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Abstract

This paper studies linear panel regression models in which the unobserved error term is

an unknown smooth function of two-way unobserved fixed effects. In standard additive or

interactive fixed effect models the individual specific and time specific effects are assumed

to enter with a known functional form (additive or multiplicative), while we allow for this

functional form to be more general and unknown. We discuss two different estimation ap-

proaches that allow consistent estimation of the regression parameters in this setting as the

number of individuals and the number of time periods grow to infinity. The first approach

uses the interactive fixed effect estimator in Bai (2009), which is still applicable here, as long

as the number of factors in the estimation grows asymptotically. The second approach first

discretizes the two-way unobserved heterogeneity (similar to what Bonhomme, Lamadon and

Manresa 2021 are doing for one-way heterogeneity) and then estimates a simple linear fixed

effect model with additive two-way grouped fixed effects. For both estimation methods we

obtain asymptotic convergence results, perform Monte Carlo simulations, and employ the

estimators in an empirical application to UK house price data.
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1 Introduction

We consider the following panel data model for i = 1, . . . , N cross-sectional units, and t =

1, . . . , T time periods,

Yit = X ′
it β + uit, uit = h(αi, γt) + εit, (1)

where Yit is an observed dependent variable, Xit = (Xit,1, . . . , Xit,K)′ is a K-vector of observed

explanatory variables, and uit is an unobserved error term. Within the unobserved error term,

we have an unknown real-valued function h(·, ·) that depends on the (vector-valued) unobserved

fixed effects αi ∈ Rdα and γt ∈ Rdγ , which are allowed to be arbitrarily correlated with the

observed regressors Xit, while εit is a mean-zero error term that is uncorrelated with Xit. Our

focus is on estimation of and inference on the parameter β ∈ RK — the regression coefficient of

Xit on Yit when properly controlling for the unobserved αi and γt.

The key model restrictions in (1) are the linearity in Xit as well as the additive separability

between X ′
it β and uit. If the unobserved error term uit is of the more general form uit =

g(αi, γt, ξit), for some idiosyncratic errors ξit that are identically distributed across i and over

t, then under appropriate regularity conditions we can define h(αi, γt) = E
[
uit
∣∣αi, γt

]
and

εit = uit−h(αi, γt) to again obtain model (1). The additive separability between h(αi, γt) and εit

is therefore without loss of generality, as long as the distribution of uit satisfies some homogeneity

and regularity conditions. However, throughout this paper we take the representation of the

model in (1) as the starting point for our analysis.

Analogous to the singular value decomposition of amatrix, there exists, under weak regularity

conditions, the singular value decomposition of a function h : Rdα × Rdγ → R, which reads

h(α, γ) =

∞∑
r=1

σr φr(α)ψr(γ), (2)

for some functional singular values σr > 0, and appropriate normalized functions φr : Rdα → R
and ψr : Rdγ → R, r ∈ {1, 2, 3, . . .}. Equation (2) allows us to rewrite model (1) as

Yit = X ′
it β +

∞∑
r=1

λir ftr + εit, (3)

with λir := σr φr(αi) and ftr := ψr(γt). Thus, our model can be viewed as a linear panel

regression model with unobserved “factor structure” or “interactive fixed effects”, but where

the number of factors ftr and corresponding factor loadings λir is infinite. The same rewriting

of a function h(αi, γt) by an infinite sum
∑∞

r=1 λir ftr is used in Menzel (2021), but for a different

model, and with the goal of analyzing the bootstrap for multidimensional data.
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Within a panel regression context, most of the existing literature assumes that the number

of unobserved factors is finite, which, from our perspective, corresponds to a truncation of the

infinite sequence of factors in (3), that gives

Yit = X ′
it β +

R∑
r=1

λir ftr + eit, (4)

where eit := εit +
∑∞

r=R+1 λir ftr. For datasets with both N and T large, the two currently

dominant estimation methods for the panel regression model in (4) are the common correlated

effect (CCE) estimator of Pesaran (2006) and the least-squares (LS) estimator (also called quasi

maximum likelihood estimator) in Bai (2009). Since those original papers by Pesaran and Bai,

a large literature has emerged that has extended the CCE and LS estimation methods, and has

analyzed the properties of those estimators in more general settings — see Chudik and Pesaran

(2013), Bai and Wang (2016), and Karabiyik, Palm and Urbain (2019) for recent surveys. We

follow that literature here by also considering panels with both N and T large, that is, for our

asymptotic results we consider N,T → ∞.1

The “conventional” interactive fixed effect model in (4) is a special case of our model (1),

with αi = λi = (λi1, . . . , λiR)
′, γt = ft = (ft1, . . . , ftR)

′, and h(αi, γt) = λ′ift. The key question

that we ask in this paper is what happens when the multiplicative factor structure λ′ift is

replaced by a more general non-linear factor structure h(αi, γt). However, we do maintain all

other assumptions of model (4), in particular, the homogenous regression coefficient β, and the

additive separability between X ′
it β and the unobserved factor structure.

The main challenge that we need to tackle when considering this extension is that, if the data

generating process is given by (1), then the error term eit in (4) will generally be correlated with

Xit, because eit contains the truncated part
∑∞

r=R+1 λir ftr of the infinite factor structure,2 and

λir = φr(αi) and ftr = ψr(γt) are functions of αi and γt, which can be correlated with Xit. Once

eit is correlated with Xit in this way, then the existing results for the CCE and the LS estimator

are not applicable anymore. The currently known results on the CCE and LS estimator in

the presence of an infinite number of factors (e.g. Pesaran and Tosetti 2011, Chudik, Pesaran

and Tosetti 2011b, and Westerlund and Urbain 2013) require that the “unaccounted” factors∑∞
r=R+1 λir ftr are uncorrelated with the regressors, so that they can be considered part of the

error term eit without generating an endogeneity problem.

1There is of course also work on model (4) in the context of short T panels, for example, Holtz-Eakin, Newey

and Rosen (1988), Ahn, Lee and Schmidt (2001, 2013), Sarafidis and Robertson (2009) Juodis and Sarafidis (2020,

2018, 2020), Westerlund, Petrova and Norkute (2019),
2Notice that the majority of these truncated factors will be “weak”, see Onatski Onatski (2010, 2012) and

Chudik, Pesaran and Tosetti Chudik, Pesaran, and Tosetti (2011a) for the distinction between “strong” and

“weak” factors.
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For the case that Xit and eit are correlated, there exist instrumental variable (IV) general-

izations of both the CCE and LS method (e.g. Harding and Lamarche 2011, Lee, Moon and

Weidner 2012, Robertson and Sarafidis 2015, Moon, Shum and Weidner 2018, and Norkutė,

Sarafidis, Yamagata and Cui 2021), but those require observed instruments Zit that are un-

correlated with eit. In our setting, this could only be reasonably justified if Zit is independent

of αi, γt and εit. If such strong instruments would be available, then a standard pooled 2SLS

estimator – completely ignoring h(αi, γt) in model (1) – would be consistent under appropriate

regularity conditions, but existence of such instruments is unlikely in most applications, and is

not assumed in this paper.

The two main theoretical contributions of our paper are as follows: Firstly, we formally show

that the LS estimator of Bai (2009) can still provide consistent estimates of β in model (1), as

long as the number of factors R = RNT used in estimation grows to infinity jointly with N

and T . Secondly, we suggest an alternative estimator for β, which we denote the two-way

group fixed-effect estimator (generalizing ideas in Bonhomme, Lamadon and Manresa 2021 on

the discretization of one-way heterogeneity), and we provide conditions under which this new

estimator is
√
NT -consistent as N,T → ∞. In addition, we also suggest inference procedures

using both of these estimators, but we do not formally derive inference results in this paper.

Instead, we study the properties of our suggested confidence intervals in Monte Carlo simulations.

We also apply the estimators to an empirical application on UK house price data.

When employing the LS estimator with factors from Bai (2009) to model (1), we are effec-

tively estimating a misspecified model — the DGP is given by (1), but the estimating equation

by (4). Galvao and Kato (2014) and Juodis (2020) have recently studied linear panel regression

models with additive fixed effects under misspecification. We consider interactive fixed effects

for estimation here, and the type of misspecification we allow for is more restrictive. We there-

fore do not have to introduce any pseudo-true parameter, but we find that the LS estimator is

still consistent for the true value of β under our assumptions.

In related work, allowing for the number of factors to grow with sample size has been con-

sidered in Li, Li and Shi (2017), where they explicitly detail a factor model with the number of

factors growing with sample size. The difference to this paper is our model admits an infinite

number of factors even in small samples and considers finite factor estimation as an approxima-

tion to the true data generating process.

There also exist other work on non-linear generalizations of the interactive fixed effect and

factor model specification. Zeleneev (2020) considers the same model (1) in the context of

network data, but in his baseline discussion, the outcome Yij (instead of Yit here) is symmetric

in i and j. The main difference to our work, however, is that Zeleneev estimates the model based

on a strategy that identifies agents with similar fixed effect values based on the distribution of
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their outcomes. His estimation method is accordingly also completely different to ours.

Bodelet and Shan (2020) also consider non-linear functions in place of the standard linear

factor model. In our notation, their model assumes a series of smooth univariate functions of

the form
∑Q

q=1 hiq(γtq) for unobserved heterogeneity. Their approach models individual specific

responses to structural shocks but is different to our approach, which uses a homogeneous

bivariate function. Therefore, their approach allows for discontinuities across how individual

effects are modelled whereas our assumption is more restrictive since variation across individuals,

via αi, must be smooth.

Other papers on unobserved two-way heterogeneity in panel or network models either make

more parametric assumptions (e.g. Graham 2017, Dzemski 2019, Chen, Fernández-Val and Wei-

dner 2020), or employ stochastic block or graphon models (e.g. Holland, Laskey and Leinhardt

1983, Wolfe and Olhede 2013, Gao, Lu, Zhou et al. 2015, Auerbach 2019), and are therefore less

closely related to our paper.

There are also recent papers that use matrix completion methods for the purpose of treatment

effect estimation in panel models with two-way heterogeneity, e.g. Athey, Bayati, Doudchenko,

Imbens and Khosravi (2017) and Amjad, Shah and Shen (2018), Chernozhukov, Hansen, Liao

and Zhu (2021), and Fernández-Val, Freeman and Weidner (2021). Those papers do not require

the additive separability between the regressors and error term in (1), but as a result they also

have to make stronger assumptions and employ more complicated estimation methods than we

do here. The same is true for Freyberger (2017), who considers a non-separable model with

interactive fixed effects. Alternative non-linear extensions of factor models are discussed, for

example, in Cunha, Heckman and Schennach (2010) and Gunsilius and Schennach (2019).

The rest of the paper is organized as follows. Section 2 introduces our suggested estimators

and inference methods. Section 3 and Section 4 provide asymptotic results for the LS estimator

of Bai (2009) and for our new two-way group fixed-effect estimator, respectively. Section 5

discusses the practical implementation. Monte Carlo simulations are presented in Section 6, and

an empirical application is worked out in Section 7.

2 Estimation approaches

In this section, we introduce the two estimation approaches that are afterwards analyzed and

used in the rest of the paper.
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2.1 Least-squares interactive fixed effect estimator

Following Bai (2009) we consider(
β̂LS, λ̂, f̂

)
= argmin

(β,λ,f)∈RK+N×R+T×R

N∑
i=1

T∑
t=1

(
Yit −X ′

it β −
R∑

r=1

λir ftr

)2

. (5)

This estimator was introduced for the exact factor model in equation (4), and Bai (2009) shows

that it is
√
NT -consistent and asymptotically normally distributed for N,T → ∞ when the true

number of factors is fixed and known. Moon and Weidner (2015) extend this result to the case

where the true number of factors is chosen too large in the estimation. To make the estimates λ̂

and f̂ in (5) unique, we choose the usual normalization T−1f̂ ′f̂ = IR, and λ̂′λ̂ to be a diagonal

matrix.

As explained above, the model (1) that we consider in this paper can be rewritten as the

factor model in (3) with an infinite number of factors in the true data generating process. This

suggests that the least-squares estimators in (5) can still be consistent as long as the number

of factors R = RNT used in the estimation is allowed to grow to infinity jointly with N and T .

Estimation of
(
β̂LS, λ̂, f̂

)
is done using an iterative scheme. That is, we start by initialising

β̂LS, and then iterate between estimating the principal components of Y − X · β̂LS to obtain(
λ̂, f̂

)
and least squares of Y = X · β + λ̂f̂ ′ + e to obtain β̂LS. The convergence metric we use

is the sum of squares in (5). However, this iteration scheme can converge to a local minimum,

and it is therefore important to repeat the procedure with multiple starting values of β. For

more details on the numerical computation of the estimator in (5) we refer to Bai (2009) and

Moon and Weidner (2015).

This least-squares estimator of Bai (2009) is very well-established in the panel regression

literature. It is used regularly both in empirical and in methodological papers, e.g. Su and Chen

(2013), Kim and Oka (2014), Lu and Su (2016), Gobillon and Magnac (2016), Totty (2017), Su

and Wang (2017), Moon and Weidner (2017), Giglio and Xiu (2021), to name just a few.

2.2 Group fixed effects estimator

Here, we introduce two-way grouped fixed effects estimator, which discretizes the unobserved

heterogeneity that is parameterized by αi and γt in the spirit of Bonhomme, Lamadon and

Manresa (2021). We first describe the main idea of this estimator before explaining its practical

implementation in more details.

2.2.1 Main Idea

We partition the set {1, . . . , N} of cross-sectional units into G = GNT groups such that in-

dividuals in the same group have similar values of αi. Let gi ∈ {1, . . . , G} denote the group
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membership of individual i. Analogously, we partition the set {1, . . . , T} of time periods into

C = CNT groups such that time periods in the same group have similar values of γt. Let

ct ∈ {1, . . . , C} denote the group membership of time period t. Details on how we construct

those partitionings in practice are described below. Once we have obtained those groups, then

we estimate β by applying pooled OLS to the linear fixed-effect model

Yit = X ′
it β + δi,ct + νt,gi + ϵit, (6)

where δi,ct ∈ R and νt,gi ∈ R are nuisance parameters that are jointly estimated with β, that is,

the basic two-way grouped fixed effect estimator for β can be written as

β̂G = argmin
β∈RK

min
δ∈RN×C

min
ν∈RT×G

N∑
i=1

T∑
t=1

(
Yit −X ′

it β − δi,ct − νt,gi
)2
. (7)

Notice that within each pair of groups for i and t, that is, for fixed values of ci and gt, the model

in (6) is simply a standard additive two-way fixed effect model Yit = X ′
it β+δi+νt+ϵit. However,

as the group membership changes we allow the parameters δi and νt to change arbitrarily, as

indicated by the additional subscripts ct and gi in (6). We could have written δi,gi,ct + νt,gi,ct to

indicate explicitly that both the individual and time effect are allowed to change across groups,

but the notation in (6) of course already allows for that generality. The parameters δ therefore

form an N × C matrix, while the parameters ν form a T ×G matrix.

In the introduction, we explained how the LS-estimator with interactive effects can be jus-

tified for model (1) by a truncation of the functional singular value expansion in (2). In other

words, a particular approximation of the function h(αi, γt) naturally leads to the estimator

in (5).

The grouped fixed effect estimator in (7) can be justified analogously by a different ap-

proximation of the function h(αi, γt). Under appropriate regularity conditions, by a joint Tay-

lor expansion in αi and γt around the corresponding group means αgi =
∑n

j=1 1{gi=gj}αj∑n
j=1 1{gi=gj} and

γct =
∑T

s=1 1{ct=cs} γs∑T
s=1 1{ct=cs}

, we find that

h(αi, γt) = δi,ct + νt,gi +O
(
∥αi − αgi∥2 + ∥γt − γct∥

2
)
, (8)

where

δi,ct := h(αgi , γct) +
∂h(αgi , γct)

∂α′
i

(αi − αgi), νt,gi :=
∂h(αgi , γct)

∂γ′t
(γt − γct).

This shows that the leading order dependence of h(αi, γt) on αi and γt can be described by the

additive specification δi,ct + νt,gi used in (6). Since this two-way grouped fixed effect ignores the

terms O
(
∥αi − αgi∥2 + ∥γt − γct∥

2
)
entirely, it is of course crucial to construct the groups such
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that αi − αgi and γt − γct are small. The clustering algorithm that we use to achieve that is

described in Subsection 2.2.2 below.

Notice that a naive application of the ideas in Bonhomme, Lamadon and Manresa (2021)

to our two-way fixed effect model would not result in our estimating equation (6) but in Yit =

X ′
it β+χgi,ct + ϵit, where χg,c is a fixed effect specific to each pair of groups (g, c) ∈ {1, . . . , G}×

{1, . . . , C}. The analog of equation (8) for that alternative approach reads

h(αi, γt) = h(αgi , γct)︸ ︷︷ ︸
=χgi,ct

+O
(
∥αi − αgi∥+ ∥γt − γct∥

)
,

that is, the approximation error would be of linear order in the discrepancies αi−αgi and γt−γct
within groups. By contrast, for our estimating equation (6) the resulting approximation error

in (8) is of quadratic order, which explains why we prefer that approach.

Finally, notice that if our original model would only contain individual specific fixed effects

αi, that is, Yit = X ′
it β + h(αi) + εit, then the analog of (6) is the standard additive fixed effect

model Yit = X ′
it β+ δi+εit, which requires no grouping at all, and also entails no approximation

error since we can set δi = h(αi). The way in which we generalize the grouping ideas in

Bonhomme, Lamadon and Manresa (2021) is therefore quite specific to the two-way fixed effect

model in (1).

2.2.2 Clustering algorithm

To make the two-way grouped fixed effect estimator in (7) operational we employ the following

three-step algorithm:

A. Obtain the factor loading and factor estimates λ̂ and f̂ of the interactive fixed effect LS

estimator in (5) for a relatively large number of factors R. Only keep the leading few R∗ factor

loading and factor estimates and denote those by λ̂∗ = (λ̂ir : i = 1, . . . , N, r = 1, . . . , R∗)

and f̂∗ = (f̂tr : t = 1, . . . , T, r = 1, . . . , R∗).

B. Use the λ̂∗1, . . . , λ̂
∗
N as inputs into the clustering algorithm in Table 1 to partition the set of

individuals {1, . . . , N}. This algorithm returns the number G of chosen groups and the group

membership gi ∈ {1, . . . , G} of each individual. Analogously, we use the inputs f̂∗1 , . . . , f̂
∗
T

into the same algorithm to partition {1, . . . , T}, resulting in the number of groups C and

the group membership ct ∈ {1, . . . , C} for each time period. Notice that the words partition,

cluster, and group are used interchangeably in this paper.

C. Calculate the two-way grouped fixed effect estimator β̂G via pooled OLS according to equa-

tion (7).
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Algorithm

1: Input λ̂∗
i ∈ RR∗

for all i = 1, . . . N . Calculate all pairwise Euclidean distances Aij =
∥∥∥λ̂∗

i − λ̂∗
j

∥∥∥, for i ̸= j, and set

Aii = ∞. Initialize P = {{1}, {2}, . . . , {N}} as a partition of {1, . . . , N}.
2: if ∃ C∗ ∈ P with |C∗| = 4 then for that C∗
3: Find the solution to

min
{i,j,l,m∈C∗ : C∗={i,j,l,m}}

Aij +Alm,

and split C∗ into {i, j} and {l,m}, updating the partition P.

4: else if ∃ C ∈ P with |C| = 1 then

5: Find the solution to

min{
i∈

⋃
{C∈P:|C|=1}

} min{
j∈

⋃
{C∈P:|C|≤3}

}Aij ,

and merge the clusters containing i and j into a single cluster, updating the partition P.

6: end if

7: Repeat 2-6 until {|C| : C ∈ P} ⊂ {2, 3}.

Table 1: Hierarchical clustering with minimum single linkage.

It is constructive to briefly describe our algorithm from Table 1 in words before we discuss

features of this whole procedure. Step 1 defines the proxy variable to cluster on (λ̂∗i in this

instance) and sets the distance metric we wish to use, Euclidean distance, which could easily be

changed to another norm or metric. Then, we initialise each individual into their own cluster.

Steps 2 and 3 then splits any groups of four into two groups of two, since we want groups of no

larger than three in our final output. The optimisation in Step 3 looks at all combinations of

two by two splits within this group of four and takes the smallest sum of distances. This type of

optimisation is only suitable for very small groups of individuals because it is a combinatorially

hard problem.

Steps 4 and 5 then finds the solitary individual with the smallest distance to any other existing

cluster and merges it to that cluster. Combined with Steps 2 and 3 we create an iteration that

merges single clusters one at a time to groups of one, two or three, then splits any groups of

four as and when they occur. This means Step 2 can only ever return one group of four. Doing

this iteration one at a time is important so that we may split these groups of four immediately

and have a larger choice set in Step 5 for each unmatched individual. Also, splitting groups

of four into two by two groups rather than groups of one and three avoids infinite iterations.

The repetition of Steps 2-5 is guaranteed to converge, and delivers a partition of {1, . . . , N} into

groups of size two or three.

Now to discuss the procedure as a whole. The choice of R in step A here is not too important

since we only need this to generate proxy variables for clustering and otherwise dispose of β

estimates from this initial LS step. The important hyperparameter is the number of proxies per
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observation, R∗, which we choose equal to two to five. We discuss the theoretical properties of

the hyperparameter in Section 4.1 but here outline a heuristic approach to this choice. Choosing

R∗ to be more than one is important to capture cases when αi and γt have higher dimension or

when the function h(., .) admits eigenfunctions that are not individually injective maps from αi

or γt. The aim is that a linear combination of non-injective maps provides a better mapping to

the closeness of the primitives αi and γt. An archetypal example of this is discussed in Griebel

and Harbrecht (2014) where they show that the first few eigenfunctions of the exponential kernel

are individually clearly not injective maps.

It is also important to not use too many proxies so as to avoid clustering on noise. This

can make for poor matches that result in large deviations between αi and αj , respectively γt

and γs, that show up in the leading O
(
∥αi − αj∥2

)
and O

(
∥γt − γs∥2

)
remainder terms in (8).

Maintaining closeness in these primitives when clustering is key to any argument using Taylor’s

theorem, however, optimising this proxy hyperparameter is still rough and does require further

development. We defer discussion about the presence of noise in factors with relation to the LS

estimator to Section 3.

There are, of course, other choices for proxies such as the cross-sectional moments employed

in Bonhomme, Lamadon and Manresa (2021). However, as displayed in (2) and formulated in

Griebel and Harbrecht (2014), using the eigenfunctions from the singular value decomposition

are a more natural choice since these are direct functions of the primitives αi and γt and should

in theory lead to closer proximity between these. Since we require cross-sectional and time-

dependent clusters for our method, these eigenfunctions also provide a convenient means to find

these. If one truly believes that other proxy variables have more precise injectivity with these

primitives then they could always make those the the input to Step 1 in our clustering algorithm.

Another divergence from the existing literature is the use of clusters of size two or three,

rather than letting these cluster sizes grow with sample size. Our motivation for using these

small cluster sizes comes directly from the within-group β estimation, i.e. that we do not need

consistent estimates of δ or ν since these are treated as nuisance parameters that are simply

differenced out. Hence, for our purposes, it is more useful to have small groups that are very

similar rather than to have large groups that have better central tendency estimates. This very

conveniently removes one choice for the analyst, namely the setting of group sizes G or C.

2.2.3 Split-sample version of the estimator

As explained above, we estimate the group memberships gi and ct that enter into the estimator

for β in (7) via a clustering method applied to λ̂∗ and f̂∗. However, clustering in this way creates

dependence across i and t through λ̂∗ and f̂∗. This dependence creates technical difficulties

when establishing asymptotic convergence results. To mitigate this dependence we augment
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the clustering estimator by a simple sample splitting method. The resulting group fixed effect

estimator with sample splitting is given by

β̂GS = argmin
β∈RK

min
δ

min
ν

N∑
i=1

T∑
t=1

[
Yit −X ′

it β −
S∑

s=1

1 {(i, t) ∈ Os}
(
δ
(s)

i,c
(s)
t

+ ν
(s)

t,g
(s)
i

)]2
, (9)

where S is the number of partitions, and the sets Os, s = 1, . . . , S, are the partitions of the

sample space {1, . . . , N} × {1, . . . , T}, that is, the observation (i, t) is a member of the s’th

partition if and only if (i, t) ∈ Os. Compared to the original group fixed effect estimator in (6),

the group membership indicators g
(s)
i and c

(s)
t and the group fixed effect δ

(s)

i,c
(s)
t

and ν
(s)

t,g
(s)
i

are all

specific to the partition s. For the purpose of this paper, we choose the number of partitions to

be S = 4 and we split the sample space into four blocks as follows:

O1 = {1, . . . , ⌊N/2⌋} × {1, . . . , ⌊T/2⌋},

O2 = {1, . . . , ⌊N/2⌋} × {⌊T/2⌋+ 1, . . . , T},

O3 = {⌊N/2⌋+ 1, . . . , N} × {1, . . . , ⌊T/2⌋},

O4 = {⌊N/2⌋+ 1, . . . , N} × {⌊T/2⌋+ 1, . . . , T},

(10)

where ⌊·⌋ is the floor function.

We still need to explain how the group memberships g
(s)
i and c

(s)
t are obtained here. The

aim of the sample splitting is to avoid any stochastic dependence between g
(s)
i and c

(s)
t and

the idiosyncratic noise εit. For each partition s = 1, . . . , S, we therefore construct the group

memberships g
(s)
i and c

(s)
t without using outcomes Yit for observations (i, t) of that partition Os.

For that purpose, we define the sets

O∗
1 = {1, . . . , N} × {1, . . . , ⌊T/2⌋},

O∗
2 = {1, . . . , N} × {⌊T/2⌋+ 1, . . . , T},

O∗
3 = {1, . . . , ⌊N/2⌋} × {1, . . . , T},

O∗
4 = {⌊N/2⌋+ 1, . . . , N} × {1, . . . , T},

(11)

and for s̃ = 1, . . . , 4, we define the corresponding least-squares factor and loading estimates

(
λ̂(s̃), f̂ (s̃)

)
= argmin

(λ,f)∈RN∗
s̃
×R+T∗

s̃
×R

min
β∈RK

∑
(i,t)∈O∗

s̃

(
Yit −X ′

it β −
R∑

r=1

λir ftr

)2

, (12)

which is simply the LS estimator in (5) applied only to the N∗
s̃ × T ∗

s̃ subpanel of observations

(i, t) ∈ O∗
s̃ , and we also impose the same normalization on the factors and loadings explained

after (5).3 Now, for the original partition Os, s = 1, . . . 4, we construct the group membership

3Notice that factor model proxies can only be used to compare observations from the same factor estimation

sample space. This is because factors are only identified up to rotations, where these rotations may differ across

estimation samples.
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Figure 1: Sample split for partition 1

g
(s)
i of unit i by applying the clustering algorithm in Table 1 to the loading estimates λ̂

(s̃)
i

obtained from the subpanel Os̃ with s̃ = s̃(s) given by

s̃ =


2 for s = 1,

1 for s = 2,

2 for s = 3,

1 for s = 4.

Analogously, for the partition Os, s = 1, . . . 4, we construct the group membership c
(s)
t of time

period t by applying the clustering algorithm in Table 1 to the factor estimates f̂
(s̃)
t obtained

from the subpanel Os̃ with s̃ = s̃(s) given by

s̃ =


4 for s = 1,

4 for s = 2,

3 for s = 3,

3 for s = 4.

Figure 1 details an example of this sample splitting technique for clustering within partition

O1. Here we see clearly how the partitions for proxy estimation O∗
2 and O∗

4 do not overlap

with the partition we are grouping within, O1. This guarantees that we do not introduce any

dependence between the group functions and the noise term by making sure grouping within

each partition is not a function of the independent noise term, εit, from observations within that

12



partition. This becomes important in our derivations in Section 4.2, where we require that the

process Xit εit remains zero mean and independently distributed after group means are projected

out.

With these cluster assignments it then becomes straightforward to estimate (9) by first doing

within-cluster mean-differences on oberservations Y and Xk for each k partition-by-partition,

then simply using OLS on the transformed variables.

Notice that by allowing the partitioning in (11) used to estimate proxy variables to extend

over the whole sample of either N or T , we get better estimates than just using the original

partition (10). As discussed earlier, it is crucial to avoid poor initial estimates of proxy variables

to better approximate the residual terms in the Taylor expansion in expression (8).

3 Asymptotic results for the least squares estimator

Here, we derive convergence rate results for the least-squares estimator (5) for a data generating

process given by (1). Thus, we generalize the consistency results in Bai (2009) and Moon and

Weidner (2015) to the case where the underlying panel regression model does not satisfy the

factor model in (4). However, as explained in the introduction, the factor model in (4) can be

viewed as an approximation of (1), and this approximation idea can be formalized asymptotically,

as long as we allow the number of factors R = RNT used in the least-squares estimator (5) to

grow with N and T .

3.1 Consistency and convergence rate

From now on, we denote the true parameter β that generates the data by β0. We rewrite model

(1) as

Yit = X ′
it β

0 + Γit + εit, (13)

where both Γit and εit are unobserved. Our main convergence rate results in Theorem 1 actually

holds for any N × T matrix Γ = (Γit) that satisfies Assumption 4 below, but ultimately we are

of course interested in the case Γit = h(αi, γt). Arbitrary dependence between Xit and Γit is

admitted such that there is a potential endogeneity problem.

Remember that the components of the K-vector Xit are denoted by Xit,k, k = 1, . . . ,K. Let

Xk = (Xit,k) and ε = (εit) be N × T matrices. For a matrix A we denote r’th largest singular

value by σr(A), that is, σ2r (A) is equal to the r’th largest eigenvalue of AA′. Furthermore, for

matrices we denote the spectral norm by ∥·∥, and for vectors the norm ∥·∥ denotes the Euclidean

norm. We impose the following assumptions.

Assumption 1 (Bounded norms of Xk and ε).
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(i)
1

NT

N∑
i=1

T∑
t=1

(Xit,k)
2 = OP (1), for k = 1, . . . ,K.

(ii) ∥ε∥ = OP

(√
max{N,T}

)
.

Assumption 2 (Weak Exogeneity of Xk).
N∑
i=1

T∑
t=1

Xit,kεit = OP (
√
NT ), for k = 1, . . . ,K.

Assumption 3 (Non-Collinearity of Xk). Consider linear combinations δ ·X :=
∑K

k=1 δkXk

of the regressors Xk with vectors δ ∈ RK such that ∥δ∥ = 1. Assume that there exists a constant

b > 0 such that

min
{δ∈RK , ∥δ∥=1}

min(N,T )∑
r=2RNT+1

σ2r

[
(δ ·X)√
NT

]
≥ b , wpa1.

Assumption 4 (Singular value decay). There exists a constant ρ > 3/2 such that

1

NT

min(N,T )∑
r=RNT+1

σ2r (Γ) = OP

(
R1−2ρ

NT

)
.

Here, R = RNT is the number of factors that is chosen in the computation of the least-

squares estimator β̂LS in (5). We require RNT → ∞ as N,T → ∞ to obtain consistency of

β̂LS.

Lemma 1 below justifies Assumption 4 for our main case of interest Γit = h(αi, γt), and we

therefore postpone the discussion of that assumption until that we discuss that lemma. The

Assumptions 1-3 are very similar to the assumptions used in Bai (2009) and Moon and Weidner

(2015) to show consistency of β̂LS,
4 and the following discussion of those assumptions will,

accordingly, be brief.

Assumption 1(i) follows from Markov’s inequality as long as the second moment of Xit,k is

uniformly bounded. Assumption 1(ii) follows, for example, from the inequality in Latala (2005)

if εit has mean zero, uniformly bounded fourth moment, and is independent across i and t.

However, the assumption still holds if εit is weakly correlated across i and over t, see Moon and

Weidner (2015). Assumption 2 is satisfies as long as Xitεit has zero mean, uniformly bounded

second moment, and is weakly correlated across i and over t.

4Compared to the assumptions imposed in the consistency Theorem 4.1 of Moon and Weidner (2015), the only

two differences are that we allow for RNT to grow asymptotically, and that Assumption 1(i) requires a bound

on the Frobenius norm ∥Xk∥F :=
(∑N

i=1

∑T
t=1 X

2
it,k

)2

instead of a bound on the spectral norm ∥Xk∥. Since

∥Xk∥ ≤ ∥Xk∥F , our assumption here is technically stronger, but in practice, one will almost certainly justify any

bound on ∥Xk∥ by computing ∥Xk∥F anyway.
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To understand Assumption 3, notice first that for RNT = 0 we have

min(N,T )∑
r=1

σ2r

[
(δ ·X)√
NT

]
=

1

NT

N∑
i=1

T∑
t=1

(δ ·X)2it.

Thus, for RNT = 0, the assumption is just a standard non-collinearity assumption on the

regressors, which demands that every non-trivial linear combination δ ·X of the regressors has

sufficient variation. Next, for RNT > 0 we have

min(N,T )∑
r=2RNT+1

σ2r

[
(δ ·X)√
NT

]
=

1

NT

N∑
i=1

T∑
t=1

(δ ·X)2it −
2RNT∑
r=1

σ2r

[
(δ ·X)√
NT

]
,

that is, the assumption demands that the variation in the linear combination δ ·X does not only

come from the leading 2RNT singular values of this linear combination.

Of course, if rank(δ ·X) ≤ 2RNT , then for r > RNT all the singular values σr (δ ·X) are equal

to zero and the assumption is violated. Thus, as necessary condition for Assumption 3 is that

rank(δ ·X) > 2RNT , that is, any linear combination of the regressors needs to be a “high-rank

matrix”. For example, a constant regressor Xit,1 = 1 violates this assumption (it constitutes a

rank one matrix, which could be easily absorbed into the unobserved Γit), but if the regressors

are drawn from a DGP with random variation across both i and t, then they typically have full

rank. Again, we refer to the existing papers on the least-squares estimator with interactive fixed

effects for further discussion of this generalized non-collinearity condition on the regressors.

Theorem 1 (Consistency of β̂LS). Let the Assumptions 1 – 4 hold, and furthermore assume

that RNT = o(min{N,T}) as N,T → ∞. Then we have

β̂LS − β0 = OP

(
R

(3−2ρ)/2
NT

)
+OP

(
RNT (min{N,T})−1/2

)
. (14)

Therefore, by choosing RNT ∝ (min{N,T})
1

2ρ−1 we obtain that

β̂LS − β0 = OP

(
min{N,T}

3−2ρ
2(2ρ−1)

)
.

Here, the first term on the right-hand side of (14) is due to the approximation error of Γ

(which can have large rank) with only a finite number of factors (of rank only RNT ). Notice

that Assumption 4 demands ρ > 3/2, which implies that the exponent (3− 2ρ)/2 in that term

is negative. Thus, this approximation error term is small if we choose RNT to be large.

The second term on the right-hand side (14) reflects a potential endogeneity problem intro-

duced by the least-squares estimation procedure. Namely, the estimated loadings λ̂ and factors

and f̂ in (5) can be correlated with both the regressors Xk and the error term ε, and by con-

trolling for such endogenous variables λ̂ and f̂ we therefore potentially reduce the convergence

rate of the pooled estimator for β from 1/
√
NT to RNT (min{N,T})−1/2.
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In this first part of Theorem 1 we allow for general RNT , subject only to the condition

RNT = o(min{N,T}). However, we only obtain the desired consistency result β̂LS−β0 = oP (1)

if we let RNT → ∞ (to guarantee R
(3−2ρ)/2
NT → 0) such that RNT = o((min{N,T})1/2) (to make

sure the last term in (14) is oP (1)). The second part of Theorem 1 then chooses the rate for

RNT that optimally balances the two terms on the right hand side of (14).

Even for very large values of ρ (corresponding to very smooth functions h(·, ·)) we never

obtain convergence rates for β̂LS faster than (min{N,T})−1/2. This, however, should not be

surprising, since even in the standard interactive fixed effect model we do not obtain convergence

rates for β̂LS faster than (min{N,T})−1/2 unless we impose additional assumptions. Specifically,

in the interactive fixed effect model of Bai (2009) one also requires the so-called “strong factor

assumption” to obtain a convergence rate of β̂LS faster than (min{N,T})−1/2. Indeed, the

example in Section 4.3 of Moon and Weidner (2015) provides a concrete data generating process

for which β̂LS converges only at the rate (min{N,T})−1/2, and not faster, because the “strong

factor assumption” (with the correct number of factors) is not satisfied in that DGP.

In our setting, we cannot impose this “strong factor assumption”, because, as explained in the

introduction, the data generating process Γit = h(αi, γt) typically generates an infinite sequence

of factors of decreasing strength. Demanding all those factors in equation (3) to be strong factors

therefore makes no sense. Deriving a convergence rate for β̂LS faster than (min{N,T})−1/2 in

our model therefore appears to very challenging, to say the least. This if of course, the key

motivation for why we also consider the two-way grouped fixed effect estimator in this paper.

Remark 1. If we change Assumption 4 to

σr(Γ) ≤ c
√
NT r−ρ, (15)

for all r ∈ {RNT +1, . . .min{N,T}}, wpa1, and some constant c > 0, then the result in equation

(14) of Theorem 1 can be improved to

β̂LS − β0 = OP

(
R 1−ρ

NT

)
+OP

(
RNT (min{N,T})−1/2

)
,

and we can then obtain consistency of β̂ under the weaker condition ρ > 1. The condition (15)

implies Assumption 4, but not vice versa, because Assumption 4 is a condition on the sum of

the squared singular values, not on each of the singular values separately. It turns out to be

technically much easier to verify Assumption 4 than to verify (15) for our main case of interest

Γit = h(αi, γt),
5 as we do in Lemma 1 below. This explains why we have chosen that formulation

of the assumption and theorem in our baseline presentation.

5This is because not only the decay of σr(Γ) as r → ∞ needs to be controlled, but also the convergence rate

of the expressions as N,T → ∞.
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Despite the technical subtleties explained in the preceding remark, one should still interpret

Assumption 4 as imposing a particular decay rate for the singular values Γ, as in display (15)

of the remark. Thus, the leading few singular value can have a magnitude of
√
NT , as would

be the case under the “strong factor assumption” in the usual interactive fixed effects model of

Bai (2009). However, as N , T , r all converge to infinity we require the σr(Γ) to converge at the

polynomial rate r−ρ in order to satisfy the summability condition in Assumption 4.

The results in this section so far have not made any use of the structure Γit = h(αi, γt).

Theorem 1 is applicable to any other data generating process for Γ that satisfies Assumption 4.

A full-rank matrix Γ satisfying that assumption could, for example, also be generated by a

dynamic factor model (see e.g. Forni, Hallin, Lippi and Reichlin 2000, 2005, Stock and Watson

2002).6

In the following we now focus exclusively on the case Γit = h(αi, γt). The following lemma

provides conditions on the function h(·, ·) that guarantee that Assumption 4 is satisfied.

Lemma 1. Assume αi ∈ Ωα and γt ∈ Ωγ, and that h : Ωα × Ωγ → R is p times continuously

differentiable in both arguments, and the domains Ωα ⊂ Rnα and Ωγ ⊂ Rnγ are smooth and

bounded. Then for Γit = h(αi, γt) Assumption 4 is satisfied for RNT → ∞ with ρ = p
min{nα,nγ} .

Here, we measure the smoothness of the function h(·, ·) by p, the number of times it is

continuously differentiable. The decay rate ρ of the singular values of Γ then depends on this

measure of smoothness and the dimensions nα and nγ of the arguments αi and γt. The smoother

the function h(·, ·), for fixed dimensions nα and nγ , the faster to the eigenvalues of Γ converge

to zero.

The proof of Lemma 1 crucially relies on the functional singular value decomposition in (2)

and results on the decay rate of the corresponding singular values in Griebel and Harbrecht

(2014). The only technical contribution of the proof is then to properly relate those known

results on the functional singular value to the matrix singular values of Γ.

Notice that Lemma 1 requires no assumptions on the data generating process of αi and γt,

apart from boundedness of the domains Ωα and Ωγ , which can always be achieved by a repa-

rameterization. Thus, those nuisance parameters can be arbitrarily correlated with each other

(across i and over t) and with the regressors Xit,k. This result is analogous to the consistency

Theorem 4.1 for β̂LS in Moon and Weidner (2015), where also no assumptions on the interactive

fixed effects are imposed at all, apart from rank(λf ′) ≤ R.

From Theorem 1 and Lemma 1 we have the following corollary.

6One can generate an infinite number of “static factors”, as in (3), via a dynamic factor model with a finite

number of dynamic factors.
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Corollary 1. Let Assumptions 1 – 3 and the assumption on h(., .) in Lemma 1 be satisfied with

p > 3min {nα, nγ} /2, and also let RNT → ∞ such that RNT /(min{N,T})1/2 → 0. Then we

have

β̂LS − β0 = oP (1).

This is our final consistency result for the least-squares estimator of Bai (2009) in a data

generating process given by (1). The convergence rate of the estimator was already discussed

after Theorem 1 above, in particular, the difficulty in showing a convergence rate faster than

(min{N,T})1/2 in our setting.

3.2 Further discussion

Here, we want to present some further intuition on the formal results on β̂LS presented above.

The discussion in this subsection is purely heuristic and does not aim to provide any formal

derivations.

Remember the functional singular value decomposition in equation (2) of the introduction,

which we now write as h(αi, γt) =
∑∞

r=1 λ
0
ir f

0
tr. For the sake of the following discussion, suppose

that variation from h(αi, γt) dominates the variation in X ′
it β and εit for the leading RNT prin-

cipal components of the residuals Yit −X ′
it β −

∑R
r=1 λir ftr =

∑∞
r=1 λ

0
ir f

0
tr −X ′

it (β − β0) + εit.

In this “best case scenario”, the estimated factors
∑R

r=1 λir ftr in the definition of β̂LS in (5)

will coincide with the leading RNT components
∑R

r=1 λ
0
ir f

0
tr of h(αi, γt), and we then have

β̂LS − β0 = ζNT + ξNT ,

where

ζNT =

(
1

NT

N∑
i=1

T∑
t=1

X ′
itXit

)−1
1

NT

N∑
i=1

T∑
t=1

X ′
it εit

ξNT =

(
1

NT

N∑
i=1

T∑
t=1

X ′
itXit

)−1
1

NT

N∑
i=1

T∑
t=1

X ′
it

∞∑
r=R+1

λ0irf
0
tr.

Under standard regularity conditions we have
√
NTζNT ⇒ N (0,Σ), and under the assumptions

in the last subsection we have ξNT = OP

(
R

(3−2ρ)/2
NT

)
. In this “best-case scenario” we can

therefore have RNT → ∞ quick enough such that ξNT = oP (1/
√
NT ).

However, this is not a realistic scenario for RNT → ∞, because as RNT grows, eventually the

singular values of εit will dominate those of
∑∞

r=R+1 λ
0
irf

0
tr, and the factor projection method

will just project out idiosyncratic noise, or even contributions from X ′
it (β̂LS − β0). This implies
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that the problematic variation associated with λ0irf
0
tr for most singular values r remains. This

explains why it is so difficult to show anything better than the convergence rate results in

Theorem 1 for the estimator β̂LS in our setting.

4 Asymptotic results for the group fixed-effect estimator

The main goal of this section is to derive asymptotic results for the estimator β̂GS defined in (9),

which is the sample-splitting version of the group fixed-effect estimator. But we are first going

to discuss the initial group fixed-effect estimator β̂G defined in (7) without sample-splitting.

We will not actually derive convergence rate results for β̂G itself, but the discussion of the

approximation bias of β̂G will be a very useful precursor of the results for β̂GS.

4.1 Results for β̂G

We can rewrite our estimating equation for the group fixed-effect estimator in (6) as

Y = X · β + δ D′
δ +Dν ν

′ + ε, (16)

where δ and ν are the N × C and T × G matrices of nuisance parameters, while Dδ and Dν

are T × C and N × G are binary matrices in which each row contains a single one, indicating

the group membership of the corresponding unit or time period, respectively. By standard

partitioned regression results we can then rewrite the group fixed-effect estimator in (7) as

β̂G =

(
N∑
i=1

T∑
t=1

X̃ ′
it X̃it

)−1 N∑
i=1

T∑
t=1

X̃ ′
it Ỹit, X̃k =MN XkMT , Ỹ =MN Y MT , (17)

where X̃it =
(
X̃it,1, . . . , X̃it,K

)
, Ỹit and X̃it,k are the entries of the N × T matrices X̃k and Ỹ ,

respectively, and MN = IN − Dν(D
′
νDν)

−1D′
ν and MT = IT − Dδ(D

′
δDδ)

−1D′
δ are projection

matrices of dimesion N ×N and T × T , respectively.

Using this representation of the group fixed-effect estimator and the model in (13) we obtain

that

β̂G − β0 = ϕNT + κNT , (18)

where

ϕNT :=

(
N∑
i=1

T∑
t=1

X̃ ′
itX̃it

)−1 N∑
i=1

T∑
t=1

X̃ ′
it εit, κNT :=

(
N∑
i=1

T∑
t=1

X̃ ′
itX̃it

)−1 N∑
i=1

T∑
t=1

X̃ ′
it Γ̃it, (19)

with Γ̃ defined analogously to X̃k and Ỹ in (17). In the definition of ϕNT we can equivalently

write ε̃it instead of εit, but since MN and MT are idempotent matrices, and X̃it is already the
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projected regressor, this does not matter. The same is true, of course, for Γ̃it vs Γit in the

definition of κNT . However, the expressions in (19) turn out to be convenient as written.

Here, κNT is the approximation error of having replaced the nonlinear specification Γit =

h(αi, γt) in our model in (1) by the much simpler additive specification δi,ct +νt,gi in the estima-

tion equation (6). To see this, we can use standard matrix inequalities to bound the Euclidian

norm of κNT by

∥κNT ∥ ≤

∥∥∥∥∥∥
(

N∑
i=1

T∑
t=1

X̃ ′
itX̃it

)−1
∥∥∥∥∥∥
(
max
k

∥∥∥X̃k

∥∥∥
F

) ∥∥Γ̃∥∥
F
, (20)

where ∥ · ∥F refers to the Frobenius norm. Due to the definition of MN and MT we have

∥∥Γ̃∥∥2
F
= min

δ∈RN×C
min

ν∈RT×G

N∑
i=1

T∑
t=1

[h(αi, γt)− δi,ct − νt,gi ]
2 . (21)

The last two displays show that κNT is small whenever h(αi, γt) can be well approximated by

δi,ct +νt,gi . In equation (8) we already informally discussed the magnitude of this approximation

error, and found that it is of order ∥αi − αgi∥2 + ∥γt − γct∥
2. We now want to provide a more

formal discussion of this and show that κNT is asymptotically small under appropriate regularity

conditions.

In Section 2.2.2 we described the clustering algorithms that delivers the group memberships

gi and ct based on the initial estimates λ̂∗i and f̂∗t . The goal of the clustering is to group units

i with approximately the same value of αi, and to group time periods t with approximately the

same γt. It is therefore crucial that λ̂∗i and f̂∗t are good proxies for αi and γt. Specifically, we

require that there exist functions λ∗ : A → RR∗ and f∗ : C → RR∗ such that λ̂∗i and f̂∗t converge

to the non-random limits λ∗(αi) and f
∗(γt) as N,T → ∞. The following assumption formalizes

this and states all the regularity condition that we require on h(·, ·), λ∗(·), f∗(·), λ̂∗i , f̂∗t , and
Xit.

Assumption 5. There exists a sequence ξNT > 0 such that ξNT → 0 as N,T → ∞, and

(i) The function h(·, ·) is at least twice continuously differentiable with uniformly bounded

second derivatives.

(ii) Every unit i is a member of exactly one group gi ∈ {1, . . . , G}, and every time period t is

a member of exactly one group ct ∈ {1, . . . , C}. The size of all G groups of units, and the

size of all C groups of time periods is bounded uniformly by Qmax.

(iii) There exists B > 0 such that ∥a− b∥ ≤ B ∥λ∗(a)− λ∗(b)∥ for all a, b ∈ A , and ∥a− b∥ ≤
B ∥f∗(a)− f∗(b)∥ for all a, b ∈ C, and the domains A and C are convex set.
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(iv) 1
N

∑N
i=1

(∥∥∥λ̂∗i − λ∗(αi)
∥∥∥2) = OP (ξNT ),

1
T

∑T
t=1

(∥∥∥f̂∗t − f∗(γt)
∥∥∥2) = OP (ξNT ).

(v) 1
N

∑N
i=1

∥∥∥λ̂∗i − λ̂∗j(i)

∥∥∥2 = OP (ξNT ) for any matching function j(i) ∈ {1, . . . , N} such that

gi = gj(i), and
1
T

∑T
t=1

∥∥∥f̂ ∗
t − f̂ ∗

s(t)

∥∥∥2 = OP (ξNT ) for any matching function s(t) ∈ {1, . . . , T}
such that ct = cs(t).

(vi) maxk,i,t

∣∣∣X̃it,k

∣∣∣ = OP (1), and plimN,T→∞
1

NT

∑N
i=1

∑T
t=1 X̃

′
itX̃it = Ω, where Ω is a positive

definite non-random matrix.

Lemma 2. Under Assumption 5 we have

κNT = OP (ξNT )

The lemma shows that the approximation error κNT vanishes at the rate ξNT as N,T → ∞.

The assumptions and the lemma are formulated for arbitrary rates, but as will become clear from

the following discussion, the best we can achieve in our setting is a rate of ξNT = 1/min(N,T ),

which coincides with ξNT = 1/
√
NT in the special case that N and T grow at the same rate.

Part (i) of Assumption 5 requires the function h(·, ·) to be sufficiently smooth. This condition

should not be surprising, because our informal discussion of the approximation error in equa-

tion (8) already relies on a second order Taylor expansion of h(·, ·), and the proof of Lemma 2

is based on exactly such an expansion.

Part (iii) and (iv) of the assumption are analogous to “Assumption 2 (injective moments)”

in Bonhomme, Lamadon and Manresa (2021), except that they consider a one-way fixed effect

setting while we consider a two-way fixed effect setting. Part (iii) requires the functions λ∗(·)
and f∗(·) to be injective, that is, αi and γt can be uniquely recovered from knowing λ∗(αi) and

f∗(γt). A necessary condition for this is that

R∗ ≥ max(dα, dγ), (22)

where dα and dγ are the dimensions of αi and γt, respectively. Part (iv) requires the estimates

λ̂∗i and f̂∗t to converge to λ∗(αi) and f∗(γt) at the average rate of ξ
1/2
NT . Since T observations

are available for unit i we expect that λ̂∗i converges at a rate of T 1/2, and since N observations

are available for time period t we expect that f̂∗t converges at a rate of N1/2, see, for example,

Theorem 1 and 2 in Bai (2003). This explains why ξNT = 1/min(N,T ) is the best rate we can

achieve here.

Part (v) of Assumption 5 is a high-level assumption on the clustering mechanism used to

obtain the group memberships gi and ct. For units i and j in the same group, and for time

periods t and s in the same group, we demand the average differences λ̂∗i − λ̂∗j and f̂ ∗
t − f̂ ∗

s to
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be small as N,T → ∞. In other words, we require that the clustering mechanism does what

it is intended to do, namely forming groups such that the estimates λ̂∗i and f̂ ∗
t for units i and

time periods t in the same group are close to each other. For a given clutstering algorithms

(e.g. the one describe in Section 2.2.2) one could prove that this assumption holds under further

regularity conditions on the distribution of αi and γt, see, for example, Lemma 1 in Bonhomme,

Lamadon and Manresa 2021. In particular, a necessary condition for part (v) of Assumption 5

to hold is the following:

Regularity condition. 1
N

∑N
i=1

∥∥αi − αj(i)

∥∥2 = OP (ξNT ) for any matching function j(i) ∈
{1, . . . , N} such that gi = gj(i), and

1
T

∑T
t=1

∥∥γt − γs(t)
∥∥2 = OP (ξNT ) for any matching function

s(t) ∈ {1, . . . , T} such that ct = cs(t).

This condition coincides with Assumption 5(v) in the unrealistic case that λ̂∗i = αi and

f̂ ∗
t = γt. Starting from this unrealistic case and then applying the transformations λ∗ : A → RR∗

and f∗ : C → RR∗ and adding noise to the estimates then gives part (v) of Assumption 5.

Crucially, for this regularity condition to hold, we need that ξNT ≳ 1/min(N2/dα , T 2/dγ ), see

Lemma 2 in Bonhomme, Lamadon and Manresa (2021) for the analogous results in a one-way

fixed effect model (also Graf and Luschgy 2002). Since our actual clustering method is not based

on the unobserved αi and γt, but on λ̂∗i and f̂ ∗
t we require the stronger condition (in view of

(22)) that

ξNT ≳ [min(N,T )]−2/R∗
.

This is a necessary condition for Assumption 5(v) to be satisfied.7 Therefore, if we want to

achieve the best possible rate ξNT = 1/min(N,T ), then we need R∗ ≤ 2, which according to

(22) implies that dα ≤ 2 and dγ ≤ 2. This discussion shows that our group fixed-effect estimator

β̂G suffers from a curse of dimensionality with regards to the dimensions of αi and γt. However,

this should be unsurprising, given the semi-parametric nature of the estimation problem – with

non-parametric component h(αi, γt). This also shows that there is a tradeoff between the LS

estimator analyzed in Section 3 and the group fixed effects estimator discussed here – we will

further compare those two estimators in our MC analysis below.

Finally, part (vi) of Assumption 5 requires some regularity conditions on the projected

regressors X̃k =MN XkMT defined in (17).

This concludes our discussion of the approximation error κNT . We have argued that, under

appropriate regularity conditions, including max(dα, dγ) ≤ 2, we can use Lemma 2 to obtain

7Following the logic in Bonhomme, Lamadon and Manresa (2021) we believe that we actually only need

ξNT ≳ 1/min(N2/dα , T 2/dγ ), that is, our group fixed effect estimator β̂G truly cannot achieve a convergence rate

faster than 1/min(N2/dα , T 2/dγ ). Thus, if R∗ > max(dα, dγ), then ξNT ≳ [min(N,T )]−2/R∗
is probably not a

necessary condition for the result of Lemma 2 itself, but only for our Assumption 5(v).
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κNT = 1/
√
NT , for N and T growing to infinity at the same rate. Since β̂G−β0 = ϕNT+κNT we

could then conclude that β̂G−β0 = OP (1/
√
NT ), if we could also show that ϕNT = OP (1/

√
NT ).

From the definition of ϕNT in (19) one might think that it is easy to derive this results on ϕNT

by imposing an approximate exogeneity condition on the regressors. However, the problem is

that X̃k depends on the group assignments of units i and time periods t, which were constructed

based on λ̂∗ and f̂∗, which depend on the errors ε. Thus, X̃k depends on ε in complicated ways

through the group assignment, making a proof of ϕNT = OP (1/
√
NT ) technically challenging.

In principle, we expect that

√
NT ϕNT ⇒ N (0,ΣG) (23)

holds for an appropriate covariance matrix ΣG, and our simulations evidence suggest that this

is indeed the case. However, we are not aiming to prove this result in this paper. As explained

already in Section 2, this technical difficulty in analyzing β̂G is exactly why we introduced the

split-sample version of the group fixed-effect estimator, for which we are going to derive results

in the following.

4.2 Results for β̂GS

The split-sample version of the group fixed effect estimator was introduced in Section 2.2.3

above. Using the Frisch-Waugh-Lovell theorem we can rewrite β̂GS in equation (9) as follows:

β̂GS =

 4∑
s=1

∑
(i,t)∈Os

X̃
(s) ′
it X̃

(s)
it

−1
4∑

s=1

∑
(i,t)∈Os

X̃
(s) ′
it Yit,

where the projected regressors X̃
(s)
it =

(
X̃

(s)
it,1, . . . , X̃

(s)
it,K

)′
for each subpanel s ∈ {1, 2, 3, 4}, each

regressor k = 1, . . . ,K, and observations (i, t) ∈ Os within that subpanel, are the residuals of

the least-squares problem

min
δ

min
ν

∑
(i,t)∈Os

(
Xit,k − δ

i,c
(s)
t

− ν
t,g

(s)
i

)2
. (24)

Following the decomposition of β̂G in (18), we can now introduce the analogous decomposition

for β̂GS by

β̂GS − β0 = ϕ
(GS)
NT + κ

(GS)
NT , (25)
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where

ϕ
(GS)
NT :=

 4∑
s=1

∑
(i,t)∈Os

X̃
(s) ′
it X̃

(s)
it

−1
4∑

s=1

∑
(i,t)∈Os

X̃
(s) ′
it εit,

κ
(GS)
NT :=

 4∑
s=1

∑
(i,t)∈Os

X̃
(s) ′
it X̃

(s)
it

−1
4∑

s=1

∑
(i,t)∈Os

X̃
(s) ′
it Γ̃

(s)
it ,

Here, ϕ
(GS)
NT is a variance term that we will show to be unbiased and asymptotically normal,

and κ
(GS)
NT is the approximation error from having replaced h(αi, γt) by the linear grouped fixed

effect in the estimation for β̂GS in (9). The Γ̃
(s)
it are the residuals of the least-squares problem

(24) when Xit,k is replaced by Γit = h(αi, γt).

For each of the four subpaneles s ∈ {1, 2, 3, 4}, the discussion of the approximation error

κ
(GS)
NT is identical to the discussion of the approximation error κNT of β̂G, see, in particular, the

bounds (20) and (21) above. It is therefore straightforward to obtain the analogue of Lemma 2

for the approximation error of the split-sample estimator.

Lemma 3. Under Assumption A.1 (in appendix) we have

κ
(GS)
NT = OP (ξNT )

Assumption A.1 is stated in the appendix, but it is simply a restatement of Assumption 5

for each subpanel s ∈ {1, 2, 3, 4}. Those assumptions were discussed after Lemma 2 above. In

particular, the best possible convergence rate we can hope for here is ξNT = 1/min(N,T ), but

that rate is only attainable for dα ≤ 2 and dγ ≤ 2.

The key difference between β̂G and β̂GS is that for the split-sample estimator we can derive

the asymptotic behavior of the variance term very easily ϕ
(GS)
NT . For this purpose, we impose the

following assumptions.

Assumption 6.

(i) Conditional on X, α, γ, we assume that εit is independently distributed across i and over

t, such that σ2it := E
(
ε2it
∣∣X,α, γ) ≤ B < ∞, for some constant B that is independent of

i, t,N, T .

(ii) We have plimN,T→∞
1

NT

∑4
s=1

∑
(i,t)∈Os

X̃
(s) ′
it X̃

(s)
it = Ω > 0, and for each s ∈ {1, . . . , S}

we have plimN,T→∞
1

NT

∑
(i,t)∈Os

σ2itX̃
(s) ′
it X̃

(s)
it = Σ(s). Furthermore, we assume that, for

s ∈ {1, 2, 3, 4}, all the third-order sample moments of X̃
(s) ′
it εit across (i, t) ∈ Os are bounded

as N,T → ∞.
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Assumption 6 together with the sample splitting method used to construct β̂GS guarantees

that, within each subpabel s ∈ {1, 2, 3, 4}, the X̃(s) ′
it εit are zero mean and independently dis-

tributed across
∑

(i,t)∈Os
. Here, the split-panel construction is crucial, since it guarantees that

X̃
(s)
it is independent of εit. The remaining conditions in Assumption 6 are regularity conditions

to allow us to apply the Lyapunov central limit theorem for each subpanel and to guarantee

that ϕ
(GS)
NT has a finite asymptotic variance. We therefore obtain the following lemma.

Lemma 4. Under Assumption 6 we have, as N,T → ∞,

√
NT ϕ

(GS)
NT ⇒ N (0,ΣGS), ΣGS = Ω−1

(
4∑

s=1

Σ(s)

)
Ω−1.

Combining equation (25) with Lemma 3 and Lemma 4 then gives the following theorem.

Theorem 2. Under Assumption 6 and Assumption A.1 we have

β̂GS − β0 = OP

(
1√
NT

+ ξNT

)
= oP (1).

Analogous to Corollary 1 for the least-squared estimator of Bai (2009), we have this obtained

a consistency result for β̂GS as well. We have not derived asymptotic inference results using

either of these estimators, but in the following section we explain how we use those estimators

to construct confidence intervals in our simulations and empirical application.

5 Implementation

The asymptotic results derived for β̂LS, β̂G, and β̂SG in the last two sections are insightful for

how those estimates should be used in practice. In particular, our discussions and derivations

are helpful to appreciate the limitations and assumptions needed for the estimation approaches,

and we will summarize those again in our conclusion section below.

In the following Monte Carlo simulations and empirical application we will employ the esti-

mates β̂LS, β̂G, and β̂SG in a way that goes beyond our formal asymptotic results. In particular,

we will use all those estimators to construct confidence intervals and we will also apply Jackknife

methods for bias correction. In this section, we want to briefly explain how those confidence

intervals and bias corrected estimates are constructed.

To formulate standard errors for each estimator we initially ignore the approximation error

discussed in our formal results and assume the residual terms follow the asymptotic behaviour

of independent and identically distributed zero mean disturbance. For example, in section 4.1

where we split the residual term into ϕ and κ, we will ignore the κ term and estimate standard

errors as if we are left with only ϕ. We use the jackknife corrections to address the residual terms

related to approximation error in both the factor and grouped fixed-effects estimation models.
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For factor model standard errors we construct the heteroscedasticity-consistent estimator

from White (1980) as follows. Take Ω =
∑N

i=1

∑T
t=1 X̃

′
itX̃it and Σ̂ =

∑N
i=1

∑T
t=1 û

2
itX̃

′
itX̃it

where ûit = Ỹit −
∑

k β̂LS,kX̃it,k and for a matrix A, in this context, Ã represents the matrix

with factors projected. We must make a degrees of freedom correction for the factor projection

by the ratio dfc =
√

NT
(N−R)(T−R) . Then the vector of standard errors are,

se(β̂LS) = dfc ·
√

diag
(
Ω−1Σ̂Ω−1

)
.

As above, we use this same standard error estimator for jackknife corrected estimates.

For the grouped fixed-effects models we use clustered standard errors where clusters are

taken as the combination of i and t clusters. That is, for the matrices of clusters Dα and Dγ

for i and t respectively we take clusters as the Kronecker product between these two matrices,

Dα ⊗Dγ . Remember here that the columns of Dα, resp. Dγ , are the cluster assignments of i,

resp. t with a 1 entry if that observation is in the cluster and a 0 otherwise. Take m as the

index for cluster assignment with M = GC the total number of clusters. Hence, Dα ⊗Dγ := D
is an NT by M matrix with Dm representing a column of this matrix and Dn,m representing an

entry. A combination (i, t) can be can be identified by the row, n, of the matrix D as t = ⌈n/N⌉
and i = n − (⌈n/N⌉ − 1)N , which is similar to the usual matrix flattening procedure. Then,

the column-vector Dm consists of a 1 if the (i, t) combination implied by that row, n, is in that

column’s cluster and 0 otherwise.

Define as above Ω =
∑N

i=1

∑T
t=1 X̃

′
itX̃it and ûit = Ỹit −

∑
k β̂G,kX̃it,k where in this context

for matrix A, the matrix Ã represents the matrix with group fixed-effects projected out. Call the

index function n(i, t) = i+ (t− 1)N , such that Dn(i,t),m returns the binary indicator of whether

(i, t) is in the mth combination cluster. Now define Σ̂ =
∑M

m=1

∑N
i=1

∑T
t=1Dn(i,t),mû

2
itX̃

′
itX̃it.

This collapses the familiar block-diagonal matrix where values within each block corresponds to

a combination cluster and are unrestricted but zero outside each block. The clustered standard

errors can thus be defined as

se(β̂G) = dfc ·
√
diag

(
Ω−1Σ̂Ω−1

)
where in this context dfc =

√
NT

(N−G)(T−C) . The standard error estimator is identical for the

split sample version except there are many more combination clusters by the nature of this split

sample estimators clustering method.

Finally, we also apply Jackknife bias corrections to the estimators to reduce both the approxi-

mation bias and the incidental parameter bias of the various estimates. We follow Fernández-Val

and Weidner (2016) to estimate the jackknife bias corrected analog to each estimator as follows.

This procedure is closely related to Dhaene and Jochmans (2015). First, split the sample along
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the i dimension into two N/2 by T samples. For each of these samples run and call the re-

lated estimates from estimator E, β̂1,1E and β̂1,2E , respectively. Repeat this process along the t

dimension to return β̂2,1E and β̂2,2E . Then the final jackknife bias corrected analog for estimator

E is

β̂E,JK = 3β̂E − 1

2

(
β̂1,1E + β̂1,2E

)
− 1

2

(
β̂2,1E + β̂2,2E

)
,

where β̂E is simply the estimate without any sample split. We maintain the assumption that

standard errors are the same across split samples so we can simply take the standard error

estimate from the whole sample.

6 Monte Carlo simulations

For our Monte Carlo simulations, we choose a data generating process with a single regressor

(K = 1), and we generate outcomes and regressor as follows:

Yit = Xitβ + h(αi, γt) + εit,

Xit = g(αi, γt) + µit,
(26)

with

εit, αi, γt, µit ∼ all mutually independent and i.i.d.N (0, 1) (27)

This setting assumes that the endogeneity in Xit depends on the specification of g(., .) vis–à–

vis h(., .). The decay in singular values for either the unobserved term in Yit or for Xit can be

directly manipulated through the specification of h(., .) and g(., .), which will dictate the number

of significant factors in each decomposition.

We set β = 1 and,

h(a, b) = g(a, b) =
1√
2πθ

exp

(
(a− b)2

θ2

)
, θ = (1/2)3. (28)

The θ value here dictates the speed of decay in singular values for h(., .) and g(., .), holding fixed

the variation in their arguments, where a lower value implies a slower decay. This particular

value for θ was chosen as it implies a slow decay in singular values such that the endogenous

component of the unobserved term and X persists even as many factors are included. The value

for θ carries no fundamental economic meaning. Note, the nature of bias in this simulation is

by design monotonic and positive for illustrative purposes.

Table 2 below shows the results from 10,000 Monte Carlo simulations. These results display

our theoretical result on bias reduction succinctly. We see that as we increase the number of
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factors the average bias reduces and the standard deviation of estimates increases. We also

see a significant improvement in bias using the grouped fixed-effects estimator, without a large

increase in standard deviation. The GFE split sample estimator performs much worse in terms

of bias, which is expected given the significantly smaller candidate pool for clustering in this

estimator. The jackknife analog to each estimator reduces bias in all cases except the factor

model with 5 factors, but significantly increases standard deviation in all cases.

If we compare the mean standard error estimates to standard deviation across simulations

we see evidence that the standard error calculation may underestimate the true standard error of

the estimator. In light of discussion in Section 5, we explicitly ignore fixed-effects approximation

error and assumed only a noise term remains when estimating standard errors, which may explain

this discrepancy. The divergence between estimated standard errors and standard deviation

across simulations is particularly noticeable for the factor model with a large number of factors

and for jackknife bias corrected estimators. For large factor models it is likely our inference

approach misses out dependence structures introduced by the factor projection. This divergence

is less pronounced for the group fixed-effects estimator without bias correction. Since we do not

expressly advocate a particular inference approach for any estimator used in this paper we do

not discuss this issue any further and leave it for future research.

Table 2: Monte Carlo simulations

Mean Bias Stand. Dev. Mean ŝe % Coverage

LS factor model (5 factors) 0.0843 0.0122 0.0105 0.00

LS factor model (20 factors) 0.0162 0.0151 0.0111 0.65

LS factor model (50 factors) 0.0124 0.0306 0.0137 0.56

LS factor model Jackknife (5 factors) -0.5307 0.0373 0.0105 0.00

LS factor model Jackknife (20 factors) -0.0100 0.0286 0.0111 0.51

LS factor model Jackknife (50 factors) -0.0066 0.0752 0.0137 0.27

Group fixed-effects 0.0019 0.0189 0.0179 0.93

GFE jackknife -0.0005 0.0343 0.0179 0.70

GFE splits 0.0205 0.0188 0.0126 0.57

N = T = 100 with 10,000 repetitions.

Mean bias is simply the mean of the bias across simulations. Standard deviation is the standard

deviation of the estimates, again across simulations. Mean ŝe is the mean across simulations of the

standard error estimate. Coverage is defined here as the percentage of estimates that contain the true β

in its 95% confidence intervals implies by its ŝe.
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7 Empirical application

We apply our estimation procedure to an analysis of the UK housing market, following Giglio,

Maggiori and Stroebel (2016) (GMS16). Specifically, we study the effects of extremely long lease

agreements on the price of housing, when compared to freehold agreements. In the UK housing

market it is common for real estate property to be sold under each agreement. GMS16 posit that

any change in price due to exogenous variation in whether the property was sold under extremely

long lease or freehold must be attributed to so–called “housing bubbles associated with a failure

of the transversality condition”. The empirical challenge in making this comparison, and much

discussed in GMS16, is to sufficiently control for observable and unobservable covariates such

that variation in the variable of interest can be reasonably described as exogenous.

In the following, we compare estimates using our method with the more flexible approach

taken in their paper. We note first that given differences in data, these results should not

be directly compared with GMS16. Rather, this should be seen as an internal validity check

across estimation models, i.e., to check if the aggregated setting produce similar estimates to

the granular setting from GMS16 within the same set of data.

Consider the granular model from GMS16

Yiprt = ExtremelyLongLeaseiβ + controls′itδ + ϕprt + εiprt (29)

where i are individual transactions (i.e. not necessarily properties), p is property type, r are

regions and t is the month of transaction. Controls include hedonic variables, e.g. number

of bedrooms, bathrooms and floorspace. ϕprt is a scalar fixed effect particular to the region,

property type and month, and is identified via variation across transactions i. Compare this to

an aggregated setting,

Yrt = ExtremelyLongLeasertβ + controls′rtδ + h(αr, γt) + εrt (30)

where Yrt, ExtremelyLongLeasert and controlsrt are the sample means aggregated to the region

and transaction month. The multidimensional array with entries ϕprt varies with higher rank

than the matrix with entries h(αr, γt) because the latter is constant across p if extended to the

equivalent multidimensional array with dimensions across (p, r, t). This is why we believe the

model in (29) will better capture fixed-effects.

For purposes of this exercise we take the granular model with fixed-effects below as being,

in theory, the better model to approximate unobserved heterogeneity. Hence we refer to this as

the benchmark model. We use this benchmark approach to understand how well each estimator

performs in practical instances where granular levels of aggregation are not always available,

for example when data is aggregated for privacy reasons or for other feasibility reason. Hence,
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estimates close to the granular model estimates should be seen as performing “well” in this

setting.

Table 3 shows that when we control for fixed effects in the granular model there is a 0.3%

reduction in price when a long leasehold transaction is made compared to a freehold. Whilst

this is statistically significant, it translates to a decrease in the median house price of less than

£1,000 so is arguably a small reduction economically. The OLS estimates do not change much

across the different aggregation schemes and perhaps unsurprisingly the panel aggregated OLS

has a much higher standard deviation due to the lower effective sample size. In the panel setting

the factor model shows a convergence to the granular model with fixed effects as factors are

increased and, interestingly, also to the grouped fixed-effects estimate, which is the closest to

the benchmark estimates.8 These results show a similar pattern to the simulation exercise where,

according to the benchmark model, we see a bias reduction as the number of factors increases

and when using the group fixed-effects estimator.

Table 3: Empirical Results

Model Estimate Standard Errors

Granular Model Ordinary Least Squares 0.203 0.0054

(29) with Fixed Effects -0.003 0.0006

Panel Model Ordinary Least Squares 0.229 0.106

(30) LS factor model (5 factors) 0.024 0.012

LS factor model (15 factors) 0.007 0.007

LS factor model (30 factors) 0.007 0.008

Group fixed-effects 0.006 0.020

UK housing market results for N = 2088 and T = 48.

8 Conclusions

Panel regressions are very popular estimation tools, because they allow to control for omitted

variables that are unobserved and potentially correlated with the observed covariates. Both

Pesaran (2006) and Bai (2009), and most of the literature following those seminal papers, assume

that those unobserved omitted variables take the form of a low-rank matrix, which can be

interpreted as a static factor model or interactive fixed effects. In this paper, we deviate from

this interactive fixed effect model by assuming that the unobserved omitted variables enter the

8In Table 3, our usual computation for the clustered standard errors of the group fixed-effect estimator was

infeasible here due to the sample size. These standard error estimates are generated by resampling region clusters

with replacement over 10,000 resamples.
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model in the more general form h(αi, γt), where h(·, ·) is an unknown smooth function, and αi

and γt are (multidimensional) fixed effects that can be arbitrarily correlated across i, over t, and

with the observed covariates.

We first explore the behavior of Bai’s least-squares esimator in this new setting. We show

that this LS esimator estimator is still consistent, as long as the number of factors used in the

estimation is allowed to grow asymptotically. However, as explained in detail in Section 3, it

seems impossible to derive convergence rates faster than (min{N,T})1/2 for this estimator in

our setting.

We therefore develop a new estimation approach called the two-way grouped fixed effects

approach, which generalize ideas in Bonhomme, Lamadon and Manresa (2021) to our two-way

setting. We derive convergence rate results for the resulting new estimators and show that,

depending on the dimension of αi and γt, and the relative size of N and T , convergence rates

up to
√
NT can be achieved with our new estimation approach.

We also explore the performance of those various estimators in simulations and in an em-

pirical application. We find that both Bai’s least-squares esimator and our grouped fixed effect

estimators tend to perform well in practice. Interestingly, the theoretical convergence rate of

(min{N,T})1/2 for the LS esimator may often understate the performance of this esimator in

practice.

We also find that Jackknife bias correction helps to further reduce the bias of the various

estimators, but at the cost of increasing the variance. Overall, the (Jackknife corrected) group

fixed-effects estimator tends to have the smallest bias, but not necessarily the smallest variance.

The empirical application shows that, according to our benchmark estimation, the LS estimation

approach improves with more factors and that the group fixed-effects estimator does indeed

provide a bias reduction compared to the LS estimator.

In the simulation exercise and empirical application we implemented standard error calcula-

tions for each estimator, but we leave formal inference results in the setting of our paper as an

open question for future research.
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A Appendix

A.1 Proofs for Section 3

We first establish a technical lemma, which is afterwards used to proof the main text theorem.

Remember that we write ∥ · ∥ for the spectral norm of a matrix. Define the projection matrix

PA = A(A′A)†A′ for any matrix A and remember we write the annihilation matrixMA = I−PA.

Here, † refers to the Moore-Penrose inverse.

Lemma A.1. Let Assumption 3 hold and consider N,T → ∞. Furthermore, assume that

Y =
K∑
k=1

Xk β
0
k + e∗ + e, (A.1)
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with rank(e∗) = RNT ≤ min(N,T )/2, ∥e∥ = OP (ηNT ), ∥Xk∥ = OP (
√
NT ), and 1√

NT
Tr(Xke

′) =

OP (ξNT ), for k = 1, . . . ,K. Then, the LS estimator in (5) calculated with R = RNT factors in

the estimation procedure, satisfies β̂LS − β0 = OP

(
(ξNT +RNT ηNT )/

√
NT

)
.

Proof of Lemma A.1. This proof is relatively minor modification of the consistency proof for

the LS estimator in Moon and Weidner (2015), and more technical details can be found there.

For simplicity we just write R, η, ξ instead of RNT , ηNT , ξNT in this proof. We rewrite the

definition of β̂LS as

β̂LS = argmin
β

LNT (β),

LNT (β) := min
{λ∈RN×R, f∈RT×R}

1

NT
Tr
[(
Y −X · β − λf ′

) (
Y −X · β − λf ′

)′]
. (A.2)

Since rank(e∗) = R we can write e∗ = λ∗f∗′ for some N ×R matrix λ∗ and T ×R matrix f∗′.

We now first establish a lower bound on LNT (β). Let ∆β = β − β0. Consider the definition

of LNT (β) in equation (A.2) and plug in the model Y = β ·X + λ∗f∗′ + e. We then have

LNT (β) = min
{λ∈RN×R, f∈RT×R}

1

NT
Tr
[(
∆β ·X + e+ λ∗f∗′ − λf ′

) (
∆β ·X + e+ λ∗f∗′ − λf ′

)′]
≥ min

{λ̃∈RN×(2R), f̃∈RT×(2R)}
1

NT
Tr

[(
∆β ·X + e− λ̃f̃ ′

)(
∆β ·X + e− λ̃f̃ ′

)′]
=

1

NT
min

f̃∈RT×(2R)
Tr
[
(∆β ·X + e)Mf̃ (∆β ·X + e)′

]
=

1

NT
min

f̃∈RT×(2R)

{
Tr
[
(∆β ·X)Mf̃ (∆β ·X)′

]
+Tr

(
ee′
)
− Tr

(
ePf̃e

′
)

+ 2Tr
[
(∆β ·X) e′

]
− 2Tr

[
(∆β ·X)Pf̃e

′
]}

≥ 1

NT

{
T∑

r=2R+1

µr
[
(∆β ·X)′(∆β ·X)

]
+Tr

(
ee′
)
− 2R∥e∥2

+ 2Tr
[
(∆β ·X) e′

]
− 4R∥e∥∥∆β ·X∥

}

≥ b ∥∆β∥2 + 1

NT
Tr
(
ee′
)
+OP

(
Rη2

NT

)
+OP

(
(ξ +Rη) ∥∆β∥√

NT

)
. (A.3)

Here, we applied the inequality |Tr(A)| ≤ rank(A)∥A∥ with A = (∆β ·X)Pf̃e
′ and also with A =

ePf̃e
′. We also used that minf̃ Tr

[
(∆β ·X)Mf̃ (∆β ·X)′

]
=
∑T

r=2R+1 µr [(∆β ·X)′(∆β ·X)].

In the last step of (A.3) we applied the various assumptions in the lemma.

Next, we establish an upper bound on LNT (β
0). We can choose λ = λ∗ and f = f∗ in the

minimization problem in (A.2), and therefore

LNT (β
0) ≤ 1

NT
Tr
(
ee′
)
. (A.4)
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Since we could choose β = β0 in the minimization of β, the optimal β̂LS needs to satisfy

LNT (β̂LS) ≤ LNT (β
0). Together with (A.3) and (A.4) this gives

b ∥β̂LS − β0∥2 +OP

(
(ξ +Rη)∥β̂LS − β0∥√

NT

)
+OP

(
Rη2

NT

)
≤ 0 . (A.5)

Since
√
R = O(R) it follows that ∥β̂LS−β0∥ = OP

(
(ξ +Rη)/

√
NT

)
, which is what we wanted

to show. ■

Using Lemma A.1 we are now ready to prove Theorem 1.

Proof of Theorem 1. To apply Lemma A.1 we first need to define e and e∗ such that (A.1)

is an implication of our model (13). Decompose Γ =
∑min{N,T}

r=1 λ∗rf
∗′
r , which is a reformulation

of the singular value decomposition of a matrix. Define e∗ =
∑RNT

r=1 λ∗rf
∗′
r such that rank(e∗) =

RNT . Also define e = S + ε where S = Γ−
∑RNT

r=1 λ∗rf
∗′
r . With these definitions model (13) can

be rewritten as (A.1) and it remains to show Assumptions 1-3 are sufficient for Lemma A.1 and

to characterise the sequences ηNT and ξNT .

First, use the norm inequality ∥S + ε∥ ≤ ∥S∥ + ∥ε∥ with ∥ε∥ = OP (
√
max{N,T}) from

Assumption 1 (ii) to show ∥e∥ ≤ ∥S∥+OP (
√
max{N,T}). To bound ∥S∥ use the fact that the

spectral norm is bounded by the Frobenius norm and Assumption 4 to show

∥S∥2 ≤ ∥S∥2F =

∞∑
r=RNT+1

σ2r (Γ)

≤ OP

(
NTR1−2ρ

NT

)
.

This shows that ∥e∥ is asymptotically bounded in probability by the sequence ηNT with

ηNT =
√
max{N,T}+

√
NTR

(1−2ρ)/2
NT .

That is, ∥e∥ = OP (ηNT ).

Secondly, the bound on ∥Xk∥ is direct from Assumption 1.(i) again because the spectral norm

is bounded by the Frobenius norm. That is, ∥Xk∥2 ≤ ∥Xk∥2F =
∑N

i=1

∑T
t=1X

2
it,k = OP (NT ).

Lastly, we need to show that 1√
NT

Tr(Xke
′) = OP (ξNT ) and to find ξNT . To do this we

decompose e and use the Cauchy-Schwarz inequality, the triangle inequality and linearity of the

trace operator in the following,∣∣∣∣ 1√
NT

Tr(Xke
′)

∣∣∣∣ = ∣∣∣∣ 1√
NT

Tr(Xk(S + ε)′)

∣∣∣∣
≤ 1√

NT
∥Xk∥F ∥S∥F +

1√
NT

|Tr(Xkε
′)|

= OP (1) ∥S∥F +OP (1).

(A.6)
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The third line follows from Assumption 1.(i) and Assumption 2. From above we know ∥S∥F =

OP

(√
NTR

(1−2ρ)/2
NT

)
, hence we have found ξNT =

√
NTR

(1−2ρ)/2
NT + 1.

Thus, we have shown that all conditions for Lemma A.1 are satisfied and found the rates

ηNT and ξNT . This shows that LS estimation in (5) on the model (13) with R = RNT factors

satisfies β̂LS − β0 = OP

(
(ξNT +RNT ηNT )/

√
NT

)
, with

OP

(
(ξNT +RNT ηNT )√

NT

)
= OP

(
R

(1−2ρ)/2
NT

)
+OP

( 1√
NT

)
+OP

(
R

(3−ρ)/2
NT

)
+OP

(
RNT

√
max{N,T}

NT

)
= OP

(
R

(3−ρ)/2
NT

)
+OP

(
RNT min{N,T}−1/2

)
.

■

Proof of Remark 1. Note that if we weaken the singular value decay to that supposed in

Remark 1, i.e. σr(Γ) = c
√
NTr−ρ, and otherwise maintain Assumptions 1-3 we can further

bound the bias in LS estimation found in Theorem 1 as follows. For ∥S∥F , note,

∥S∥2F =
∞∑

r=RNT+1

σ2r (Γ)

≤
∞∑

r=RNT+1

cNTr−2ρ wpa.1 (Assumption 4)

≤ cNT

∫ ∞

RNT

r−2ρdr wpa.1 (integral bound)

=
c

2ρ− 1
NTR1−2ρ

NT wpa.1

In the third line we use an integral bound and the fourth line simply evaluates this integral.

From line two all arguments are wpa.1, hence ∥S∥F = OP (
√
NTR

(1−2ρ)/2
NT ), where (c/2ρ− 1) is

the bounding constant. We can then directly bound

∥S∥ = max
r∈{RNT+1,...,min{N,T}}

σr(Γ)

= OP

(√
NT (RNT + 1)−ρ

)
,

where we use the convention that singular values are indexed in descending order. We then

simplify the last bound to ∥S∥ = OP

(√
NTR−ρ

NT

)
, replacing RNT + 1 with RNT as RNT → ∞.

We can then rely on the same working in the proof of Theorem 1 to show that the condi-

tions in Lemma A.1 are satisfied with ξNT =
√
NTR

(1−2ρ)/2
NT + 1 and ηNT =

√
max{N,T} +
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√
NTR−ρ

NT , where the second term in ηNT is slightly different to Theorem 1. Hence, β̂LS − β0 =

OP

(
(ξNT +RNT ηNT )/

√
NT

)
, with

OP

(
(ξNT +RNT ηNT )√

NT

)
= OP

(
R

(1−2ρ)/2
NT

)
+OP

( 1√
NT

)
+OP

(
R1−ρ

NT

)
+OP

(
RNT

√
max{N,T}

NT

)
= OP

(
R1−ρ

NT

)
+OP

(
RNT min{N,T}−1/2

)
.

■

To prove Lemma 1 we rely on the following result from (Griebel and Harbrecht, 2014), which

we state without proof.

Lemma A.2 (Theorem 3.5 in Griebel and Harbrecht 2014). Let g ∈ Lp(Ωα × Ωγ) and p >

min {nα, nγ} /2, then∥∥∥∥∥g −
R∑
l=1

σl(φl ⊗ ψl)

∥∥∥∥∥
L2(Ω1×Ω2)

= O

(
R

1
2
− p

min{nα,nγ}
)
. (A.7)

In the following proof we use the Frobenius norm, which as a reminder is defined as ∥A∥2F =∑N
i=1

∑T
t=1 |Ait|2 for any N × T matrix A.

Proof of Lemma 1. From Lemma A.2 we have,

E
[(
h(αi, γt)−

R∑
s=1

σrφr(αi)ψr(γt)
)2]

=

∫
Ωα

∫
Ωγ

(
h(a, c)−

R∑
s=1

σrφr(a)ψr(c)
)2
fα(a)dafγ(c)dc

≤
∫
Ωα

∫
Ωγ

(
h(a, c)−

R∑
s=1

σrφr(a)ψr(c)
)2
dadc sup

a
(fα(a)) sup

c
(fγ(c))

=

∥∥∥∥∥g −
R∑
l=1

σlφl ⊗ ψl

∥∥∥∥∥
2

L2(Ωα×Ωγ)

O(1)

= O

(
R

1− 2p

min{nα,nγ}
)

(A.8)

where in the second line we use a supremum bound on the probabilities, in the third line we

use the definition of the L2(Ωα × Ωγ)-norm and in the final line we use Lemma A.2. This shows

that, in expectations, the entry-wise functional representation decays at polynomial rate r1−2ρ,

with ρ = p/min {nα, nγ}.
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Using the Markov inequality gives(
Γit −

r∑
ℓ=1

σℓφℓ(α)ψℓ(γ)
′
)2

= OP

(
r
1− 2p

min{nα,nγ}
)
,

which we use to bound singular values of the matrix Γ as follows.

We know

Γit = h(αi, γt) =

∞∑
r=1

σrφr(αi)ψr(γt) =

∞∑
r=1

σruirvtr

and in matrix form,

Γ = h(α, γ) =

∞∑
r=1

σrφr(α)ψr(γ)
′ =

∞∑
r=1

σrurv
′
r.

Hence, we have

min{N,T}∑
ℓ=r+1

σ2ℓ (Γ) = min
λ∈RN×r

min
f∈RT×r

∥∥Γ− λ f ′
∥∥2
F

≤

∥∥∥∥∥Γ−
r∑

ℓ=1

σℓφℓ(α)ψℓ(γ)
′

∥∥∥∥∥
2

F

=
∑
i

∑
t

( ∞∑
ℓ=r+1

σℓφℓ(αi)ψℓ(γt)

)2

=
∑
i

∑
t

OP

(
r
1− 2p

min{nα,nγ}
)

= NTOP

(
r
1− 2p

min{nα,nγ}
)
.

Hence, we have 1
NT

∑min{N,T}
ℓ=r+1 σ2ℓ (Γ) = OP

(
r1−2ρ

)
with ρ = p/min {nα, nγ} , and Assumption 4

is satisfied. ■

A.2 Proofs for Section 4

Proof of Lemma 2. From Section 4 we have

κNT :=

(
N∑
i=1

T∑
t=1

X̃ ′
itX̃it

)−1 N∑
i=1

T∑
t=1

X̃ ′
it Γ̃it,

with Γ̃ defined analogously to X̃k and Ỹ .

Take

∥κNT ∥ :=

∥∥∥∥∥∥
(

N∑
i=1

T∑
t=1

X̃ ′
itX̃it

)−1 N∑
i=1

T∑
t=1

X̃ ′
it Γ̃it

∥∥∥∥∥∥ .
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Using the inequality ∥Az∥ ≤ ∥A∥ ∥z∥ for general matrices A and vectors z we find

∥κNT ∥ ≤

∥∥∥∥∥∥
(

N∑
i=1

T∑
t=1

X̃ ′
itX̃it

)−1
∥∥∥∥∥∥
∥∥∥∥∥

N∑
i=1

T∑
t=1

X̃ ′
itΓ̃it

∥∥∥∥∥ .
Use

∣∣∣∑N
i=1

∑T
t=1 X̃it,kΓ̃it

∣∣∣ ≤∑N
i=1

∑T
t=1

∣∣∣X̃it,kΓ̃it

∣∣∣ and Hölder’s inequality such that
∣∣∣∑N

i=1

∑T
t=1 X̃it,1Γ̃it

∣∣∣
...∣∣∣∑N

i=1

∑T
t=1 X̃it,1Γ̃it

∣∣∣

 ≤


∑N

i=1

∑T
t=1

∣∣∣X̃it,1Γ̃it

∣∣∣
...∑N

i=1

∑T
t=1

∣∣∣X̃it,K Γ̃it

∣∣∣

 ≤


∥vec(X1)∥∞

...

∥vec(XK)∥∞

∥∥∥vec(Γ̃)∥∥∥1 ,
where vec(A) vectorises a matrix A such that ∥vec(A)∥∞ = maxi,t |Ait| yields the maximum

norm and ∥vec(A)∥1 =
∑N

i=1

∑T
t=1 |Ait| yields the entry-wise 1-norm of such a matrix.

Take the ∥·∥ to show∥∥∥∥∥
N∑
i=1

T∑
t=1

X̃ ′
itΓ̃it

∥∥∥∥∥ =

(∑
k

∣∣∣∣ N∑
i=1

T∑
t=1

X̃it,kΓ̃it

∣∣∣∣2
)1/2

≤

(∑
k

(∥∥ vec(X̃k)
∥∥
∞
∥∥ vec(Γ̃)∥∥

1

)2)1/2

=

(∑
k

(∥∥ vec(X̃k)
∥∥
∞

)2)1/2 ∥∥ vec(Γ̃)∥∥
1
≤

(∑
k

∥∥ vec(X̃k)
∥∥
∞

)∥∥ vec(Γ̃)∥∥
1
,

where in the last line we use that
∥∥∥vec(Γ̃)∥∥∥

1
is a scalar and that

∥∥ vec(Xk)
∥∥
∞ > 0 ∀ k. Thus we

can bound the norm of κNT by

∥κNT ∥ ≤

∥∥∥∥∥∥
(

N∑
i=1

T∑
t=1

X̃ ′
itX̃it

)−1
∥∥∥∥∥∥
(

K∑
k=1

∥∥ vec(X̃k)
∥∥
∞

)∥∥ vec(Γ̃)∥∥
1
.

Concentrate on
∥∥ vec(Γ̃)∥∥

1
. Let nNi be the size of each i’s cluster and nTt be the size of each

t’s cluster, then

Γ̃it = h(αi, γt)−
1

nNi

∑
j∈gi

h(αj , γt)−
1

nTt

∑
s∈ct

h(αi, γs) +
1

nNi

1

nTt

∑
j∈gi

∑
s∈ct

h(αj , γs).

Take the following Taylor expansions,

h(αj , γs) = h(αi, γt) +
∂h(αi, γt)

∂α′ (αj − αi) +
∂h(αi, γt)

∂γ′
(γs − γt) + r(i, j, t, s)

h(αj , γt) = h(αi, γt) +
∂h(αi, γt)

∂α′
i

(αj − αi) + r′(i, j, t)

h(αi, γs) = h(αi, γt) +
∂h(αi, γt)

∂γ′
(γs − γt) + r′′(t, s, i),
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where r, r′ and r′′ are remainder terms from the Taylor expansion.

From these expansions we have

1

nNi

∑
j∈gi

h(αj , γt) = h(αi, γt) +
1

nNi

∑
j∈gi,
j ̸=i

(
∂h(αi, γt)

∂α′ (αj − αi) + r′(i, j, t)

)
,

1

nTt

∑
s∈ct

h(αi, γs) = h(αi, γt) +
1

nTt

∑
s∈ct,
s ̸=t

(
∂h(αi, γt)

∂γ′
(γs − γt) + r′′(t, s, i)

)
,

and

1

nNi

1

nTt

∑
j∈gi

∑
s∈ct

h(αj , γs) =
1

nNi n
T
t

h(αi, γt) +
1

nNi n
T
t

∑
j∈gi,
j ̸=i

∑
s∈ct,
s ̸=t

h(αj , γs) +
∑
j∈gi,
j ̸=i

h(αj , γt) +
∑
s∈ct,
s ̸=t

h(αi, γs)


= h(αi, γt) +

1

nNi n
T
t

∑
j∈gi,
j ̸=i

∑
s∈ct,
s ̸=t

(
∂h(αi, γt)

∂α′ (αj − αi) +
∂h(αi, γt)

∂γ′
(γs − γt) + r(i, j, t, s)

)

+
1

nNi n
T
t

∑
j∈gi,
j ̸=i

(
∂h(αi, γt)

∂α′ (αj − αi) + r′(i, j, t)

)
+

1

nNi n
T
t

∑
s∈ct,
s̸=t

(
∂h(αi, γt)

∂γ′
(γs − γt) + r′′(t, s, i)

)

= h(αi, γt) +
1

nNi

∑
j∈gi,
j ̸=i

(
∂h(αi, γt)

∂α′ (αj − αi) + r′(i, j, t)

)
+

1

nTt

∑
s∈ct,
s ̸=t

(
∂h(αi, γt)

∂γ′
(γs − γt) + r′′(t, s, i)

)

+
1

nNi n
T
t

∑
j∈gi,
j ̸=i

∑
s∈ct,
s ̸=t

r(i, j, t, s).

We explicitly split the sum in the second line to make clearer the fact that almost all terms

cancel out once we difference these identities. From the last line it should be clear that,

Γ̃it =
1

nNi n
T
t

∑
j∈gi,
j ̸=i

∑
s∈ct,
s ̸=t

r(i, j, t, s).

From h(., .) being twice continuously differentiable and a uniformly bounded second derivative,

we have r(i, j, t, s) = O
(
∥αi − αj∥ ∥γt − γs∥+ ∥αi − αj∥2 + ∥γt − γs∥2

)
.
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For the entry-wise 1-norm, we have,

∥∥∥vec(Γ̃)∥∥∥
1
=
∑
i

∑
t

∣∣∣∣∣∣∣∣
1

nNi n
T
t

∑
j∈gi,
j ̸=i

∑
s∈ct,
s ̸=t

r(i, j, t, s)

∣∣∣∣∣∣∣∣
≤
∑
i

∑
t

∣∣∣∣∣∣∣∣
1

nNi n
T
t

∑
j∈gi,
j ̸=i

∑
s∈ct,
s ̸=t

O (∥αi − αj∥ ∥γt − γs∥)

∣∣∣∣∣∣∣∣
+
∑
i

∑
t

∣∣∣∣∣∣∣∣
1

nNi n
T
t

∑
j∈gi,
j ̸=i

∑
s∈ct,
s ̸=t

O
(
∥αi − αj∥2

)∣∣∣∣∣∣∣∣+
∑
i

∑
t

∣∣∣∣∣∣∣∣
1

nNi n
T
t

∑
j∈gi,
j ̸=i

∑
s∈ct,
s ̸=t

O
(
∥γt − γs∥2

)∣∣∣∣∣∣∣∣ .
Now, concentrate on the second term,

∑
i

∑
t

∣∣∣∣∣∣∣∣
1

nNi n
T
t

∑
j∈gi,
j ̸=i

∑
s∈ct,
s ̸=t

O
(
∥αi − αj∥2

)∣∣∣∣∣∣∣∣ ≤
∑
i

∑
t

∣∣∣∣∣∣(n
N
i − 1)(nTt − 1)

nNi n
T
t

max
j∈gi,
j ̸=i

O
(
∥αi − αj∥2

)∣∣∣∣∣∣
= O(T )

∑
i

max
j∈gi,
j ̸=i

∥αi − αj∥2

Use Assumption 5(iii) to show for j ∈ gi,

∥αi − αj∥2 ≤ B2 ∥λ(αi)− λ(αj)∥2

= B2
∥∥∥λ(αi)− λ̂i − (λ(αj)− λ̂j) + λ̂i − λ̂j

∥∥∥2
≤ B2

(∥∥∥λ(αi)− λ̂i

∥∥∥+ ∥∥∥λ(αj)− λ̂j

∥∥∥+ ∥∥∥λ̂i − λ̂j

∥∥∥)2 .
An application of Cauchy-Schwarz and Assumption 5(iv) gives

N∑
i=1

max
j∈gi,
j ̸=i

∥αi − αj∥2 ≤ B2
N∑
i=1

max
j∈gi,
j ̸=i

(∥∥∥λ(αi)− λ̂i

∥∥∥2 + ∥∥∥λ(αj)− λ̂j

∥∥∥2 + ∥∥∥λ̂i − λ̂j

∥∥∥2
+2
∥∥∥λ(αi)− λ̂i

∥∥∥∥∥∥λ(αj)− λ̂j

∥∥∥+ 2
∥∥∥λ(αi)− λ̂i

∥∥∥∥∥∥λ̂i − λ̂j

∥∥∥+ 2
∥∥∥λ(αj)− λ̂j

∥∥∥∥∥∥λ̂i − λ̂j

∥∥∥)

≤ NOP (ξNT ) + 2B2

√√√√ N∑
i=1

∥∥∥λ(αi)− λ̂i

∥∥∥2
√√√√√ N∑

i=1

max
j∈gi,
j ̸=i

∥∥∥λ(αj)− λ̂j

∥∥∥2

+2B2

√√√√ N∑
i=1

∥∥∥λ(αi)− λ̂i

∥∥∥2
√√√√√ N∑

i=1

max
j∈gi,
j ̸=i

∥∥∥λ̂i − λ̂j

∥∥∥2

+2B2

√√√√√ N∑
i=1

max
j∈gi,
j ̸=i

∥∥∥λ(αj)− λ̂j

∥∥∥2
√√√√√ N∑

i=1

max
j∈gi,
j ̸=i

∥∥∥λ̂i − λ̂j

∥∥∥2.
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Note that

N∑
i=1

max
j∈gi,
j ̸=i

∥∥∥λ(αj)− λ̂j

∥∥∥2 ≤ N∑
i=1

∑
j∈gi,
j ̸=i

∥∥∥λ(αj)− λ̂j

∥∥∥2

≤ (Qmax − 1)
N∑
i=1

∥∥∥λ(αi)− λ̂i

∥∥∥2 ,
hence we have

N∑
i=1

T∑
t=1

∣∣∣∣∣∣∣∣
1

nNi n
T
t

∑
j∈gi,
j ̸=i

∑
s∈ct,
s ̸=t

O
(
∥αi − αj∥2

)∣∣∣∣∣∣∣∣ = NTOP (ξNT )

The t-dimension analogy is direct such that
∑N

i=1

∑T
t=1

∣∣∣∣ 1
nN
i nT

t

∑
j∈gi,
j ̸=i

∑
s∈ct,
s ̸=t

O
(
∥γt − γs∥2

)∣∣∣∣ =
NTOP (ξNT ).

Finally,

N∑
i=1

T∑
t=1

∣∣∣∣∣∣∣∣
1

nNi n
T
t

∑
j∈gi,
j ̸=i

∑
s∈ct,
s ̸=t

O (∥αi − αj∥ ∥γt − γs∥)

∣∣∣∣∣∣∣∣
≤

N∑
i=1

T∑
t=1

(nNi − 1)(nTt − 1)

nNi n
T
t

max
j∈gi,
j ̸=i

max
s∈ct,
s̸=t

∥αi − αj∥ ∥γt − γs∥ |O (1)|

= O(NT )

 1

N

N∑
i=1

max
j∈gi,
j ̸=i

∥αi − αj∥

 1

T

T∑
t=1

max
s∈ct,
s ̸=t

∥γt − γs∥


≤ O(NT )

√√√√√ 1

N

N∑
i=1

max
j∈gi,
j ̸=i

∥αi − αj∥2

√√√√√ 1

T

T∑
t=1

max
s∈ct,
s ̸=t

∥γt − γs∥2

= NTOP (ξNT ),

where we use Jensen’s inequality in the third step.

Lastly, use Assumption 5.(v), which implies
(∑N

i=1

∑T
t=1 X̃

′
itX̃it

)−1
= Op(1/NT ), to show

∥κNT ∥ = Op(ξNT )

⇒ κNT = Op(ξNT )

■

For each partition Oq, with q ∈ {1, 2, 3, 4}, the Nq ×G(q) matrix D
(q)
ν , respectively Tq ×C(q)

matrix D
(q)
δ represent the i, respectively t, cluster assignment matrices for (i, t) ∈ Oq where the
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columns of each matrix are binary indicators of cluster assignment. That is, any given column of

D
(q)
ν represents a cluster equal to 1 of that row is a member of the cluster and 0 otherwise, and

likewise for D
(q)
δ . Here G(q) are the number of i clusters and C(q) are the number of t clusters

in Oq. For each partition define the annihilation matrix M
(q)
ν = D

(q)
ν

(
[D

(q)
ν ]′D

(q)
ν

)−1
[D

(q)
ν ]′ and

M
(q)
δ = D

(q)
δ

(
[D

(q)
δ ]′D

(q)
δ

)−1
[D

(q)
δ ]′. To perform within-cluster mean-differences we can then

take, for matrix A(q) being the partition Oq of matrix A, Ǎ(q) =M
(q)
ν A(q)M

(q)
δ .9 Take Ǎ as the

block matrix with blocks Ǎ(q). Further, for each regressor, k, let X̌k be defined similarly for

each k separately such that X̌it a K dimensional column vector.

Assumption A.1. Let Oq denote partitions for cluster formation and O∗
q denote partitions for

proxy sampling. Across each partition, α
(q)
i has common support A for each q, γ(q) has common

support C for each q, and both of these are bounded and convex sets. Also, assume each partition

is of equal size, up to rounding error, such that they all grow proportionally with N,T . There

exists a sequence ξNT > 0 common to all partitions such that ξNT → 0 as N,T → ∞, and

(i) The function h(·, ·) is at least twice continuously differentiable with uniformly bounded

second derivatives.

(ii) For each q, every unit i ∈ Oq is a member of exactly one group g
(q)
i ∈ {1, . . . , G(q)}, and

every time period t is a member of exactly one group c
(q)
t ∈ {1, . . . , C(q)}. The size of all

G(q) groups of units, and the size of all C(q) groups of time periods is bounded uniformly

by Qmax for all q.

(iii) There exists B > 0 such that for all q there is, ∥a− b∥ ≤ B
∥∥λ(q)(a)− λ(q)(b)

∥∥ for all

a, b ∈ A , and ∥a− b∥ ≤ B
∥∥f (q)(a)− f (q)(b)

∥∥ for all a, b ∈ C.

(iv) For each q there is,

1
N∗

q T
∗
q

∑N
i=1

∑T
t=1 1{(i, t) ∈ O∗

q}
(∥∥∥λ̂(q)i − λ(q)(αi)

∥∥∥2) = OP (ξNT ),

1
N∗

q T
∗
q

∑N
i=1

∑T
t=1 1{(i, t) ∈ O∗

q}
(∥∥∥f̂ (q)t − f (q)(γt)

∥∥∥2) = OP (ξNT ).

(v) For each q there is,
1

N∗
q T

∗
q

∑N
i=1

∑T
t=1 1{(i, t) ∈ O∗

q}
∥∥∥λ̂(q)i − λ̂

(q)
j(i)

∥∥∥2 = OP (ξNT ) for any matching function

(j(i), t) ∈ Oq such that g
(q)
i = g

(q)
j(i), and

1
N∗

q T
∗
q

∑N
i=1

∑T
t=1 1{(i, t) ∈ O∗

q}
∥∥∥f̂ (o)

t − f̂
(o)
s(t)

∥∥∥2 = OP (ξNT ) for any matching function

(i, s(t)) ∈ Oq such that c
(q)
t = c

(q)
s(t).

9Note these are very similar to the Ã variables in the main text, but here we make the distinction that

projection is done at the partition level.

45



(vi) maxk,i,t
∣∣X̌it,k

∣∣ = OP (1), and plimN,T→∞
1

NT

∑N
i=1

∑T
t=1 X̌

′
itX̌it = Ω, where Ω is a positive

definite non-random matrix.

Proof of Lemma 3. Recall from the proof of Lemma 2 the definition of κNT . Take the split

sample version as follows,

κ
(GS)
NT :=

(
N∑
i=1

T∑
t=1

X̌ ′
itX̌it

)−1 N∑
i=1

T∑
t=1

X̌ ′
it Γ̌it

=

(
N∑
i=1

T∑
t=1

X̌ ′
itX̌it

)−1 4∑
o=1

∑
(i,t)∈Oq

[X̌
(q)
it ]′ Γ̌

(q)
it .

By Assumption A.1 and the proof steps of Lemma 2 we have that for each partition
∑

(i,t)∈Oq
[X̌

(q)
it ]′ Γ̌

(q)
it =

OP (NqTqξNT ), where Nq and Tq are the number of i and t, respectively, in partition q. Thus we

have
∑4

o=1

∑
(i,t)∈Oq

[X̌
(q)
it ]′ Γ̌

(q)
it =

∑4
o=1OP (NqTqξNT ) ≤ OP (NTξNT ). The statement of the

lemma then follows from
∑N

i=1

∑T
t=1 X̌

′
itX̌it = OP (NT ). ■

Proof of Lemma 4. Using the definition of ϕ
(GS)
NT in the main text we have

√
NT ϕ

(GS)
NT := Ω̂−1

4∑
s=1

ϕ
(s)
NT

where

Ω̂ :=
1

NT

4∑
s=1

∑
(i,t)∈Os

X̃
(s) ′
it X̃

(s)
it , ϕ

(s)
NT :=

1√
NT

∑
(i,t)∈Os

X̃
(s) ′
it εit.

By construction, the projected regressors X̃
(s)
it for subpanel s ∈ {1, 2, 3, 4} only depend on

X = (Xit), and on outcomes Yit (and thus error terms εit) that are not in that subpanel, i.e.

(i, t) /∈ Os. Therefore, under Assumption 6(i), we have that for s ∈ {1, 2, 3, 4}, conditional on
{X̃(s)

it : (i, t) ∈ Os}, the X̃(s) ′
it εit are mean zero and independently distributed across all the

observations (i, t) ∈ Os in that subpanel. Using the regularity conditions in Assumption 6(ii),

for each s ∈ {1, 2, 3, 4}, we can therefore apply Lyapunov’s CLT to find(
Σ̂(s)

)−1
ϕ
(s)
NT ⇒ N (0,1K), Σ̂(s) :=

∑
(i,t)∈Os

σ2itX̃
(s) ′
it X̃

(s)
it ,

and the limiting distributions of
(
Σ̂(s)

)−1
ϕ
(s)
NT are independent across s. Using that Σ̂(s) con-

verges to the constant Σ(s) we thus find that

4∑
s=1

ϕ
(s)
NT ⇒ N

(
0,

4∑
s=1

Σ(s)

)
.

Since Ω̂ converges to Ω > 0, the continuous mapping theorem then gives the statement of the

lemma. ■
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