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Abstract

The exact distribution of a quadratic form in n standard normal
variables, @, say, (or, equivalently, a linear combination of indepen-
dent chi-squared variates) is, except in special cases, quite compli-
cated. This has led to many proposals for approximating the distribu-
tion by a more tractable form. These approximations typically exploit
the fact that the cumulants of the distribution are quite simple, and
include both saddlepoint methods, and methods that replace the ac-
tual statistic with a statistic with the same low-order cumulants (or
moments). In this paper we propose an approximation of this type
that matches the first four moments of the distribution. Its advantage
over other methods is that it is extremely easy to implement, and, as
we shall show, it is almost as accurate as the best of the other proposed
methods (which matches the first eight cumulants). Using the same
approach, we also suggest an approximation to the distribution of the
analogue of a regression t — statistic in cases where the numerator is
standard normal, but the denominator is 1/@Q, with ) an independent
quadratic form (but not chisquared). This is also shown to work ex-
tremely well. The approach has applications in many disciplines, from
statistics and econometrics through to theoretical physics.

*Address correspondence to Grant Hillier; email grant.hllr@gmail.com



1 Introduction

We are concerned with statistics of the form

Q=Y aix’(m) =y Dy,y ~ N(0,1,) (1)

i=1
where n =Y " n; and
D = diag{a;l,,},i =1,..,m, (2)

with a; > 0 fori = 1,..,m. The x%(n;) denote independent chi-square random
variables, the ¢ —th having degrees of freedom n;. Examples occur frequently
in statistics, in many different contexts, and there is an extensive literature
on their properties.!

The cumulants of () are quite simple, and are well-known to be

K:'f‘ et 2'[‘—1(,,,. — 1)'p’l“7 (3)

where p, = Y1" | n;a} = tr[D"] is the r —th power-sum symmetric function of
the the elements of D. However, the exact density and distribution function
are quite complicated, and this has motivated an extensive literature on
approximations. For a recent survey and many references see Bodenham and
Adams (2016) (B&A hereafter).

Before proceeding we note that if n; = 1 for all ¢ the distribution of @
is invariant under permutations of the a;. This property will be useful in
limiting the size of the domain used for some of the evaluation procedures
discussed later.

Our first purpose in this paper will be to suggest a simple, accurate,
approximation to the distribution of () that is new. We then provide some
evidence on the performance of the suggested approximation, showing that it
works extremely well. Next, we discuss an application of the approximation
to the related problem of approximating the distribution of certain Student-
t-like test statistics, these having the form

Z
-5

'In case the problem demands - as it often does - that some of the a; are positive, some
negative, then @) will be the difference between two statistics of the type we deal with here.
Thus, the results are applicable to more general situations than it might at first appear.




with Z ~ N(0,1) and @ independent of Z and defined as in equation (1).
This application was suggested by the unpublished work reported in Hansen
(2017). Following some correspondence between us, a revised version of
Hansen (2017), Hansen (2021), suggests applying our approach to the prob-
lem of approximating the distribution of the White t-ratio. Like ourselves,
Hansen (2021) finds that this works extremely well. Finally, we extend the
Student-t approach to analogues of F'—statistics of the form F = Q1/Q>,
with both numerator and denominator having the form (1).

We will make extensive use of hypergeometric functions, of both scalar
and matrix argument. The reader is referred to Muirhead (1982) for the
matrix-argument case. In the case of scalar argument these are defined by
the formula

= [T (b)) ] 2
o Fy(b1, . by e, g5 ) Z [Hzﬂ(%)i] —, (4)

7l
i=0

where (¢); = c(c+1)...(c+1i—1) is the usual Pochammer symbol. The series
convereges for all z if p < ¢, for || < 1if p=¢+1, and for no z if p > ¢+ 1.
For the most part p = ¢ = 1 in our applications.

2 Exact and approximate densities

We first consider the exact density of (). The derivation given is essentially
1

due to James (1964). In the density of y transform to x = Dzy, so that

Q =2’z and x ~ N(0, D),

pdf (z) = (27) 2| D| "2 exp {—%w’D‘lx} . (5)

Transform to (¢ = 2’2, v = z(2/z)2). The Jacobian is

1 n
(dr) = 54 da(v'dv),

where the last term denotes the (un-normalized) invariant measure on the
surface S, = {v € R" : v'v = 1}, the unit sphere in R". To obtain the
density of ¢ we integrate out v, but first introduce a tuning parameter o > 0,
and write the exponent as

1 1 1
—éqle_lv = —59a+ §ch’[]n — (aD) v



Integrating out v gives the expression

DIt o,
d I e M _2
pdfo(q) 2§P(%)q exp{—aq}
1n1l
X1 (57 5 505(1[171 — (aD)_l]) . (6)

The constant a can be chosen to accelerate convergence of the series expan-
sion of the hypergeometric function.?

In this case the hypergeometric function is a matrix-argument hypergeo-
metric function (Muirhead (1982), Ch. 7), with a series expansion in terms
of zonal polynomials, but in this special case the series involves only the
top-order zonal polynomials C;(-). If « is chosen so that aD > I (element-
wise), the density and cdf have representations as infinite discrete mixtures
of chi-square densities and cdfs, respectively.® That is,

pdfo(q) = Z b gn+2i(aq)adg, (7)
Pr{Q < z} = Z b;Gy2i(02), (8)

2There are several steps to this result, albeit familiar ones in the multivariate literature.
The first is to interpret integration over S,, as over the orthogonal group O(n), with v
the first column of H € O(n). This permits invoking the fundamental identity for zonal
polynomials C(+), where « is a partition of k,

C.(AH'BH)(dH) = C,,(A)C.(B)/C,(I,),
O(n)
see James (1960). Then one applies a special case of the identity

Cullm) _ (s

K

Cr(ln)

w3

—
B
N

which follows from equation (38) in Constantine (1964). In our case  is the top partition
(k), and m = 1, producing equation (6).

3Non-negativity of the coefficients need not be imposed, as long as the resulting prob-
abilities are non-negative. In the present case it is evident from the derivation given that
this holds for all a.



where ¢,(-) and G,(-) denote the density and cumulative distribution func-
tions, respectively, of a x?(v) variate, and the coefficients

1

b= laDl 120, (1, - (@D) ) )
are non-negative and sum to unity. The b; therefore can be interpreted as
probabilities associated with a discrete random variable J (i.e., b; = Pr{J =
j}). The distribution of @) thus belongs to the same family as the non-central
chi-square distribution, which also has this type of mixture representation,
in that case with Poisson weights b; = e~2*(\/2)7/;!.

It is the presence of the top-order zonal polynomials C;(-) in the distri-
bution that makes it difficult to work with, and interpret, although there
are simple recursions for generating these polynomials (see below). However,
there is clearly an incentive to approximate, and many approximations for the
distribution are available in the literature. The simplest is probably that due
to Fisher: treat () as a multiple of a chi-squared variate, Q = 7x?(v), choos-
ing 7 and v so that the first two cumulants of the exact and approximating
distributions agree (also sometimes attributed to Satterthwaite (1946) and
Welch (1947)). A generalization of this matching three moments was sug-
gested by Solomon and Stephens (1977). Another simple approximation that
matches the first three cumulants is due to Imhof (1961), and Buckley and
Eagleson’s (1988) application of Hall (1984). Closer to the approach that we
suggest is that of Lindsay, Pilla, and Basak (2000), who suggest approxima-
tions based on linear combinations of Gamma variates, but these are quite
complicated to implement. Finally, one can apply saddlepoint techniques
to obtain approximations to the distribution of @), see Wood, Booth, and
Butler (1993) and Butler (2007). Here we suggest an approximation based
on a linear combination of two chi-square variates, with parameters chosen
to match the first four cumulants of ). It turns out that this is extremely
easy to implement, and our evaluations suggest that it is, for the most part,
extremely accurate.

2.1 Note on the top-order zonal polynomials

For an n x n symmetric matrix A, define the normalized top-order zonal
polynomials
(3)s

d;j(A) = ch(A)- (10)
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The function -

D(t) = I, — tA] 7 = Y t/d,(A) (11)
j=0
is a generating function for the d;, and may easily be used to obtain the
recursive relation (omitting the argument matrix)

1 J
dj = Z ;prdjr;do = 1. (12)

(see Hillier, Kan, and Wang (2009)). The p, are again the power-sums p, =
tr[A"]. This recursion has in effect been known since von Neumann (1941),
Pitman and Robbins (1949), and Ruben (1962). See also James (1964). It is
the basis of the algorithm by Sheil and O’Muircheartaigh, (1977) (hereafter
S&O’M). Thus, the coefficients in the mixture representation of the cdf of
() can be generated recursively, and fairly simply, from the power sums p,.,
and the eigenvalues of D are not needed. Note, though, that the recursion
requires a computation time of O(j2) for each j, so is not ideal as one moves
further into the series (8). A much more efficient recursion based on the
elementary symmetric functions is given in Hillier, Kan, and Wang (2009).
This is computationally significantly less demanding, because it has length
at most n rather than j. In the "exact" calculations used later to assess the
accuracy of the appproximations we always use this efficient recursion, rather
than that based on power sums.

Remark 1 [t is clear that the density and all properties of () depend on the
2m underlying parameters of the problem, (aq,...,an) and (ny,...,ny) only
through the power-sums p, = Y ", n;ai,r > 1. In view of the results in
Hillier, Kan, and Wang (2009), or, equivalently, the Newton-Girard identi-
ties, the coefficients in (8) can be generated recursively from the elementary
symmetric functions, e, say, which vanish for r > n. In studying the behav-
tour of any approximation to the exact density, therefore, one obviously needs
to explore a parameter space consisting of different configurations of the e,,
r=1,...,n (not the infinite sequence of power sums).



2.2 Exact density when m = 2

In the case m =2, i.e., Q = alxil + agxiQ, the exact density is tractable by
elementary methods, and is given by (see Appendix A):
g 1, —1
q>"exp{—3qa ne m 1,
pdfo(q) = - { nj Lgl }1F1 (— —Eq (all—a21)) 3 (13)
221(5)ay” ay

where n = ny +ny. Note that if a; = ay = a, Q = ax?. Putting ¢ = a; ', ¢ =
a1 /asy, the density becomes

% % X 1 %71
pde(q>:¢ V7 exp{—1oq}q 1F1<@ n 1

Note that, in this notation, @ = (¢¥x2, + x2,) /¢t. This is evidently a special
case of the exact result above. Here, though, the hypergeometric function
has scalar argument, and the degrees of freedom parameters differ. The
corresponding cdf is

Pr{Q < z} = w% Z (”3)] (1- ¢)jGn+2j(¢Z)a (15)

again an infinite discrete mixture of chi-square cdfs when 0 < ¢ < 1, the
weights now being given by

b; = ;! 7 (1 — ) (16)

(and ¢ replacing o). Tt is this distribution that we will suggest using as an
approximation to the distribution of Q).

2.2.1 Truncation error control when m = 2

The suggested approximations to the pdf and cdf of () are evidently infinite
series, rather than elementary functions, and the series must be truncated at
some point for numerical work. However, by a straightforward adaptation
of a result of Rider (1962) it can be shown that the error committed when
the series is truncated after [ terms is bounded above by Pr{B (%,l) >
V}Grya(¢z), where B("2,1) is a variate with a Beta(%2,1) distribution. It is
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therefore possible to control the truncation error very easily. We now briefly
explain this argument.

Setting ¢ = (1 +¢)7!, and a = ny/2, we are interested in the partial sum
of the first [ terms,

-

Si(a,t) = (j? I(1+ t)*(aﬂ')’ (17)

)_l

Il
=)

J
since this provides a bound on the error incurred by terminating the series ex-

pansion for Pr{@Q) < z}. The error is bounded above by (1—5;(a,t))G,+2/(¢2).
Now, for ny = 2r even we have a = ny/2 =r, so
—1)!
b(r,t) = (r+j=1!
Jlr —1)!

the negative Binomial distribution. In this case, Rider (1962) showed that
the partial sum Sl is related to the incomplete Beta function:

(1 + 1)+, (18)

(j) (1 —l—]f) (r+7) Pr{B(T l) < 1/(1 +t)}

MH

Sl (Tv t)

j=0

This continues to hold for any real » > 0, integer or not. So we have, for
a> 0,

= y° Z Y)Y =Pr{B(a,l) <1} (19)

Thus, the truncation error after [ terms is bounded above by Pr{B (a,l) >

V}Gnya(d2).
To see this more clearly, let 1) = (1 + )7}, and for a > 0,

1= Siat) = S Wi 4 gy (20)
, J:

7=l
Differentiating,

_Sl/(aﬂf) = Z@ t] 1 1—|—If) (a+3) _ (a_i_j)tj(l_i_t)f(cﬁjqu)}
J:

l
(a)
(- 1)

!
=l I

tl—l(l + t)—(a—l—l) + f: [(a)j+1 - (‘a + ])(G)J] tj(l + t)—(a+j+1)

(21)



But the terms [(a);+1 — (@ + j)(a);] vanish for all j, and this does not depend
on a being an integer. Hence, as in Rider, for any a > 0,

—S(a,t) = %tl‘l(l +¢)~ltD, (22)

The remaining steps follow those in Rider exactly (just substitute ¢ = (1 +
t)~! at the end).

3 Suggested Approximation

The suggestion is to use the variate Q = axa, + aaxz, = (Ux2, +X2,) /00
as an approximation to @), choosing the four free parameters (n, ng, ¢, 1) so
that the first four cumulants of Q agree with those of Q. The approximation
to the cdf will then have the form (15), with (n1,ns, ¢,v) replaced by the
cumulant-matching values. Without loss of generality we can assume that
a; < ag, so that 0 < ¢ < 1, and ¢ > 0. Although the approximation to
the cdf is, like the exact expression, an infinite series, the evaluation of that
series is much simpler than for the exact expression, and only the first four
power sums p, are needed. Surprisingly, the parameter values that achieve
equality of the first four cumulants are easily obtained.

3.1 Matching Cumulants

To simplify notation, put n; = k,ny = [, and ¢) = c. In this notation the
cumulants of Q = (X2 + x?)/c are given by

Re=2""r — 1) (Yk+1)/c". (23)

We want to choose the parameters (I, k, 9, ¢) so that the first four cumulants
of () agree with those of () itself, i.e., &, = &, for r = 1,2, 3,4. This produces
the four equations:

RO+ = epkt? + 1=y (24)
P41 = Epa, kgt + 1= ctpy, (25)

to be solved for (¢, k,l) and c¢. We assume that the weights a; are not all
equal (see Remark 3 below).



Eliminating [ from the first two equations gives

k(¢ = 1) = c(ep2 — ), (26)

and from the second and third gives

k(¢ — 1) = ¢(cps — pa).
Thus, taking the ratio,
_ c(cps — p2)
(cp2 — p1)
Repeating this sequence, but beginning at the second equation, gives the pair

kP (v —1) = A(cps — po),
kP(p —1) = *(cpa — p3),

(27)

from which

b = c(cps — p3)
(cp3 — p2)
Equating the two expressions for ¢ gives a quadratic equation in ¢ alone:
g(c) = (cp2 — p1)(cps — p3) — (cps — p2)2 =0, (28)
or
glc)=c —cr+6=0, (29)
with

__ D1P4 — Pp2P3 o PiP3 — p%

T = 5,0 = 5

P2P4 — D3 P2Ps — D3

We show in Appendix B that the smaller root of g(c) = 0, ¢; say, is the
appropriate choice for c, i.e.,

(30)

1
0125[7'— T2 — 46| . (31)
This value determines 1, equation (26) then provides k, and | = cp; — k).

The complete solution is thus, in terms of ¢;:

b = 01(612?3_— p2);gb _ (c1p2 :p1)’ (32)
C1p2 — P1 (01}93 Pz)
O (P1 - Clp2)_ . .
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Defining v = k + [ = ¢1p1 + k(1 — 1), the approximating cdf has the form
oo 1y A
PQ < 2} = vh 3 21 = yPGuyay(62), (34)
j=0 7

with (k,[,1, ¢) as given above.

Remark 2 Of course, in the case m = 2 the approximation should be exact,
and it is straightforward, if tedious, to confirm that that is the case.

Remark 3 It is immediate from the argument in Appendiz B that 1, ¢, and
k are positive when the a; are not equal. The positivity of | can also be
established with a little extra algebra; see Appendix B. Hence, the cumulants
ky implied by these values are all positive, as they should be.

Remark 4 Note that this solution process fails if the weights a; are all equal
to a, say, since then p, = na”. However, in that case the system is satisfied
by k =n,l =0, and ¢ = ca, so that Q = ax? = Q, and no approzimation
1s involved. It may also be unstable if the a; are close to being equal, and in
this case an alternative approximation should be sought.

Remark 5 The values for (k,l) and hence v = k + [ obtained here will not
be integers, so strictly speaking the distributions appearing in the mixture
representation (34) are those of Gamma variates, rather than Chi-square,
but we ignore this distinction since it is irrelevant.

Remark 6 Note also that, in the approximation (34) it is not merely a mat-
ter of replacing the (complicated) coefficients b; in the exvact expression by
simpler terms. Both the parameter v of the chi-square cdfs involved, and its
argument ¢z, are derived from the cumulant-matching equations.

3.2 Evaluation Summary: Quadratic form

Comparisons of numerical accuracy and resource requirements of various ex-
act procedures (Imhof (1961), Sheil and O’Muircheartaigh (1977)), and sev-
eral moment-matching approximations for this problem, have been reviewed
recently in B&A. Bodenham and Adams conclude that the four-term ap-
proximation suggested by Lindsay et al. (2000) (hereafter LPB), which we
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call G4, is generally superior to other methods, although the difficulty cal-
culating the components needed to implement it is significant. Rather than
comparing our method with several of the others in this category, we shall
therefore evaluate our method against G4 and the "exact" methods avail-
able.*We also include in the comparison three saddlepoint-based methods
discussed by Wood (1993). These have a normal base, and two implementa-
tions of a chi-square base.

The LPB method we call G4 uses a mixture of 4 gamma variates with
the same shape parameter, different scale parameters, and, with appropri-
ate mixture probabilities, matches the first 8 moments of ). B&A provide
a greatly simplified exposition of G4, clarifying the calculation of the scale
parameters j;. In their evaluations LPB reported, among other things, re-
sults for 4 configurations of the a; from Solomon & Stevens (1977), and 14
(different) configurations from Wood (1989).% In these configurations the n;
are all treated as unity, but when one counts only distinct a;, of the 14 Wood
cases, 6 have 2 distinct a;, for which Q is exact, 6 have 3 distinct, and 2 have
4 different a;.

Our first evaluation exercise uses, for n = 4, the same 18 configurations
of the a;, and also the same 10 quantiles, as those used by LPB, i.e., those
corresponding to the probabilities

P ={0.01,0.025,0.50,0.10,0.25,0.75,0.90, 0.95,0.975,0.990 }

There are thus 180 points of comparison. Note that this means we are eval-
uating the ability of the various methods to approximate the entire distribu-
tion, not just the tails. We give analogous results focussing on the upper tail
of the distribution seperately. The exact quantiles were computed using the
S&O’'M exact method, but rather than using the Ruben recursions for the
weights in the cdf, this is implemented by using the HKW efficient recursion.
The results of this exercise are given in the following Table:

Table 1la: Comparison of the three methods over the entire distribution

4The methods which can in principle be iterated to converge to an arbitrary precision
are Davies’ (1980) implementation of Imhof’s exact procedure, and Ruben’s (1962) series
implemented by Sheil and O’Muircheartaigh (1977), or in a faster but perhaps slightly
riskier version by Farebrother (1984a).

SB&A object to the partiality of such investigations of the parameter space. They
instead used a uniform random search over the a;.

12



MAE | AAE AF% | 3F% | 2F% | 1% | 2.5%
Q | 0.0022 | 0.00035 | 48 72 100 | 100 | 100
G4 | 0.0212 | 0.00066 | 52 86 97.2 | 97.8 | 100
S* 1 0.014 |0.0017 |15 49 89.4 | 96.7 | 100

In Table 1a, MAE = maximum absolute error, AAE = average absolute
error, TF% = percentage of cases accurate to r significant digits. The last
two columns give the percentage of cases in which the absolute error was less
than 1%, or less than 2.5%. The results given for saddlepoint methods, S*,
are those of the best of the three saddlepoint methods (usually one of the
methods with a chi-square base). Evidently all methods are quite accurate,
but our simple approach (Q) dominates the other methods on almost all
criteria. It must be said, however, that these results favour Q, since 6 of the
18 points used have m = 2, when @ is exact.

Focussing next on the upper tail, the analogous results are given based on
the quantiles corresponding to probabilities 0.90(0.005)0.995, and the same
set of coefficients. The next table gives the results of this exercise (omitting
the last two columns).

Table 1t: Performance of the approximations in the upper tail

MAE | AAE 4F% | 3F% | 2F%
@ | 0.0005 | 0.00009 | 54 99.6 | 100
G4 | 0.0009 | 0.00009 | 67 97.1 | 100
S* 1 0.0045 | 0.00112 | 12 49.0 | 100

The values labelled S* are for the best of the three saddlepoint methods,
but these are clearly dominated by the other two methods. Again, the four-
moment approach using Q is very nearly as good as G4, and dominates it on
some criteria.

Next, we conducted a similar exercise in which the weights a; are varied,
with n = m = 3,4, and for each method we search for the configuration with
the worst-case error. In this case the quantiles used were those of the 15
probabilities

P = {0.01,0.025,0.05,0.1(0.1)0.9, 0.975, 0.99},

13



where a(b)c means "from a by increments of b to ¢". The a; were, without
loss of generality, normalised so that X' ;a; = n, and we searched over the
grid 0.02(0.02)n/2 for each a;. The results were as given in the following
Table (omitting the case n = 2 where Q is exact):0

Table 2a: Comparison of methods; worst cases over a grid of coefficients,
n = 3,4.

MAE | AAE 4F% | 3F% | 2F% | 1% | 2.5%
Q,n =3 |0.0075 | 0.00080 | 37 68 96.7 | 100 | 100
G4,n =3 | 0.0241 | 0.00043 | 56 81 98.7 1 99.7 | 100
Q,n=4 1|0.0116 | 0.00099 | 22 56 96.9 | 99.8 | 100
G4,n =41 0.0288 | 0.00038 | 48 81 99.2 1 99.9 | 100
S* 0.0111 | 0.00193 | 25 51 84.4 | 97.3 | 100

Overall, bearing in mind that the results in the table refer to the worst
cases, both Q and G4 perform well, both having errors of 1% or below in
over 99% of cases. In terms of MAE Q is superior, but in terms of AAE G4
is better, but the differences are small in both cases. The analogue of Table
2a, but now focussing on the upper tail of the distribution (and omitting the
last two columns again), yields the results given in the following table:

Table 2t: Comparison of methods; worst cases over a grid of coefficients,
n = 3,4; upper tail of distribution

MAE AAE 4F% | 3F% | 2F%
Q,n =3 | 0.00058 | 0.000061 | 69 99.6 | 100
G4,n =3 | 0.00019 | 0.000014 | 93 100 | 100
Q,n=4 |0.00079 | 0.000093 | 53 98.3 | 100
G4,n =41 0.00034 | 0.000021 | 89 100 | 100
S** 0.00405 | 0.00792 | 17 52.4 | 100

6Because of the symmetry of @ as a function of the coefficients, there were 84,000
points of comparison for n = 4. For n = 5 this would be 24 times as large.
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Here, S** is the analogue of S* in Table 1t. Again, Q and G4 dominate
the saddlepoint methods, and both are accurate to at least three figures in at
least 98% of cases. This is certainly more precision than is typically needed
for testing purposes.

Both evaluation exercises so far have been cases with all n, = 1. We next
seek to explore the influence of the n; on the approximations when n; > 1
for some ¢. To do so we examined four cases with m = 3 corresponding to
the a;—configurations that produced the worst positive and negative errors
for Q and G4 when all n; = 1. The implicated configurations are given in
the second column of Table 3 below.”

For these chosen configurations we then search over a grid of values for
the n;, n; € {1,2,3,4,5,10,20,30,50} (i.e., 9° = 729 triplets), and for 10 P-
values, 5 in the lower tail {0.01, 0.025, 0.05, 0.1, 0.25}, and the corresponding
5 in the upper tail. The results are summarized in Table 3 below. The last
2 columns give the percentage of instances in which each method has better
than 3-digit accuracy.

Table 3: Comparisons over a grid of n; values; m = 3, worst-case weights.

Case | weights Q max | G4max | Q mean | G4 mean | Q% | G4%
1 0.105, 0.990, 1.905 | 0.013022 | 0.023986 | 0.000281 | 0.000786 | 88.09 | 76.5

2 0.145, 0.985, 1.870 | 0.010048 | 0.018989 | 0.000237 | 0.000761 | 88.5 | 74.98
3 0.225, 0.040, 2.735 | 0.008631 | 0.074395 | 0.000143 | 0.003871 | 95 50

4 0.140, 0.145, 2.715 | 0.000005 | 0.047503 | 0.000000 | 0.004430 | 100 48

Again we find that Q dominates G4 on all criteria, in this case by a fairly
wide margin: the former is correct to 3 digits in all but 12% of cases, but G4
strays in some 23%.

Remark 7 The grid search just described effectively entails searching over a
large array of values for the elementary symmmetric functions e, upon which
the distribution depends. Thus, whilst the search uses m = 3, it is in fact
quite a comprehensive evaluation of the methods in terms of the quantities
that really matter. See Remark 1 above.

Tt should be noted that the elementary symmetric functions e, for these four base cases
are (3,2.256,.267), (3,2.1899,0.198), (3,0.7338,0.0246), and (3,0.7941,0.055) respectively.
Thus, the e, for cases 1 and 2 are very different from those for cases 3 and 4.
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The results of this exercise can also be summarized by viewing the trajec-
tories of the largest error as the n; vary. We took the four cases used above
(the worst positive and negative errors for each of Q and G4), and did a
grid search over the 9 n; values given above, and the same 10 quantiles. We
then graphed, for each 7, and each value of n;, the largest error found in a
search over the values of the other two n;, and over the ten quantiles. Figure
1 illustrates the results of this exercise for Case 1. The solid lines relate to
@, the dashed lines to G4. For example, in Fig. 1, starting from Q’s worst
case when ny = ny = ng = 1 (with weights {0.105,0.990, 1.905}), the solid
blue line shows the maximum error of Q) over the grid as n, varies from zero
to 50. The purple and red lines show the same behaviour for increasing n;
and ng, respectively. Thus, the three solid lines reveal that increasing nao,
the multiplicity of the smallest weight, is least effective at reducing the error.
The dashed lines are the analogous trajectories for G4, and similar patterns
are revealed.

lerror| A —_————
/7 =~ <

7 T~
o020 , T~

1, =
0.015 T N\
0.010
0.005
0.000k = . - . - . - ————{—

0 10 20 30 © 1%

Case 1, Q solid, G4 dashes. At n; = 10 the curves are in the order
nyg < nip < na.

Figure 1 shows that, when evaluated by these "worst case" metrics, ( is again
convincingly superior to G4. The analogous plots for Cases 2 - 4 are available
from the authors.® The equivalent analysis for m = 4 is problematic, because

8The trajectories are L-shaped or unimodal, but the mode may be at some distance
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Case 1 (worst positive error for Q, all n; = 1) has two equal weights, and
thus can be included in the set of m = 3 cases. The same applies to Case 3
(worst positive error for G4). Unsurprisingly, though, all trajectories exhibit
the same pattern: large n; helps, but much more rapidly when attached to
the larger weights.

In summary, the several types of evidence described in this section clearly
indicate that the approximation based on Q outperforms that based on G4,
and it also outperforms various saddlepoint methods that have been pro-
posed. Since Q is also significantly simpler to implement than the other
methods considered, its use can be confidently recommended.

4 Application: Student-t-like Tests

In recent work on the finite sample properties of a number of tests that are
routinely used in applied work, Hansen (2021) points out that, in a variety
of contexts, the test statistics in question have the form®
Z
V@
where Z ~ N(0,1), and Z and ) independent, as with a standard ¢t—statistic,
but instead of having Q@ ~ x%(v), we have

Q= Zaif(m), (36)

a positive linear combination of independent y? variates. He presents sim-
ulation evidence which shows that assuming a Student-t distribution for T
- the usual approach - can produce tests that are badly over-sized (with
corresponding distortions of the coverage levels of confidence sets).

Using essentially the infinite-mixture representation for pdfg(q) in equa-
tion (7), Hansen shows that the distribution of 7" is a mixture of Student-t

from the origin. The most delayed decline is Case 3, weights {0.225,0.040,2.735}, nq
trajectory, for G4. The peak is at ny = 30, but the subsequent decline is slow. This
illustrates that increasing the frequency for the smallest weight is not quickly effective on
its own.

9In practice the distribution assumptions made here may be asymptotic, rather than
finite-sample. Nevertheless, the densities involved, and the need for approximations to
them, remain the same.
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distributions of the same form. We prove this more simply below. However,
there are a number of computational issues associated with the implementa-
tion of this exact result, so there is an incentive to replace the distribution
of @ by an approximation. Using simulation studies, Hansen (2021) explores
the accuracy of several different approximations, including ours, and con-
cludes that our approach is superior. In the next section we examine the
accuracy of this approximation using exact computations, as we have done
carlier for ). These too support our approach.

4.1 Exact and approximate distribution function

Since Z ~ N(0,1) and is independent of @), the conditional distribution of
T given Q = ¢ is N(0,¢!'). The unconditional distribution can be derived
from this in the obvious way (see Appendix B), but there is an easier way,
as follows. The conditional distribution is evidently symmetric about the
origin, and, conditionally,

Pr{T? < 2|Q = ¢} = Pr{x*(1) < ¢z} = G1(q2), (37)

so that, unconditionally, from the mixture representation of pdfg(q) in equa-
tion (7),

Pr{T? < 2} = Eg [G1(q2)] Zb Epy2(mizg) [Gi(z2/8)].  (38)

The cdf of the y? distribution is denoted here and elsewhere by G,(z) =
Pr{x? < z}. But, directly from the definition of an F,, ,, variate, a straight-
forward conditioning argument yields:

Pr{Fy 0, <2} = Eroy(n) {le (m}lz>} . 39

(%

Thus, we immediately obtain an expression for the (exact) cdf of T? :

Pr{T? < 2} = Eo [G1(q?)] Zb Pr{Fi,i0; < (n+2j)z/a}.  (40)

This mixture representation of the cdf can be used with the actual b,
in equation (9), but of course is subject to the same computational issues.
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Instead, we suggest using the approximation for the distribution of @), with
parameters chosen as described earlier. That is, with

L "
b= (5)04(1 = 9P/, (1)
and the terms Pr {F} ,,12; < (n + 2j)z/a} replaced by Pr{F} ,12; < (v + 2j)z¢}.
That is, we suggest using the approximation
o (1. A
Pr{T? < 2} ~ ¢z Z %(1 — ) Pr{F 195 < (v+25)2¢}, (42)

Jj=0

with the values (k,[, 1, ¢) those given earlier for approximating the cdf of Q.
We denote a variate with this cdf by 72.

Remark 8 Again, the value of v = k+1 produced by equating cumulants will
not be an integer, so the random variables F' ,12; are not strictly F'— distributed,
but again this distinction is immaterial.

Remark 9 Theorem 2 in Hansen (2021) is essentially this result, but Hansen’s
proof is somewhat different.

4.2 Evaluation Summary: T-test

The cdf of T2, the approximation to 72, and of T2 itself, are evaluated
using the HKW approach, and Imhof’s exact method, adapted to the case
where the "conditional" distributions in the mixture representation are F-
distributions rather than Chi-squared. These are accurate to 107% or better.
Since there is no competing approximation in this case, the performance of
T2 can only be evaluated relative to the exact distribution.!

To begin with we use the same 18 configurations of the weights a; as
above, choosing, as before, the a; at which the maximum error of Q occurs
when all n;, = 1. We then explore the same grid of the n;, and obtain the
results summarized in the following table:

10Hansen (2021) also considers the three-moment approximation suggested by Buckley
and Eagleson’s (1988) application of Hall (1984). However, our approach is found to
dominate this method as well.
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Table 4: Summary of performance of T2; m = 3, 4.

MAFE n; AAE 3F%
=30.004838 | {1,2,1} < 0.000025 | > 99%
=40.006208 | {1,1,3,1} | < 0.000027 | > 99%

m
m

In the case m = 3 all trajectories decline monotonically, the largest error at
n; = 50 being 0.000147 for, predictably, the small weight 0.04. For m = 4
all trajectories decline monotonically beyond n; = 3, the largest error at
n; = 50 being 0.000360 for the weight of 0.08. The largest error at n;, = 10
is 0.000114.

One can instead use the weights giving the worst errors for 72 (rather
than those worst for Q) when all n; = 1, then explore the grid of n; val-
ues. It happens that the errors for 72 all have the same sign. The implied
configurations and maximum errors are as given in the following table:

Table 5: Cases giving the worst errors for 72 when all n; = 1.

error ay Qs as ay Prob.
0.003902 | 1.01 | 0.08 | 1.91 0.975
0.005544 | 1.26 | 0.08 | 0.08 | 2.58 | 0.975
0.005521 | 1.26 | 0.07 | 0.09 | 2.58 | 0.975

SEEE

Note that for m = 4 the worst case has ay = a3 (so actually m = 3). In
the last row of the Table we separate these, with very little impact on the
maximum error, so we report the trajectories for n; with the weights in the
last row of the table. The maximum error rises as the n; = 1 "constraint"
is relaxed, but for m = 3 only to 0.005565 at {ni,ns,n3} = {1,3,1} and
P =0.975, and for m = 4 to 0.006519 at {1,3,1,1} and the same P. Errors
decline monotonically with increasing n; beyond these points. The largest
error for n; = 50 is 0.000483 (at {2,50,1,1}, P = 0.975).

In short, T2 provides an excellent approximation to the distribution of 72
- even more accurate than @ provides for @. This conclusion is strongly re-
inforced by the simulation results given in Hansen (2021). It is worth noting
that Hansen (2021) also explores the computation cost of several approxima-
tion methods, and these results too are favourable to our approach.!!

"' The consequences of using a suitably rescaled F'(1,n) variate to approximate the actual
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5 Generalization: F-Type Test statistics

A related problem of the same type is to consider the density of a ratio of two
independent quadratic forms, i.e., the generalized version of an F'—statistic:

F— y1Diy _ @
vhDoya Q2

Using the results given earlier, the exact density of F' = ()1/Q)s is readily
obtained, and is:

pdfr(f) = Z bljbzk(%/ébz)%

{ L@+ k+™5%)
7,k=0

e e fe) L
(44)

with )

Bl — (00) =12 (45)

The cdf is thus the doubly-infinite mixture of F'—distribution functions:

gbl (TLQ + 2]{7)
9 1 2)) } - 0

bij = W%’Dilﬁ

PI'{F < Z} = Z bljbgk Pr {Fn1+2j,n2+2k <

J,k=0

One approach to approximating this would be to use the methods dis-
cussed earlier for each component separately to obtain an approximate joint
density. This would entail replacing the by}, ba, by

~ ng; (N2, ‘

by =t 0 gy, (n
and using values ©;, ¢;, ny; and ny; determined as discussed earlier. Pre-
liminary evaluations of this method are encouraging, but we defer a full
evaluation to later work.

distribution of T2 can be explored by similar methods. We find that doing so results in
rejection rates that are too large: for nominal sizes of {10,5,2.5,1}% the actual sizes can
be as large as {21,14.5,10,6}% when m = 3, and as large as {19.3,12.8,8.3,4.6}% when
m = 4. Moral: don’t use the F/(1,n) distribution to approximate the distribution of 72!
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6 Concluding Remarks

We have proposed a new, four-moment, approximation to the distribution
of a positive definite quadratic form in standard normal variates, or, equiv-
alently, to a linear combination of independent chi-squared variates. The
method is simple to implement, and provides an extremely accurate approx-
imation - on most criteria matching the performance of the "best of the
rest", the eight-moment approximation suggested by Lindsay et. al. (2000),
which is considerably more complicated to implement. We then suggested
that the approximation can also be used to approximate the distribution of
a student — t — like variate, when the denominator is not a chi-squared vari-
ate but a more general quadratic form. This form arises in many applied
contexts, and we again find that the proposed approach prides an excellent
approximation - certainly more than adequate for practical testing appica-
tions.

Finally, we note that results of the type we discuss have wide applicability.
For instance, Hansen (2021) shows that they can be used to analyse the prop-
erties of the heteroscedasticity-robust t-ratio introduceded by White (1980),
and studied by many since. At another extreme, Bausch (2013) shows that
the distribution, and approximations to it, have applications to the physics
of string vacua.

7 Appendix A: Exact density for the case m =
2

Starting from z; ~ x%(n;),i = 1,2, we want the density of ¢ = ayz; + ass.
Assume, without loss of generality, that as > a; > 0, and transform to
q; = Ty, 1= 1727 to give q={q + g2, and

o gt 1
pdf (1, ¢2) = 5 ————m @exp{—§(aflql+a51qﬂ}- (48)
P

P50 )as® ay®

Now transform to ¢ = ¢; + g2 and b = ¢1/q, leaving

b7 11— b)F g

1 — —
gmiin2 n g eXp{—§q (al 1b+a21(1—b))}.

pdf(b,q) = )
L)L (% )ay® ay’

(49)
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Integrating out b gives

qnlw;nz_]_ exp {_lqagl} ny m + o 1
pde(Q) - nytng 2ﬂ ) 1F1 (77 9 a_§q (al_l - CL2_1 90)
27z [(ME2)a? af

ni+n —
gz lexp {—%qal 1} ng ni+mng 1, 1

ny n721F1 ?7 D) ’5 (a’]. —a ) (51)
2 L("5™)a’ ay’

ni+no
2

Putting ¢ = a;', ¥ = a1/as, 0 < ¥ < 1, n. = ny + ny, this becomes

05T e {309} | (o
1F]. o

pde(q) = 2%F(E) 9 7%3 %q(b (1 —W) ) (52)

as reported in the text.

8 Appendix B: the appropriate root of the
quadratic

To determine which root of the quadratic g(c) should be used, we seek solu-
tions satisfying £ > 0 and 0 < 1) < 1. We make use of a well-known inequality
for the power sums p,, which says that for all j, k, 7, a,b, c s.t. aj + bk = cr.

piph > Pl
(see Reznick, (1983), for instance). With j =1,k =3,a=b=1,r = c = 2,
we get pips > p2, and with j = 2,k = 4,a = b = 1,r = 3,c = 2, we have
paps > p3. The inequalities are strict unless all non-zero elements of D are
equal.

Now, for g(-) as in equation (28), we have ¢g(0) = ¢ > 0, g(p1/p2) =
—(pips — p3)?/p3 < 0, and g(p2/p3) = (P3 — P1p3)(P2ps — P3)/P3 < 0, so both
roots are real and positive, and the values p;/ps; and ps/ps are between the
roots c; and cy. For the larger root ¢y, cops—po and cops —p; are both positive,
and

co(caps — p2) — (cap2 —p1) > [p1(caps — p2) — pa(cap2 — p1)] /2

= Cz(plps—Pg)/Zh
> 0.
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Thus, at ¢ = ¢, ¥ > 1. On the other hand, at ¢; we have ¢;p; — p; and
c1ps — p2 both negative, and

ci(pe —cips) — (p1 — ap2) < [pi(p2 — cips) — p2(p1 — cip2)] /p2

= —61(]?1]73—]73)/1’2
< 0,

so that, at ¢ = ¢, 0 < ¢ < 1, as required. This is the root that should be
used.
To see that [ > 0 when the a; are not equal we have

&

l=cap — kY = 1— ¢ [c1p2 — p1y].-
The second term is
C1
cips —p1yp = ———— [p2 (Clpz - pl) - p1(01p3 - p2)]

C1p2 — D1
2
c

= —1 [p§ —p1p3] >0,
Cip2 — P1

since numerator and denominator are both negative.

9 Appendix C: Distribution of T

Since the conditional distribution of 7' given Q = ¢ is N(0,¢™') the condi-
tional density is:

pdfr(u|Q = q) = \/\/2% exp {—%ﬁq} : (53)

The unconditional density is therefore the expectation!?

pirnt) = 20 [ eS| Vipdialan. (5

q

120f course, if Q ~ x?2, this variance-mixture of the N(0,¢~!) density produces the
usual t-distribution.
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Using the exact density of Q in equation (6) and evaluating the integral gives

1 7L+1_l

pdfr(w) = J2L2 (am)h /q>0exp{—§q<a+u2>}qz

1nl
X 15 (—7 53 50@[[71 - (QD)l]) dq

D31 () sy met (1 nt1 n aofl, = (aD)7}]
— —r N2 7 2 F —_ L= 5 .
(O[—f-U) 21471 27 9 a2a (OZ+U2) \ )

pafz () = o~ Hap| 30 B0 (1, —(@D) ) {b ()

V()

so that the corresponding distribution function is again the mixture

Pr{T <u} =Y b;Fuia; (u\/(n + 2j)/a> , (57)

J=0

where F,(z) is the cdf of the Student-t distribution, and the b; are exactly
those appearing in the density of ) (see equation (9)). This is the equation
given in Theorem 3 of Hansen (2017) (in slightly different notation).

When @ has only two components (m = 2) the density pdfg(q) is replaced
by the simpler form

ST _1 N 1
_ ¢ w exp{ 2q¢}q5*11F1 <n2 7?,‘_

pde(Q) Q%F(ﬂ)

producing the unconditional cdf in the case m = 2 :

Pr{T <u} = w% Z (?2')3 (1- ¢)an+2j <U\/ (n+ 2j)¢> . (59)

j=0
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