the theorem. This concludes the proof of part (i) of Theorem S1,

of which Theorem 1 in the main text is a special case.

# Part (ii): Next, let γβ,σ∗(y, x) be such that

bε(γ) = bε(γ
P
β,σ∗) + o(ε1/2). (S14)
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Then, the specification error expansions in (S12) are still valid, and using those we conclude

that we must have

EP (β,fσ∗ )[γβ,σ∗(Y,X)− δβ(U,X)] = o(1), (S15)

because otherwise that term dominates all other terms in (S14). We also conclude that we

must have

EP (β,fσ∗ )

[(
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

)2
]

≤ EP (β,fσ∗ )

[(
γP
β,σ∗(Y,X)− δβ(U,X)

)2
]

+ o(1)

for (S14) to hold. Furthermore, the calculation in (S13) is still valid here, and the inequality

in the last display can therefore equivalently be rewritten as

EP (β,fσ∗ )

{[
γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X)

]
−
[
γP
β,σ∗(Y,X)− δβ(U,X)

]}2

= o(1),

where we write = instead of ≤, because the left hand side expression is non-negative. Ap-

plying Markov’s inequality we thus find that

γ̃β,σ∗(Y,X)− δ̃β(U,X)− λ′ ψ̃β,σ∗(Y,X) = γP
β,σ∗(Y,X)− δβ(U,X) + oP (β,fσ∗ )(1).

Defining

ω(x) := EP (β,fσ∗ )

[
γβ,σ∗(Y,X)− δβ(U,X)− λ′ ψβ,σ∗(Y,X)

∣∣X = x
]

− EP (β,fσ∗ )

[
γβ,σ∗(Y,X)− δβ(U,X)− λ′ ψβ,σ∗(Y,X)

]
,

we therefore obtain

γβ,σ∗(Y,X) = γP
β,σ∗(Y,X) + ω(X) + λ′ ψβ,σ∗(Y,X)

+ EP (β,fσ∗ )

[
γβ,σ∗(Y,X)− δβ(U,X)− λ′ ψβ,σ∗(Y,X)

]
+ oP (β,fσ∗ )(1)

= γP
β,σ∗(Y,X) + ω(X) + λ′ ψβ,σ∗(Y,X) + oP (β,fσ∗ )(1),

where in the last step we have used (S15) and EP (β,fσ∗ )[ψβ,σ∗(Y,X)] = 0. Finally, notice that

by construction we have

EfX [ω(X)] = 0.
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S1.3 Proof of Theorem 2

We are going to show Theorem 2, which we restate here.

Theorem. Assume that EP (β,fσ∗ )ψβ,σ∗(Y,X) = 0, φ(t) = 1
2
(t−1)2, and that γβ,σ∗(Y,X) and

δβ(U,X) have finite second moments under the reference model. Then, for 0 < ε ≤ ε, we

have

bε(γ
P
β,σ∗) ≤ bε(γ),

with γP
β,σ∗

(y, x) given by (S1) and ε given by (18).

Proof of Theorem 2. In the following proof, we again omit the arguments β, σ∗. By

defining Q(γ, f0) := EP (β,f0)[γβ,σ∗(Y,X)]− Ef0 [δβ(U,X)] we can rewrite (16) as

bε(γ) = sup
f0∈Γε

|Q(γ, f0)| .

Using that φ(t) = 1
2
(t − 1)2, we find that the two worst-case distributions that maximize

(s = +) and minimize (s = −) the function Q(γP, f0) over f0 ∈ Γε are given by

f
(s)
0 (u|x) = fσ∗(u|x)

[
1 + s (2ε)1/2 γP(g(u, x), x)− δ(u, x)

{Var∗ [γP(Y,X)− δ(U,X)]}1/2

]
. (S16)

Notice that our condition ε ≤ ε guarantees that f
(s)
0 (u|x) ≥ 0 for all u, x, s.

We refer to Lemma S2 above for a more general derivation of the worst-case distribution

(S16). The results of Lemma S2 simplifies here, because we assume that φ(t) = 1
2
(t − 1)2

in the current theorem, which implies that the function ρ(t) defined in (S2) is now given by

ρ(t) = max(0, 1 + t), and we are also only interested in the worst-case distribution f
(s)
0 (u|x)

at γ = γP. Using (S16) we find that

bε(γ
P) = Q

(
γ, f

(+)
0 r

)
= −Q

(
γ, f

(−)
0 r

)
=
{

2 εVar∗
[
γP(Y,X)− δ(U,X)

]}1/2
. (S17)

For a given γ(y, x) we set

sγ :=

{
+ if E∗[γ(Y,X)− δ(U,X)] ≥ 0,
− otherwise.

Using that E∗[γP(Y,X)− δ(U,X) |Y = y,X = x] = 0, we then find that

E∗
{
γ(Y,X)

[
γP(Y,X)− δ(U,X)

]}
= E∗

{
γP(Y,X)

[
γP(Y,X)− δ(U,X)

]}
= 0. (S18)
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We now calculate

bε(γ) = sup
f0∈Γε

|Q(γ, f0)|

≥
∣∣∣Q(γ, f (sγ)

0

)∣∣∣
=

∣∣∣∣∣E∗[γ(Y,X)− δ(U,X)] + sγ (2ε)1/2 E∗
{

[γ(Y,X)− δ(U,X)]
[
γP(Y,X)− δ(U,X)

]}
{Var∗ [γP(Y,X)− δ(U,X)]}1/2

∣∣∣∣∣
=

∣∣∣∣∣E∗[γ(Y,X)− δ(U,X)] + sγ (2ε)1/2 E∗
{[
γP(Y,X)− δ(U,X)

] [
γP(Y,X)− δ(U,X)

]}
{Var∗ [γP(Y,X)− δ(U,X)]}1/2

∣∣∣∣∣
=
∣∣E∗[γ(Y,X)− δ(U,X)] + sγ bε(γ

P)
∣∣

= |E∗[γ(Y,X)− δ(U,X)]|+ bε(γ
P)

≥ bε(γ
P),

where the first step is the definition of bε(γ), the second step is a property of the supremum,

the third step uses (S16), the fourth step uses (S18), the fifth step uses (S17), and the sixth

step uses that E∗[γ(Y,X)−δ(U,X)] and sγ have the same sign. The result in the last display

is exactly the statement of the theorem.

S1.4 Proof of Theorem 3

We are going to show Theorem 3, which we restate here.

Theorem. Let γP
β,σ∗

as in (S1). Then, for all ε > 0,

bε(γ
P
β,σ∗) ≤ 2 inf

γ
bε(γβ,σ∗).

The following lemma is useful for the proof of this theorem (Theorem 3 in the main text).

Lemma S4. Let ε ≥ 0, β ∈ B, σ∗ ∈ S, and let ζ : U × X → R. Then we have

sup
f0∈Γε

∣∣EP (β,f0)

{
Epβ,σ∗ [ζ(U,X) |Y,X]

}∣∣ ≤ sup
f0∈Γε

∣∣EP (β,f0) [ζ(U,X)]
∣∣ .

The proof of this lemma is given in Section S2. Notice that both Theorem 3 and Lemma S4

require that φ(r) is convex with φ(1) = 0, but they do not require φ′′(1) > 0. For example,

φ(r) = |r − 1|/2 is allowed here, which gives the total variation distance for d(f0, fσ∗).
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Proof of Theorem 3. By definition we have

bε(γ) = sup
f0∈Γε

∣∣EP (β,f0)[γβ,σ∗(Y,X)− δβ(U,X)]
∣∣ ,

bε(γ
P) = sup

f0∈Γε

∣∣EP (β,f0)[γ
P
β,σ∗(Y,X)− δβ(U,X)]

∣∣ .
By writing γP

β,σ∗
(Y,X)− δβ(U,X) = γβ,σ∗(Y,X)− δβ(U,X)−

[
γβ,σ∗(Y,X)− γP

β,σ∗
(Y,X)

]
we

obtain

bε(γ
P) = sup

f0∈Γε

∣∣EP (β,f0)

[
γβ,σ∗(Y,X)− δβ(U,X)

]
− EP (β,f0)

[
γβ,σ∗(Y,X)− γP

β,σ∗(Y,X)
]∣∣

≤ bε(γ) + sup
f0∈Γε

∣∣EP (β,f0)

[
γβ,σ∗(Y,X)− γP

β,σ∗(Y,X)
]∣∣

= bε(γ) + sup
f0∈Γε

∣∣EP (β,f0)

{
Epβ,σ∗

[
γβ,σ∗(gβ(U,X), X)− δβ(U,X) |Y,X

]}∣∣
≤ bε(γ) + sup

f0∈Γε

∣∣EP (β,f0)[γβ,σ∗(Y,X)− δβ(U,X)]
∣∣ = 2 bε(γ),

where in the second-to-last step we have used Lemma S4 with ζ(u, x) = γβ,σ∗(gβ(u, x), x)−

δβ(u, x). We have thus shown that bε(γ
P) ≤ 2 bε(γ) holds for any function γβ,σ∗(y, x), which

implies that

bε(γ
P) ≤ 2 inf

γ
bε(γ).

S2 Proofs of Technical Lemmas

Proof of Lemma S2. In the following we assume that fσ∗(u|x)fX(x) > 0 for all (u, x) in

the joint domain of (U,X). This is without loss of generality, because we can define the joint

domain of (U,X) such that this is the case. With a slight abuse of notation we continue to

write U × X for the joint domain, even though this need not be a product set.

To account for the absolute value in the definition of bε(γ) in (16) we let

bε(γ, s) = sup
f0∈Γε

{
sEP (β,f0)

[
γβ,σ∗(Y,X)− δβ(U,X)

]}
,

for s ∈ {−1, 1}. We then have bε(γ) = maxs∈{−1,1} bε(γ, s). In the following we drop

the arguments β and σ∗ everywhere, that is, we simply write g(u, x), γ(y, x), δ(u, x),

f∗(u|x), ψ(y, x), λ(1)(s, x), λ(2)(s), λ(3)(s) instead of gβ(u, x), γβ,σ∗(y, x), δβ(u, x), fσ∗(u|x),

ψβ,σ∗(y, x), λ
(1)
β,σ∗

(s), λ
(2)
β,σ∗

(s), λ
(3)
β,σ∗

(s). The optimal f0(u|x) in the definition of bε(γ, s) solves,

12



for u, x ∈ U × X almost surely under the reference distribution,

f̃0(u|x; s) = argmax
f0∈[0,∞)

{
s [γ(g(u, x), x)− δ(u, x)] fX(x) f0 − µ1(s, x) fX(x) f0

− µ2(s)φ

(
f0

f∗(u|x)

)
f∗(u|x) fX(x)− µ′3(s)ψ(g(u, x), x) fX(x) f0

}
, (S19)

where µ1(s, x) ∈ R, µ2(s) > 0, µ3(s) ∈ Rdimψ are Lagrange multipliers, which we choose to

reparameterize as follows

µ1(s, x) = −λ
(1)(s, x)

λ(2)(s)
, µ2(s) =

1

λ(2)(s)
, µ3(s) = −λ

(3)(s)

λ(2)(s)
.

Those (reparameterized) Lagrange multipliers need to be chosen such that the constraints∫
U×X

f̃0(u|x; s) fX(x) du dx = 1,∫
U×X

φ

(
f̃0(u|x; s)

f∗(u|x)

)
f∗(u|x) fX(x) du dx = ε,∫

U×X
ψ(g(u, x), x) f̃0(u|x; s) fX(x) du dx = 0 (S20)

are satisfied. We need λ(2)(s) > 0 because the second constraint here is actually an inequality

constraint (≤ ε). Our assumptions guarantee that f∗(u|x) > 0 and fX(x) > 0. We can

therefore rewrite (S19) as follows,

f̃0(u|x; s)

f∗(u|x)
= argmax

r≥0
{r t(u, x|s)− φ(r)} ,

where r = f0 f∗(u|x), the objective function was multiplied with fσ∗(u|x)fX(x) (which does

not change the value of the argmax), and t(u, x|s) = tβ,σ∗(u, x|s) is defined in the statement

of the lemma. Comparing the last display with the definition of ρ(t) in (S2) we find that if

ρ [t(u, x|s)] <∞, then

f̃0(u|x; s) = f∗(u|x) ρ [t(u, x|s)] .

The condition ρ [t(u, x|s)] <∞ is implicitly imposed in the statement of the lemma, because

otherwise we could not have EP (β,fσ∗ ) ρ [tβ,σ∗(U,X|s)] = 1. Using the result in the last display

we find that the constraints (S20) are exactly the conditions (S3) imposed in the lemma.

13



Under the conditions of the lemma we therefore have

bε(γ, s) = sup
f0∈Γε

{
sEP (β,f0) [γ(Y,X)− δ(U,X)]

}
=

∫
U×X

[γ(g(u, x), x)− δ(u, x)] f̃0(u|x; s) fX(x) du dx

= s EP (β,fσ∗ )

{
[γ(Y,X)− δ(U,X)] ρ [t(U,X|s)]

}
,

and from bε(γ) = maxs∈{−1,1} bε(γ, s) we thus obtain the statement of the lemma.

Proof of Lemma S3. # Part (i): For ν = 0 we have φ = φ. Our assumptions imply that

there exists τ > 0 such that φ′(r), φ′′(r), φ′′′(r) and φ′′′′(r) are all uniformly bounded over

r ∈ [1−τ , 1+τ ]. We can choose η > 0 such that [ρ(−η), ρ(η)] ⊂ [1−τ , 1+τ ]. The conjugate

of the convex function φ : R→ R is given by

φ∗(t) = max
r≥0

[r t− φ(r)] = ρ(t) t− φ(ρ(t)). (S21)

We have ρ(t) = φ′∗(t), which is the inverse function of φ′(r); that is, φ′(ρ(t)) = t. We can

express all derivatives of φ∗ in terms of derivatives of φ, for example, φ′′∗(t) = 1/φ′′(ρ(t)) and

φ′′′∗ (t) = −φ′′′(ρ(t))/[φ′′(ρ(t))]3. A Taylor expansion of ρ(t) = φ′∗(t) around t = 0 = φ′(1)

reads

ρ(t) = 1 +
t

φ′′(1)
+ t2R1(t),

where by the mean-value formula for the remainder term we have

|R1(t)| ≤ 1

2
sup

t′∈[−η,η]

|φ′′′∗ (t′)| ≤ 1

2
sup

r∈[1−τ ,1+τ ]

∣∣∣∣ φ′′′(r)[φ′′(r)]3

∣∣∣∣︸ ︷︷ ︸
=:c1<∞

.

Similarly, a Taylor expansion of φ(ρ(t)) = t ρ(t)− φ∗(t) around t = 0 reads

φ(ρ(t)) =
t2

2φ′′(1)
+ t3R2(t),

where again by the mean-value formula for the remainder we have

|R2(t)| ≤ 1

6
sup

r∈[1−τ ,1+τ ]

∣∣∣∣− 2φ′′′(r)

[φ′′(r)]3
+

3φ′(r)[φ′′′(r)]2

[φ′′(r)]5
− φ′(r)φ′′′′(r)

[φ′′(r)]4

∣∣∣∣︸ ︷︷ ︸
=:c2<∞

.

Continuity of R1(t) and R2(t) in a neighborhood of t = 0 is also guaranteed by φ′(r) being

four times continuously differentiable in neighborhood around r = 1. This concludes the

proof of part (i).
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# Part (ii): For ν > 0 the function φ(r) = φ(r) + ν (r− 1)2 still satisfies all the assumptions

of part (i) of the lemma, that is, we can apply part (i) to find that there exists c̃1 > 0, c̃2 > 0

and η > 0 such that for all t ∈ [−η, η] we have

|R1(t)| ≤ c̃1 t
2, and |R2(t)| ≤ c̃2 t

3. (S22)

What is left to show here is that there exists constant c1 > 0 and c2 > 0 such that (S5) also

holds for t < −η and for t > η.

We have φ′(r) = φ
′
(r)+ν(r−1). Plugging in r = ρ(t) we have φ′(ρ(t)) = t, and therefore

t = φ
′
(ρ(t))+ν[ρ(t)−1]. Our assumptions imply that φ

′
(ρ(t)) > 0 for t > 0 and φ

′
(ρ(t)) < 0

for t < 0. We therefore find that

|ρ(t)− 1| =

∣∣∣t− φ′(ρ(t))
∣∣∣

ν
≤ |t|

ν
. (S23)

Using (S22) and (S23), and choosing c1 = max {c̃1, [1/ν + 1/φ′′(1)]/η}, we obtain∣∣∣∣ρ(t)− 1− t

φ′′(1)

∣∣∣∣ ≤ c1 t
2,

for all t ∈ R. This is the first inequality that we wanted to show.

Using again the convex conjugate defined in (S21) we have

φ(ρ(t)) = t ρ(t)− φ∗(t) = t ρ(t)−max
r≥0

[r t− φ(r)] ≤ t[ρ(t)− 1] = |t| |ρ(t)− 1| ,

where in the second to last step we used that r = 1 is one possible choice for r ≥ 0, and we

have φ(1) = 0, and in the last step we used that sign[ρ(t) − 1] = sign(t). Our assumptions

imply that φ(r) ≥ 0, that is, |φ(r)| = φ(r). The result in the last display together with (S23)

therefore give

|φ(ρ(t))| ≤ t2

ν
,

for all t ∈ R. Using this and (S22), and choosing c2 = max {c̃2, [1/ν + 1/{2φ′′(1)}]/η}, we

thus obtain ∣∣∣∣φ(ρ(t))− t2

2φ′′(1)

∣∣∣∣ ≤ c2 t
3,

for all t ∈ R, which is the second inequality that we wanted to show. Continuity of R1(t)

and R2(t) in R is also guaranteed by φ′(r) being four times continuously differentiable in

r ∈ (0,∞). This concludes the proof of part (ii).
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Proof of Lemma S4. Let f0 ∈ Γε. Remember the definition of the posterior density

pβ,σ∗(u | y, x) in (13). Define

f̃0(u|x) := EP (β,f0) [pβ,σ∗(u |Y, x)] =

∫
U
pβ,σ∗(u | gβ(ũ, x), x) f0(ũ|x) dũ.

Then, for any x ∈ X we have f̃0(u|x) ≥ 0, for all u ∈ U , and
∫
U f̃0(u|x)du = 1; that is,

f̃0(u|x) is a probability density over U . Furthermore, by construction we have

EP (β,f0)

{
Epβ,σ∗ [ζ(U,X) |Y,X]

}
= EP (β,f̃0) [ζ(U,X)] . (S24)

We also find that

EP (β,f̃0)[ψβ,σ∗(Y,X)] = EP (β,f0)

{
Epβ,σ∗

[
ψβ,σ∗(Y,X) |Y,X

]}
= EP (β,f0)[ψβ,σ∗(Y,X)] = 0.

(S25)

Furthermore, we have

d(f̃0, fσ∗) =

∫
X

∫
U
φ

(
f̃0(u |x)

fσ∗(u |x)

)
fσ∗(u |x)fX(x) du dx

=

∫
X

∫
U
φ

(∫
U pβ,σ∗(u | gβ(ũ, x), x) f0(ũ|x) dũ

fσ∗(u |x)

)
fσ∗(u |x)fX(x) du dx

=

∫
X

∫
U
φ

(∫
U

f0(ũ|x)

fσ∗(ũ |x)
Kβ,σ∗(ũ|u, x) dũ

)
fσ∗(u |x)fX(x) du dx,

where we defined

Kβ,σ∗(ũ|u, x) =
fσ∗(ũ |x) pβ,σ∗(u | gβ(ũ, x), x)

fσ∗(u |x)
.

Using the definition of pβ,σ∗(u | y, x) one can verify that Kβ,σ∗(ũ|u, x) ≥ 0, for all ũ ∈ U , and∫
U Kβ,σ∗(ũ|u, x)dũ =

EP (β,fσ∗ )[pβ,σ∗ (u |Y,x)]
fσ∗ (u |x)

= 1, almost surely (under P (β, fσ∗)) for u ∈ U and

x ∈ X . Thus, Kβ,σ∗(ũ|u, x) is a probability density over ũ ∈ U , for all u, x. Also using that

φ(r) is convex, we can therefore apply Jensen’s inequality to obtain

d(f̃0, fσ∗) ≤
∫
X

∫
U

∫
U
φ

(
f0(ũ|x)

fσ∗(ũ |x)

)
Kβ,σ∗(ũ|u, x) dũ fσ∗(u |x)fX(x) du dx

=

∫
X

∫
U
φ

(
f0(ũ|x)

fσ∗(ũ |x)

)[∫
U
fσ∗(u |x)Kβ,σ∗(ũ|u, x) du

]
︸ ︷︷ ︸

=fσ∗ (ũ |x)

fX(x) dũ dx

= d(f0, fσ∗) ≤ ε. (S26)

Because f̃0 satisfies (S25) and (S26) we thus have f̃0 ∈ Γε. We have thus shown that for

every f0 ∈ Γε there exists f̃0 ∈ Γε such that (S24) holds. Let Γ̃ε be the set of all such f̃0

16



obtained for an f0 ∈ Γε. Since Γ̃ε ⊂ Γε we find that

sup
f0∈Γε

∣∣EP (β,f0)

{
Epβ,σ∗ [ζ(U,X) |Y,X]

}∣∣ = sup
f̃0∈Γ̃ε

∣∣∣EP (β,f̃0) [ζ(U,X)]
∣∣∣ ≤ sup

f0∈Γε

∣∣EP (β,f0) [ζ(U,X)]
∣∣ .

S3 Robustness in prediction

Under squared loss, we wish to find a predictor γβ̂,σ̂(Yi, Xi), for some function γ, such that

the worst-case mean squared prediction error is minimum. That is, our goal is to minimize

eε(γ) = sup
f0∈Γε

EP (β,f0) [(δβ(U,X)− γβ,σ∗(Y,X))2]

with respect to γ. Similarly to our measure of worst-case specification error, here the mean

squared prediction error is asymptotic, hence well-suited for settings with a large cross-

section (e.g., settings with many teachers).

We first state the following local result, which is a direct generalization of Lemma 1.

Lemma S5. In addition to defining ψ̃(y, x) = ψ(y, x) − E∗
[
ψ(Y,X)

∣∣X = x
]
, let γ̃(y, x) =

γ(y, x) − E∗
[
γ(Y,X)

∣∣X = x
]

and δ̃(u, x) = δ(u, x) − E∗
[
δ(U,X)

∣∣X = x
]
. Suppose that

φ(r) = φ(r) + ν (r − 1)2, with ν ≥ 0, and a function φ(r) that is four times continuously

differentiable with φ(1) = 0 and φ
′′
(r) > 0, for all r ∈ (0,∞). Assume EP (β,fσ∗ )ψβ,σ∗(Y,X) =

0 and EP (β,fσ∗ )

[
ψ̃β,σ∗(Y,X)ψ̃β,σ∗(Y,X)′

]
> 0. Furthermore, assume that one of the following

holds:

(i) ν = 0, and the functions
∣∣γβ,σ∗(y, x)

∣∣, |δβ(u, x)| and
∣∣ψβ,σ∗(y, x)

∣∣ are bounded over the

domain of Y , U , X.

(ii) ν > 0, and EP (β,fσ∗ )

∣∣γβ,σ∗(Y,X)− δβ(U,X)
∣∣6 <∞, and EP (β,fσ∗ )

∣∣ψβ,σ∗(Y,X)
∣∣3 <∞.

Then, as ε→ 0 we have

eε(γ) = EP (β,fσ∗ )

[(
γβ,σ∗(Y,X)− δβ(U,X)

)2
]

+ ε
1
2

(
2

φ′′(1)
VarP (β,fσ∗ )

{(
γβ,σ∗(Y,X)− δβ(U,X)

)2

− EP (β,fσ∗ )

[(
γβ,σ∗(Y,X)− δβ(U,X)

)2

∣∣∣∣X]− λ′ψ̃β,σ∗(Y,X)

}) 1
2

+O(ε),

where

λ=
{
EP (β,fσ∗ )

[
ψ̃β,σ∗(Y,X)ψ̃β,σ∗(Y,X)′

]}−1

EP (β,fσ∗ )

[(
γβ,σ∗(Y,X)−δβ(U,X)

)2
ψ̃β,σ∗(Y,X)

]
.
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Let γP as in (17), so γP
β̂,σ̂

(Yi, Xi) is the empirical Bayes estimate of δβ(Ui, Xi). Under cor-

rect specification of the reference density fσ, the posterior mean γP
β,σ∗

(Yi, Xi) is the minimum

mean squared error predictor of δβ(Ui, Xi) under squared loss. Under misspecification of fσ,

Lemma S5 implies that the leading term of the worst-case mean squared error is minimized

at γ = γP. Moreover, the lemma also implies the stronger result that the first-order term in

the expansion of the worst-case mean squared prediction error (which is a multiple of ε
1
2 ) is

also minimized at γP, provided the following condition holds almost surely:

Epβ,σ∗
[
(δβ(U,X)− γP

β,σ∗(Y,X))3 |Y,X
]

= 0. (S27)

While (S27) is restrictive in general, it is satisfied in the fixed-effects model (1), when

the researcher wishes to predict the quality αi of teacher i. Indeed, in that case (S27) is

equivalent to the posterior skewness of αi being zero, when using the normal reference model

as the prior. Since the normal distribution is symmetric, (S27) is satisfied, and the empirical

Bayes estimator γP
β̂,σ̂

(Yi, Xi) = µ̂α + ρ̂(Y i − µ̂α) has minimum worst-case mean squared

prediction error, up to second-order terms in ε
1
2 .

We also have a fixed-ε bound in the spirit of Theorem 3.

Theorem S2. Let γP
β,σ∗

as in (S1). Then, for all ε > 0,

eε(γ
P
β,σ∗) ≤ 4 inf

γ
eε(γβ,σ∗).

Theorem S2 shows that EB estimators are optimal, up to a factor of at most four, in

terms of worst-case mean squared prediction error. In model (1), when ε1, ..., εJ are normally

distributed and α1, ..., αN are parameters belonging to an L2 ball, empirical Bayes James-

Stein estimators are known to be optimal in terms of asymptotic minimax mean squared

error since they achieve the Pinsker bound (see Wasserman, 2006, Chapter 7). Here, by

contrast, we consider a worst case computed in a set of unrestricted, possibly non-normal

joint distributions of α, ε1, ..., εJ .

Proof of Lemma S5. This statement of the lemma is obtained from Lemma S1 by replac-

ing (γβ,σ∗(Y,X) − δβ(U,X)) by
(
γβ,σ∗(Y,X)− δβ(U,X)

)2
. The proof is obtained by the

same replacement from the proof of Lemma S1.
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Proof of Theorem S2. By definition we have

eε(γ) = sup
f0∈Γε

EP (β,f0) [(δβ(U,X)− γβ,σ∗(Y,X))2],

eε(γ
P) = sup

f0∈Γε

EP (β,f0) [(δβ(U,X)− γP
β,σ∗(Y,X))2].

Using that (a − b)2 ≤ 2(a2 + b2) with a = δβ(U,X) − γβ,σ∗(Y,X) and b = γP
β,σ∗

(Y,X) −

γβ,σ∗(Y,X) we obtain

eε(γ
P) ≤ 2 sup

f0∈Γε

∣∣∣EP (β,f0)

[(
δβ(U,X)− γβ,σ∗(Y,X)

)2
]

+ EP (β,f0)

[(
γP
β,σ∗(Y,X)− γβ,σ∗(Y,X)

)2
]∣∣∣

≤ 2eε(γ) + 2 sup
f0∈Γε

∣∣∣EP (β,f0)

[(
γβ,σ∗(Y,X)− γP

β,σ∗(Y,X)
)2
]∣∣∣ .

We furthermore have

sup
f0∈Γε

∣∣∣EP (β,f0)

[(
γβ,σ∗(Y,X)− γP

β,σ∗(Y,X)
)2
]∣∣∣

= sup
f0∈Γε

∣∣∣EP (β,f0)

{[
Epβ,σ∗

(
γβ,σ∗(Y,X)− δβ(U,X) |Y,X

)]2}∣∣∣
≤ sup

f0∈Γε

∣∣∣EP (β,f0)

{
Epβ,σ∗

[(
γβ,σ∗(Y,X)− δβ(U,X)

)2 |Y,X
]}∣∣∣

≤ sup
f0∈Γε

∣∣∣EP (β,f0)

[(
γβ,σ∗(Y,X)− δβ(U,X)

)2
]∣∣∣ = eε(γ),

where in the first step we used the definition of γP
β,σ∗

(y, x), in the second step we applied

the Cauchy-Schwarz inequality, and in the last line we used Lemma S4 and the definition of

eε(γ). Combining the results of the last two displays we obtain that

eε(γ
P
β,σ∗) ≤ 4 inf

γ
eε(γβ,σ∗).

S4 Simulations

Here we provide details on the simulations summarized in Subsection 4.1. We consider four

data generating processes (DGP) based on model (1). We use a standard normal as the

(possibly misspecified) reference model for αi. In the first two DGP, we draw αi from a

standard normal distribution. Hence, the reference normal model for αi is correctly specified

in this case. We compare two specification for εij. In DGP 1, εij are i.i.d. standard normal.

In DGP 2, we model heteroskedastic errors as N (0, s(αi)
2), where s(αi) = 1{αi > 0} × .1 +
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1{αi ≤ 0}×1.41, so the variance of errors is the same as in DGP 1. In the next two DGP, we

draw αi from a Beta distribution with parameters (11, 1), shifted and rescaled such that αi

has mean 0 and variance 1. This distribution is skewed to the left, and the reference normal

model for αi is thus misspecified. In DGP 3, εij are i.i.d. standard normal. In DGP 4, we

model heteroskedastic errors asN (0, s(αi)
2), where s(αi) = 1{αi > 0}×.1+1{αi ≤ 0}×1.61,

so the variance of errors is the same as in the other DGP.

In all DGP, we compare the performance of four estimators: the fixed-effects estimator

given by (2), the PAE given by (5), the model-based estimator given by (6), and a non-

parametric kernel deconvolution estimator with normal errors (Stefanski and Carroll, 1990).

Unlike the other three estimators, the nonparametric kernel deconvolution estimator requires

choosing a tuning parameter. We use the MISE-minimization approach of Delaigle and Gij-

bels (2004). To implement bandwidth selection and estimator, we use the codes available on

Aurore Delaigle’s page: https://researchers.ms.unimelb.edu.au/∼aurored/links.html#Code.

To estimate the variance components s2
α and s2

ε, we use a minimum-distance estimator based

on the empirical covariance matrix of the Yij. We set µα = 0 and do not estimate it.

We run 1000 simulations for n = 1000, and report estimates of Fα(a) = E[1{α ≤ a}] for

a grid of a values. We focus on bias (in absolute value), standard deviation, and root-MSE.

We vary the number of measurements by taking J ∈ {2, 20}. When J = 2, the shrinkage

factor is ρ = .67. In addition, the average value of the informativeness measure (21), over

simulations and a values, is R2 = 27%. When J = 20, the shrinkage factor is ρ = .95. In

addition, the average informativeness value is R2 = 69%.

In Figure S1, we show the results of the simulations in the cases where αi is normally

distributed. In this case, we expect the model-based estimator (in dashed lines) to be

particularly well-behaved, since it is consistent and, for a suitable weighting of the minimum-

distance estimator of s2
α and s2

ε, efficient as well. In DGP 1, εij are normal homoskedastic,

so both the PAE (in solid) and the deconvolution estimator (in dotted) are consistent for

fixed J as n tends to infinity. In the top two panels of Figure S1, we see that the bias of

these two estimators is indeed small. Yet, the model-based estimator has the smallest bias,

as well as the smallest variance and root-MSE.

In the bottom two panels of Figure S1, εij are heteroskedastic, so for fixed J as n tends

to infinity neither the PAE nor the deconvolution and fixed-effects estimators are consistent,

yet the model-based estimator remains consistent in this case. We see that the PAE and the
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Figure S1: Monte Carlo results for Fα(a) = E[1{α ≤ a}] in the fixed-effects model Yij =
αi + εij, when the distribution of α is correctly specified

Bias Std RMSE
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(2) αi ∼ iidN (0, 1), εij ∼ iidN (0, 1), J = 20

-4 -3 -2 -1 0 1 2 3 4

threshold a

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

b
ia

s

-4 -3 -2 -1 0 1 2 3 4

threshold a

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

s
td

-4 -3 -2 -1 0 1 2 3 4

threshold a

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

rm
s
e

(3) αi ∼ iidN (0, 1),
εij
s(αi)
∼ iidN (0, 1), s(αi) ∈ {.1, 1.41}, J = 2
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(4) αi ∼ iidN (0, 1),
εij
s(αi)
∼ iidN (0, 1), s(αi) ∈ {.1, 1.41}, J = 20
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Notes: 1000 simulations based on the fixed-effects model (1). The left column shows the absolute

bias, the middle column shows the standard deviation, and the right column shows the root-MSE,

for four estimators: model-based (in dashed), PAE (in solid), fixed-effects (in dotted), and non-

parametric deconvolution (in dash-dotted).
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Figure S2: Monte Carlo results for Fα(a) = E[1{α ≤ a}] in the fixed-effects model Yij =
αi + εij, when the distribution of α is misspecified

Bias Std RMSE
(1) αi ∼ iidBeta (11, 1) (rescaled), εij ∼ iidN (0, 1), J = 2
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(2) αi ∼ iidBeta (11, 1) (rescaled), εij ∼ iidN (0, 1), J = 20
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(3) αi ∼ iidBeta (11, 1) (rescaled),
εij
s(αi)
∼ iidN (0, 1), s(αi) ∈ {.1, 1.61}, J = 2
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(4) αi ∼ iidBeta (11, 1) (rescaled),
εij
s(αi)
∼ iidN (0, 1), s(αi) ∈ {.1, 1.61}, J = 20
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Notes: 1000 simulations based on the fixed-effects model (1). The left column shows the absolute

bias, the middle column shows the standard deviation, and the right column shows the root-MSE,

for four estimators: model-based (in dashed), PAE (in solid), fixed-effects (in dotted), and non-

parametric deconvolution (in dash-dotted).
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model-based estimator behave comparably to the case of DGP 2, with rather small biases

and root-MSE, with smallest bias and root-MSE achieved by the model-based estimator.

However, the performance of the deconvolution and fixed-effects estimators worsens relative

to the homoskedastic case, especially when J = 2. This suggests that the PAE is less

sensitive to this particular form of misspecification than the deconvolution and fixed-effects

estimators.

We next turn to cases where the reference distribution of αi is misspecified, which is

the focus of our theory. In Figure S2, we show the results of the simulations when αi is

distributed as a shifted and rescaled Beta with parameters (11, 1). In this case, the model-

based estimator is substantially biased, as shown by the left column in Figure S2, and the

bias remains similar when varying J and the distribution of εij. In the top two panels of

Figure S2, εij are normal homoskedastic, so the deconvolution estimator is consistent as n

tends to infinity for fixed J . When J = 2, the deconvolution estimator is biased, which is

likely to reflect the ill-posedness of the estimation problem. When J = 20, the bias and root-

MSE of the deconvolution estimator are small. Interestingly, although it has no consistency

guarantees in this DGP, the PAE performs relatively well. Indeed, while the PAE is biased

for J = 2, its variance is smaller than the one of the deconvolution estimator. In addition,

when J = 20 and the posterior conditioning is more informative, the performance of the

PAE and deconvolution estimator improves, the latter still dominating the former.

In the bottom two panels of Figure S2, εij are heteroskedastic. We see that this form of

misspecification has large effects on the performance of the deconvolution estimator, espe-

cially when J = 2 so the signal-to-noise ratio is lower. However, the performance of the PAE

is very similar to the homoskedastic case: it is slightly less biased than the model-based

estimator when J = 2, and it is substantially less biased and has small root-MSE when

J = 20. In these designs the fixed-effects estimator and the PAE perform similarly.

S5 Extensions

In this section of the appendix we consider a number of issues in turn: how to compute PAE

when they are not available in closed form, how to estimate quantities of interest that are

nonlinear in f0, whether the constant two appearing in Theorem 3 can be improved upon,

how to construct confidence intervals, how to perform specification tests, how to derive the

form of minimum-MSE estimators, and how to interpret PAE as Bayesian estimators in
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models where U has finite support.

S5.1 Computation

δ̂
P

can be computed in closed form in simple models, such as all the examples in this paper.

However, in complex models such as structural models, the likelihood function or posterior

density may not be available in closed form. A simple approach in such cases is to proceed

by simulation.

Specifically, for all i = 1, ..., n we first draw U
(s)
i , s = 1, ..., S according to fσ̂(· |Xi), and

compute Y
(s)
i = gβ̂(U

(s)
i , Xi). Then, we regress δβ̂(U

(s)
i , Xi) on Y

(s)
i , for s = 1, ..., S. Any

nonparametric/machine learning regression estimator can be used for this purpose. This

procedure requires virtually no additional coding given simulation codes for outcomes and

counterfactuals.

S5.2 Nonlinear effects

The researcher may be interested in a nonlinear function of f0. Specifically, here we abstract

from covariates X and focus on δ = ϕβ(f0), for some functional ϕβ. As an example, in the

fixed-effects model (1), δ may be the Gini coefficient of α. The analysis in the linear case

applies verbatim to this case, since under regularity conditions

ϕβ(f0) = ϕβ(fσ∗) +∇ϕβ(fσ∗)[f0 − fσ∗ ] + o(ε
1
2 ), (S28)

which is linear in f0, up to smaller-order terms. Here ∇ϕβ denotes the gradient of ϕβ(f)

with respect to f . In Appendix S6 we report model-based and posterior estimates of Gini

coefficients based on simulated data.

S5.3 The constant in Theorem 3

The binary choice model that we describe in Section S6 below is helpful to see that the

global bound in Theorem 3, which depends on the constant two, cannot be improved upon

in general. To see this, consider the binary choice model (S31) of Section S6 with three

simplifications: X consists of a single value, b is known, and σ∗ = 1 is fixed. We assume

that x′b > X ′b.

In this example, for ε large enough the worst-case blue specification errors of δ̂
M

and δ̂
P

are

BiasM = max(Φ(x′b), 1− Φ(x′b)),
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and

BiasP =
max(Φ(x′b)− Φ(X ′b), 1− Φ(x′b))

1− Φ(X ′b)
,

respectively.

From this, we first see that the specification error of the posterior estimator is smaller

than twice that of the model-based estimator. In addition, taking X ′b = 0 and x′b = η, we

have, for small η,
BiasP

BiasM

=
2(1− Φ(η))

Φ(η)

η→0→ 2.

This shows that two is indeed the smallest possible constant in Theorem 3.

S5.4 Confidence intervals

Consider first the correctly specified case. Suppose that β̂ and σ̂ are asymptotically linear

in the sense that, for some mean-zero function h, we have(
β̂
σ̂

)
=

(
β
σ∗

)
+

1

n

n∑
i=1

h(Yi, Xi) + oP (n−
1
2 ).

Then, under standard conditions (e.g., Newey and McFadden, 1994), we have

n
1
2

(
δ̂

M
− δ

δ̂
P
− δ

)
d→ N

((
0
0

)
,

(
Σ11 Σ12

Σ21 Σ22

))
. (S29)

Here, Σ11 = Var∗ (G′1h(Y,X) + E∗[δ(U,X) |X]), Σ12 = Cov∗
(
G′1h(Y,X) + E∗[δ(U,X) |X],

G′2h(Y,X)+E∗[δ(U,X) |Y,X]
)
, Σ21 = Σ12, and Σ22 = Var∗ (G′2h(Y,X) + E∗[δ(U,X) |Y,X]),

for G1 = ∂β,σEβ,σ∗ [δβ(U,X)] and G2 = Eβ,σ∗
{
∂β,σEpβ,σ∗ [δβ(U,X) |Y,X]

}
, where ∂θg(θ1)

denotes the gradient of g(θ) at θ = θ1. Note that in (S29) we allow δβ to be non-smooth in

β (e.g., an indicator function).

Consider next the locally misspecified case. A simple possibility to ensure uniform cover-

age within an ε-neighborhood is to add bε(γ) on both sides of a standard confidence interval

of δ. For example, one may construct the 95% interval[
δ̂

P
±

(
ε
1
2

{
2

φ′′(1)
Var∗ (δ(U,X)− E∗[δ(U,X) |Y,X])

} 1
2

+ 1.96n−
1
2 Σ̂

1
2
22

)]
,

for Σ̂22 = Var∗ (G′2h(Y,X) + E∗[δ(U,X) |Y,X]), where expectations and variances are taken

with respect to P (β̂, fσ̂), and δ, G2, and h are evaluated at β̂ and σ̂. Note that this confidence

interval requires setting a value for ε. Building on Hansen and Sargent (2008), Bonhomme

and Weidner (2018) propose to interpret ε by relating it to the local power of a specification

test.
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S5.5 Specification test

Using the asymptotic distribution of (δ̂
M
, δ̂

P
) under correct specification of fσ, we obtain

n
1
2

(
δ̂

P
− δ̂

M
)

d→ N
(

0, Σ̃
)
,

where Σ̃ = Var∗ (E∗[δ(U,X) |Y,X]− E∗[δ(U,X) |X] + (G2 −G1)′h(Y,X)). Hence, under

correct specification,

n
(
δ̂

P
− δ̂

M
)′

Σ̃−1
(
δ̂

P
− δ̂

M
)

d→ χ2
1.

Plugging-in a consistent empirical counterpart for Σ̃ in this expression, we obtain a simple

test of correct specification of the parametric density fσ.

S5.6 Minimum local worst-case MSE estimator

Here we explain why δ̂
MMSE

in (22) gives the estimator with minimum worst-case MSE, in

a local asymptotic framework where n tends to infinity, ε tends to zero, and nε tends to a

positive constant. We only consider the case where β and σ∗ are known and not estimated;

that is, we have ψ(y, x) = 0. Then, finding γMMSE(y, x) such that δ̂
MMSE

minimizes worst-

case MSE over f0 ∈ Γε can, to leading order in ε and n−1, be shown to be equivalent to

minimizing

[bε(γ)]2 +
1

n
Var∗[γ(Y,X)].

See Bonhomme and Weidner (2018) for details.

Next, applying Lemma 1 and noting that E∗[γ(Y,X)− δ(U,X)] = 0 is required for MSE

minimization (since adding a constant to γ(y, x) such that E∗[γ(Y,X) − δ(U,X)] = 0 has

no effect on the higher order bias terms in Lemma 1, nor on Var∗[γ(Y,X)], it is optimal to

eliminate the leading bias term E∗[γ(Y,X) − δ(U,X)] in this way), we find that to leading

order in ε and n−1 the worst-case MSE reads

2 ε

φ′′(1)
E∗
{

Var∗
[
γ(Y,X)− δ(U,X)

∣∣X]}+
1

n
E∗ {γ(Y,X)− E∗[δ(U,X)]}2 .

This expression for the approximate worst-case MSE depends on the distribution of X, which

is unknown. For the minimum local worst-case specification error result in Theorem 1, it

does not matter that the distribution of X is unknown, because that distribution is identified

from the sample as n → ∞. However, for the MSE result here we have to take a stand on

how to deal with the randomness in the observed covariates. In the following we condition on
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the observed sample of covariates, and replace all population expectations over X by sample

averages over Xi, i = 1, . . . , n. We write ÊX for those sample averages. The worst-case MSE

objective function in the last display then reads

2 ε

φ′′(1)
ÊXVar∗

[
γ(Y,X)− δ(U,X)

∣∣X]+
1

n
ÊX E∗

({
γ(Y,X)− ÊXE∗[δ(U,X)|X]

}2 ∣∣∣X) .
By the law of total variance we have

Var∗
[
γ(Y,X)− δ(U,X)

∣∣X]
= E∗

{
Var∗

[
γ(Y,X)− δ(U,X)

∣∣Y,X] ∣∣X}+ Var∗
{
E∗
[
γ(Y,X)− δ(U,X)

∣∣Y,X] ∣∣X}
= E∗

{
Var∗

[
δ(U,X)

∣∣Y,X] ∣∣X}+ Var∗
{
E∗
[
γ(Y,X)− δ(U,X)

∣∣Y,X] ∣∣X} .
In the following we can ignore the term E∗

{
Var∗

[
δ(U,X)

∣∣Y,X] ∣∣X}, because it does

not depend on γ(y, x). Then, the leading approximation to the worst-case MSE is given by

the sample average over X of

2 ε

φ′′(1)
Var∗

{
γ(Y,X)− E∗

[
δ(U,X)

∣∣Y,X] ∣∣X}+
1

n
E∗
({
γ(Y,X)− ÊXE∗[δ(U,X)|X]

}2
∣∣∣X) .

Clearly, if for any given X = x we find γ(y, x) that minimizes this objective function, then

its expected value over the sample distribution of X is also minimized. The corresponding

first-order condition for γMMSE(Y,X) reads

1

n

{
γMMSE(y, x)− ÊXE∗[δ(U,X)|X]

}
+

2 ε

φ′′(1)

{
γMMSE(y, x)− E∗

[
δ(U,X)

∣∣Y = y, X = x
]

− E∗
[
γMMSE(Y, x)

∣∣X = x
]

+ E∗
[
δ(U,X)

∣∣X = x
]}

= 0.

The solution to this first-order condition is

γMMSE(y, x) =
1

n

n∑
i=1

E∗[δ(U,X)|X = Xi]

+

(
1 +

φ′′(1)

2nε

)−1 {
E∗[δ(U,X) |Y = y,X = x]− E∗[δ(U,X) |X = x]

}
,

where we have now written ÊX as 1
n

∑n
i=1.

The corresponding minimum local MSE estimator for δ = E∗ [δβ(U,X)] is then given by

δ̂
MMSE

=
1

n

n∑
i=1

γMMSE(Yi, Xi) =

[
1−

(
1 +

φ′′(1)

2nε

)−1
]

1

n

n∑
i=1

E∗[δ(U,X)|Xi]

+

(
1 +

φ′′(1)

2nε

)−1
1

n

n∑
i=1

E∗[δ(U,X) |Y = Yi, X = Xi],

which is the result stated in equation (22) of the main text.
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S5.7 Finite support

Here we consider the case where U has finite support and takes the values u1, u2, ..., uK with

probability ω0
1, ..., ω

0
K . Here we abstract away from β, σ, and covariates X.

Injective and non-injective models. Let δk = δ(uk), and denote gk = g(uk) where

Y = g(U). Let g1, ..., gL denote the L ≤ K equivalence classes of g1, ..., gK . We will denote

as `(k) ∈ {1, ..., L} the index corresponding to the equivalence class of gk, for all k. In

addition, let n` =
∑n

i=1 1{Yi = g`} for all `, and denote ωUk = f(uk) for all k.

It is useful to distinguish two cases. When g is injective, K = L and Ep(f)[δ(U) | g(U) =

gk] = δk. So we have δ̂
P

= 1
n

∑K
k=1 nkδk. This estimator does not depend on the assumed f .

Moreover, as mink=1,...,K nk tends to infinity we have

δ̂
P p→

K∑
k=1

ω0
kδk = δ.

Hence δ̂
P

is consistent for δ, irrespective of the choice of the reference density f , provided

ωUk > 0 for all k.

When g is not injective, K 6= L and we have

δ̂
P

=
1

n

n∑
i=1

L∑
`=1

1{Yi = g`}Ep(f)[δ(U) | g(U) = g`] =
1

n

L∑
`=1

n`Ep(f)[δ(U) | g(U) = g`].

Moreover,

Ep(f)[δ(U) | g(U) = g`] =
∑K

k=1 Prp(f)(U = Uk | g(U) = g`)δk

=
∑K

k=1

ωUk 1{`(k)=`}∑K
k′=1 ω

U
k′1{`(k

′)=`}δk =: δ
U

` .

Hence,

δ̂
P

=
1

n

L∑
`=1

n`δ
U

` .

Through δ
U

` , δ̂
P

depends on the prior ωU in general, even as min`=1,...,L n` tends to infinity.

Bayesian interpretation. From a Bayesian perspective, one may view ω0 as a parameter,

and put a prior on it. A simple conjugate prior specification is a Dirichlet distribution

ω ∼ Dir(K,α), where αk > 0 for k = 1, ..., K. We will focus on the posterior mean

δ̂
D

= E

[
K∑
k=1

δkωk |Y

]
=

K∑
k=1

δkE [ωk |Y ] ,

28



for a Dirichlet prior with αk = MωUk for all k, where M > 0 is a constant.

For all `, let α` =
∑K

k=1 1{`(k) = `}αk, and ω` =
∑K

k=1 1{`(k) = `}ωk. (ω1, ..., ωL)

follows the Dirichlet distribution Dir(L, α). Moreover, for all k, ωk/ω`(k) is a component of

a Dirichlet distribution with mean αk/α`(k).

Unlike the ω`’s, the ωk/ω`(k)’s are not updated in light of the data since they do not

enter the likelihood. Notice the link with the Bayesian analysis of partially identified models

in Moon and Schorfheide (2012): here the ω`’s are identified but the ωk’s are not, since for

identical gk’s the data provides no information to discriminate across ωk’s.

As a result, we have

E[ωk |Y ] = E
[
ωk
ω`(k)

ω`(k) |Y
]

= E
[
ωk
ω`(k)

]
E
[
ω`(k) |Y

]
=

αk
α`(k)

n` + α`
n+M

M→0→ ωUk∑K
k′=1 ω

U
k′1{`(k′) = `(k)}

n`(k)

n
.

It thus follows that

δ̂
D M→0→

K∑
k=1

δk
ωUk∑K

k′=1 ω
U
k′1{`(k′) = `(k)}

n`(k)

n
= δ̂

P
.

Hence, under a diffuse Dirichlet prior centered around ωU , the Bayesian posterior mean

coincides with the PAE.

S6 Posterior average effects in various settings

In this section, we provide additional examples of models where PAE may be of interest,

and we show illustrative simulations for two models.

S6.1 Models

Linear regression. Consider the linear regression

Yi = X ′ib+ Ui.

Suppose that E[XU ] = 0, and that the OLS estimator b̂ is consistent for b. Suppose also

that the researcher is interested in the average effect δ = Ef0 [U2XX ′]. In this example δ is

multi-dimensional; see Appendix S5.
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In this context, a model-based approach consists in modeling U |X, say, as a normal with

zero mean and variance s2, and computing

δ̂
M

= ŝ2 1

n

n∑
i=1

XiX
′
i,

where ŝ2 = 1
n

∑n
i=1(Yi −X ′i b̂)2 is the maximum likelihood estimator of s2 under normality.

By contrast, a PAE is

δ̂
P

=
1

n

n∑
i=1

Ep
b̂,ŝ

[
U2XX ′

∣∣Y = Yi, X = Xi

]
=

1

n

n∑
i=1

(Yi −X ′i b̂)2XiX
′
i.

This is the central piece in the White (1980) variance formula. δ̂
P

remains consistent for δ

absent normality or homoskedasticity of U . In this very special case, δ̂
P

is thus fully robust

to misspecification of fs, since Ui is a deterministic function of Yi, Xi and b.

Censored regression. Consider next the censored regression model

Yi = max(Y ∗i , 0), where Y ∗i = X ′ib+ Ui. (S30)

In this model, b can be consistently estimated under weak conditions. For example, Powell’s

(1986) symmetrically trimmed least-squares estimator is consistent for b when U |X is sym-

metric around zero, under suitable regularity conditions. In this setting, suppose that we

are interested in a moment of the potential outcomes Y ∗i , such as δ = Ef0 [h(Y ∗)] for some

function h. As an example, the researcher may wish to estimate a feature of the distribution

of wages using a sample affected by top- or bottom-coding.

Following a model-based approach, let us assume that U |X ∼ N (0, s2), and estimate s2

using maximum likelihood. A model-based estimator is then δ̂
M

= 1
n

∑n
i=1 Efŝ [h(X ′i b̂ + U)].

By contrast, a PAE is

δ̂
P

=
1

n

n∑
i=1

1{Yi > 0}h(Yi)︸ ︷︷ ︸
uncensored

+
1

n

n∑
i=1

1{Yi = 0}Ep
b̂,ŝ

[
h(X ′i b̂+ U)

∣∣X ′i b̂+ U ≤ 0
]

︸ ︷︷ ︸
censored

.

This estimator relies on actual Y ’s for uncensored observations, and on imputed Y ’s for

censored ones.

The censored regression model illustrates an aspect related to the class of neighborhoods

that our theoretical characterizations rely on. In model (S30), the researcher might want to
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impose that U |X be symmetric around zero, which is the main assumption for consistency

of the Powell (1986) estimator. It is possible to construct estimators that minimize local

worst-case specification error in an ε-neighborhood that only consists of symmetric densities

f0. However, PAE may no longer have minimum specification error in this class. More

generally, the assumptions that justify the use of a particular estimator β̂ may suggest further

restrictions on the neighborhood. Our worst-case specification error results are based on a

class where such restrictions are not imposed. Indeed, the only additional restriction on f0,

beyond belonging to an ε-neighborhood around fσ∗ , is that the population moment condition

EP (β,f0)[ψβ,σ∗(Y,X)] = 0 is assumed to hold, and we do not impose further restrictions that

might be natural in order to justify the validity of this moment condition.

Binary choice. Consider now the binary choice model

Yi = 1{X ′ib+ Ui > 0}. (S31)

In this model, Manski (1975, 1985) shows that b is identified up to scale as soon as the median

of U |X is zero, under sufficiently large support of X. In addition, he provides conditions

for consistency of the maximum score estimator b̂, again up to scale. Manski’s conditions,

however, are not sufficient to consistently estimate the average structural function (ASF,

Blundell and Powell, 2004)

δ(x) = Ef0 [1{x′b+ U > 0}].

Let us take as reference parametric distribution for U |X a normal with zero mean and

variance s2, and let ŝ2 denote the maximum likelihood estimator of s2 given b̂, based on

normality. Specifically, ŝ maximizes the probit log-likelihood
∑n

i=1 Yi log Φ
(
X′i b̂

s

)
+ (1 −

Yi) log Φ
(
−X′i b̂

s

)
. A model-based estimator of the ASF is δ̂

M
(x) = Φ

(
x′b̂
ŝ

)
, and a posterior

estimator is

δ̂
P
(x) =

1

n

n∑
i=1

Yi min
(

Φ
(
x′ b̂
ŝ

)
,Φ
(
X′i b̂

ŝ

))
Φ
(
X′i b̂

ŝ

) + (1− Yi)
max

(
Φ
(
x′ b̂
ŝ

)
− Φ

(
X′i b̂

ŝ

)
, 0
)

1− Φ
(
X′i b̂

ŝ

)
 .

Unlike δ̂
M

(x), the posterior ASF estimator δ̂
P
(x) depends directly on the observations of

the binary Yi’s, in addition to the indirect data dependence through b̂ and ŝ2. In the next

subsection we present simulations from an ordered choice model, which suggest that the

informativeness of the posterior conditioning — and the robustness properties of posterior
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estimators compared to model-based estimators — depend crucially on the support of the

dependent variable.

Panel data discrete choice. Our last example is the panel data model

Yit = 1{X ′itb+ αi + εit > 0}, i = 1, ..., n, t = 1, ..., T.

When εit are i.i.d. standard logistic, b can be consistently estimated using the conditional

logit estimator (Andersen, 1970, Chamberlain, 1984). However, additional assumptions are

needed to consistently estimate average partial effects such as the effect of a discrete shift of

∆ along the k-th component of X,

δ = (Ef0 [1{(Xt + ∆ · ek)′b+ α + εt > 0}]− Ef0 [1{X ′tb+ α + εt > 0}])/∆,

where ek is a vector of zeros with a one in the k-th position.

The standard approach is to postulate a parametric random-effects specification for the

conditional distribution of α given X1, ..., XT , and to compute an average effect δ̂
M

with

respect to that distribution. By contrast, a posterior estimator is computed conditional on

the observations Yi1, ..., YiT , for every individual i. As T tends to infinity, such estimators are

robust to misspecification of α, provided εt is correctly specified (Arellano and Bonhomme,

2009). Our analysis shows that they also have robustness properties when T is fixed and n

tends to infinity.

Aguirregabiria et al. (2018) show that conditional logit-like estimators can also be used

to consistently estimate parameters in structural dynamic discrete choice settings. As an

example, they study the Rust (1987) model of bus engine replacement in the presence of

unobserved heterogeneity in maintenance and replacement costs. In such structural models,

estimating average welfare effects of policies requires averaging with respect to the distribu-

tion of unobservables. PAE provide an alternative to the standard parametric model-based

approach in this context.

S6.2 Simulations

Here we report the results of two simulation exercises, based on the fixed-effects model (1),

and on an ordered choice model.
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S6.2.1 Fixed-effects model

Skewness. Let us consider the fixed-effects model (1). Suppose the parameter of interest

is the skewness of α

δ = Ef0

[
α3 − 3

µα
sα
−
(
µα
sα

)3
]
.

For example, it is of interest to estimate the skewnesses of income components and how they

evolve over time (Guvenen et al., 2014). Since the normal distribution is symmetric, the

model-based normal estimator of skewness is simply δ̂
M

= 0, irrespective of the observations

Yij. Hence, δ̂
M

is not informed by the data, even when the empirical distribution of the

fixed-effects Y i = 1
J

∑J
j=1 Yij indicates strong asymmetry.

By contrast, a PAE based on a normal reference distribution is

δ̂
P

=
1

ŝ3
α

1

n

n∑
i=1

Ep(fŝ)
[
α3
∣∣Y = Yi

]
− 3

µ̂α
ŝα
−
(
µ̂α
ŝα

)3

.

It can be verified that

δ̂
P

= ρ̂3 1

ŝ3
α

1

n

n∑
i=1

(
Y i − Y

)3
,

where ρ̂ = ŝ2α
ŝ2α+ŝ2ε/J

. Under mild conditions, and in contrast with δ̂
M

, the posterior estimator

δ̂
P

is consistent for the true skewness of α as J tends to infinity. However, δ̂
P

is biased for

small J in general.

To provide intuition about the magnitude of the bias, we simulate data where all latent

components are independent, εj are standard normal, and α follows a skew-normal distribu-

tion (e.g., Azzalini, 2013) with zero mean, variance 1, and skewness ≈ .47 corresponding to

the skew-normal parameter δ = .99. We take n = 1000, and run 100 simulations varying J

from 1 to 30. We estimate means and variances using minimum-distance based on first and

second moment restrictions.

In the left panel of Figure S3 we show the results. We see that the model-based estimator

is equal to zero irrespective of the number J of individual measurements. By contrast, the

posterior estimator converges to the true skewness of α as J increases, although it is biased

for small J .

Gini coefficient. We next focus on the Gini coefficient of α:

G =
1

2Ef0 [exp (α)]

∫∫
| exp(α′)− exp(α)|f0(α)f0(α′)dαdα′.
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Figure S3: Skewness and Gini estimates in the fixed-effects model
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Notes: true (solid), posterior (dashed), model-based (dotted). n = 1000, 100 simulations.

In this case, a model-based estimator is

ĜM = 2Φ(ŝα/
√

2)− 1,

while a PAE is, following (S28),

ĜP = ĜM +
1

n

n∑
i=1

(
E[∇Ĝ(α) |Yi]− E[∇Ĝ(α)]

)
,

where

∇Ĝ(α) = − exp

(
α− µ̂α −

1

2
ŝ2
α

)(
ĜM + 1− 2Φ

(
α− µ̂α
ŝα

))
+

(
1− 2Φ

(
α− µ̂α
ŝα

− ŝα
))

.

In the right panel of Figure S3 we show the simulation results. We see that in this case

also the model-based estimator is insensitive to J . The posterior estimator has a lower bias,

especially for larger J .

S6.2.2 Ordered choice model

We next consider the ordered choice model

Yi =
J∑
j=1

j1{µj−1 ≤ Y ∗i ≤ µj}, where Y ∗i = X ′ib+ Ui,

for a sequence of known thresholds −∞ = µ0 < µ1 < ... < µJ−1 < µJ = +∞. This model

may be of interest to analyze data on wealth or income, say, where only a bracket containing

the true observation is recorded. We focus on the average structural function

δ(x) = Ef0

[
J∑
j=1

j1{µj−1 ≤ x′b+ U ≤ µj}

]
.
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Figure S4: Average structural function in the ordered choice model
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Notes: true (solid), posterior (dashed), model-based (dotted). n = 1000, 100 simulations.

We take as reference distribution U |X ∼ N (0, s2). In the simulated data generating

process, U is independent of X, distributed as a re-centered χ2 with mean zero and variance

one. We simulate a scalar standard normal X. We set n = 1000, b1 = .5, b0 = 0, s = 1, and

µ as uniformly distributed between −2 and 2. We estimate b up to scale using maximum

score (Manski, 1985). Specifically, using maximum score we regress 1{Yi ≤ j} on Xi and a

constant, for all j, imposing that the coefficient of Xi is one. We then regress the J estimates

on a common constant and the µj, and obtain the implied estimate for b by rescaling. For

computation of maximum score, we use the mixed integer linear programming algorithm of

Florios and Skouras (2008).

In Figure S4 we report the results for J = 3 (left) and J = 10 (right). We see that,

when J = 3, model-based and posterior estimators are similarly biased. By contrast, when

J = 10, the posterior estimator aligns well with the true average structural function, even

though the model-based estimator is substantially biased.
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S7 Additional empirical results

Figure S5: Distribution of posterior means of neighborhood effects
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Notes: Distribution of posterior means of µc (solid) and prior distribution (dashed). The distribu-

tion function is shown in the left graph, the density is shown in the right graph. Calculations are

based on statistics available on the Equality of Opportunity website.
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Figure S6: Posterior distribution of neighborhood effects, correlated random-effects specifi-
cation

Distribution function Density
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Notes: Posterior distribution of µc (solid) and prior distribution (dashed), based on a correlated

random-effects specification allowing for correlation between the place effects µc and the mean in-

come of permanent residents yc. The distribution function is shown in the left graph, the density is

shown in the right graph. Calculations are based on statistics available on the Equality of Opportu-

nity website.
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Figure S7: Distribution of neighborhood effects at the county level
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Notes: In the left graphs, we show the distribution of fixed-effects estimates µ̂county
c (solid) and

normal fit (dashed). In the right graphs, we show the posterior distribution of µcounty
c (solid) and

prior distribution (dashed). The distribution functions are shown in the top panel, the implied

densities are shown in the bottom panel. Calculations are based on statistics available on the

Equality of Opportunity website.
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