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Abstract

We develop two new methods for selecting the penalty parameter for the `1-penalized

high-dimensional M-estimator, which we refer to as the analytic and bootstrap-after-

cross-validation methods. For both methods, we derive nonasymptotic error bounds

for the corresponding `1-penalized M-estimator and show that the bounds converge to

zero under mild conditions, thus providing a theoretical justification for these methods.

We demonstrate via simulations that the finite-sample performance of our methods is

much better than that of previously available and theoretically justified methods.

Keywords: Penalty parameter selection, penalized M-estimation, high-dimensional models,
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1 Introduction

High-dimensional models have attracted substantial attention both in the econometrics and

in the statistics/machine learning literature, e.g. see Belloni et al. (2018a) and Hastie et al.

(2015), and `1-penalized estimators have emerged among the most useful methods for learning

parameters of such models. However, implementing these estimators requires a choice of

the penalty parameter and with few notable exceptions, e.g. `1-penalized linear mean and
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Figure 1.1: Probability density functions of the smallest value (threshold) of the penalty parameter leading

to all-zero estimated parameters and of the value of the penalty parameter obtained from the van de Geer

(2016) method (vdG 16) in the setting of the `1-penalized logit estimator. The figure demonstrates that the

van de Geer penalty parameter value substantially exceeds the threshold value for the samples considered

and thus yields the trivial, all-zero, estimates; see Section 7 for details.
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quantile regression estimators, the choice of this penalty parameter in practice often remains

unclear. Some methods, such as cross-validation and related sample splitting methods, tend

to perform well in simulations but, as we discuss below, generally lack a sufficient theoretical

justification. Other methods, such as those discussed in van de Geer (2016), are supported

by a sound asymptotic theory but tend to perform poorly in moderate samples of practical

relevance, often leading to trivial estimates, with all estimated parameters being exactly zero;

see Figure 1.1 for a demonstration in the case of the `1-penalized logit estimator. In this

paper, we deal with these problems and (i) propose two new methods for choosing penalty

parameters in the context of `1-penalized M-estimation, (ii) derive the supporting asymptotic

theory, and (iii) demonstrate that our methods perform well in moderate samples.

We consider a model where the true value θ0 of some parameter θ is given by the solution

to an optimization problem

θ0 = argmin
θ∈Θ

E[m(X>θ, Y )], (1.1)

where m : R×Y → R is a known (potentially nonsmooth) loss function that is convex in its

first argument, X = (X1, . . . , Xp)
> ∈ X ⊆ Rp a vector of candidate regressors, Y ∈ Y one or

more outcome variables, and Θ ⊆ Rp a convex parameter space. Prototypical loss functions

are square-error loss and negative log-likelihood but the framework (1.1) also covers many

other cross-sectional models and associated modern as well as classical estimation approaches
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including logit and probit models, logistic calibration (Tan, 2017) covariate balancing (Imai

and Ratkovic, 2014), and expectile regression (Newey and Powell, 1987). It also subsumes

approaches to estimation of panel-data models such as the fixed-effects/conditional logit

(Rasch, 1960) and trimmed least-absolute-deviations and least-squares methods for censored

regression (Honoré, 1992), and partial likelihood estimation of heterogeneous panel models

for duration (Chamberlain, 1985). We provide details on these examples in Section 2.1

For the purpose of estimation, we assume access to a sample (X1, Y1), . . . , (Xn, Yn) of

independent observations from the distribution of the pair (X, Y ), where the number p of

candidate regressors in each Xi = (Xi1, . . . , Xip)
> may be (potentially much) larger than the

sample size n, meaning that we cover high-dimensional models. Following the literature on

high-dimensional models, we also assume that the vector θ0 = (θ01, . . . , θ0p)
> is sparse in the

sense that the number s :=
∑p

j=1 1 (θ0j 6= 0) of relevant regressors is much smaller than n.2

With this sparsity assumption in mind, we study the `1-penalized M-estimator

θ̂ (λ) ∈ argmin
θ∈Θ

{
1

n

n∑
i=1

m(X>i θ, Yi) + λ‖θ‖1

}
, (1.2)

where ‖θ‖1 =
∑p

j=1 |θj| denotes the `1-norm of θ, and λ > 0 is a penalty parameter.

Implementing the estimator θ̂(λ) requires us to choose λ. To do so, we first extend

the deterministic bound from Belloni and Chernozhukov (2011b) obtained for `1-penalized

quantile regression to the general setting of `1-penalized M-estimators (1.2). In particular,

we show that for an arbitrary choice of c0 > 1, there exists a constant C, depending on the

distribution of the pair (X, Y ) and c0, such that under mild regularity conditions, the event

λ > c0 max
16j6p

∣∣∣∣ 1n
n∑
i=1

m′1(X>i θ0, Yi)Xij

∣∣∣∣ (1.3)

implies both

‖θ̂ (λ)− θ0‖2 6 C
√
s

(
λ+

√
ln(pn)

n

)
and ‖θ̂ (λ)− θ0‖1 6 Cs

(
λ+

√
ln(pn)

n

)
, (1.4)

where m′1 (t, y) := (∂/∂t)m (t, y) denotes the derivative of the loss function m with respect

to its first argument (or a subgradient, if m is not differentiable). These bounds suggest the

following principle: choose λ as small as possible subject to the event (1.3) occurring with

1We consider the single-index setup primarily for notational convenience. Section 6 discusses changes
needed to accommodate richer modeling frameworks, including settings with multiple indices. Multiple
indices occur naturally in, e.g., multinomial models such as the multinomial and conditional logit models.

2We take s > 1 throughout. This assumption is innocuous as we may always redefine s as max{1, s}.
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high probability. We therefore wish to set λ = c0q(1− α), where

q (1− α) := (1− α) -quantile of max
16j6p

∣∣∣∣ 1n
n∑
i=1

m′1(X>i θ0, Yi)Xij

∣∣∣∣, (1.5)

for some small user-specified probability tolerance level α ∈ (0, 1), e.g. α = .1. This choice,

however, is typically infeasible since the random variable in (1.5) depends on the unknown

θ0. We thus have a vicious circle: to choose λ, we need an estimator of θ0, but to estimate θ0,

we need to choose λ. In this paper, we offer two solutions to this problem, which constitute

our key contributions.

To obtain our first solution, we show that whenever the loss function m is Lipschitz

continuous with respect to its first argument, we can apply results from high-dimensional

probability theory to derive an upper bound, say q(1−α), on q(1−α) that does not depend

on θ0 and can be computed analytically from the available dataset. We can then set λ =

c0q(1 − α), which we refer to as the analytic method. This method is computationally

straightforward and, as we demonstrate by means of example, has several applications. On

the other hand, it is not universally applicable as the loss function may or may not be

Lipschitz continuous. For example, it works for the logit model but not for the probit

model. Moreover, this method is somewhat conservative, in the sense that it yields a penalty

satisfying λ > c0q (1− α).

To obtain our second solution, we show that even though the estimator θ̂(λ) based on

λ chosen by cross-validation or its variants is generally difficult to analyze, it can be used

to construct provably good (in a sense to be made clear later) estimators of the random

vectors m′1(X>i θ0, Yi)Xi. We are then able to derive an estimator, say q̂(1− α), of q(1− α)

via bootstrapping, as discussed in Belloni et al. (2018a), and to set λ = c0q̂(1 − α), which

we refer to as the bootstrap-after-cross-validation method. This method is computationally

somewhat more demanding than the analytic method, but it is generally much more widely

applicable and nonconservative in the sense that it gives λ such that λ ≈ c0q(1− α).

Drawing on simulations from a simple logit model, we illustrate the potential of our

analytic and bootstrap-after-cross-validation methods. Our simulations indicate that, while

both methods lead to useful estimates of θ0 in the model (1.1) even in moderate samples,

there may be significant gains from using the bootstrap-after-cross-validation method, even

if the analytic method is also available. Both our methods substantially outperform the

theoretically supported choice of λ discussed in van de Geer (2016). Moreover, our penalty

selection methods are not dominated by cross-validation, which is popular in practice.

A key feature of our methods is that they yield bounds on both `1 and `2 estimation

errors. In contrast, sample splitting methods typically yield bounds only for the excess risk
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EX,Y [m(X>θ̂(λ), Y ) −m(X>θ0, Y )], e.g. see Lecue and Mitchell (2012). These bounds can

be translated into the `2 estimation error ‖θ̂(λ) − θ0‖2, but it is not clear how to convert

them into bounds on the `1 estimation error ‖θ̂(λ) − θ0‖1.3 A bound of the `1 type is

crucial when we are interested in estimating dense functionals a′θ0 of θ0 with a ∈ Rp being

a vector of loadings with many nonzero components; see Belloni et al. (2018a) for details.

Moreover, bounds on the `1 estimation error are needed to perform inference on components

of θ0 via double machine learning, as in Belloni et al. (2018b). When λ is selected using

cross-validation, `1 and `2 estimation error bounds are typically both unknown. The only

exception we are aware of is the linear mean regression model estimated using the LASSO.

The bounds have for this special case been derived in Chetverikov et al. (2016) and Miolane

and Montanari (2018), but their bounds are less sharp than those provided here.

The literature on learning parameters of high-dimensional models via `1-penalized M-

estimation is large. Instead of listing all existing papers, we therefore refer the interested

reader to the excellent textbook treatment in Wainwright (2019) and focus here on only a

few key references. van de Geer (2008, 2016) derives bounds on the estimation errors of

general `1-penalized M-estimators (1.2) and provides some choices of the penalty parameter

λ. As discussed above, however, her penalty formulae give values of λ that are so large that

the resulting estimators are typically trivial in moderate samples, with all coefficients being

exactly zero (cf. Figure 1.1). Because of this issue, van de Geer (2008) remarks that her

results should only be seen as an indication that her theory has something to say about finite

sample sizes, and that other methods to choose λ should be used in practice. Negahban et al.

(2012) develop error guarantees in a very general setting, and when specialized to our setting

(1.2) their results become quite similar to our statement that the bounds (1.4) hold under

the event (1.3). The same authors also note that a challenge to using these results in practice

is that the random variable in (1.3) is usually impossible to compute because it depends on

the unknown vector θ0. It is exactly this challenge that we overcome in this paper. Belloni

and Chernozhukov (2011b) study high-dimensional quantile regression and note that the

distribution of the random variable in (1.3) is in this case pivotal, making the choice of the

penalty parameter simple. However, quantile regression is the only setting we are aware of

in which the distribution of the random variable in (1.3) is pivotal.4 Finally, Ninomiya and

Kawano (2016) consider information criteria for the choice of the penalty parameter λ but

3Any two norms on a finite-dimensional space are equivalent. However, the equivalence constants generally
depend on the dimension (here p), which makes translation of error bounds for one norm into another a
nontrivial manner when the dimension is growing.

4With a known censoring propensity, the linear programming estimator of Buchinsky and Hahn (1998) for
censored quantile regression boils down to a variant of quantile regression and, therefore, leads to pivotality
of the right-hand side of (1.3). However, known censoring propensity seems like a very special case.
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focus on fixed-p asymptotics, thus precluding high-dimensional models.

The rest of the paper is organized as follows. In Section 2 we provide a portfolio of

examples that constitute possible applications of our methods. We refer to several of these

examples in later sections. In Section 3 we develop bounds on the estimation error of the

`1-penalized M-estimator, which motivate our methods to choose the penalty parameter.

We introduce and analyze the analytic method in Section 4 and the bootstrap-after-cross-

validation method in Section 5. We discuss how these methods generalize to modeling

frameworks richer than (1.1) in Section 6. In Section 7 we illustrate our methods via a

simulation study and compare them with existing methods. We defer all proofs to the

appendix, where we also provide implementation details and low-level conditions sufficient

for assumptions made in the main text.

Notation

Throughout Wi := (Xi, Yi), i ∈ {1, . . . , n}, denotes n independent copies of a random vector

W := (X, Y ) ∈ W . The distribution P of W , as well as the dimension p of the vector

X and the number of nonzero components of the vector θ0 may change with the sample

size n, but we suppress this potential dependence. E[f (W )] denotes the expectation of a

function f of W computed with respect to P , and En[f(Wi)] := n−1
∑n

i=1 f(Wi) abbreviates

the sample average. When only a nonempty subset I ( {1, . . . , n} is in use, we write

EI [f(Wi)] := |I|−1
∑

i∈I f(Wi) for the subsample average. For a set of indices I ⊆ {1, . . . , n},
Ic denotes the elements of {1, . . . , n} not in I. Given a vector δ ∈ Rp and a nonempty set

of indices J ⊆ {1, . . . , p}, we let δJ denote the vector in Rp with coordinates given by

δJj = δj if j ∈ J and zero otherwise. We denote its `q norms, q ∈ [1,∞], by ‖δ‖q. The

nonnegative and strictly positive reals are denoted R+ and R++, respectively. We abbreviate

a∨ b := max{a, b} and a∧ b := min{a, b}, and take n > 3, p > 2, and s > 1 throughout. We

introduce more notation as needed in the appendix.

2 Examples

In this section we discuss a variety of models that fit into the M-estimation framework (1.1)

with the loss function m(t, y) being convex in its first argument. (See also Section 6.2 for

examples involving multiple indices.) We include models for cross-sectional data (Examples

1–5), panel data (Examples 6 and 7) and panel data for duration (Example 8). The examples

cover both discrete and continuous outcomes in likelihood and nonlikelihood settings with

smooth as well as kinked loss functions.
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Example 1 (Binary Response Model). A relatively simple model fitting our framework is

the binary response model, i.e. a model for an outcome Y ∈ {0, 1} with

P(Y = 1|X) = F (X>θ0),

for a known cumulative distribution function (CDF) F : R → [0, 1]. The log-likelihood of

this model yields the following loss function:

m (t, y) = −y lnF (t)− (1− y) ln (1− F (t)) . (2.1)

The logit model arises here by setting F (t) = 1/ (1 + e−t) =: Λ (t), the standard logistic

CDF, and the loss function reduces in this case to

m (t, y) = ln
(
1 + et

)
− yt. (2.2)

The probit model arises by setting F (t) =
∫ t
−∞ (2π)−1/2 e−u

2/2du =: Φ (t), the standard

normal CDF, and the loss function in this case becomes

m (t, y) = −y ln Φ (t)− (1− y) ln (1− Φ (t)) . (2.3)

Note that the loss functions in both (2.2) and (2.3) are convex in t.

More generally, any binary response model with both F and 1 − F being log-concave

leads to a loss (2.1) that is convex in t. For these log-concavities it suffices that F admits a

probability density function (PDF) f = F ′, which is itself log-concave (Pratt, 1981, Section

5). Both the standard logistic and standard normal PDFs are log-concave. Also, ln f is

concave whenever f (t) ∝ e−|t|
a

for some a > 1 or f (t) ∝ tb−1e−t for t > 0 and some b > 1, the

extreme cases being the Laplace and exponential distributions, respectively. Other examples

of distributions for which f is log-concave can be found in the Gumbel, Weibull, Pareto and

beta families (Pratt, 1981, Section 6). A t-distribution with 0 < ν < ∞ degrees of freedom

(the standard Cauchy arising from ν = 1) does not have a log-concave density. However,

both its CDF and complementary CDF are log-concave (ibid.).

Example 2 (Ordered Response Model). Consider the ordered response model, i.e. a model

for an outcome Y ∈ {0, 1, . . . , J} with

P(Y = j|X) = F (αj+1 −X>θ0)− F (αj −X>θ0), j ∈ {0, 1, . . . , J},

for a known CDF F : R → [0, 1] and known cut-off points −∞ = α0 < α1 < · · · < αJ <
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αJ+1 = +∞. (We here interpret F (−∞) as zero and F (+∞) as one.) The log-likelihood of

this model yields the loss function

m (t, y) = −
J∑
j=0

1 (y = j) ln (F (αj+1 − t)− F (αj − t)) , (2.4)

that is convex in t for any distribution F admitting a log-concave PDF f = F ′ (Pratt, 1981,

Section 3). See Example 1 for specific distributions satisfying this criterion.

Example 3 (Logistic Calibration). In the setting of average treatment effect estimation under

a conditional independence assumption with a high-dimensional vector of controls, consider

the logit propensity score model

P(Y = 1|X) = Λ(X>θ0), (2.5)

where Y ∈ {0, 1} is a treatment indicator, X a vector of controls, and Λ the logistic CDF.

Using (1.1), θ0 can be identified with the logistic loss function in (2.2). However, as shown

by Tan (2017), θ0 can also be identified using (1.1) with the logistic calibration loss

m (t, y) = ye−t + (1− y) t, (2.6)

which is convex in t as well. As demonstrated by Tan (2017), using this alternative loss

function gives substantial advantages: it leads to average treatment effect estimators that

enjoy particularly nice robustness properties. Specifically, under some conditions, these

treatment effect estimators remain root-n consistent and asymptotically normal even if the

model for the outcome regression function is misspecified (ibid.).

Example 4 (Logistic Balancing). In the same setting as that of the previous example, the

covariate balancing approach (Imai and Ratkovic, 2014) amounts to specifying a parametric

model for the treatment indicator Y ∈ {0, 1},

P(Y = 1|X) = F (X>θ0)

and ensuring covariate balance in the sense that

E

[{
Y

F (X>θ0)
− 1− Y

1− F (X>θ0)

}
X

]
= 0.

Balancing here amounts to enforcing a collection of moment conditions and is therefore nat-

urally studied in a generalized method of moments (GMM) framework. However, specifying
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F to be the logistic CDF Λ, covariate balancing can be achieved via M-estimation of θ0 based

on the loss function

m (t, y) = (1− y) et + ye−t + (1− 2y) t,

which is also convex in t. (See Tan (2017) for details.)

Example 5 (Expectile Model). Newey and Powell (1987) study the conditional τ th expectile

model µτ (Y |X) = X>θ0, where τ ∈ (0, 1) is a known number, and propose the asymmetric

least squares estimator of θ0 in this model. This estimator can be understood as an M-

estimator with the loss function

m (t, y) = ρτ (y − t) , (2.7)

where ρτ : R→ R is the piecewise quadratic and continuously differentiable function defined

by

ρτ (u) = |τ − 1 (u < 0)|u2 =

(1− τ)u2, u < 0,

τu2, u > 0,

a smooth analogue of the ‘check’ function known from the quantile regression literature.

This estimator can also be interpreted as a maximum likelihood estimator when model

disturbances arise from a normal distribution with unequal weights placed on positive and

negative disturbances (Aigner et al., 1976). Note that m(·, y) in (2.7) is convex but not twice

differentiable (at zero) unless τ = 1/2.

Example 6 (Panel Logit Model). Consider the panel logit model

P(Yτ = 1|X, γ, Y0, . . . , Yτ−1) = Λ(γ +X>τ θ0), τ = 1, 2,

where Y = (Y1, Y2)> is a pair of outcome variables, X = (X>1 , X
>
2 )> is a vector of regressors,

and γ is a unit-specific unobserved fixed effect. Rasch (1960) shows that θ0 in this model

can be identified by θ0 = argminθ∈Rp E[m((X1 −X2)> θ, Y )], where

m (t, y) = 1 (y1 6= y2)
[
ln
(
1 + et

)
− y1t

]
, (2.8)

which is convex in t.5

Example 7 (Panel Censored Model). Consider the panel censored model

Yτ = max
(
0, γ +X>τ θ0 + ετ

)
, τ = 1, 2,

5See also Chamberlain (1984, Section 3.2) and Wooldridge (2010, Section 15.8.3).
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where Y = (Y1, Y2)> ∈ R2
+ is a pair of outcome variables, (X>1 , X

>
2 )> is a vector of regressors,

γ is a unit-specific unobserved fixed effect, and ε1 and ε2 are unobserved error terms, which

may or may not be centered. Honoré (1992) shows that under certain conditions, including

exchangeability of ε1 and ε2 conditional on (X1, X2, γ), θ0 in this model can be identified by

θ0 = argminθ∈Rp E[m(X>θ, Y )], with X = X1 −X2 and m being the trimmed loss function

m (t, y) =


Ξ (y1)− (y2 + t) ξ (y1) , t 6 −y2,

Ξ (y1 − y2 − t) , −y2 < t < y1,

Ξ (−y2)− (t− y1) ξ (−y2) , y1 6 t,

(2.9)

and either Ξ = |·| or Ξ = (·)2 and ξ its derivative (when defined).6 These choices lead

to trimmed least absolute deviations (LAD) and trimmed least squares (LS) estimators, re-

spectively, both of which are based on loss functions convex in t. Here, Ξ = |·| leads to a

nondifferentiable loss.

Example 8 (Panel Duration Model). Consider the panel duration model with a log-linear

specification:

lnhτ (y) = X>τ θ0 + h0 (y) , τ = 1, 2,

where hτ denotes the hazard for spell τ and both h0 and hτ are allowed to be unit-specific.

This model is a special case of the duration models studied in Chamberlain (1985, Section

3.1). Chamberlain presumes that the spells Y1 and Y2 are (conditionally) independent of

each other and shows that the partial log-likehood contribution is7

θ 7→ 1 (Y1 < Y2) ln Λ((X1 −X2)> θ) + 1 (Y1 > Y2) ln
(
1− Λ((X1 −X2)> θ)

)
.

The implied loss function

m (t, y) = ln
(
1 + et

)
− 1 (y1 < y2) t (2.10)

is of the logit form (see Example 1), hence convex in t. With more than two completed

spells, the partial log-likelihood takes a conditional-logit form (ibid.), and the resulting loss

is therefore still a convex function (albeit involving multiple indices).

6When Ξ = |·|, we set ξ (0) := 0 to make (2.9) consistent with formulas in Honoré (1992).
7See also Lancaster (1992, Chapter 9, Section 2.10.2).

10



3 Nonasymptotic Bounds on Estimation Error

In this section, we derive bounds on the error of the `1-penalized M-estimator (1.2) in the

`1 and `2 norms. The argument reveals which quantities one needs to control in order to

ensure good behavior of the estimator, motivating the choice of the penalty parameter λ in

the following sections. We split the section into two subsections. In Section 3.1 we derive

bounds via an empirical error function. In Section 3.2 we derive a bound on the empirical

error function itself.

3.1 Bounds via Empirical Error Function

Denote

M(θ) := E[m(X>θ, Y )] and M̂(θ) := En[m(X>i θ, Yi)], θ ∈ Θ,

Also, let

T := {j ∈ {1, . . . , p}; θ0j 6= 0}

and for any c̃ > 1, let R(c̃) denote the restricted set

R(c̃) := {δ ∈ Rp; ‖δT c‖1 6 c̃‖δT‖1 and θ0 + δ ∈ Θ}. (3.1)

In addition, fix c0 > 1, and define the (random) empirical error function ε : R+ → R+ by

ε (u) := sup
δ∈R(c0),
‖δ‖26u

∣∣(En − E)
[
m
(
X>i (θ0 + δ), Yi

)
−m

(
X>i θ0, Yi

)]∣∣ , u ∈ R+,

where c0 := (c0 + 1) / (c0 − 1). Moreover, define the excess risk function E : Θ→ R+ by

E (θ) := M (θ)−M (θ0) = E
[
m
(
X>θ, Y

)
−m

(
X>θ0, Y

)]
, θ ∈ Θ.

In this subsection, we derive bounds on ‖θ̂(λ)− θ0‖1 and ‖θ̂(λ)− θ0‖2 via the empirical error

function. Our bounds will be based on the following four assumptions.

Assumption 1 (Parameter Space). The parameter space Θ is a convex subset of Rp for which

θ0 is interior.

Assumption 2 (Convexity). The function t 7→ m (t, y) is convex for all y ∈ Y.

Assumption 3 (Differentiability and Integrability). The derivative m′1(X>θ, Y ) exists almost

surely and E[|m(X>θ, Y )|] <∞ for all θ ∈ Θ.

11



Assumption 4 (Margin). There exist constants cM and c′M in R++ such that

θ ∈ Θ and ‖θ − θ0‖1 6 c′M imply E(θ) > cM‖θ − θ0‖2
2.

Assumption 1 is a minor regularity condition. Assumption 2 is satisfied in all examples

from the previous section. These assumptions imply that the (random) function M̂ is convex,

hence subdifferentiable on the domain interior (Rockafellar, 1970, Theorem 23.4).8 The first

part of Assumption 3 strengthens this conclusion to (full) differentiability, except possibly

on a set of zero probability. This assumption is satisfied in all examples from the previous

section except for Example 7 with the trimmed LAD loss function, where it is satisfied if

the conditional distribution of (ε1, ε2) given (X1, X2, γ) is continuous. In fact, for all our

results except for those in Section 5.2, it would be sufficient to assume that the derivative

m′1(X>θ, Y ) exists almost surely for θ = θ0 only. The second part of Assumption 3 is a

minor regularity condition. Assumption 4 is expected to be satisfied in most applications

where the parameters are well identified—see Appendix B for low-level sufficient conditions

and verification in the examples from Section 2.

Define S ∈ Rp as the derivative of the objective function M̂ at θ0,

S := En[(∂/∂θ)m(X>i θ, Yi)|θ=θ0 ] = En[m′1(X>i θ0, Yi)Xi], (3.2)

which is almost surely well defined by Assumption 3. In this paper we refer to S as the

score. Theorem 1 below establishes error guarantees for θ̂ (λ) in terms of bounds on the

score, penalty and empirical error. To arrive at these bounds, we introduce the following

three events: For some constants λε and λ in R++, let

S := {λ > c0‖S‖∞} , (score domination)

L :=
{
λ 6 λ

}
, (penalty majorization)

E := {ε (u0) 6 λεu0} , (empirical error control)

where

u0 :=
2

cM

(
λε + (1 + c0)λ

√
s
)
. (3.3)

On S the penalty is large enough to provide a sufficient level of regularization, and on L the

penalty is not “too large.”9 For the purpose of the deterministic calculation of this section,

8A function f defined on Rm is subdifferentiable at x if its subdifferential ∂f (x) := {y ∈ Rm; f(z) >
f(x) + y>(z− x) for all z ∈ Rm} is nonempty. A convex function f is differentiable at x if and only if ∂f(x)
is singleton (with its gradient then given by the single point).

9Since S may be well defined only almost surely, S should technically include “S exists.” We omit this
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the event L plays little to no role, and one may enforce it by simply setting λ = λ. However,

in later sections, the penalty level will be a random quantity, λ will play the role of a (high-

probability) bound on λ, and L facilitates easy reference. The constant λε appearing in the

event E represents a (high-probability) deterministic modulus of continuity of the empirical

error function ε in a neighborhood of zero of size u0.

We next present a theorem that provides guarantees for the `1- and `2-estimation error

for the `1-penalized M-estimator. The proof, given in Appendix C, builds on an argument of

Belloni and Chernozhukov (2011b). Similar statements appear also in van de Geer (2008),

Bickel et al. (2009) and Negahban et al. (2012), among others. We make no claims of

originality for these deterministic bounds and include the theorem solely for expositional

purposes.

Theorem 1 (Nonasymptotic Bounds). Let Assumptions 1, 2, 3, and 4 hold and suppose that

(1 + c0)u0

√
s 6 c′M . Then on the event S ∩L ∩ E , we have both

‖θ̂ (λ)− θ0‖2 6
2

cM

(
λε + (1 + c0)λ

√
s
)

and (3.4)

‖θ̂ (λ)− θ0‖1 6
2 (1 + c0)

cM

(
λε
√
s+ (1 + c0)λs

)
. (3.5)

This theorem motivates our choices of the penalty parameter λ. In particular, we will

in Section 3.2 show that empirical error control (E ) holds with probability approaching

one if λε = Cε
√
s ln(pn)/n for a sufficiently large constant Cε ∈ R++. (See Lemma 1.)

Therefore, setting λ = λ, such that penalty majorization (L ) holds trivially, Theorem 1

yields bounds of the form (1.4) given in the Introduction, and we arrive at the following

principle: choose λ as small as possible subject to the constraint that the score domination

event S = {λ > c0‖S‖∞} occurs with high probability. It is exactly this principle that

guides our choices of λ in the following sections.

Remark 1 (Uniqueness). Like similar statements appearing in the literature, Theorem 1

actually concerns the set of optimizers to the convex minimization problem (1.2) for a fixed

value of λ. While the objective function M̂ is convex, it need not be strictly convex, such

that the global minimum may be attained at more than one point θ̂(λ). The bounds stated

here (and in what follows) hold for any of these optimizers.

Remark 2 (Loss Structure). The proof of Theorem 1 requires neither the index structure

placed on the loss function nor the separation of a datum W into regressors X and outcome(s)

Y . The deterministic bounds in Theorem 1 continue to hold if (w, θ) 7→ m(x>θ, y) is replaced

qualifier throughout.
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by a general loss (w, θ) 7→ mθ (w), which is convex in θ and P -integrable in w. The theorem

therefore also allows settings with multiple indices provided the loss is jointly convex in the

index arguments. For example, the theorem accommodates loss functions from multinomial

and conditional logit models (see Section 6.2), which are prevalent in economics.

Remark 3 (Margin). Our convexity, interiority, and differentiability assumptions suffice to

show that the risk M is differentiable at θ0 (Bertsekas, 1973, Proposition 2.3). Consequently,

our estimand θ0 must satisfy the population first-order condition ∇M (θ0) = 0. Assump-

tion 4 therefore amounts to assuming that the population criterion M admits a quadratic

margin near θ0. The name margin condition appears to originate from Tsybakov (2004,

Assumption A1), who invokes a similar assumption in a classification context. van de Geer

(2008, Assumption B) contains a more general formulation of margin behavior for estimation

purposes. We consider the (focal) quadratic case for the sake of simplicity.

Remark 4 (Sparsity). For the Theorem 1 bounds to be interesting, our notion of sparsity

must be exact (or strong), i.e. the number s =
∑p

j=1 1(θ0j 6= 0)} of nonzero coefficients must

be small (relative to n). However, one may entertain weaker notions such as approximate

(or weak) sparsity. For example, one could instead assume that θ0 belongs to an `q “ball”

Bq(Rq) := {θ ∈ Rp;
∑p

j=1 |θ|q 6 Rq} of “radius” Rq for some fixed q ∈ (0, 1], which would

allow many nonzero but small cofficients. Step 1 in the proof of Theorem 1 shows that,

under our exact sparsity assumption (corresponding to q = 0) and on S , the error vector

θ̂(λ)− θ0 belongs to the restricted set R(c0) defined in (3.1). The structure of the restricted

set allows us to swap the `1-norm of any of its elements for the corresponding `2-norm at the

cost of
√
s (up to a constant depending on c0). In the terminology of Negahban et al. (2012),

√
s is the subspace compatibility constant linking the `1-regularizer and `2-error norm on

the s-dimensional coordinate subspace {δ ∈ Rp; δT c = 0}. With only approximate sparsity

(q > 0), the relevant restricted set takes a more complicated form, but a careful thresholding

argument still implies useful error bounds. Although these bounds involve more terms, they

are akin to the ones in Theorem 1 with λ
√
s replaced by λ

1−q/2√
Rq. As Theorem 1 is not

our contribution, we do not include the extension in this paper. See Negahban et al. (2012)

for error guarantees which accommodate approximate sparsity as well as other norm-based

regularizers. Simulation evidence suggests that our methods are relevant also in settings

where only approximate sparsity is satisfied. (See Section 7.)

Remark 5 (Free Parameter). The free parameter c0 > 1 in Theorem 1 serves as a trade-off

between the degree (or likelihood) of score domination on the one hand and the sample size

threshold and bound quality on the other. A smaller c0 > 1 makes S more probable, but

it also increases the sample size threshold and bounds. Note that a free parameter appears
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either explicitly or implicitly in existing bounds.10 Given that the penalty methods proposed

here seek to probabilistically control the score domination event S , a free parameter will be

present in our penalty expressions below. Our finite-sample experiments (Section 7) indicate

that increasing c0 away from one worsens performance, but also that setting c0 to any value

near one, including one itself, does not impact the results by much (cf. Figures 7.5 and 7.6).

Our current recommendation is therefore to set c0 = 1.1, a value slightly above unity. Similar

observations (and the same recommendation) were made by Belloni et al. (2012, Footnote

7) in the context of the LASSO and linear model.

3.2 Empirical Error Function Control

In this subsection, we consider the problem of gaining control over the empirical error event

E = {ε (u0) 6 λεu0}. More precisely, we present conditions under which one may ensure a

linear modulus of continuity of the function ε in a neighborhood of zero with high probability.

To do so, we will use the following two assumptions.

Assumption 5 (Covariates). There exist sequences ζn and Bn of constants in R++ and [1,∞),

respectively, and a constant CX in R++ such that (1) ζn → 0, (2) max16i6n ‖Xi‖∞ 6 Bn

with probability at least 1 − ζn, and (3) max16j6p
∑n

i=1X
4
ij 6 nC4

X with probability at least

1− ζn.

Assumption 6 (Local Loss Behavior). There exist constants cL and CL in R++ and a function

L :W → R+ such that

1. for all w = (x, y) ∈ W and all (t1, t2) ∈ R2 satisfying |t1| ∨ |t2| 6 cL,∣∣m (x>θ0 + t1, y
)
−m

(
x>θ0 + t2, y

)∣∣ 6 L (w) |t1 − t2| (3.6)

with E[L(W )8] 6 (CL/2)8;

2. for all t ∈ [0, cL] and θ ∈ Θ satisfying ‖θ − θ0‖2 6 t, we have

E
[{
m
(
X>θ, Y

)
−m

(
X>θ0, Y

)}2
]
6 C2

Lt
2.

Assumption 5 is satisfied if the regressors have sufficiently light tails. For example,

with Xij distributed N(0, σ2
j ), by the union bound, Assumption 5(ii) is satisfied with Bn =√

2 ln(2pn/ζn) max16j6p σj for any vanishing sequence ζn in (0, 1), and by Lemmas E.3

10A free parameter is explicit in both Belloni and Chernozhukov (2011b) and van de Geer (2008). In
deriving their bounds both Bickel et al. (2009) (for the LASSO) and Negahban et al. (2012) set c0 = 2.
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and E.4 in Chernozhukov et al. (2017), Assumption 5(iii) is satisfied in this case with a

sufficiently large constant CX depending only on max16j6p σj and ζn = n−1 as long as

ln3(pn) max16j6p σ
4
j 6 n. In the setup of our simulations (Section 7), the regressors are

standard Gaussian, so taking ζn = n−1, we get that Bn grows like
√

log(pn). Assump-

tion 6.1 requires that the function t 7→ m(x>θ0 + t, y) is locally Lipschitz continuous for

all w = (x, y) ∈ W with Lipschitz constant L(w), and that the eighth moment of L(W ) is

finite. Assumption 6.2 essentially amounts to the loss being mean-square continuous at θ0.

Given that every convex function f : C → R is Lipschitz relative to any compact subset

of the interior of its domain C (Rockafellar, 1970, Theorem 10.4), it follows that local Lip-

schitz continuity (3.6) is actually implied by Assumption 2, and so Assumption 6.1 should

be regarded as a mild regularity condition restricting the moments of the implied random

variable L(W ). In Appendix B we provided low-level conditions leading to verification of

this assumption in the examples from Section 2. Note that in the special case where the loss

m(·, y) is (globally) Lipschitz with Lipschitz constant not depending on y, Assumption 6.1

is trivially satisfied. Moreover, in this case Assumption 6.2 reduces to the assumption that

the eigenvalues of the matrix E[XX>] are bounded from above, which is often imposed in

the literature on high-dimensional models.

We now present a result showing that one may take the high-probability local modulus

of continuity λε appearing in the empirical error event E = {ε (u0) 6 λεu0} proportional to√
s ln (pn) /n:

Lemma 1 (Empirical Error Bound). Let Assumptions 5 and 6 hold, and define the con-

stant Cε := 16
√

2(1 + c0)CLCX ∈ R++. Then provided s ln (pn) > 16C2
L/C

2
ε and 0 < u 6

cL/ [(1 + c0)Bn

√
s], we have

ε (u) 6 Cεu
√
s ln (pn) /n

with probability at least 1− 5n−1 − 8ζn.

Remark 6 (Alternative Nonasymptotic Bounds). If the loss function m is (globally) Lips-

chitz in its first argument with Lipschitz constant not depending on y, and the regressors

are bounded, then symmetrization, contraction, and concentration arguments may be used

to bound the modified empirical error

ε̃ (u) := sup
δ∈Rp;
‖δ‖16u

∣∣(En − E)
[
m
(
X>i (θ0 + δ) , Yi

)
−m

(
X>i θ0, Yi

)]∣∣ , u ∈ R+,

now defined with respect to the `1 norm and without the restricted set R (c0). This is the
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approach taken by van de Geer (2008), who shows that, under the above assumptions, there

exists a constant C̃ ∈ R++ such that with probability approaching one,

ε̃ (u) /u 6 C̃

(√
ln p

n
+

ln p

n

)
, u ∈ R++.

van de Geer (2008) demonstrates that bounds on the estimation error of θ̂(λ) can be derived

if λ is chosen to exceed the right-hand side of this inequality, which motivates alternative

methods to choose λ. Unfortunately, C̃ typically relies on design constants unknown to the

researcher. Moreover, even if these constants were known, the resulting values of C̃ would

typically be prohibitively large, yielding choices of λ leading to trivial estimates of the vector

θ0 in moderate samples; see Section 7 for simulation results based on the choices in van de

Geer (2008). Our bounds therefore seem more suitable for devising methods to choose λ.

4 Analytic Method

In this section we develop our analytic method to choose the penalty parameter λ. To do

so, recall that we would like to choose the penalty parameter as small as possible while

making score domination, S = {λ > c0‖S‖∞}, a high-probability event. Recall also that

S = En[m′1(X>i θ0, Yi)Xi] is the derivative of M̂ at θ = θ0. By analogy with the linear

mean regression, we refer to m′1(X>θ0, Y ) as the residual. Our analytic method controls the

residual through the following two assumptions.

Assumption 7 (Conditional Mean Zero). The residual m′1(X>θ0, Y ) is such that with prob-

ability one, E[m′1(X>θ0, Y ) |X ] = 0.

Assumption 8 (Residual: Analytic Method). There exist functions r, r : X → R and a

known constant d ∈ R++ such that both m′1(X>θ0, Y ) ∈ [r(X), r(X)] and r(X)− r(X) 6 d

almost surely.

Assumptions 7 and 8 presume that the residual m′1(X>θ0, Y ) is centered conditional on

the regressors and resides in a bounded interval of known width (d iameter), respectively.

The former assumption is satified in all of the examples from Section 2. As we explain at

the end of this section, the latter assumption is satisfied in several, but not all, of the same

examples.

Using these assumptions and appealing to Hoeffding’s inequality (Vershynin, 2018, The-

17



orem 2.2.6) conditional on the Xi’s, we see that for any coordinate j and any t ∈ R++,

P (|Sj| > t |{Xi}ni=1 ) 6 2 exp

(
− 2nt2

d2En
[
X2
ij

]) a.s.

The union bound then implies that for any t ∈ R++,

P (‖S‖∞ > t |{Xi}ni=1 ) 6 2p exp

(
− 2nt2

d2 max16j6p En
[
X2
ij

]) a.s.

Equating the right-hand side with α ∈ (0, 1) and solving for the resulting t, we arrive at the

data-dependent penalty level

λ̂amα := c0d

√
ln (2p/α)

2n
max
16j6p

En
[
X2
ij

]
. (4.1)

By construction, λ̂amα > c0 ‖S‖∞ with conditional probability at least 1− α for almost every

realization of the Xi’s, and so λ̂amα > c0 ‖S‖∞ with probability at least 1 − α also uncondi-

tionally. Given that this penalty level is available in closed form, we refer to this method for

obtaining a penalty level as the analytic method (AM). Note that, under Assumption 5, the

analytic penalty level admits the bound

λ̂amα 6 c0CXd

√
ln (p/α)

n
=: λ

am

α , (4.2)

with probability at least 1 − ζn as long as p > 2. Use of the analytic method leads to the

following result:

Theorem 2 (Nonasymptotic High-Probability Bounds: Analytic Method). Let Assumptions

1–8 hold and let θ̂ := θ̂(λ̂amα ) be a solution to the `1-penalized M-estimation problem (1.2) with

penalty level λ = λ̂amα given in (4.1). Define the constants Cε := 16
√

2(1 + c0)CLCX ∈ R++,

Cam
λ := c0CXd ∈ R++, and

u0 :=
2

cM

(
Cε

√
s ln (pn)

n
+ (1 + c0)Cam

λ

√
s ln (p/α)

n

)
∈ R++.

In addition, suppose that

s ln (pn) >
16C2

L

C2
ε

and (1 + c0)u0

√
s 6

cL
Bn

∧ c′M . (4.3)
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Then both

‖θ̂ − θ0‖2 6
2

cM

(
Cε

√
s ln (pn)

n
+ (1 + c0)Cam

λ

√
s ln (p/α)

n

)
and

‖θ̂ − θ0‖1 6
2 (1 + c0)

cM

(
Cε

√
s2 ln (pn)

n
+ (1 + c0)Cam

λ

√
s2 ln (p/α)

n

)
with probability at least 1− α− 5n−1 − 9ζn.

Theorem 2 gives nonasymptotic bounds on the estimation error of the `1-penalized M-

estimator based on the penalty parameter λ chosen according to the analytic method. From

this theorem, we immediately obtain the corresponding convergence rates:

Corollary 1 (Convergence Rate Based on Analytic Method). Let Assumptions 1–8 hold and

let θ̂ := θ̂(λ̂amα ) be a solution to the `1-penalized M-estimation problem (1.2) with penalty level

λ = λ̂amα given in (4.1). In addition, suppose that

α→ 0 and
B2
ns

2 ln(pn/α)

n
→ 0. (4.4)

Then there exists a constant C ∈ R++ depending only on the constants appearing in the

aforementioned assumptions such that both

‖θ̂ − θ0‖2 6 C

√
s ln(pn/α)

n
and ‖θ̂ − θ0‖1 6 C

√
s2 ln(pn/α)

n

with probability approaching one.

The proof of Corollary 1 actually reveals that even if we drop the α → 0 requirement,

we get

P

(
‖θ̂ − θ0‖2 6 C

√
s ln(pn/α)

n
and ‖θ̂ − θ0‖1 6 C

√
s2 ln(pn/α)

n

)
> 1− α + o (1) .

For example, with a fixed probability tolerance α (i.e. not depending on n), the previous

display implies

lim inf
n→∞

P

(
‖θ̂ − θ0‖2 6 C

√
s ln(pn/α)

n
and ‖θ̂ − θ0‖1 6 C

√
s2 ln(pn/α)

n

)
> 1− α.

We conclude this section by pointing out examples from Section 2 where Assumption 8

is satisfied, and so our analytic method can be applied.
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Example 1 (Binary Response Model, Continued). The logit loss function (2.2) is differen-

tiable in t with m′1 (t, y) = Λ (t) − y. The logit residual m′1(X>θ0, Y ) thus resides in the

interval [Λ(X>θ0)− 1,Λ(X>θ0)], and so satisfies Assumption 8 with d = 1.

More generally, let F admit an everywhere positive log-concave PDF f = F ′. Then the

binary-response loss (2.1) is differentiable with partial derivative

m′1 (t, y) =
f (t)

F (t) [1− F (t)]
[F (t)− y] . (4.5)

The binary nature of the outcome implies that

min
y∈{0,1}

m′1
(
X>θ0, y

)
6 m′1

(
X>θ0, Y

)
6 max

y∈{0,1}
m′1
(
X>θ0, y

)
.

From (4.5) we may deduce m′1(t, 1) = −f(t)/F (t) < 0 < f(t)/[1−F (t)] = m′1(t, 0). Inserting

and simplifying, we therefore arrive at

max
y∈{0,1}

m′1 (t, y)− min
y∈{0,1}

m′1 (t, y) =
f(t)

F (t) [1− F (t)]
.

Hence, for any distribution such that f/ [F (1− F )] is also bounded from above, Assumption

8 is satisfied with

d = sup
t∈R

f(t)

F (t) [1− F (t)]
,

which only requires solving an unconstrained, univariate maximization problem. For exam-

ple, as discussed earlier, f/ [F (1− F )] is bounded from above if F is a t-distribution Fν with

0 < ν <∞ degrees of freedom. For 0 < ν 6 5, the (unique) mode of fν/[Fν(1−Fν)] is zero,

such that d = dν = 4fν(0) = 4Γ((ν + 1)/2)/[
√
νπΓ(ν/2)]. For example, d1 = 4/π ≈ 1.41

for the standard Cauchy distribution. For higher degrees of freedom, the solution is more

complicated, the exact dν being somewhat larger than the value 1
2

√
ν of the (asymptotic)

program supt∈R |t|/(1 + t2/ν). For example, ν = 9 produces d9 ≈ 1.68 > 3
2
.

As a side note, observe also that in contrast to the logit loss function, the probit loss

function (2.3) does not satisfy Assumption 8. Indeed, this loss function is differentiable in t

with

m′1 (t, y) =
ϕ(t)

Φ(t) [1− Φ(t)]
[Φ (t)− y]

but here m′1 (t, 0) − m′1(t, 1) = ϕ (t) / [1− Φ (t)] + ϕ(t)/Φ(t) ∼ t as t → ∞. The probit

residual is thus not confined to any bounded interval, violating Assumption 8. We could in

principle reconcile the probit loss function with Assumption 8 by assuming that we know a
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constant Cd ∈ R++ such that ‖θ0‖1 6 Cd and setting

d = sup
t∈[−XCd,XCd]

ϕ(t)

Φ(t) [1− Φ(t)]
,

where X = max16i6n ‖Xi‖∞. While the resulting d is a known function of the Xi’s, this

procedure would likely lead to very large values of the penalty parameter λ, thus making the

analytic method impractical.

Example 2 (Ordered Response Model, Continued). Provided the distribution F admits an

everywhere positive log-concave PDF f = F ′, the ordered-response loss (2.4) is differentiable

in t with partial derivative

m′1 (t, y) =
J∑
j=0

1 (y = j)
f (αj+1 − t)− f (αj − t)
F (αj+1 − t)− F (αj − t)

, (4.6)

where we interpret f(±∞) and F (−∞) as zero and F (+∞) as one. The discrete nature of

the outcome and (4.6) imply that

min
06j6J

f (αj+1 − t)− f (αj − t)
F (αj+1 − t)− F (αj − t)

6 m′1 (t, y) 6 max
06j6J

f (αj+1 − t)− f (αj − t)
F (αj+1 − t)− F (αj − t)

,

Hence, for a distribution F and cut-off points {αj} such that the difference between the

upper and lower bounds is bounded from above in t, Assumption 8 is satisfied with

d = sup
t∈R

{
max

06j6J−1

f (αj+1 − t)− f (αj − t)
F (αj+1 − t)− F (αj − t)

− min
16j6J

f (αj+1 − t)− f (αj − t)
F (αj+1 − t)− F (αj − t)

}
,

where we have used our knowledge of the signs of the first and last elements to reduce the

candidates for a minimum and maximum, respectively. With knowledge of F and the αj’s,

this quantity may at least in principle be computed. For the logistic distribution F = Λ we

have f = Λ(1− Λ), such that d simplifies to

d = sup
t∈R

{
max

06j6J−1
{1− Λ (αj+1 − t)− Λ (αj − t)} − min

16j6J
{1− Λ (αj+1 − t)− Λ (αj − t)}

}
= sup

t∈R

{
max
16j6J

{Λ (αj+1 − t) + Λ (αj − t)} − min
06j6J−1

{Λ (αj+1 − t) + Λ (αj − t)}
}
.

The maxi-/minimands are here ascending in j for each t ∈ R, so the pointwise maximum
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and minimum equal 1 + Λ (αJ − t) and Λ (α1 − t), respectively. The resulting d is

d = sup
t∈R
{1 + Λ (αJ − t)− Λ (α1 − t)} = 2Λ

(
αJ − α1

2

)
,

the supremum being attained at the midpoint t = (α1 + αJ)/2. The previous display shows

that (i) d depends only on the difference αJ −α1 between the largest and smallest threshold,

and that (ii) d ∈ (1, 2) for all such threshold values. For example, a difference of αJ −α1 = 2

produces d = 2e/(1+e) ≈ 1.46. In the limiting case αJ −α1 → 0, we recover the value d = 1

for the binary logit, as expected.

Example 6 (Panel Logit Model, Continued). The panel logit loss function (2.8) is differen-

tiable in t with m′1(t, y) = 1(y1 6= y2)[Λ(t) − y1]. Thus, the residual m′1((X1 − X2)>θ0, Y )

resides in the interval [Λ((X1 −X2)>θ0)− 1,Λ((X1 −X2)>θ0)], and so satisfies Assumption

8 with d = 1.

Example 7 (Panel Censored Model, Continued). The trimmed LAD loss function (2.9) is

differentiable in t and satisfies |m′1(t, y)| 6 1 if t 6= y1 − y2 or y1 = y2 = 0. Thus, as long as

the conditional distribution of (ε1, ε2) given (X1, X2, γ) is absolutely continuous (as implied

by Honoré (1992, Assumption E.1)), this loss function satisfies Assumption 8 with d = 2.

Note, however, that the trimmed LS loss function does not satisfy Assumption 8.

Example 8 (Panel Duration Model, Continued). Since the loss function (2.10) here is of the

logit form, Assumption 8 is satisfied with d = 1 (cf. Example 1).

5 Bootstrap-after-Cross-Validation Method

The analytic method of the previous section relies on Assumption 8. As explained there,

this assumption is satisfied in quite a few applications. However, there are also many other

applications where this assumption is not satisfied. Examples include the probit model, the

logit model with estimation based on the logistic calibration loss function, and the panel

censored model with estimation based on the trimmed LS loss function. (See Examples 1, 3

and 7, respectively.) Moreover, even if Assumption 8 is satisfied, the analytic penalty level

λ̂amα in (4.1) follows from a union-bound argument and may thus be quite conservative. In

this section we therefore seek to provide a method to choose the penalty parameter which is

not conservative and broadly available, yet amenable to theoretical analysis.

We split the section into two subsections. In Section 5.1, we develop a generic bootstrap

method that allows for choosing the penalty parameter λ assuming availability of some

generic estimators Ûi of the residuals Ui = m′1(X>i θ0, Yi). We then briefly discuss a plug-in
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strategy for residual estimation (Remark 7). In Section 5.2, we explain how to obtain suitable

estimators Ûi via cross-validation, which is broadly available. For convenience of the reader,

we have gathered the implementation details for our two main methods in Appendix A. See

also Section 6 for extensions of these methods to richer modelling frameworks.

5.1 Bootstrapping the Penalty Level

To develop some intuition, suppose for the moment that residuals Ui = m′1
(
X>i θ0, Yi

)
are

observable. In this case, we can estimate the (1− α) quantile of the score S = En[UiXi],

q (1− α) := (1− α) -quantile of max
16j6p

|En [UiXij]| ,

via the Gaussian multiplier bootstrap.11 To this end, let {ei}ni=1 be independent standard

normal random variables that are independent of the data {Wi}ni=1. We then estimate q(1−α)

by

q̃ (1− α) := (1− α) -quantile of max
16j6p

|En [eiUiXij]| given {Wi}ni=1.

It is rather standard to show that, under certain regularity conditions, q̃(1 − α) delivers a

good approximation to q(1 − α), even if the dimension p of the Xi’s is much larger than

the sample size n. To see why this is the case, let Z be a centered random vector in Rp

and let Z1, . . . , Zn be independent copies of Z. As established in Chernozhukov et al. (2013,

2017), the random vectors Z1, . . . , Zn satisfy the following high-dimensional versions of the

central limit and Gaussian multiplier bootstrap theorems: If for some constant b ∈ R++ and

a sequence B̃n of constants in [1,∞), possibly growing to infinity, one has

min
16j6p

E[Z2
ij] > b, max

k∈{1,2}
max
16j6p

E
[
|Zij|2+k

]
/B̃k

n 6 1 and E
[

max
16j6p

Z4
ij

]
6 B̃4

n,

then there exist a constant Cb ∈ R++, depending only on b, such

sup
A∈Ap

∣∣∣∣∣P
(

1√
n

n∑
i=1

Zi ∈ A

)
− P

(
N(0,E[ZZ>]) ∈ A

)∣∣∣∣∣ 6 Cb

(
B̃4
n ln7 (pn)

n

)1/6

, (5.1)

and, with probability approaching one,

sup
A∈Ap

∣∣∣∣∣P
(

1√
n

n∑
i=1

eiZi ∈ A

∣∣∣∣∣ {Zi}ni=1

)
− P

(
N(0,E[ZZ>]) ∈ A

)∣∣∣∣∣ 6 Cb

(
B̃4
n ln6 (pn)

n

)1/6

.

(5.2)

11Recall that S is well-defined and unique a.s. We omit the qualifier throughout this section.
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Here Ap denotes the collection of all (hyper)rectangles in Rp. Provided B̃4
n ln7(pn)/n → 0,

combination of these two results suggests that the Gaussian multiplier bootstrap yields a

good approximation to the law of the potentially high-dimensional vector n−1/2
∑n

i=1 Zi

when restricted to (hyper)rectangles.

Consider now the family of rectangles defined by

At :=
{
u ∈ Rp; max

16j6p
|uj| 6 t

}
, t > 0.

We can then write

P

(
max
16j6p

|En [UiXij]| 6 t

)
= P

(
1√
n

n∑
i=1

UiXi ∈ At√n

)
.

The UiXi’s are centered under Assumption 7, and so the aforementioned results can be

applied in our context of `1-penalized M-estimation.

Of course, we typically do not observe the residuals Ui = m′1(X>i θ0, Yi), and so the method

described above is infeasible. Fortunately, the result (5.2) continues to hold upon replacing

{Zi}ni=1 with estimators {Ẑi}ni=1, provided these estimators are “sufficiently good.” Suppose

therefore that residual estimators {Ûi}ni=1 are available. We then compute

q̂ (1− α) := (1− α) -quantile of max
16j6p

∣∣En[eiÛiXij

]∣∣ given {(Wi, Ûi)}ni=1, (5.3)

and a feasible penalty level follows as

λ̂bmα := c0q̂ (1− α) . (5.4)

We refer to this method for obtaining a penalty level as the bootstrap method (BM) and to

λ̂bmα itself as the bootstrapped penalty level.

To ensure that q̂ (1− α) delivers a good approximation to q (1− α), we invoke the fol-

lowing assumptions, where we denote U = m′1(X>θ0, Y ) and Z = (Z1, . . . , Zp)
> = UX.

Assumption 9 (Residual: Bootstrap Method). There exist constants cU and CU in R++

and a sequence B̃n of constants in [1,∞) such that (1) E[U8] 6 (CU/2)8, (2) E[Z2
j ] > cU

for all j ∈ {1, . . . , p}, (3) E[|Zj|2+k] 6 B̃k
n for all k ∈ {1, 2} and all j ∈ {1, . . . , p}, and

(4) E [‖Z‖4
∞] 6 B̃4

n.

Assumption 10 (Residual Estimation). There exist sequences βn and δn of constants in R++

both converging to zero such that En[(Ûi−Ui)2] 6 δ2
n/ ln2 (pn) with probability at least 1−βn.
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Assumption 9 contains a set of moment conditions tailored to a high-dimensional multi-

plier bootstrap theorem (see Appendix E.4). Other moment conditions are certainly possible

(cf. Chernozhukov et al., 2017). In the binary logit setup used in our simulations (see Section

7 as well as Example 1), the residual is bounded in absolutely value by one, thus verifying

Assumption 9.1 with CU = 2. Since the regressors are there taken to be standard Gaussian,

the third and fourth absolute moments of the Zj’s are bounded by absolute constants. More-

over, properties of Lp and exponential Orlisz norms (see, e.g., van der Vaart and Wellner,

1996, Section 2.2) show that E [‖Z‖4
∞] grows no faster than ln2(p). In this case, Assumptions

9.3 and 9.4 are satisfied with B̃n proportional to
√

ln p.

Use of the bootstrap method leads to following result:

Theorem 3 (Nonasymptotic High-Probability Bounds: Bootstrap Method). Let Assump-

tions 1–7, 9 and 10 hold with Bnδn → 0, and let θ̂ := θ̂(λ̂bmα ) be a solution to the `1-penalized

M-estimation problem (1.2) with penalty level λ = λ̂bmα given in (5.4). Define the constants

Cε := 16
√

2(1 + c0)CLCX ∈ R++, Cbm
λ := 4(2 +

√
2)c0CUCX ∈ R++, and

u0 :=
2

cM

(
Cε

√
s ln (pn)

n
+ (1 + c0)Cbm

λ

√
s ln (p/α)

n

)
∈ R++.

In addition, suppose that

s ln (pn) >
16C2

L

C2
ε

, (1 + c0)u0

√
s 6

cL
Bn

∧ c′M and Bnδn 6 CUCX ln(pn). (5.5)

Then there exists a constant C ∈ R++, depending only on cU , such that for

ρn := C max

βn + ζn, Bnδn,

(
B̃4
n ln7 (pn)

n

)1/6

,
1

ln2 (pn)

 ,

we have both

‖θ̂ − θ0‖2 6
2

cM

(
Cε

√
s ln (pn)

n
+ (1 + c0)Cbm

λ

√
s ln (p/α)

n

)
and

‖θ̂ − θ0‖1 6
2 (1 + c0)

cM

(
Cε

√
s2 ln (pn)

n
+ (1 + c0)Cbm

λ

√
s2 ln (p/α)

n

)
with probability at least 1− α− 6n−1 − βn − 10ζn − ρn.

The idea of using a bootstrap procedure to select the penalty level in high-dimensional es-

timation is itself not new. Chernozhukov et al. (2013) use a Gaussian multiplier bootstrap to
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tune the Dantzig selector for the high-dimensional linear model allowing both non-Gaussian

and heteroskedastic errors. Note, however, that Theorem 4.2 of the same paper presumes

access to a preliminary Dantzig selector which is used to estimate residuals. Assumption

10 is similarly ‘high-level’ in the sense that it does not specify how one performs residual

estimation in practice. Our primary contribution lies in providing methods for coming up

with good residual estimators, which we turn in the next subsection.

Remark 7 (Plug-In Residual Estimation). If the residuals are estimated using the plug-in

estimator Ûi = m′1(X>i θ̂, Yi) based on some preliminary estimator θ̂ of θ0, and the function

m′1(·, y) is (globally) L1(y)-Lipschitz for some function L1 : Y → R+, then En[(Ûi − Ui)2] 6

En[L1(Yi)
2|X>i (θ̂ − θ0)|2]. Hence, under Assumption 5 and provided En[L1(Yi)

2] is bounded

in probability, the right-hand side is bounded in probability by the product of B2
n and the

squared `1-error of the preliminary estimator. In the case where L1 is itself bounded, up to a

constant multiple, En[(Ûi−Ui)2] is bounded by the squared prediction error En[|X>i (θ̂−θ0)|2],

which may lead to faster convergence than for the (squared) `1 estimation error. (See, e.g.,

Bühlmann and van de Geer (2011, Theorem 6.1) and Belloni and Chernozhukov (2013,

Theorem 1) for the LASSO and linear model.) Thus, in some cases, up to a logarithmic

factor, the residual estimator inherits the probability and error terms βn and δn appearing

in Assumption 10 from the preliminary estimator θ̂.

Example 1 (Binary Response Model, Continued). Consider the binary logit model and loss

m(t, y) = ln(1 + et)− yt. Then the residual U = m′1(X>θ0, Y ) = Λ(X>θ0)− Y resides in an

interval of width one, and we may consider an `1-penalized logit estimator θ̂(λ̂amα ) based on

the analytic method (4.1) with d = 1. Let Ûam
i := Λ(X>i θ̂(λ̂

am
α ))− Yi be the resulting plug-in

estimators. Under the assumptions of Theorem 2, the same theorem establishes the existence

of a constant C ∈ R++ such that ‖θ̂(λ̂amα )−θ0‖1 6 C
√
s ln(pn/α)/n with probability at least

1−α−5n−1−9ζn. The logit loss is twice differentiable in its first argument with m′′11(t, y) =

Λ′(t) = et/(1 + et)2, which is bounded by one in absolute value. Hence, by Remark 7 and

further bounding the squared prediction error En[|X>i (θ̂−θ0)|2] by max16i6n ‖Xi‖2
∞‖θ̂(λ̂amα )−

θ0‖2
1, the residual estimates implied by the analytic method then satisfy Assumption 10 with

βn = α+5n−1+10ζn and δ2
n proportional to B2

ns ln2(pn) ln(pn/α)/n (provided both sequences

vanish as n→∞). We consider the `1-penalized logit estimator arising from bootstrapping

after the analytic method in our simulations—see Section 7.

The previous remark and example illustrate that a plug-in estimation strategy, perhaps

based on a preliminary estimator using the analytic method from Section 4, can yield suitable

residual estimators under additional (smoothness) assumptions. In Section 5.2, we show how
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to obtain residual estimators {Ûi}ni=1 via cross-validation, thus obtaining the bootstrap-after-

cross-validation method.

5.2 Cross-Validating Residuals

In this subsection, we explain how residual estimation can be performed via cross-validation

(CV). To describe our CV residual estimator, fix any integer K > 2, and let I1, . . . , IK

partition the sample indices {1, . . . , n}. Provided n is divisible by K, the even partition

Ik = {(k − 1)n/K + 1, . . . , kn/K} , k ∈ {1, . . . , K} , (5.6)

is natural, but not necessary. For the formal results below, we only require that each Ik

specifies a “substantial” subsample (see Assumption 11 below).

Define the subsample criterion M̂I to be the sample criterion

M̂I (θ) := EI
[
m
(
X>i θ, Yi

)]
, θ ∈ Θ, ∅ 6= I ( {1, . . . , n} , (5.7)

based only on observations i ∈ I, and let Λn denote a finite subset of R++ composed by

candidate penalty levels. We require Λn to be “sufficiently rich” (see Assumption 12 below).

Our CV procedure then goes as follows. First, estimate parameters θ0 by

θ̂Ick (λ) ∈ argmin
θ∈Θ

{
M̂Ick

(θ) + λ ‖θ‖1

}
, (5.8)

for each candidate penalty level λ ∈ Λn and holding out each subsample k ∈ {1, . . . , K} in

turn. Second, determine the penalty level

λ̂cv ∈ argmin
λ∈Λn

K∑
k=1

∑
i∈Ik

m
(
X>i θ̂Ick (λ) , Yi

)
(5.9)

by minimizing the out-of-sample loss over the set of candidate penalties. Third, estimate

residuals Ui = m1

(
X>i θ0, Yi

)
, i ∈ {1, . . . , n} , by predicting out of each estimation sample,

i.e.,

Ûcv
i := m′1

(
X>i θ̂Ick(λ̂cv), Yi

)
, i ∈ Ik, k ∈ {1, . . . , K} . (5.10)

Combining the bootstrap estimate λ̂bmα = c0q̂ (1− α) from the previous subsection with the

CV residual estimates Ûi = Ûcv
i from this subsection, we obtain the bootstrap-after-cross-

validation (BCV) method for choosing the penalty parameter λ = λ̂bcvα .

To ensure good performance of the estimator resulting from initiating the bootstrap

27



method with the CV residual estimates (5.10), we invoke the following assumptions.

Assumption 11 (Data Partition). The number K ∈ {2, 3, . . . } of subsamples is constant and

does not depend on n. There exists a constant cD ∈ (0, 1) such that min16k6K |Ik| > cDn.

Assumption 12 (Candidate Penalties). There exists constants cΛ and CΛ in R++ and a ∈
(0, 1) such that

Λn =
{
CΛa

`; a` > cΛ/n, ` ∈ {0, 1, 2, . . . }
}
.

Assumption 13 (Residual: Cross-Validation Method). There exist constants σ and Cms1 in

R++ such that:

1. For all t ∈ R,

ln E
[
exp

(
tm′1

(
X>θ0, Y

))∣∣X] 6 σ2t2

2
a.s.

2. For all θ ∈ Θ,

E
[{
m′1
(
X>θ, Y

)
−m′1

(
X>θ0, Y

)}2
]
6 C2

ms1

(√
E(θ) ∨ E(θ)

)
.

Assumption 14 (Global Loss Behaviour). There exists a constant Cms ∈ R++ such that for

all θ ∈ Θ,

E
[{
m
(
X>θ, Y

)
−m

(
X>θ0, Y

)}2
]
6 C2

ms

(
E (θ) ∨ E (θ)2) .

Assumption 11 means that we rely upon the classical K-fold CV with fixed K. This

assumption does rule out leave-one-out CV, since K = n and Ik = {k} imply |Ik|/n → 0.

Assumption 12 allows for a rather large candidate set Λn of penalty values. Note that

the largest penalty value (CΛ) can be set arbitrarily large and the smallest value (cΛ/n)

converges rapidly to zero. In Lemma C.1 we show that these properties ensure that the

set Λn eventually contains a “good” penalty candidate, say λ∗, in the sense of leading to a

uniform bound on the excess risk of subsample estimators θ̂Ick (λ∗) , k ∈ {1, . . . , K}. Other

candidate penalty sets leading to a bound on the subsample estimator excess risk are certainly

possible. Assumptions 13 and 14 are high-level but rather mild. We provide a set of low-level

conditions suitable for each of the examples from Section 2 in Appendix B.

Use of CV residual estimators leads to the following result:

Theorem 4 (High-Probability CV-Residual Error Bound). Let Assumptions 1–6 and 11–14

hold. Define the constants Cε := 16
√

2(1 + c0)CLCX , CS := 2CXσ/((K − 1)cD),

CE :=

√
2

cM

(
Cε

(K − 1) cD
+

(1 + c0) c0CS
a

)
(5.11)
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and

ũ0 :=
2

cM

(
Cε

(K − 1) cD
+

(1 + c0) c0CS
a

)√
s ln (pn)

n
, (5.12)

which are all in R++. In addition, suppose that

s ln(pn) >
16 (K − 1) cDC

2
L

C2
ε

, (1 + c0) ũ0

√
s 6

cL
Bn

∧ c′M , (5.13)

ln (pn)

n
6

(
CΛa

c0CS

)2

, n ln (pn) >

(
cΛ

c0CS

)2

and n >
1

cΛ ∧ a
. (5.14)

Then for any t ∈ R++ satisfying

48C2
ms

c2
D ln (1/a)

t lnn

n
+

8C2
E

cD

s ln (pn)

n
6 1, (5.15)

we have

En
[
(Ûcv

i − Ui)2
]
6

12C2
ms1t lnn

ln (1/a)

(
3C2

ms

c2
D ln (1/a)

t lnn

n
+

C2
E

2cD

s ln (pn)

n

)1/2

(5.16)

with probability at least 1−K(5n−1 + 9ζn + [(K − 1)cDn]−1 + 2t−1).

This theorem provides an avenue for verification of Assumption 10. Specifically, it implies

that for any sequence tn of constants in R++ satisfying (5.15), we can take βn to be K(5n−1+

9ζn + [(K − 1)cDn]−1 + 2t−1
n ) and specify δ2

n as the right-hand side of (5.16) multiplied by

ln2(pn).

Theorem 4 indicates that the CV residual estimators are reasonable inputs for the boot-

strap method. Combining Theorems 3 and 4, we obtain convergence rates for the `1-penalized

M-estimator based on the penalty parameter λ chosen according to the BCV method:

Corollary 2 (Convergence Rate Based on Bootstrap after CV Method). Let Assumptions

1–7, 9, and 11–14 hold and let θ̂ := θ̂(λ̂bcvα ) be a solution to the `1-penalized M-estimation

problem (1.2) with penalty level λ = λ̂bcvα . In addition, suppose that

α→ 0,
B2
ns

2 ln(pn/α)

n
→ 0,

B4
ns ln5(pn)(lnn)2

n
→ 0 and

B̃4
n ln7 (pn)

n
→ 0. (5.17)

Then there exists a constant C in R++ depending only on the constants appearing in the

aforementioned assumptions such that both

‖θ̂ − θ0‖2 6 C

√
s ln(pn/α)

n
and ‖θ̂ − θ0‖1 6 C

√
s2 ln(pn/α)

n
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with probability approaching one.

Corollaries 1 and 2 demonstrate that both analytic and bootstrap-after-cross-validation

methods with α, for example, proportional to 1/n yield `1-penalized M-estimators whose

convergence rates in the `2 and `1 norms are
√
s ln(pn)/n and

√
s2 ln(pn)/n, respectively.

These are typical rates that one expects in the high-dimensional settings under sparsity.

For example, it is well-known that these rates are minimax optimal in the case of the high-

dimensional linear mean regression model; see Rigollet and Tsybakov (2011) and Chetverikov

et al. (2016).

Remark 8 (Derivatives). The CV residual estimator Ûcv
i in (5.10) implicitly assumes the

loss derivative m′1 tractable. If not, one may replace it with a numerical derivative, in

which case the CV residual estimator is of the form Ûcv
i =

̂
m′1
(
X>i θ̂Ick(λ̂cv), Yi

)
. It may be

possible to extend Theorem 4 to accommodate the additional error resulting from numerical

differentiation. Of course, any numerical approach to differentiation introduces additional

tuning parameters in the form of the difference method and step size.

6 Extensions

The single-index structure in (1.1) allows simple notation but also rules out some settings of

interest. For example, this structure does not accommodate multiple (unordered) response

models, which are popular in applied work in economics and related fields. Extending the

generic bootstrap and bootstrap-after-cross-validation (BCV) methods of Section 5 to richer

modeling frameworks is, at least conceptually, straightforward. We describe the BCV method

with a general loss function in Section 6.1. Extensions of the analytic method of Section

4 are more delicate and depend on the loss structure. We discuss analytic methods with

multiple indices in Section 6.2 and illustrate the calculations involved through examples.

6.1 Bootstrapping-after-Cross-Validation with General Loss

Conceptually, the generic bootstrap method introduced in Section 5.1 has nothing to do with

the index structure, and the implementation of our bootstrap-after-cross-validation (BCV)

method (see Section 5.2) immediately extends beyond the single-index case. To see this,

let (w, θ) 7→ mθ(w) denote a general loss (as in Remark 2). The score then takes the form

S = En[Si], where Si := (∂/∂θ)mθ(Wi)|θ=θ0 denotes the ith score contribution (when it

exists). The general BCV method is then summarized by the following pseudo code:

Pseudo Code: Bootstrap-after-Cross-Validation Method with General Loss
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(1) Cross-Validation: Obtain λ̂cv via K-fold cross-validation with folds {Ik}Kk=1.

(2) Estimate Score Contributions Si using the hold-out estimators:

Ŝi =
∂

∂θ
mθ (Wi)

∣∣∣
θ=θ̂Ic

k
(λ̂cv)

, i ∈ Ik, k ∈ {1, . . . , K}. (6.1)

(3) Estimate the (1− α) Score Quantile: Holding the data {Wi}ni=1 fixed, calculate

q̂bcv (1− α) = (1− α) -quantile of max
16j6p

∣∣En[eiŜij]∣∣
via simulation of independent standard Gaussian multipliers {ei}ni=1.

(4) Declare Penalty: λ̂bcvα = c0q̂
bcv(1− α).

The score-contribution estimates Ŝi in (6.1) described in the above pseudo code take the

place of ÛiXi in (5.3).

6.2 Analytic Method with Multiple Indices

In this section we discuss extensions of the analytic method to losses with multiple indices.

While additional work is needed to extend the formal result in Theorem 2, we here focus on

modifying Assumptions 7 and 8 to arrive at an explicit penalty formula akin to (4.1).

In this section we consider a model where the true parameter value θ0 := (vec(∆0)>, γ>0 )> ∈
RL1p1+p2 follows from the (assumed unique) solution

(∆0, γ0) = argmin
∆∈Rp1×L1

γ∈Rp2

E
[
m
(
Z>∆, γ>V, Y

)]
,

where vec(A) denotes the column vector arising from stacking the columns of a matrix A, and

m : RL1+L2×Y → R is now a known loss function that is convex in its first L1+L2 arguments.

For simplicity, we also take m to be everywhere differentiable in its first L1 +L2 arguments.

The first L1 indices share the candidate regressors Z := (Zi1, . . . , Zip1)
> ∈ Rp1 , but each

of these indices have unrelated parameter vectors δ` = (δ`1, . . . , δ`p1)
>, ` ∈ {1, . . . , L1}, here

gathered in the matrix

∆ = [δ1 : · · · : δL1 ] ∈ Rp1×L1 .

The last L2 indices share the parameters γ ∈ Rp2 , but the candidate regressors V` :=

(V`1, . . . , V`p2)
>, here gathered in the matrix

V = [V1 : · · · : VL2 ] ∈ Rp2×L2 ,
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may vary with the index ` ∈ {1, . . . , L2}. As before, Y ∈ Y denotes one or more outcome

variables.12 Our extended modelling framework is motivated by the following multinomial

response models.

Example 9 (Multinomial Logit). The multinomial logit models a discrete outcome Y ∈
{0, 1, . . . , J} as

P (Y = k|X) =
eX
>δk0∑J

h=0 eX>δh0
, k ∈ {0, 1, . . . , J},

where δ00 = 0 to allow model identification. The log-likelihood yields the loss function

m (t1, . . . , tJ , y) = ln

(
1 +

J∑
h=1

eth

)
−

J∑
k=1

1 (y = k) tk, (6.2)

which is convex in (t1, . . . , tJ). In this example, L1 = J and L2 = 0.

Example 10 (Conditional Logit). The conditional logit models a discrete outcome Y ∈
{0, 1, . . . , J} as

P (Y = k|X) =
eX
>
k θ0∑J

h=0 eX
>
h θ0

, k ∈ {0, 1, . . . , J},

where we define the Xk’s to be deviations of regressors relative to those of alternative zero

(i.e., X0 ≡ 0) and gather these in X ∈ Rp×J . The log-likelihood yields the convex loss (6.2).

In this example, L1 = 0 and L2 = J .

Example 11 (Mixed Logit). The mixed logit models a discrete outcome Y ∈ {0, 1, . . . , J} as

P (Y = k|V, Z) =
eV
>
k γ0+Z>δk0∑J

h=0 eV
>
h γ0+Z>δh0

, k ∈ {0, 1, . . . , J},

where, as for the multinomial logit (Example 9), we set δ00 = 0 to allow model identification.

The log-likelihood yields the loss function

m (t1, . . . , tJ , t
′
0, t
′
1, . . . , t

′
J , y) = m̃(t′0, t1 + t′1, . . . , tJ + t′J , y)

where m̃ is given by

m̃
(
t̃0, t̃1 . . . , t̃J , y

)
= ln

(
J∑
h=0

et̃h

)
−

J∑
k=0

1 (y = k) t̃k,

12For simplicity, we here employ the full parameter space RL1p1+p2 , a convex set for which θ0 is interior.
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a function convex in its first 1 +J arguments. Since the mapping (t1, . . . , tJ , t
′
0, t
′
1, . . . , t

′
J) 7→

(t′0, t1 + t′1, . . . , tJ + t′J) is linear, m is convex in its first 2J + 1 arguments. In this example,

L1 = J and L2 = 1 + J .

The score S ∈ RL1p1+p2 is now of the form

S = En
[

(∂/∂θ)m(Z>i ∆, γ>Vi, Yi)
∣∣
θ=θ0

]
= En

[(
Ui,1:L1 ⊗ Zi

ViUi,L1+1:L1+L2

)]
,

where

Ui` = m′`
(
Z>i ∆0, γ

>
0 Vi, Yi

)
, ` ∈ {1, . . . , L1 + L2},

andm′`(t1, . . . , tL1+t2 , y) = (∂/∂t`)m(t1, . . . , tL1+t2 , y) denotes the derivative ofm with respect

to the `th argument. Abbreviate X = (Z,V) and write X for its support. Our analytic

method for models with multiple indices employs the following two assumptions.

Assumption 7′ (Conditional Mean Zero with Multiple Indices). The residual vector U =

(U1, . . . , UL1+L2)
> with U` = m′`

(
Z>∆0, γ

>
0 V, Y

)
, ` ∈ {1, . . . , L1 + L2}, is such that with

probability one, E [U |X] = 0.

Assumption 8′ (Residual: Analytic Method with Multiple Indices). (1) For each ` ∈
{1, . . . , L1}, there exists r`, r` : X → R nonrandom and a known constant d` in R++ such

that both U` = m′`
(
Z>i ∆0, γ

>
0 Vi, Yi

)
∈ [r` (X) , r` (X)] and r` (X)−r` (X) 6 d` almost surely.

(2) There exist known constants q ∈ [1,∞] and d̃L2 ∈ (0,∞) such that ‖UL1+1:L1+L2‖q 6 d̃L2

almost surely.

Under Assumptions 7′ and 8′.1, appealing to Hoeffding’s inequality conditional on the

Xi’s and the union bound, we may reuse the argument leading to (4.1) to see that for any t

in R++,

P
(

max
16`6L1

max
16j6p1

∣∣S(`−1)p1+j

∣∣ > t
∣∣∣ {Xi}ni=1

)
6 2L1p1 exp

(
− 2nt2

d2
(L1) max

16j6p1
En
[
Z2
ij

]) a.s.,

where we have introduced d(L1) := max16`6L1 d`. The previous expression allows control over

the score elements pertaining to indices with common regressors. To deal with the remaining

indices we use Assumption 8′.2 and Hölder’s inequality to see that the score contributions

Si,L1p1+j =
∑L2

`=1 Ui,L1+`Vi`j, j ∈ {1, . . . , p2}, satisfy

|Si,L1p1+j| 6 ‖Ui,L1+1:L1+L2‖q ‖Vi·j‖q∗ 6 d̃L2 ‖Vi·j‖q∗ a.s., (6.3)

with Vi·j := (Vi1j, . . . , ViL2j)
> and q∗ ∈ [1,∞] the exponent conjugate to q (i.e. 1/q + 1/q∗ =
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1). We may now appeal to Hoeffding’s inequality and the union bound once more to see

that, for any t in R++, also

P
(

max
16j6p2

|SL1p1+j| > t
∣∣∣ {Xi}ni=1

)
6 2p2 exp

(
− nt2

2d̃2
L2

max
16j6p2

En
[
‖Vi·j‖2

q∗

]) a.s. (6.4)

Combining (6.3) and (6.4), by the union bound and inverting the resulting upper bound for

a given probability tolerance α in (0, 1), we arrive at the data-dependent penalty level

λ̂amα = c0

√√√√ ln (2 (L1p1 + p2) /α)

n
max

{
d2

(L1)

2
max

16j6p1
En
[
Z2
ij

]
, 2d̃2

L2
max

16j6p2
En
[
‖Vi·j‖2

q∗

]}
.

(6.5)

With only a single index, L1 = 1 and L2 = 0, and we recover the analytic penalty level in

(4.1) upon relabeling. In this sense, (6.5) strictly generalizes the analytic method of Section

4 to the case of multiple indices. If several candidates for q and d̃L2 are available, then we

may choose the pair leading to smallest penalty level. This minimization idea is illustrated

in Examples 10 and 11 below.

Example 9 (Multinomial Logit, Continued) The loss m in (6.2) has partial derivatives

m′` (t1, . . . , tJ , y) =
et`

1 +
∑J

h=1 eth
− 1 (y = `) , ` ∈ {1, . . . , J}, (6.6)

so each residual element

U` = m′`
(
X>∆0, Y

)
= P (Y = `|Z)− 1 (Y = `) , ` ∈ {1, . . . , J},

lies in an interval of width d` = 1. It follows that d(J) = 1, and

λ̂MNLα := c0

√
ln (2Jp/α)

2n
max
16j6p

En
[
X2
ij

]
(6.7)

constitutes an analytic penalty for the multinomial logit. As p and J enter (6.7) only through

a logarithmic term and a maximum, the analytic penalty λ̂MNLα allows both many common

regressors and many alternatives. In the binary response case (J = 1), the expression (6.7)

reduces to our previous expression for the binary logit (Example 1).

Example 10 (Conditional Logit, Continued) The partial derivatives (6.6) yield residual ele-

ments

U` = m′`
(
γ>0 V, Y

)
= P (Y = `|V)− 1 (Y = `) , ` ∈ {1, . . . , J},
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which are probability differences. It follows that the `q-norm of the residual vector U =

(U1, . . . , UJ) is bounded by the `q-diameter of the J-dimensional probability simplex, which

is given by 21/q. We may therefore use any (q, d̃J) pair (q, 21/q), q ∈ [1,∞], and

λ̂CLα = c0

√
2 ln (2p/α)

n
inf

q∈[1,∞]
21/q

√
max
16j6p

En
[
‖Xi·j‖2

q∗

]
(6.8)

constitutes an analytic penalty for the conditional logit. The calculation of (6.8) requires

optimization over q ∈ [1,∞]. Since q = 1 is feasible, but not necessarily optimal, one may

alternatively employ

λ̃CLα = 2c0

√
2 ln (2p/α)

n

√
max
16j6p

En
[
‖Xi·j‖2

∞
]
, (6.9)

which is free of optimization, but may be larger. As p and J enter (6.9) only through a

logarithmic term and maxima, respectively, both the analytic penalty λ̃CLα and the possibly

smaller λ̂CLα allow many alternatives and many alternative-varying regressors. In the binary

response case (J = 1), ‖Xi·j‖q∗ = |Xi1j| does not depend on q, and the infimum is attained

at q = ∞. We then recover the analytic penalty for the binary logit (see Example 1) up to

a factor of two.13

Example 11 (Mixed Logit, Continued) Arguments parallel to the ones for the multinomial

and conditional logit models (Examples 9 and 10) show that for the mixed logit each residual

element U` = m′`
(
Z>∆0, γ

>
0 V, Y

)
, ` ∈ {1, . . . , J}, lies in an interval of width d` = 1, and

the residual vector UJ+1:2J+1 = (UJ+1, . . . , U2J+1) is the difference between two probability

vectors. It follows that we may take d(J) = 1 alongside any (q, d̃J) pair (q, 21/q), q ∈ [1,∞].

Hence, an analytic penalty for the mixed logit is given by

λ̂MLα = c0

√
ln (2 (Jp1 + p2) /α)

n
max

{
1

2
max

16j6p1
En
[
Z2
ij

]
, 2 inf

q∈[1,∞]
22/q max

16j6p2
En
[
‖Vi·j‖2

q∗

]}
.

(6.10)

As for the conditional logit (Example 10), an alternative penalty free of optimization is given

by

λ̃MLα = c0

√
ln (2 (Jp1 + p2) /α)

n
max

{
1

2
max

16j6p1
En
[
Z2
ij

]
, 8 max

16j6p2
En
[
‖Vi·j‖2

∞
]}
. (6.11)

13The factor of two arises from using an absolute value bound instead of lower and upper bounds on the
(then scalar) residual.
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As p1, p2 and J all enter (6.11) through only a logarithmic term and maxima, both λ̂MLα and λ̃MLα

allow many common regressors, many alternative-varying regressors, and many alternatives.

7 Simulations

In this section we investigate the finite-sample behavior of estimators based on the analytic

and bootstrap-based methods for obtaining penalty levels proposed in Sections 4 and 5,

respectively and compare our penalty selection methods to already existing methods.

7.1 Simulation Design

For concreteness, we consider a data-generating process (DGP) of the form

Yi = 1

(
p∑
j=1

θ0jXij + εi > 0

)
, εi|Xi1, . . . , Xip ∼ Logistic (0, 1) , i ∈ {1, . . . , n} ,

thus leading to a binary logit model. The regressors X = (X1, . . . , Xp) are jointly centered

Gaussian with a covariance matrix of the Toeplitz form

cov (Xij, Xik) = E [XijXik] = ρ|j−k|, j, k ∈ {1, . . . , p} ,

such that ρ determines the overall correlation level. We allow ρ ∈ {0, .1, . . . , .9}, thus running

the gamut of (positive) correlation levels. Since the εi’s are standard Logistic, the “noise”

in our DGP is fixed at var (εi) = π2/3 ≈ 3.3. However, the “signal” var(
∑p

j=1 θ0jXij) =

θ>0 E
[
XiX

>
i

]
θ0 depends on both the correlation level and coefficient pattern. We consider

both sparse and dense coefficient patterns.

The sparse coefficient pattern has only nonzero coefficients for the first couple of regres-

sors,

Pattern 1 (Sparse): θ0 = (1, 1, 0, . . . , 0)> ,

thus yielding s = 2 relevant regressors among the p candidates. The implied signals are here

given by

var
( p∑
j=1

θ0jXij

)
= 2 (1 + ρ) ∈ {2, 2.2, . . . , 3.8} ,

further implying a signal-to-noise ratio (SNR) range of about .6 to about 1.2. Compared to

existing simulations studies for the high-dimensional logit, the signals considered here are
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rather low.14

The dense coefficient pattern have all nonzero coefficients,

Pattern 2 (Dense): θ0j =
(
1/
√

2
)j−1

, j ∈ {1, . . . , p} ,

thus implying s = p. The base (1/
√

2) was here chosen to (approximately) equate the

signals arising from the dense and sparse coefficient patterns in the baseline case of un-

correlated regressors (ρ = 0), which, in turn, amounts to ‖θ0‖2
2. We consider sample sizes

n ∈ {100, 200, 400} and limit attention to the high-dimensional regime by fixing p = n

throughout.

With a sparse coefficient pattern, the nonzero coefficients are well separated from zero

and should be relatively easy to detect—at least with larger sample sizes. With a dense

coefficient pattern, every regressor is in principle relevant, and our implicit assumption of

exact sparsity fails (s = p = n). Note, however, that the relevance of the regressors, as

measured by their coefficient, is rapidly decaying in the regressor index, such that the vast

majority of the signal is still captured by a small fraction of the regressors. For example, in

the baseline case of uncorrelated regressors (ρ = 0), the first 10 regressors account for 99.9

pct. of the total signal, and the model may be interpreted as effectively sparse.

Specifically, with the dense coefficient pattern

p∑
j=1

|θ0j|q 6
1

2q/2 − 1
for all q ∈ (0, 1] ,

so θ0 is approximately sparse in that it lies in every `q “ball”Bq(Rq), q ∈ (0, 1] , each of which

has fixed “radius”Rq := 1/(1− 2−q/2). A suitable extension of Theorem 1 therefore ought to

apply. (See Remark 4 for discussion and definitions.) However, as Rq is quite large for small

q > 0, one might also expect the estimation error to be relatively large.

7.2 Estimators

Both analytic and bootstrap-after-cross-validation methods require specifying the constant

c0. Unless otherwise noted, we here set c0 = 1.1, which reflects one of the standard rec-

ommendations in the LASSO literature (see, e.g., Belloni and Chernozhukov, 2011a). We

also specify the probability tolerance as α = αn = 10/n, thus leading to an α of 10, 5 and

2.5 percent for n = 100, 200 and 400, respectively. We consider three feasible estimators

based on the analytic and bootstrap methods. With our binary logit design, Assumption 8

14For example, the design in Friedman, Hastie, and Tibshirani (2010, Section 5.2) implies a SNR of three.
In Ng (2004, Section 5), the SNR is over 30.
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is satisfied with d = 1. (See Example 1.) We specify the penalty using the analytic method

in (4.1), and θ̂(λ̂amα ) constitutes our first estimator. Our second estimator is based on the

bootstrap method (5.3) initiated with residual estimates resulting from the analytic method,

Ûam
i = Λ

(
X>i θ̂(λ̂

am
α )
)
− Yi, i ∈ {1, . . . , n} .

Since the logit loss is globally Lipschitz, the justification for this plug-in residual estimator

essentially follows from the consistency of θ̂(λ̂amα ) and the light tails of the normal distribution.

See Remark 7 and the discussion following Assumption 5 for details. Our third estimator

follows similarly, except that we initiate the bootstrap method with cross-validation residual

estimates (5.10).15 To introduce a positive benchmark, we consider the infeasible estimator

arising from the bootstrap method using the true residuals. We refer to the latter three

bootstrap-based estimators as bootstrapping after the analytic method (BAM), bootstrapping

after cross validation (BCV), and the oracle bootstrap (Oracle).16

All simulations are carried out in Matlab® with optimization and cross validation done

using the user-contributed glmnet package.17 For each sample size n(= p), each correlation

level ρ, and each coefficient pattern (sparse or dense), we use 2,000 simulation draws and 1,000

standard Gaussian bootstrap draws per simulation draw (when applicable). In constructing

the candidate penalty set Λn, we use the glmnet default setting, which constructs a log-scale

equi-distant grid of a 100 candidate penalties from the threshold penalty level to essentially

zero. The threshold is the (approximately) smallest level of penalization needed to set every

coefficient to zero, thus resulting in a trivial (null) model.18

7.3 Simulation Results

Figure 7.1 shows the mean `2 estimation error (over the 2,000 simulation draws) as a function

of the correlation level ρ for each of the three bootstrap-based estimators and each sample

size n(= p) obtained with a sparse coefficient pattern. We also include a line (Zeros) at

‖θ0‖2, which allows for comparison with the trivial “estimator” θ̂ = 0. For each of the

15We use 10-fold cross validation, splitting the data evenly, and assign folds according to (5.6) to ensure
replicability. As a result, K = 10 and cD = 1

10 .
16For implementation details for the BAM and BCV methods more broadly, see Appendix A.
17We use the August 30, 2013 version of glmnet for Matlab®, available for download at https://web.

stanford.edu/~hastie/glmnet_matlab/. Cross validation is done using cvglmnet, which automatically

stores the out-of-fold predictions X>
i θ̂Ic

k
(λ), i ∈ Ik, for each candidate penalty.

18Log-scale equi-distance from a “large” candidate value to essentially zero fits well with the form of Λn in
our Assumption 12 (interpreting cΛ/n ≈ 0). However, the threshold penalty is a function of the data and,
thus, random. The resulting candidate penalty set used in our simulations is therefore also random, and
thus, strictly speaking, not allowed by Assumption 12. Moreover, the number of candidate values is here
held fixed. We believe these deviations from our theory to be only a minor issue.
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Figure 7.1: Consistency of Bootstrap-Based Estimators with Exact Sparsity
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bootstrap-based estimators, we see that the mean estimation error decreases with sample

size. Convergence appears to take place even though the number of candidate regressors

matches the sample size and no matter the level of regressor correlation.19 This finding

indicates that our bootstrap method is useful for high-dimensional estimation, not only in

the best-case scenario where residuals are observed, but also when residuals are estimated

by a pilot method—whether it be analytic or computational.

Figure 7.2 rearranges the plots in Figure 7.1 in order to facilitate comparison of the various

estimators, now including the estimator based on the analytic method (AM). For each of the

three sample sizes/numbers of candidate regressors, we see that the oracle performs better

than the other two bootstrap-based estimators. Bootstrapping after cross validation appears

to outperform bootstrapping after the analytic method, which, in turn, improves greatly upon

the analytic method itself. While residual estimation comes at a price, bootstrapping after

cross-validation achieves near-oracle performance even with our smallest sample size—and

is essentially indistinguishable from the oracle at n = 400. Bootstrapping after the analytic

method here comes in close second place among the feasible estimators, which indicates that

BAM provides a computationally inexpensive way of obtaining quality results.

Figures 7.3 and 7.4 reproduce Figures 7.1 and 7.2, respectively, with results stemming

from the dense coefficient pattern (approximate sparsity). The plots in Figure 7.3 are also

indicative of consistency, although convergence is slowed down by the weaker form of sparsity

19That mean error is downward sloping for moderate ρ levels is due to a higher signal (7.1) and need not
translate to other simulation designs. The observed increase in mean error as ρ approaches one is likely due
to the margin condition (Assumption 4) not being appropriate for highly correlated designs.
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Figure 7.2: Comparing Estimators with Exact Sparsity

0 0.2 0.4 0.6 0.8
0.6

0.8

1.0

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8
0.6

0.8

1.0

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8
0.6

0.8

1.0

1.2

1.4

1.6

(compare with Figure 7.1). The ranking of estimators in Figure 7.2 is preserved in Figure 7.4.

These findings suggest that our methods remain relevant under a less stringent assumption

than exact sparsity.

We next investigate the impact of the choice of c0. Figures 7.5 and 7.6 plot the mean

`2 estimation error for c0 = 1, 1.05, and (the previously used) 1.1, each sample size and

coefficient pattern and for the BAM and BCV estimators, respectively. Our finite-sample

experiments suggest that increasing c0 away from one worsens (mean) performance. However,

while our theory takes c0 > 1, any value near one—including the limit case of one itself—

appears to lead to near identical results. Similar findings were mentioned in Belloni et al.

(2012) for the case of the LASSO and linear model.

We also compare our analytic and bootstrap methods to existing penalty methods for-

mally justifiable in our binary logit model. Specifically, we here compare with the analytic

penalty levels provided in Bunea (2008b, Theorem 2.4), van de Geer (2008, Theorem 2.1)

and van de Geer (2016, Theorem 12.1). Across all of our designs and simulation draws, the

smallest Bunea (2008a) penalty is larger than the largest van de Geer (2008) penalty, which,

in turn, is similar in size to her (2016) penalty level. We therefore restrict attention to the

latter. In our notation, the van de Geer (2016, Theorem 12.1) penalty takes the form

λ̂vdG16α = 8c0

√
2 ln (2p/α)

n
max
16j6p

En
[
X2
ij

]
, (7.1)

which is nothing more than 16 times our analytic penalty level (4.1). (Recall that d = 1.)
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Figure 7.3: Consistency of Bootstrap-Based Estimators with Approximate Sparsity
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Figure 7.4: Comparing Estimators with Approximate Sparsity
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Figure 7.5: Bootstrapping after the Analytic Method for Different c0
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Figure 7.6: Bootstrapping after Cross-Validation for Different c0
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Figure 7.7: Kernel Density Estimates of Penalty Distributions
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Figure 1.1 in the Introduction displays the distribution of the van de Geer penalty level

as a function of the sample size n(= p), pooling over both correlation levels and coefficient

patterns. For comparison, we include the distribution of the threshold penalty pooled over all

designs.20 The latter threshold is the (approximately) smallest level of penalization needed

to set every coefficient to zero, thus resulting in a trivial (null) model. The figure shows

that the distribution of the threshold penalty is an order of magnitude closer to the origin

than the van de Geer penalty. As a consequence, the latter penalty results in a trivial model

estimate across all of our designs and simulation draws. The estimators resulting from the

Bunea and van de Geer penalties (with c0 = 1.1) are therefore all represented by the “Zeros”

lines in Figures 7.1–7.6 and 7.8–7.9. Inspection of the proof underlying van de Geer (2016,

Theorem 12.1) suggests that the factor of 8 in (7.1) may be reduced to a 2, when restricting

attention to our framework. However, even with this lower bound on the multiplier, the

supports of these penalty distributions remain separated (Figure 7.7).

Our findings should not be interpreted as a critique of these authors, whose work were in-

tended as primarily of theoretical interest. For example, van de Geer (2008, p. 621) explicitly

states that other penalty choices should be used in practice. It is, however, not immediately

clear how one should modify the penalty choices of these authors without disconnecting the-

ory from practice. In contrast, the simulation results of this section demonstrate that our

analytic and bootstrap methods are not only theoretically justifiable, but also practically

useful.

20All density estimates in Figures 1.1 and 7.7 were created using the Matlab® package ksdensity with
default settings.
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Figure 7.8: Cross-Validation and Bootstrapping after Cross-Validation (c0 = 1.1)
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As a final exercise, in Figures 7.8 and 7.9 we compare the estimators proposed in this

paper to the CV estimator θ̂(λ̂cv). The latter estimator lacks formal justification but is

popular in practice. Since BCV outperforms BAM in our simulation setting (see Figures 7.2

and 7.4), we limit attention to the former. Figure 7.8 shows that CV tends to do somewhat

better than BCV under sparsity. However, in the case of a dense coefficient pattern, the two

estimators cannot be ranked by their mean errors. Moreover, the two estimators differ in

terms of more than their mean error, as illustrated in Figure 7.9, summarizing the empirical

distributions of `2-error for the case n = p = 100 using box-and-whisker plots.21 Both in

the case of sparse and dense coefficient patterns, CV may take on quite extreme values, thus

resulting in high variance. Taken together, these figures show that neither method dominates

the other. While we do not formally allow for a dense coefficient pattern, being designed to

dominate the score, our methods appear to translate well to this more challenging modelling

framework, both formulaically and in simulations.

21All box-and-whisker plots were created using the Matlab® package boxplot with default settings.
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Figure 7.9: Cross-Validation and Bootstrapping after Cross-Validation (c0 = 1.1), n, p = 100.
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Notes: (i) In the box-and-whisker plots, the central mark indicates the median, and the bottom and top
edges of the box correspond to the 25th and 75th percentiles, respectively. The whiskers extend to the most
extreme data points not considered outliers, and the outliers are plotted individually using the ‘+’ marker
symbol. (ii) To improve visibility, the upper limit on the range of the secondary axis has been set to three.
As a result, 23 and 59 data points do not appear in the figures for CV in the case of the sparse and dense
coefficient pattern, respectively. No data points were dropped for BCV.
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Appendix

We split the appendix into five parts. Appendix A contains implementation details. In

Appendix B, we provide low-level conditions that are sufficient for Assumptions 4, 6, 13,

and 14 in each of the examples considered in the main text. In Appendix C, we provide

proofs of the results stated in the main text. In Appendix D, we provide auxiliary proofs.

In Appendix E, we provide a collection of technical tools used to prove the main results.

A Implementation Details

We organize the implementation details concerning our bootstrap penalty methods into

algorithms. Both the bootstrap-after-analytic (BAM) and bootstrap-after-cross-validation

(BCV) methods require a choice of the markup c0 > 1 and probability tolerance α ∈ (0, 1).

The BCV method additionally requires on a choice K > 2 of folds, partition I1, . . . , IK of

{1, . . . , n}, and candidate penalty set Λn ⊂ R++. In our simulations (Section 7) we used

c0 = 1.1, α = 10/n, K = 10, the Ik in (5.6), and set Λn equal to a log-scale equi-distant grid

of a 100 candidate penalties from essentially zero to (approximately) the smallest level of pe-

nalization needed to set every coefficient to zero. In the binary logit model the (approximate)

threshold is max16j6p |En[(.5− Yi)Xij]|.

Algorithm 1 (Bootstrap after Analytic Method). (a) Analytically derive a d ∈ R++ (prefer-

ably the smallest possible) such that Assumption 8 holds. (b) Calculate the analytic penalty

λ̂amα using (4.1), the estimates θ̂(λ̂amα ) resulting from the analytic method using (1.2), and the

implied residual estimates Ûam
i = m′1

(
X>i θ̂(λ̂

am
α ), Yi

)
. (c) Calculate the quantile q̂bam(1 − α)

via simulation using the Gaussian multiplier bootstrap (5.3) with Ûi = Ûam
i , and set λ̂bamα =

c0q̂
bam(1− α).

Algorithm 2 (Bootstrap-after-Cross-Validation Method). (a) Calculate the cross-validated

penalty level λ̂cv in (5.9), and produce residual estimates Ûcv
i as in (5.10) using subsample

estimates θ̂Ick(λ), λ ∈ Λn, in (5.8), k = 1, . . . , K. (b) Calculate the quantile q̂bcv(1 − α)

via simulation using the Gaussian multiplier bootstrap (5.3) and Ûi = Ûcv
i , and set λ̂bcvα =

c0q̂
bcv(1− α).

B Verification of High-Level Assumptions

In this section, we verify Assumptions 4, 6, 13 and 14 in each of the examples from Section

2. Throughout this section, we use m′1(t, y) and m′′11(t, y) to denote the first and the second
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derivatives of the function t 7→ m(t, y), whenever they exist. We suppose that Assumptions

1, 2 and 7 hold and that there exists a constant Cd in R++ such that

‖θ‖1 6 Cd for all θ ∈ Θ. (B.1)

In addition, we suppose that there exist constants cev and Cev in R++ such that

cev 6 λmin(E[XX>]) 6 λmax(E[XX>]) 6 Cev, (B.2)

where λmin(E[XX>]) and λmax(E[XX>]) are the smallest and the largest eigenvalues of the

matrix E[XX>]. Moreover, we suppose that there exists a finite constant CX in R++ such

that ‖X‖∞ 6 CX with probability one, which amounts to a special case of Assumption 5.

This last assumption can be avoided but helps make other assumptions more transparent.

Before we proceed, we make two observations that are helpful to verify the assumptions

of interest. First, to verify Assumption 4, it suffices to show that the function f(t, x) :=

E[m(t, Y )|X = x], defined for all (t, x) ∈ R × X has the following two properties: (i) its

derivative f ′1(t, x) with respect to t exists and is bounded on [−CXCd, CXCd]×X , and in ad-

dition (ii) for all x ∈ X , the function t 7→ f ′1(t, x) is absolutely continuous on [−CXCd, CXCd]
with (a version of) the derivative t 7→ f ′′11(t, x) being bounded below from zero by some con-

stant c1 in R++, which is independent of x. Indeed, since M(θ0) 6M(θ) for all θ ∈ Θ, it is

possible to show that under the aforementioned assumptions, E[f ′1(X>θ0, X)X>(θ−θ0)] = 0

for all θ ∈ Θ.22 Therefore, by the first-order Taylor expansion with remainder in the integral

form, for all θ ∈ Θ,

M(θ)−M(θ0) = E[f(X>θ,X)− f(X>θ0, X)] = E

[∫ X>θ

X>θ0

f ′′11(t,X)(X>θ − t)dt

]

= E

[∫ 1

0

f ′′11(X>θ0 + sX>(θ − θ0), X){X>(θ − θ0)}2(1− s)ds
]

> c1E
[
{X> (θ − θ0)}2

] ∫ 1

0

(1− t)dt > c1cev‖θ − θ0‖2
2/2,

which yields Assumption 4 with cM = c1cev/2 and arbitrary c′M .

22To show this claim, fix any θ ∈ Θ and observe that θ0 + s(θ − θ0) ∈ Θ for all s ∈ [0, 1] by convexity
(Assumption 1). Therefore, E[f(X>θ0 + sX>(θ − θ0), X)] = M(θ0 + s(θ − θ0)) >M(θ0) = E[f(X>θ0, X)].
Also, by the mean-value theorem, f(x>θ0 + sx>(θ− θ0))− f(x>θ0, x) = sf ′1(x>θ̃x, x)x>(θ− θ0) for some θ̃x
on the line connecting θ0 and θ0 + s(θ − θ0) for all x ∈ X . Hence, sE[f ′1(X>θ̃X , X)X>(θ − θ0)] > 0. Thus,
given that f ′1 : [−CXCd, CXCd] × X → R is continuous in t and bounded, sending s → 0 and applying the
dominated convergence theorem gives E[f ′1(X>θ0, X)X>(θ − θ0)] > 0, which is the lower bound. To obtain
the upper bound, observe that by interiority (Assumption 1), there exists s0 < 0 such that θ0+s0(θ−θ0) ∈ Θ.
The upper bound then follows from the same argument as that used above with s ∈ [s0, 0].
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Second, to verify Assumptions 13 and 14, it is helpful to note that under Assumption 4

and (B.1), there exists a constant ce in R++ such that

E(θ) > ce‖θ − θ0‖2
2 for all θ ∈ Θ. (B.3)

To see why this bound holds, fix any θ ∈ Θ and observe that if ‖θ− θ0‖1 6 c′M , then E(θ) >

cM‖θ− θ0‖2
2 by Assumption 4. Therefore, we only need to consider the case ‖θ− θ0‖1 > c′M .

In this case, for t := c′M/‖θ − θ0‖1, by convexity (Assumption 2) we have that

tE(θ) + (1− t)E(θ0) > E(tθ + (1− t)θ0),

and so, given that E(θ0) = 0, it follows from (B.1) that

E(θ) >
E(θ0 + t(θ − θ0))

t
>
cM t

2‖θ − θ0‖2
2

t
=
cMc

′
M‖θ − θ0‖2

2

‖θ − θ0‖1

>
cMc

′
M

2Cd
‖θ − θ0‖2

2.

This gives (B.3) with ce = cM ∧ (cMc
′
M/2Cd).

We are now in the position to verify Assumptions 4, 6, 13, and 14 in each of the examples

from Section 2. We proceed example by example.

Example 1 (Binary Response Model, Continued). For simplicity, we only consider logit and

probit models. In the case of the logit loss function (2.2), we have

f(t, x) = E[m(t, Y )|X = x] = ln(1 + et)− Λ(x>θ0)t

for all (t, x) ∈ R×X . Here f ′1(t, x) = Λ(t)−Λ(x>θ0) is bounded and absolutely continuous

in t with derivative f ′′11(t, x) = Λ(t)(1−Λ(t)) not depending on x. Since f ′′11(t, x) is bounded

away from zero on any bounded set, including [−CXCd, CXCd]×X , Assumption 4 is satisfied

by the discussion in the beginning of the section. Further, we have m′1(t, y) = Λ(t)− y and

m′′11(t, y) = Λ(t)(1−Λ(t)) for all (t, y) ∈ R×Y . Therefore, |m′1(t, y)| 6 1 for all (t, y) ∈ R×Y ,

and so Assumption 6.1 is satisfied with cL ∈ R++ arbitrary, L(w) = 1 for all w = (x, y) ∈ W ,

and CL = 2. Also, for all θ ∈ Θ, we have

E
[{
m
(
X>θ, Y

)
−m

(
X>θ0, Y

)}2
]
6 E

[
m′1(X>θ̃X,Y , Y )2|X>(θ − θ0)|2

]
6 E

[
|X>(θ − θ0)|2

]
6 Cev‖θ − θ0‖2

2 6 (Cev/ce)E(θ),

where the first inequality follows from the mean-value theorem with θ̃X,Y being a value on

the line connecting θ0 and θ, the third from (B.2), and the fourth from (B.3). Increasing CL

if necessary, these bounds yield both Assumptions 6.2 and 14. Moreover, since |m′1(t, y)| 6 1
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for all (t, y) ∈ R× Y , Assumption 13.1 is satisfied by Hoeffding’s lemma (Boucheron et al.,

2012, Lemma 2.2). Finally, since |m′′11(t, y)| 6 1 for all (t, y) ∈ R × Y , Assumption 13.2 is

satisfied since for all θ ∈ Θ, we have

E
[{
m′1(X>θ, Y )−m′1(X>θ0, Y )

}2
]

= E
[
m′′11(X>θ̃X,Y , Y )2|X>(θ − θ0)|2

]
6 E

[
|X>(θ − θ0)|2

]
6 Cev‖θ − θ0‖2

2 6 (Cev/ce)E(θ),

where the equality follows from the mean-value theorem with θ̃X,Y being a value on the line

connecting θ0 and θ, the second inequality from (B.2), and the third from (B.3).

In the case of the probit loss function (2.3), we have

f(t, x) = E[m(t, Y )|X = x] = −Φ(x>θ0) ln Φ(t)− (1− Φ(x>θ0)) ln(1− Φ(t))

for all (t, x) ∈ R×X . Here, letting ϕ denote the PDF of the standard normal distribution,

f ′1(t, x) = −Φ(x>θ0)ϕ(t)

Φ(t)
+

(1− Φ(x>θ0))ϕ(t)

1− Φ(t)

is bounded on [−CXCd, CXCd]× X and absolutely continuous in t on [−CXCd, CXCd] with

derivative

f ′′11(t, x) =
Φ(x>θ0)tϕ(t)

Φ(t)
+

Φ(x>θ0)ϕ(t)2

Φ(t)2
− (1− Φ(x>θ0))tϕ(t)

1− Φ(t)
+

(1− Φ(x>θ0))ϕ(t)2

[1− Φ(t)]2
.

By (1.2.2) in Adler and Taylor (2007), f ′′11(t, x) is strictly positive and continuous for all

(t, x) ∈ R×X . Hence, f ′′11(t, x) is bounded away from zero on [−CXCd, CXCd]×X , and so

Assumption 4 is satisfied by the argument given in the beginning of the section. Further, we

have

m′1(t, y) = −yϕ(t)

Φ(t)
+

(1− y)ϕ(t)

1− Φ(t)

and

m′′11(t, y) =
ytϕ(t)

Φ(t)
+
yϕ(t)2

Φ(t)2
− (1− y)tϕ(t)

1− Φ(t)
+

(1− y)ϕ(t)2

[1− Φ(t)]2

for all (t, y) ∈ R × Y . Since Y = {0, 1} and the functions t 7→ m′1(t, 0), t 7→ m′1(t, 1),

t 7→ m′′11(t, 0), and t 7→ m′′11(t, 1) are all continuous, it follows that both m′1(t, y) and m′′11(t, y)

are bounded in absolute value on the compact [−CXCd, CXCd]×Y . Therefore, Assumptions

6, 13, and 14 are satisfied by the same arguments as those used in the logit case.

Example 2 (Ordered Response Model, Continued). For simplicity, we only consider the

ordered logit model. Since m(t, y) = −
∑J

j=0 1(y = j) ln(Λ(αj+1− t)−Λ(aj− t)) in this case,
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f(t, x) = E[m(t, Y )|X = x] is given by

f(t, x) = −
J∑
j=0

[
Λ(αj+1 − x>θ0)− Λ(αj − x>θ0)

]
ln (Λ(αj+1 − t)− Λ(αj − t))

for all (t, x) ∈ R×X . (Recall that we interpret Λ (−∞) as zero and Λ (+∞) as one.) Here,

f ′1(t, x) =
J∑
j=0

[
Λ(αj+1 − x>θ0)− Λ(αj − x>θ0)

]
[1− Λ (αj+1 − t)− Λ (αj − t)]

is bounded and absolutely continuous in t with derivative

f ′′11(t, x) =
J∑
j=0

[
Λ(αj+1 − x>θ0)− Λ(αj − x>θ0)

]
×
(
Λ (αj+1 − t) [1− Λ (αj+1 − t)] + Λ (αj − t) [1− Λ (αj − t)]

)
.

Since f ′′11(t, x) is bounded away from zero on [−CXCd, CXCd]×X , Assumption 4 is satisfied

by the argument given in the beginning of the section.

Further, we have

m′1 (t, y) =
J∑
j=0

1 (y = j) [1− Λ (αj+1 − t)− Λ (αj − t)]

and

m′′11 (t, y) =
J∑
j=0

1 (y = j)
(
Λ (αj+1 − t) (1− Λ (αj+1 − t)) + Λ (αj − t) (1− Λ (αj − t))

)
for all (t, y) ∈ R × Y . Since both m′1(t, y) and m′′11(t, y) are bounded in absolute value on

R×Y , Assumptions 6, 13, and 14 are satisfied by the same arguments as those used in the

logit case of Example 1.

Example 3 (Logistic Calibration, Continued). Since m(t, y) = ye−t+(1−y)t in this example,

f(t, x) = E[m(t, Y )|X = x] = Λ(x>θ0)e−t + (1− Λ(x>θ0))t

for all (t, x) ∈ R×X . Here, f ′1(t, x) = −Λ(x>θ0)e−t+1−Λ(x>θ0) is bounded and absolutely

continuous in t on [−CXCd, CXCd]×X with derivative f ′′11(t, x) = Λ(x>θ0)e−t. Since f ′′11(t, x)

is bounded away from zero on [−CXCd, CXCd]×X , Assumption 4 is satisfied by the argument
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given in the beginning of the section.

Further, we have m′1(t, y) = −ye−t+1−y and m′′11(t, y) = ye−t for all (t, y) ∈ R×Y . Since

Y = {0, 1} and the functions t 7→ m′1(t, 0), t 7→ m′1(t, 1), t 7→ m′′11(t, 0), and t 7→ m′′11(t, 1)

are all continuous, it follows that both m′1(t, y) and m′′11(t, y) are bounded in absolute value

on [−CXCd, CXCd] × Y . Therefore, it follows that Assumptions 6, 13, and 14 are satisfied

by the same arguments as those used in the logit case of Example 1.

Example 4 (Logistic Balancing, Continued). Since m(t, y) = (1− y)et + ye−t + (1− 2y)t in

this example,

f(t, x) = E[m(t, Y )|X = x] =
[
1− Λ(x>θ0)

]
et + Λ(x>θ0)e−t +

[
1− 2Λ(x>θ0)

]
t

for all (t, x) ∈ R × X . Here, f ′1(t, x) = [1 − Λ(x>θ0)]et − Λ(x>θ0)e−t + 1 − 2Λ(x>θ0) is

bounded and absolutely continuous in t on [−CXCd, CXCd] × X with derivative f ′′11(t, x) =

[1−Λ(x>θ0)]et+Λ(x>θ0)e−t. Since f ′′11(t, x) is bounded away from zero on [−CXCd, CXCd]×X ,

Assumption 4 is satisfied by the argument given in the beginning of the section.

Further, we have m′1(t, y) = (1−y)et−ye−t+1−2y and m′′11(t, y) = (1−y)et+ye−t for all

(t, y) ∈ R×Y . Since Y = {0, 1} and the functions t 7→ m′1(t, 0), t 7→ m′1(t, 1), t 7→ m′′11(t, 0),

and t 7→ m′′11(t, 1) are all continuous, it follows that both m′1(t, y) and m′′11(t, y) are bounded

in absolute value on [−CXCd, CXCd]×Y . Therefore, it follows that Assumptions 6, 13, and

14 are satisfied by the same arguments as those used in the logit case of Example 1.

Example 5 (Expectile Model, Continued). Throughout this example, we assume that for

all x ∈ X , the conditional distribution of Y given X = x is absolutely continuous with PDF

gY |X=x and that there exists a constant C in R++ such that

P ( |Y | > t|X = x) 6 2 exp
(
−t2/C

)
, for all t ∈ R++ and x ∈ X . (B.4)

Since m(t, y) = |τ − 1(y − t < 0)|(y − t)2 in this example,

f (t, x) = (1− τ)

∫ t

−∞
(y − t)2gY |X=x(y)dy + τ

∫ +∞

t

(y − t)2gY |X=x(y)dy

for all (t, x) ∈ R×X . Here,

f ′1(t, x) = 2(1− τ)

∫ t

−∞
(t− y)gY |X=x(y)dy + 2τ

∫ +∞

t

(t− y)gY |X=x(y)dy
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is bounded on [−CXCd, CXCd]×X since

|f ′1(t, x)| 6 2

∫ +∞

−∞
(|t|+ |y|)gY |X=x(y)dy 6 2CXCd + 2C

for all (t, x) ∈ [−CXCd, CXCd]×X and some constant C in R++, where we have used (B.4).

In addition, f ′1(t, x) is absolutely continuous in t on [−CXCd, CXCd]×X with derivative

f ′′11(t, x) = 2(1− τ)

∫ t

−∞
gY |X=x(y)dy + 2τ

∫ +∞

t

gY |X=x(y)dy

Since f ′′11(t, x) > 2[τ ∧ (1− τ)] for all (t, x) ∈ [−CXCd, CXCd]×X , Assumption 4 is satisfied

by the argument given in the beginning of the section.

Further, we have m′1(t, y) = 2|τ − 1(y − t < 0)|(t − y) for all (t, y) ∈ R × Y and

m′′11(t, y) = 2|τ − 1(y − t < 0)| for all (t, y) ∈ R × Y such that y 6= t. Hence, Assumption

6.1 is satisfied for any cL in R++ and L(w) = 2(cL + |y|) for all w = (x, y) ∈ W , where

the inequality E[|L(W )|8] 6 (CL/2)8 holds for some constant CL in R++ again using (B.4).

Also, there exists a constant C̃ in R++ such that for all θ in Θ, we have

E
[{
m
(
X>θ, Y

)
−m

(
X>θ0, Y

)}2
]
6 E

[
m′1(X>θ̃X,Y , Y )2|X>(θ − θ0)|2

]
6 4E

[
(Y −X>θ̃X,Y )2|X>(θ − θ0)|2

]
6 8E

[
(Y 2 + (X>θ̃X,Y )2)|X>(θ − θ0)|2

]
6 C̃E

[
|X>(θ − θ0)|2

]
6 (C̃Cev/ce)E(θ),

where the first line follows from the mean-value theorem with θ̃X,Y being a value on the

line connecting θ0 and θ, and the fourth line follows from (B.1), (B.2), (B.3), and (B.4).

This gives Assumptions 6.2 and 14. Moreover, under (B.4), Assumption 13.1 follows from

Proposition 2.5.2 in Vershynin (2018). Finally,

E
[{
m′1
(
X>θ, Y

)
−m′1

(
X>θ0, Y

)}2
]

= E

(∫ X>θ

X>θ0

m′′11(t, Y )dt

)2


6 4E
[
|X>(θ − θ0)|2

]
6 (4Cev/ce)E(θ),

where the second line follows from (B.2) and (B.3). This gives Assumption 13.2.

Example 6 (Panel Logit Model, Continued). Since m(t, y) = 1(y1 6= y2)[ln(1 + et)− y1t] in
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this example,

f(t, x) = E[m(t, Y )|X = x] = P(Y1 6= Y2|X = x) ln(1 + et)− P(Y1 = 1, Y2 = 0|X = x)t

for all (t, x) ∈ R×X . Here,

f ′1(t, x) = P(Y1 6= Y2|X = x)Λ(t)− P(Y1 = 1, Y2 = 0|X = x)

is bounded and absolutely continuous in t on [−CXCd, CXCd]×X with derivative f ′′11(t, x) =

P(Y1 6= Y2|X = x)Λ(t)[1 − Λ(t)]. Therefore, assuming that P(Y1 6= Y2|X = x) is bounded

away from zero on X , it follows that f ′′11(t, x) is bounded away from zero on [−CXCd, CXCd]×
X , and so Assumption 4 is satisfied by the argument given in the beginning of the section.

Further, we have m′1(t, y) = 1(y1 6= y2)[Λ(t)−y1] and m′′11(t, y) = 1(y1 6= y2)Λ(t)[1−Λ(t)]

for all (t, y) ∈ R × Y . Therefore, |m′1(t, y)| 6 1 and |m′′11(t, y)| 6 1 for all (t, y) ∈ R × Y ,

and so Assumptions 6, 13, and 14 are satisfied by the same arguments as those used in the

logit case of Example 1.

Example 7 (Panel Censored Model, Continued). Denote latent outcomes Y ∗τ := γ+X>τ θ0 +

ετ for τ = 1, 2. Recall that the loss function m given in (2.9) depends on Ξ. We will

consider the cases Ξ = |·| and (·)2 separately, starting with Ξ = |·|. In this case, we assume

that for all x in X , the conditional distribution of (Y ∗1 , Y
∗

2 ) given X = x is absolutely

continuous with PDF g(Y ∗1 ,Y
∗
2 )|X=x, and that there exists a constant c in R++ such that∫∞

0
g(Y ∗1 ,Y

∗
2 )|X=x(s+t, s)ds > c for all (t, x) ∈ [0, CXCd]×X and

∫∞
0
g(Y ∗1 ,Y

∗
2 )|X=x(s, s−t)ds > c

for all (t, x) ∈ [−CXCd, 0] × X . In addition, we assume that the PDF of the conditional

distribution of Y ∗2 given (Y ∗1 , X1, X2) and the PDF of the conditional distribution of Y ∗1

given (Y ∗2 , X1, X2) are both bounded from above by some constant C in R++.

Then it follows from Lemma A.1 in Honoré (1992) that for the function f(t, x) =

E[m(t, Y )|X = x] defined on R×X , we have

f ′1(t, x) = E[1(Y2 > 0, Y2 > Y1 − t)|X = x]− E[1(Y1 > 0, Y1 > Y2 + t)|X = x]

for all (t, x) ∈ R × X . Thus, |f ′1(t, x)| 6 1 for all (t, x) ∈ R × X . In addition, it follows

from the proof of Lemma A.3 in Honoré (1992) that f ′1(t, x) is absolutely continuous in t on

R×X with derivative f ′′11(t, x) satisfying

f ′′11(t, x) >

2
∫∞

0
g(Y1,Y2)|X=x(s+ t, s)ds, t > 0,

2
∫∞

0
g(Y1,Y2)|X=x(s, s− t)ds, t < 0.
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Thus, f ′′11(t, x) > c > 0 for all (t, x) ∈ [−CXCd, CXCd]×X , and so Assumption 4 is satisfied

by the discussion in the beginning of the section. A calculation shows thatm(·, y) is (globally)

Lipschitz with Lipschitz constant equal to one, and that

m′1(t, y) =



0, y1 = y2 = 0,

1(t > −y2), y1 = 0, y2 > 0,

−1(t < y1), y1 > 0, y2 = 0,

−1 + 21(t > y1 − y2), y1 > 0, y2 > 0,

for (Lebesgue) almost every (t, y) ∈ R×Y . Assumptions 6, 13.1 and 14 are then satisfied by

the same arguments as those used in the logit case of Example 1. Moreover, for all θ ∈ Θ,

denoting t1 := min((X1−X2)>θ, (X1−X2)>θ0) and t2 := max((X1−X2)>θ, (X1−X2)>θ0),

we have

E
[{
m′1
(
(X1 −X2)>θ, Y

)
−m′1

(
(X1 −X2)>θ0, Y

)}2
]

6 P(Y1 = 0, Y2 > 0,−t2 < Y2 6 −t1)

+ P(Y1 > 0, Y2 = 0, t1 < Y1 6 t2)

+ 4P(Y1 > 0, Y2 > 0, t1 6 Y1 − Y2 < t2)

6 P(−t2 < Y ∗2 6 −t1) + P(t1 < Y ∗1 6 t2) + 4P(t1 6 Y ∗1 − Y ∗2 < t2)

6 6CE
[
|(X1 −X2)>(θ − θ0)|

]
6 6C

(
E
[
|(X1 −X2)>(θ − θ0)|2

])1/2
6 C̃

√
E(θ),

with C̃ = 6C
√
Cev/ce, where the first inequality in the last line follows from our assumption

on the conditional distributions of Y ∗1 given (Y ∗2 , X1, X2) and of Y ∗2 given (Y ∗1 , X1, X2), the

second from Jensen’s inequality, and the third from (B.2) and (B.3). This gives Assumption

13.2.

Next, consider the case Ξ = (·)2. In this case, we assume that there exist constants c and

C in R++ such that P(−Y2 < t < Y1|X = x) > c and P(Y1 ∨ Y2 6 t|X = x) 6 2 exp(−t2/C)

for all (t, x) ∈ [−CXCd, CXCd]×X . Then it follows from Lemma A.1 in Honoré (1992) that

for the function f(t, x) = E[m(t, Y )|X = x] defined on R×X , we have

f ′1(t, x) = 2E[Y21(t > Y1)− Y11(t 6 −Y2) + (Y1 − Y2 + t)1(−Y2 < t < Y1)|X = x]

for all (t, x) ∈ R × X . Thus, under our assumptions, |f ′1(t, x)| 6 C̃ for all (t, x) ∈
[−CXCd, CXCd] × X and some constant C̃ in R++. In addition, it follows from Lemma

A.3 in Honoré (1992) that f ′1(t, x) is absolutely continuous in t on R × X with derivative
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f ′′11(t, x) = 2P(−Y2 < t < Y1|X = x). Thus, under our assumptions, f ′′11(t, x) > c/2 > 0 for

all (t, x) ∈ [−CXCd, CXCd]× X , and so Assumption 4 is satisfied by the argument given in

the beginning of this section. Further, we have

m′1(t, y) =


−2y1, t 6 −y2,

2(t+ y2 − y1), −y2 < t < y1,

2y2, y1 6 t,

and

m′′11(t, y) =


0, t < −y2,

2, −y2 < t < y1,

0, y1 < t.

Hence, Assumption 6.1 is satisfied with any constant cL in R++ and L(w) = 2(|y1|+ |y2|) for

all w = (x, y) ∈ W , where the inequality E[|L(W )|8] 6 (CL/2)8 holds for some constant CL

in R++ by our assumptions. Also, there exists a constant C̃ in R++ such that for all θ ∈ Θ,

we have

E
[{
m
(
X>θ, Y

)
−m

(
X>θ0, Y

)}2
]

6 E
[
m′1(X>θ̃X,Y , Y )2|X>(θ − θ0)|2

]
6 4E

[
(Y1 ∨ Y2)2|X>(θ − θ0)|2

]
6 C̃E

[
|X>(θ − θ0)|2

]
6 (C̃Cev)‖θ − θ0‖2

2 6 (C̃Cev/ce)E(θ),

where the first inequality follows from the mean-value theorem with θ̃X,Y being a value on

the line connecting θ0 and θ, and the last from (B.2) and (B.3). This gives Assumptions 6.2

and 14. Moreover, under our assumptions, Assumption 13.1 follows from Proposition 2.5.2

in Vershynin (2018). Finally,

E
[{
m′1
(
X>θ, Y

)
−m′1

(
X>θ0, Y

)}2
]

= E

(∫ X>θ

X>θ0

m′′11(t, Y )dt

)2


6 4E
[
|X>(θ − θ0)|2

]
6 (4Cev/ce)E(θ),

where the second line follows from (B.2) and (B.3). This gives Assumption 13.2.

Example 8 (Panel Duration Model, Continued). Since m(t, y) = ln(1 + et)− 1(y1 < y2)t in
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this example,

f(t, x) := E[m(t, Y )|X = x] = ln(1 + et)− P(Y1 < Y2|X = x)t

for all (t, x) ∈ R×X . Here,

f ′1(t, x) = Λ(t)− P(Y1 < Y2|X = x)

is bounded and absolutely continuous in t on [−CXCd, CXCd]×X with derivative f ′′11(t, x) =

Λ(t)[1−Λ(t)]. Since f ′′11(t, x) is bounded away from zero on [−CXCd, CXCd]×X , Assumption

4 is satisfied by the argument given in the beginning of the section. Further, we have

m′1(t, y) = Λ(t)− 1(y1 < y2) and m′′11(t, y) = Λ(t)[1−Λ(t)] for all (t, y) ∈ R×Y . Therefore,

|m′1(t, y)| 6 1 and |m′′11(t, y)| 6 1 for all (t, y) ∈ R × Y , and so Assumptions 6, 13, and 14

are satisfied by the same arguments as those used in the logit case of Example 1.

C Proofs for Statements in Main Text

In this section, we provide proofs of all results stated in the main text.

C.1 Proofs for Section 3

Proof of Theorem 1. We proceed in two steps.

Step 1: Abbreviate θ̂ := θ̂ (λ). By minimization and the triangle inequality,

En[m(X>i θ̂, Yi)−m(X>i θ0, Yi)] 6 λ(‖θ0‖1 − ‖θ̂‖1) 6 λ(‖δ̂T‖1 − ‖δ̂T c‖1),

where δ̂ := θ̂ − θ0. By convexity followed by Hölder’s inequality and score domination (S ),

En[m(X>i θ̂, Yi)−m(X>i θ0, Yi)] > S>(θ̂ − θ0) > −‖S‖∞‖δ̂‖1 > −
λ

c0

(‖δ̂T‖1 + ‖δ̂T c‖1).

Combining the two previous displays, we get

‖δ̂T c‖1 6
c0 + 1

c0 − 1
‖δ̂T‖1 = c0‖δ̂T‖1.

Therefore, on the event S , we have δ̂ ∈ R(c0).

Step 2: Seeking a contradiction, suppose that we are on the event S ∩ L ∩ E but
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‖δ̂‖2 > u0. Since Step 1 implies that δ̂ ∈ R(c0), it then follows by minimization that

0 > inf
δ∈R(c0),
‖δ‖2>u0

{
En[m(X>i (θ0 + δ), Yi)−m(X>i θ0, Yi)] + λ (‖θ0 + δ‖1 − ‖θ0‖1)

}
.

Now, observe that δ 7→ {En[m(X>i (θ0 + δ), Yi) − m(X>i θ0, Yi)] + λ(‖θ0 + δ‖1 − ‖θ0‖1)} is

a (random) convex function taking the value 0 when δ = 0 ∈ Rp. In addition, since Θ

is convex (Assumption 1), it follows that δ ∈ R(c0) implies tδ ∈ R(c0) for any t ∈ (0, 1).

Therefore,

0 > inf
δ∈R(c0),
‖δ‖2=u0

{
En[m(X>i (θ0 + δ), Yi)−m(X>i θ0, Yi)] + λ (‖θ0 + δ‖1 − ‖θ0‖1)

}
.

By superadditivity of infima and definition of the empirical error function, on the event L ,

the right-hand side here is bounded from below by

inf
δ∈R(c0),
‖δ‖2=u0

E[m(X>(θ0 + δ), Yi)−m(X>θ0, Yi)]

+ inf
δ∈R(c0),
‖δ‖2=u0

(En − E) [m(X>i (θ0 + δ), Yi)−m(X>i θ0, Yi)] + λ inf
δ∈R(c0),
‖δ‖2=u0

{‖θ0 + δ‖1 − ‖θ0‖1}

> inf
δ∈R(c0),
‖δ‖2=u0

E[m(X>(θ0 + δ), Yi)−m(X>θ0, Yi)]− ε (u0)− λ sup
δ∈R(c0),
‖δ‖2=u0

∣∣‖θ0 + δ‖1 − ‖θ0‖1

∣∣.
Next, since we assume that (1 + c0)u0

√
s 6 c′M , any δ ∈ R(c0) such that ‖δ‖2 = u0 must

satisfy

‖δ‖1 6 (1 + c0)‖δT‖1 6 (1 + c0)
√
s‖δT‖2 6 (1 + c0)

√
s‖δ‖2 6 c′M . (C.1)

Therefore, by Assumption 4,

inf
δ∈R(c0),
‖δ‖2=u0

E[m(X>i (θ0 + δ), Yi)−m(X>i θ0, Yi)] > cM inf
δ∈R(c0),
‖δ‖2=u0

‖δ‖2
2 = cMu

2
0.

Also, by the triangle inequality,

sup
δ∈R(c0),
‖δ‖2=u0

∣∣‖θ0 + δ‖1 − ‖θ0‖1

∣∣ 6 sup
δ∈R(c0),
‖δ‖2=u0

‖δ‖1 6 (1 + c0)u0

√
s.
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In addition, ε (u0) 6 λεu0 on the event E . Therefore, it follows that

0 > inf
δ∈R(c0),
‖δ‖2=u0

E[m(X>(θ0 + δ), Y )−m(X>θ0, Y )]− ε (u0)− λ sup
δ∈R(c0),
‖δ‖2=u0

{‖θ0‖1 − ‖θ0 + δ‖1}

> cMu
2
0 − λεu0 − (1 + c0)λu0

√
s.

However, by definition of u0,

cMu
2
0 − λεu0 − (1 + c0)λu0

√
s = cMu

2
0 −

(
λε + (1 + c0)λ

√
s
)
u0 =

cM
2
u2

0 > 0,

yielding the desired contradiction. We therefore conclude that on the event S ∩L ∩ E we

have ‖δ̂‖2 6 u0, which establishes the `2 bound (3.4). The `1 bound (3.5) then follows from

the `2 bound and (C.1).

C.2 Proofs for Section 3.2

Proof of Lemma 1. The claim will follow from an application of the maximal inequality

in Lemma E.1. Setting up for such an application, fix 0 < u 6 cL/ [Bn (1 + c0)
√
s] and

define ∆ (u) := R (c0) ∩ {δ ∈ Rp; ‖δ‖2 6 u} . The zero vector in Rp belongs to both R (c0)

and {δ ∈ Rp; ‖δ‖2 6 u}, so ∆ (u) is a nonempty subset of Rp. By definition of ∆ (u), any

δ ∈ ∆ (u) must satisfy

‖δ‖1 6 (1 + c0) ‖δT‖1 6 (1 + c0)
√
s‖δT‖2 6 (1 + c0)

√
s‖δ‖2 6 (1 + c0)u

√
s,

thus implying

‖∆ (u)‖1 := sup
δ∈∆(u)

‖δ‖1 6 (1 + c0)u
√
s. (C.2)

Next, define h : R×W → R by h (t, w) := m
(
x>θ0 + t, y

)
−m

(
x>θ0, y

)
for all t ∈ R and

w = (x, y) ∈ W . By Assumption 6.1, the function h : [−cL, cL]×W → R is Lipschitz in its

first argument and satisfies h (0, ·) ≡ 0, thus verifying Condition 1 of Lemma E.1. Condition

2 of the same lemma follows from Hölder’s inequality, Assumption 5.2, (C.2), and the upper

bound on u:

max
16i6n

sup
δ∈∆(u)

|X>i δ| 6 max
16i6n

‖Xi‖∞ ‖∆ (u)‖1 6 Bn (1 + c0)u
√
s 6 cL
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with probability at least 1− ζn. Assumption 6.2 implies that

sup
δ∈∆(u)

E[h(X>δ,W )2] 6 C2
Lu

2,

and so Condition 3 of Lemma E.1 holds for B1n = CLu. Finally, given that En[L(Wi)
4] 6 C4

L

with probability at least 1 − n−1 by Assumption 6.1 and Chebyshev’s inequality, it follows

from Assumption 5.3 that

max
16j6p

En[L (Wi)
2X2

ij] 6
√

En[L(Wi)4] max
16j6p

√
En[X4

ij] 6 C2
LC

2
X

with probability at least 1 − n−1 − ζn. Condition 4 of Lemma E.1 therefore holds with

B2n = CLCX and γn = n−1 + ζn. Lemma E.1 combined with the bounds on ‖∆ (u)‖1 from

(C.2) and ln (8pn) 6 4 ln (pn) (which follows from p > 2) therefore shows that for all n ∈ N,

P
(
ε (u) >

(
{4CL} ∨ {Cε

√
s ln (pn)}

)
u/
√
n
)

= P

(
sup
δ∈∆(u)

∣∣Gn[h(X>i δ,Wi)]
∣∣ > ( {4CL} ∨ {Cε√s ln (pn)}

)
u

)
6 5n−1 + 8ζn.

The claim now follows since we assume that s ln (pn) > 16C2
L/C

2
ε .

C.3 Proofs for Section 4

Proof of Theorem 2. We set up for an application of Theorem 1. To this end, define

λε := Cε
√
s ln(pn)/n and λ := λ

am

α [see (4.2)], which are positive and finite under our

assumptions. Then it follows from Lemma 1, whose application is justified by the inequalities

in (4.3), that ε (u0) 6 λεu0 with probability at least 1 − 5n−1 − 8ζn, meaning that P(E ) >

1− 5n−1 − 8ζn. Also, observe that by the choice of penalty (4.1) and Assumptions 7 and 8,

the event λ̂amα > c0 ‖S‖∞ occurs with probability at least 1−α, as discussed in the main text,

meaning that P(S ) > 1− α. In addition, P(L ) > 1− ζn by (4.2). Therefore, the asserted

claims follow from the union bound and Theorem 1, whose application is again justified by

inequalities in (4.3).

Proof of Corollary 1. The assumption (4.4) ensures that (4.3) holds for all n large

enough. Therefore, the asserted claim follows immediately from Theorem 2.
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C.4 Proofs for Section 5.1

Proof of Theorem 3. We set up for an application of Theorem 1. To this end, define

λε := Cε
√
s ln(pn)/n. Then it follows from Lemma 1, whose application is justified by

inequalities in (5.5), that ε (u0) 6 λεu0 with probability at least 1 − 5n−1 − 8ζn, meaning

that P(E ) > 1− 5n−1 − 8ζn.

Further, observe that conditional on {(Wi, Ûi)}ni=1, the random vector En[eiÛiXi] is cen-

tered Gaussian in Rp with jth coordinate variance n−1En[Û2
i X

2
ij]. Lemma E.2 therefore shows

that

q̂ (1− α) 6 (2 +
√

2)

√
ln (p/α)

n
max
16j6p

En[Û2
i X

2
ij].

In addition, with probability at least 1− n−1 − βn − 2ζn,

max
16j6p

En[Û2
i X

2
ij] 6 2 max

16j6p

(
En[U2

i X
2
ij] + En[(Ûi − Ui)2X2

ij]
)

6 2
√

En[U4
i ]
√

max
16j6p

En[X4
ij] + 2B2

nEn[(Ûi − Ui)2]

6 2C2
UC

2
X + 2B2

nδ
2
n/ ln2(pn) 6 4C2

UC
2
X ,

where the first inequality follows from the elementary inequality (a + b)2 6 2a2 + 2b2, the

second inequality from Hölder’s inequality and Assumption 5.2, the third from Assumptions

5.3, 9.1 and 10 and Chebyshev’s inequality, and the fourth from (5.5). Hence, with the same

probability,

λ̂bmα 6 λ
bm

α := 4(2 +
√

2)c0CUCX

√
ln (p/α)

n
,

meaning that P(L ) > 1− n−1 − βn − 2ζn when taking λ = λ
bm

α .

Next, Assumptions 9.2, 9.3, and 9.4 imply that the moment conditions (E.1) for Zij =

UiXij hold with b and Bn there replaced by cU and B̃n, respectively. Further, Assumptions

5.2 and 10 imply that the estimation error condition (E.3) for Ẑij = ÛiXij hold with δn

and βn there replaced by Bnδn and βn + ζn, respectively. Since the Zi’s are centered (by

Assumption 7), Theorem E.4 therefore shows that there exists a finite constant C depending
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only on cU such that23

sup
α∈(0,1)

∣∣P(‖S‖∞ > q̂ (1− α)
)
− α

∣∣
6 C max

βn + ζn, Bnδn,

(
B̃4
n ln7 (pn)

n

)1/6

,
1

ln2 (pn)

 .

Taking ρn to be this upper bound, it thus follows by construction of the bootstrap penalty

level λ̂bmα = c0q̂ (1− α) that the event λ̂bmα > c0 ‖S‖∞ occurs with probability at least 1−α−ρn,

meaning that P(S ) > 1− α− ρn.

Therefore, the asserted claims follow from Theorem 1, whose application is again justified

by the inequalities in (5.5).

C.5 Proofs for Section 5.2

For the arguments in this section, we introduce some additional notation. For any nonempty

I ( {1, . . . , n}, define the subsample score

SI := EI
[
m′1
(
X>i θ0, Yi

)
Xi

]
and subsample empirical error

εI (u) := sup
δ∈R(c0),
‖δ‖26u

∣∣(EI − E)
[
m
(
X>i (θ0 + δ) , Yi

)
−m

(
X>i θ0, Yi

)]∣∣ , u ∈ R+.

In proving Theorem 4, we rely on the following lemmas.

Lemma C.1. Let Assumption 12 hold. Then for any constant C ∈ R++ satisfying n−1 ln (pn) 6

(CΛa/C)2 and n ln (pn) > (cΛ/C)2, the candidate penalty set Λn and the interval[
C
√
n−1 ln(pn), (C/a)

√
n−1 ln(pn)

]
have an element in common.

Lemma C.2. Let Assumptions 5, 6, and 11 hold, and define the constant Cε := 16
√

2(1 +

23We here invoke the scaling property that qtV (α) = tqV (α) for t ∈ R++ and α ∈ (0, 1) and qV (α)
denoting the α quantile of the random variable V .
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c0)CLCX ∈ R++. Then provided

s ln (pn) > 16 (K − 1) cD

(
CL
Cε

)2

and 0 < u 6
cL

Bn (1 + c0)
√
s
,

we have

max
16k6K

εIck (u) 6
Cεu

(K − 1) cD

√
s ln (pn)

n

with probability at least 1−K
(
4n−1 + 8ζn + [(K − 1) cDn]−1).

Lemma C.3. Let Assumptions 5, 11 and 13 hold and define the constant CS := 2CXσ/[(K−
1)cD] ∈ R++. Then

max
16k6K

‖SIck‖∞ 6 CS
√

ln (pn) /n

with probability at least 1−K(n−1 + ζn).

Lemma C.4. Let Assumptions 1–4 hold. Fix some constants λε and λ in R++ and k ∈
{1, . . . , K} and define u0 := (2/cM)(λε + (1 + c0)λ

√
s). In addition, suppose that (1 +

c0)u0

√
s 6 c′M . Then for any (possibly random) λ ∈ Λn, on the event {λ > c0‖SIck‖∞}∩{λ 6

λ} ∩ {εIck (u0) 6 λεu0}, we have

E
(
θ̂Ick(λ)

)
6

2

cM

(
λε + (1 + c0)λ

√
s
)2
.

Lemma C.5. Let Assumptions 1–6 and 11–13 hold and define the constants Cε := 16
√

2(1 +

c0)CLCX , CS := 2CXσ/((K − 1)cD) and

ũ0 :=
2

cM

(
Cε

(K − 1) cD
+

(1 + c0) c0CS
a

)√
s ln (pn)

n
, (C.3)

all in R++. In addition, suppose that the following inequalities hold:
s ln(pn) > 16 (K − 1) cDC

2
L/C

2
ε ,

(1 + c0) ũ0

√
s 6 (cL/Bn) ∧ c′M ,

n−1 ln (pn) 6 (CΛa/c0CS)2 ,

and n ln (pn) > (cΛ/c0CS)2 ,

 . (C.4)

Then there exists a candidate penalty level λ∗ ∈ Λn (possibly depending on n), such that

max
16k6K

E
(
θ̂Ick (λ∗)

)
6

2

cM

(
Cε

(K − 1) cD
+

(1 + c0) c0CS
a

)2
s ln (pn)

n
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with probability at least 1−K
(
5n−1 + 9ζn + [(K − 1) cDn]−1),

Lemma C.6. Let Assumptions 1–6 and 11–14 hold and define the constants Cε := 16
√

2(1 +

c0)CLCX , CS := 2CXσ/((K − 1)cD) and

CE :=

√
2

cM

(
Cε

(K − 1) cD
+

(1 + c0) c0CS
a

)
,

all in R++. In addition, suppose that the inequalities (C.4) hold with ũ0 appearing in (C.3).

Then for any t ∈ R++ such that{
n >

1

cΛ ∧ a
,

C2
Es ln (pn)

n
6 1, and Cms

√
6t lnn

cD ln (1/a)n
6

1

2

}
, (C.5)

we have

max
16k6K

E
(
θ̂Ick(λ̂cv)

)
6

48C2
ms

c2
D ln(1/a)

t lnn

n
+

8C2
E

cD

s ln(pn)

n
(C.6)

with probability at least 1−K
(
5n−1 + 9ζn + [(K − 1) cDn]−1 + t−1

)
.

Proof of Theorem 4. Fix any t ∈ R++ satisfying (5.15) and λ ∈ Λn. For all k ∈
{1, . . . , K}, by Assumption 13 and Markov’s inequality applied conditional on {Wi}i∈Ick , we

have

P
(
EIk
[{
m′1
(
X>i θ̂Ick(λ), Yi

)
−m′1

(
X>i θ0, Yi

)}2
]
> C2

ms1t

[√
E
(
θ̂Ick (λ)

)
∨ E
(
θ̂Ick (λ)

)] )
6 t−1.

In addition, since n > 1/ (cΛ ∧ a) by (5.14), Assumption 12 implies that |Λn| 6 3 (lnn) / ln (1/a) .

(See the proof of Lemma C.6 for more details.) Therefore, by the union bound, for all

k ∈ {1, . . . , K},

P

(
∃λ ∈ Λn s.t. EIk

[{
m′1
(
X>i θ̂Ick(λ), Yi

)
−m′1

(
X>i θ0, Yi

)}2
]

>
3C2

ms1t lnn

ln (1/a)

[√
E
(
θ̂Ick (λ)

)
∨ E
(
θ̂Ick (λ)

)])
6

1

t
.

Next, introduce events C := ∩Kk=1Ck, where

Ck :=

{
EIk
[{
m′1
(
X>i θ̂Ick

(
λ̂cv
)
, Yi
)
−m′1

(
X>i θ0, Yi

)}2
]

6
3C2

ms1t lnn

ln (1/a)

[√
E
(
θ̂Ick (λcv)

)
∨ E
(
θ̂Ick (λcv)

)]}
,
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and

R :=
{

max
16k6K

E
(
θ̂Ick
(
λ̂cv
))

6
48C2

ms

c2
D ln (1/a)

t lnn

n
+

8C2
E

cD

s ln (pn)

n

}
.

Given that the cross-validated penalty λ̂cv is a random element of Λn, it follows that

max16k6K P (C c
k ) 6 1/t, and so, by the union bound, P (C c) 6 K/t. Moreover, by Lemma

C.6, whose application is justified by the inequalities in (5.13), (5.14), and (5.15), we have

P (Rc) 6 K(5n−1 + 9ζn + [(K − 1) cDn]−1 + t−1). Therefore, again by the union bound,

P(C ∩R) > 1−K(5n−1 + 9ζn + [(K − 1) cDn]−1 + 2t−1). But on C ∩R, we have

En
[
(Ûcv

i − Ui)2
]

=
K∑
k=1

|Ik|
n

EIk
[{
m′1
(
X>i θ̂Ick

(
λ̂cv
)
, Yi
)
−m′1

(
X>i θ0, Yi

)}2
]

6
3C2

ms1t lnn

ln (1/a)

K∑
k=1

|Ik|
n

[√
E
(
θ̂Ick (λcv)

)
∨ E
(
θ̂Ick (λcv)

)]

6
3C2

ms1t lnn

ln (1/a)

(
48C2

ms

c2
D ln (1/a)

t lnn

n
+

8C2
E

cD

s ln (pn)

n

)1/2

,

where the first inequality follows from C and the second from R and (5.15). This gives the

asserted claim and completes the proof.

Proof of Corollary 2. The assumption (5.17) ensures that there exists a sequence tn

of constants in R++ such that both

tn →∞ and
t3nB

4
ns ln5(pn)(lnn)2

n
→ 0. (C.7)

Therefore, for CE appearing in the statement of Theorem 4, setting

δ2
n :=

12C2
ms1tn lnn

ln (1/a)

(
3C2

ms

c2
D ln (1/a)

tn lnn

n
+

C2
E

2cD

s ln (pn)

n

)1/2

ln2(pn) ∈ R++

and

βn := K
(
5n−1 + 9ζn + [(K − 1)cDn]−1 + 2t−1

n

)
∈ R++,

we have both δn → 0 and βn → 0. Using (5.17), (5.13) and (5.14) must hold for all n large

enough. In addition, (5.17) and (C.7) imply that (5.15) with t = tn holds for all n large

enough. Hence, Theorem 4 implies that Assumption 10 holds with δn and βn thus chosen

and all n large enough. Given that (5.17) and (C.7) also ensure Bnδn → 0 for δn thus chosen,

(5.5) must hold for all n large enough. The asserted claim now follows from Theorem 3.
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D Proofs for Supporting Lemmas

In this section, we prove Lemmas C.1–C.6 used in the proof of Theorem 4.

Proof of Lemma C.1. Fix C ∈ R++ satisfying both n−1 ln (pn) 6 (CΛa/C)2 and n ln (pn) >

(cΛ/C)2, and denote bn := C
√
n−1 ln (pn). We will show that there exists an integer

`0 ∈ {0, 1, 2, . . . } such that

cΛ/n 6 bn 6 CΛa
`0 6 bn/a 6 CΛ. (D.1)

By Assumption 12, this will imply that CΛa
`0 belongs to both the candidate penalty set Λn

and the interval [C
√
n−1 ln(pn), (C/a)

√
n−1 ln(pn)].

To prove (D.1), note that the condition n−1 ln (pn) 6 (CΛa/C)2 implies that

0 6
ln (bn/CΛ)

ln a
− 1. (D.2)

In addition, there exists an integer `0 such that

ln (bn/CΛ)

ln a
− 1 6 `0 6

ln (bn/CΛ)

ln a
. (D.3)

Combining (D.2) and (D.3), we obtain bn 6 CΛa
`0 6 bn/a 6 CΛ. Moreover, the condition

n ln (pn) > (cΛ/C)2 implies that cΛ/n 6 bn. Combining these inequalities gives (D.1) and

completes the proof of the lemma.

Proof of Lemma C.2. The claim will follow from an application of the maximal inequality

in Lemma E.1 in a manner very similar to the proof of Lemma 1. Verification of Conditions

1–3 of Lemma E.1 follow exactly as in the proof of Lemma 1. It thus remains to verify

Condition 4. To do so, fix a (hold-out) subsample k ∈ {1, . . . , K}. We then have

max
16j6p

EIck [L (Wi)
2X2

ij] 6
1

(K − 1) cD
max
16j6p

En[L (Wi)
2X2

ij] 6
C2
LC

2
X

(K − 1) cD
.

with probability at least 1 − n−1 − ζn, where the first inequality follows from Assumption

11 and the second from the same argument as in the proof of Lemma E.1. Condition

4 of Lemma E.1 thus holds with γn = n−1 + ζn and the now (K, cD)-dependent B2n =
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CLCX/
√

(K − 1) cD. Lemma E.1 then shows that for any 0 < u 6 cL/ [Bn (1 + c0)
√
s] ,

P

(√
|Ick|εIck(u) >

(
{4CL} ∨

{
Cε

√
s ln(pn)

(K − 1)cD

})
u

)
6 4n−1 + 8ζn + |Ick|

−1 6 4n−1 + 8ζn + [(K − 1) cDn]−1 ,

where the second inequality again uses Assumption 11. Now, given that we assume s ln (pn) >

16 (K − 1) cDC
2
L/C

2
ε , it follows that

εIck (u) 6
Cεu

(K − 1) cD

√
s ln (pn)

n

with probability at least 1− (4n−1 + 8ζn + [(K − 1)cDn]−1), where we also used Assumption

11. The asserted claim now follows from combining this inequality and the union bound.

Proof of Lemma C.3. Fix a (hold-out) subsample k ∈ {1, . . . , K}. It follows from As-

sumption 13.1 that for each t ∈ R and each j ∈ {1, . . . , p}, the random variable SIck,j =

|Ick|−1
∑

i∈Ick
m′1(X>i θ0, Yi)Xij satisfies

ln E
[

e
tSIc

k
,j

∣∣∣ {Xi}ni=1

]
6

σ2t2

2|Ick|2
n∑
i=1

X2
ij a.s.

Hence, by Chernoff’s inequality, for any t > 0,

P
(∣∣SIck,j∣∣ > t

∣∣ {Xi}ni=1

)
6 2 exp

(
− |Ick|2t2

2σ2
∑n

i=1 X
2
ij

)
a.s.

Therefore, by the union bound,

P
(∥∥SIck∥∥∞ > t

∣∣∣ {Xi}ni=1

)
6 2p exp

(
− |Ick|2t2

2σ2 max16j6p
∑n

i=1X
2
ij

)
a.s.

Hence, by Assumption 5.3, the elementary inequality P(A) 6 P(A∩B)+P(Bc), and iterating

expectations, we arrive at

P
(∥∥SIck∥∥∞ > t

)
6 2p exp

(
− |I

c
k|2t2

2nσ2C2
X

)
+ ζn.

Thus,

P

(∥∥SIck∥∥∞ > CXσ

√
2n ln (2pn)

|Ick|2

)
6 n−1 + ζn.
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In addition,
2n ln (2pn)

|Ick|2
6

4n ln (pn)

[(K − 1)cDn]2
6

4 ln (pn)

(K − 1)2 c2
Dn

,

by Assumption 11 and the fact that p > 2. Combining these inequalities and applying the

union bound, we obtain the asserted claim.

Proof of Lemma C.4. Denote θ̂ := θ̂Ick(λ) and δ̂ := θ̂ − θ0. By Theorem 1, we then have

‖δ̂‖1 6 (1 + c0)u0

√
s and ‖δ̂‖2 6 u0. An argument parallel to Step 1 of the proof of Theorem

1 also shows that the assumed λ > c0‖SIck‖∞ implies δ̂ ∈ R(c0). Therefore,

E(θ̂) = M̂Ick
(θ̂)− M̂Ick

(θ0)−
[
M̂Ick

(θ0 + δ̂)− M̂Ick
(θ0)−M(θ0 + δ̂) +M (θ0)

]
6 λ

(
‖θ0‖1 − ‖θ̂‖1

)
+
∣∣M̂Ick

(θ0 + δ̂)− M̂Ick
(θ0)−M(θ0 + δ̂) +M (θ0)

∣∣
6 λ‖δ̂‖1 + εIck (u0) 6

(
λε + (1 + c0)λ

√
s
)
u0 =

2

cM

(
λε + (1 + c0)λ

√
s
)2
,

where the second line follows from the definition of θ̂ and the third from δ̂ ∈ R(c0), the

definition of εIck(u0), imposed conditions, and the triangle inequality. This gives the asserted

claim.

Proof of Lemma C.5. By (C.4) and Lemma C.1,[
c0CS

√
ln (pn)

n
,
c0CS
a

√
ln (pn)

n

]
∩ Λn 6= ∅,

so we can fix a penalty λ∗ ∈ Λn satisfying

c0CS

√
ln (pn)

n
6 λ∗ 6

c0CS
a

√
ln (pn)

n
=: λ.

Further, denote

λε :=
Cε

(K − 1) cD

√
s ln (pn)

n

and for all k ∈ {1, . . . , K}, define events

Zk :=
{
‖SIck‖∞ 6 CS

√
n−1 ln (pn)

}
and Ek :=

{
εIck (ũ0) 6 λεũ0

}
.

Also, note that using λε and λ, ũ0 can be written as

ũ0 =
2

cM

(
λε + (1 + c0)λ

√
s
)
.
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Lemma C.4 and (C.4) therefore imply that on Zk ∩ Ek,

E
(
θ̂Ick (λ∗)

)
6

2

cM

(
Cε

(K − 1) cD
+

(1 + c0) c0CS
a

)2
s ln (pn)

n
. (D.4)

In turn, Lemma C.2 and (C.4) show that

P
(
(∩Kk=1Ek)

c
)
6 K

(
4n−1 + 8ζn + [(K − 1) cDn]−1) .

Also, Lemma C.3 shows that

P
(
(∩Kk=1Zk)

c
)
6 K(n−1 + ζn).

It thus follows from the union bound that (D.4) holds simultaneously for all k ∈ {1, . . . , K}
with probability at least 1−K

(
5n−1 + 9ζn + [(K − 1) cDn]−1).

Proof of Lemma C.6. For any θ1, θ2 ∈ Θ and k ∈ {1, . . . , K}, let

fk(θ1, θ2) := (EIk − E)[m(X>i θ1, Yi)−m(X>i θ2, Yi)].

Also, let λ∗ ∈ Λn be a value of λ satisfying the bound of Lemma C.5 and define events

R :=

{
max

16k6K
E
(
θ̂Ick (λ∗)

)
6 C2

E
s ln (pn)

n

}
and C (t) :=

K⋂
k=1

Ck (t) ,

where for each k ∈ {1, . . . , K},

Ck (t) :=

{∣∣fk(θ̂Ick(λ̂cv), θ̂Ick (λ∗))
∣∣

6

√
3t lnn

cD ln (1/a)n

√
EX,Y

[{
m
(
X>θ̂Ick(λ̂cv), Y

)
−m

(
X>θ̂Ick (λ∗) , Y

)}2
]}
.

Now, fix a subsample k ∈ {1, . . . , K} and observe that for any λ ∈ Λn, the variance of the

conditional distribution of

EIk
[
m
(
X>i θ̂Ick (λ) , Yi

)
−m

(
X>i θ̂Ick (λ∗) , Yi

)]
given {(Xi, Yi)}i∈Ick is bounded from above by

|Ik|−1 EX,Y

[{
m
(
X>θ̂Ick (λ) , Y

)
−m

(
X>θ̂Ick (λ∗) , Y

)}2
]
.
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In addition, by (C.5) and Assumption 12, we have

|Λn| 6 2 (lnn) / ln (1/a) + 1 6 3(lnn)/ ln(1/a).

Therefore, by the union bound and Chebyshev’s inequality applied conditional on {(Xi, Yi)}i∈Ick ,

we have

P

(
∃λ ∈ Λn s.t.

∣∣fk(θ̂Ick(λ), θ̂Ick (λ∗))
∣∣

>

√
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(
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)
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(
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)}2
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6
∑
λ∈Λn

cDn ln (1/a)

3t|Ik| lnn
6

1

t
,

where the second inequality follows from Assumption 11. Hence, by the union bound and

Lemma C.5,

P ((R ∩ C (t))c) 6 K
(
5n−1 + 9ζn + [(K − 1) cDn]−1 + t−1

)
.

We will now prove that (C.6) holds on R ∩C (t). For the rest of proof, we therefore remain

on this event.

Given that

λ̂cv ∈ argmin
λ∈Λn

K∑
k=1

∑
i∈Ik

m
(
X>i θ̂Ick (λ) , Yi

)
,

a problem for which λ∗ is feasible, we must have
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|Ik|EIk
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)]
>

K∑
k=1

|Ik|EIk
[
m
(
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It therefore follows from the triangle inequality and C (t) that
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n

[
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(
θ̂Ick(λ̂cv)

)
− E

(
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In addition, on R, we have
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16k6K

E
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6
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n
6 1, (D.6)

where the second inequality follows from (C.5). Assumption 14 therefore yields
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for all k ∈ {1, . . . , K}. Thus, using the well-known inequality (a+ b)2 6 2a2 + 2b2, we get
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(
X>θ̂Ick (λ∗) , Y

)}2
]

6 2EX,Y

[{
m
(
X>θ̂Ick(λ̂cv), Y

)
−m

(
X>θ0, Y

)}2
]

+ 2EX,Y

[{
m
(
X>θ̂Ick (λ∗) , Y

)
−m

(
X>θ0, Y

)}2
]

6 2C2
ms

[
E
(
θ̂Ick(λ̂cv)

)
+ E

(
θ̂Ick(λ̂cv)

)2
+ E

(
θ̂Ick (λ∗)

)]
.
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Substituting this bound into (D.5), we obtain√
cD ln(1/a)n

3t lnn

K∑
k=1

|Ik|
n

[
E
(
θ̂Ick(λ̂cv)

)
− E

(
θ̂Ick (λ∗)

)]
6

K∑
k=1

|Ik|
n

√
2C2

ms

[
E
(
θ̂Ick(λ̂cv)

)
+ E

(
θ̂Ick(λ̂cv)

)2
+ E

(
θ̂Ick (λ∗)

)]
6
√

2Cms

K∑
k=1

|Ik|
n

(√
E
(
θ̂Ick(λ̂cv)

)
+ E

(
θ̂Ick(λ̂cv)

)
+

√
E
(
θ̂Ick (λ∗)

))

6
√

2Cms


√√√√ K∑

k=1

|Ik|
n
E
(
θ̂Ick(λ̂cv)

)
+

K∑
k=1

|Ik|
n
E
(
θ̂Ick(λ̂cv)

)
+

√√√√ K∑
k=1

|Ik|
n
E
(
θ̂Ick (λ∗)

) ,

where the last line follows from Jensen’s inequality. Rearranging this bound and using the

last inequality in (C.5), we now obtain

K∑
k=1

|Ik|
n
E
(
θ̂Ick(λ̂cv)

)
6 2Cms

√
6t lnn

cD ln (1/a)n


√√√√ K∑

k=1

|Ik|
n
E
(
θ̂Ick(λ̂cv)

)
+

√√√√ K∑
k=1

|Ik|
n
E
(
θ̂Ick (λ∗)

)
+ 2

K∑
k=1

|Ik|
n
E
(
θ̂Ick (λ∗)

)
.

Thus, given that the inequality x 6 2a(
√
x +
√
y) + 2y for x, y > 0 implies that

√
x 6

a+ [(a+
√
y)2 + y]1/2 6 2a+ 2

√
y, so that x 6 8a2 + 8y, it follows that

K∑
k=1

|Ik|
n
E
(
θ̂Ick(λ̂cv)

)
6

48C2
ms

cD ln(1/a)

t lnn

n
+ 8

K∑
k=1

|Ik|
n
E
(
θ̂Ick (λ∗)

)
.

Combining this bound with Assumption 11 and using (D.6), we obtain

max
16k6K

E
(
θ̂Ick(λ̂cv)

)
6

48C2
ms

c2
D ln(1/a)

t lnn

n
+

8C2
E

cD

s ln(pn)

n
,

which completes the proof of the lemma.
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E Fundamental Tools

E.1 Maximal Inequality

Let Gn [f (Wi)] :=
√
n {En [f (Wi)]− E [f (W )]} abbreviate the centered and scaled empirical

average.

Lemma E.1 (Maximal Inequality Based on Contraction Principle). Let {Wi}ni=1 be indepen-

dent copies of a random vector W , with supportW, of which X is a p-dimensional subvector,

let ∆ be a nonempty subset of Rp, and let h : R ×W → R be a measurable map satisfy-

ing h (0, ·) ≡ 0. Suppose that there exist constants Ch, B1n, B2n ∈ R+, ζn, γn ∈ (0, 1) and a

measurable function L :W → R+ such that

1. for all w ∈ W and all t1, t2 ∈ R satisfying |t1| ∨ |t2| 6 Ch,

|h (t1, w)− h (t2, w)| 6 L (w) |t1 − t2| ;

2. max16i6n supδ∈∆

∣∣X>i δ∣∣ 6 Ch with probability at least 1− ζn;

3. supδ∈∆ E[h
(
X>δ,W

)2
] 6 B2

1n; and,

4. max16j6p En[L (Wi)
2X2

ij] 6 B2
2n with probability at least 1− γn.

Then, denoting ‖∆‖1 := supδ∈∆ ‖δ‖1 , we have

P

(
sup
δ∈∆

∣∣Gn[h(X>i δ,Wi)]
∣∣ > u

)
6 4ζn + 4γn + n−1,

provided u > {4B1n} ∨ {8
√

2B2n ‖∆‖1

√
ln (8pn)}.

Proof. The claim follows from the proof of Belloni et al. (2018a, Lemma D.3), where in Step

1, we replace the set Ω by the intersection of Ω and {max16i6n supδ∈∆

∣∣X>i δ∣∣ 6 Ch}.

E.2 Gaussian Inequality

Lemma E.2 (Gaussian Quantile Bound). Let (Y1, . . . , Yp) be centered Gaussian in Rp with

σ2 := max16j6p E
[
Y 2
j

]
and p > 2. Let qY (1− α) denote the (1− α)-quantile of max16j6p |Yj|

for α ∈ (0, 1). Then qY (1− α) 6 (2 +
√

2)σ
√

ln (p/α).

Proof. By the Borell-TIS (Tsirelson-Ibragimov-Sudakov) inequality (Adler and Taylor, 2007,

Theorem 2.1.1), for any t > 0 we have

P
(

max
16j6p

|Yj| > E
[

max
16j6p

|Yj|
]

+ σt
)
6 e−t

2/2.
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This inequality translates to the quantile bound

qY (1− α) 6 E
[

max
16j6p

|Yj|
]

+ σ
√

2 ln (1/α).

Talagrand (2010, Proposition A.3.1) shows that

E
[

max
16j6p

|Yj|
]
6 σ

√
2 ln (2p),

thus implying

qY (1− α) 6 σ
(√

2 ln (2p) +
√

2 ln (1/α)
)
.

The claim now follows from p > 2.

E.3 CLT and Bootstrap in High Dimensions

Throughout this section we let Z1, . . . , Zn be independent centered Rp-valued random vari-

ables and denote their scaled average and variance by

Sn :=
1√
n

n∑
i=1

Zi and Σ :=
1

n

n∑
i=1

E
[
ZiZ

>
i

]
,

respectively. (The existence of Σ is guaranteed by our assumptions below.) For Rp-valued

random variables U and V , define the distributional measure of distance

ρ (U, V ) := sup
A∈Ap

|P (U ∈ A)− P (V ∈ A)| ,

where Ap denotes the collection of hyperrectangles in Rp. Also, for M ∈ Rp×p symmetric

positive definite, write NM for a centered Gaussian random vector N(0,M) with variance

M.

Theorem E.1 (High-Dimensional CLT). If for some constants b ∈ R++ and Bn ∈ [1,∞),

1

n

n∑
i=1

E
[
Z2
ij

]
> b,

1

n

n∑
i=1

E
[
|Zij|2+k ] 6 Bk

n and E
[

max
16j6p

Z4
ij

]
6 B4

n, (E.1)

for all i ∈ {1, . . . , n} , j ∈ {1, . . . , p} and k ∈ {1, 2}, then there exists a constant Cb ∈ R++,

depending only on b, such that

ρ (Sn, NΣ) 6 Cb

(
B4
n ln7 (pn)

n

)1/6

. (E.2)
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Proof. The claim follows from Chernozhukov et al. (2017, Proposition 2.1).

Let Ẑi be an estimator of Zi, and let e1, . . . , en be i.i.d. standard Gaussians independent of

both the Zi’s and the Ẑi’s. Define Ŝen := n−1/2
∑n

i=1 eiẐi and let Pe denote the (conditional)

probability measure computed with respect to the ei’s for fixed Zi’s and Ẑi’s. Also, abbreviate

ρ̃(Ŝen, NΣ) := sup
A∈Ap

∣∣∣Pe

(
Ŝen ∈ A

)
− P (NΣ ∈ A)

∣∣∣ ,
with the tilde stressing that ρ̃(Ŝen, NΣ) is a random quantity.

Theorem E.2 (Multiplier Bootstrap for Many Approximate Means). Let (E.1) hold for

some constants b ∈ R++ and Bn ∈ [1,∞), and let βn and δn be sequences of constants in

R++ both converging to zero such that

P

(
max
16j6p

1

n

n∑
i=1

(Ẑij − Zij)2 >
δ2
n

ln2 (pn)

)
6 βn. (E.3)

Then there exists a constant Cb ∈ R++, depending only on b, such that with probability at

least 1− βn − 1/ ln2 (pn),

ρ̃(Ŝen, NΣ) 6 Cb

(
δn ∨

(
B4
n ln6 (pn)

n

)1/6
)
. (E.4)

Proof. The claim follows from the proof of Belloni et al. (2018a, Theorem 2.2), which is here

rephrased in order to highlight the dependence on the sequences βn and δn. (Note that their

Theorem 2.2 does not actually require their Condition A(i).)

For any M symmetric positive definite, define qNM : R → R ∪ {±∞} as the (extended)

quantile function of ‖NM‖∞,

qNM (α) := inf {t ∈ R; P (‖NM‖∞ 6 t) > α} , α ∈ R.

Here we interpret qNM (α) as +∞(= inf ∅) if α > 1, and −∞(= inf R) if α 6 0, such that qNM
is monotone increasing.

Lemma E.3. Let M ∈ Rp×p be symmetric positive definite, let U be an Rp-valued random

variable, and let q denote the quantile function of ‖U‖∞. Then

qNM (α− 2ρ (U,NM)) 6 q (α) 6 qNM (α + ρ (U,NM)) for all α ∈ (0, 1) .
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Proof. Given positive definiteness of M , by the union bound, for any t ∈ R we have

P (‖NM‖∞ = t) 6
p∑
j=1

P (|N (0,Mjj)| = t) = 0.

It follows that for each α ∈ (0, 1) , qNM (α) is uniquely defined by

P
(
‖NM‖∞ 6 qNM (α)

)
= α.

In establishing the lower bound we may take ρ (U,NM) < α. (Otherwise qNM(α−ρ (U,NM)) =

−∞ and there is nothing to show.) Then
[
−qNM (α− ρ (U,NM)) , qNM (α− ρ (U,NM))

]p
is a

rectangle and

P
(
‖U‖∞ 6 qNM (α− 2ρ (U,NM))

)
6 P

(
‖NM‖∞ 6 qNM (α− 2ρ (U,NM))

)
+ ρ (U,NM) < α,

which implies the lower bound. In establishing the upper bound we may assume ρ(U,NM) <

1− α. (Otherwise qNM (α + ρ (U,NM)) = +∞ and there is nothing to show.) Then from the

rectangle
[
−qNM (α + ρ (U,NM)) , qNM (α + ρ (U,NM))

]p
, a parallel calculation shows

P
(
‖U‖∞ 6 qNM (α + ρ (U,NM))

)
> α,

which by definition of quantiles implies the upper bound.

Now, define qn (α) as the α-quantile of ‖Sn‖∞

qn (α) := inf {t ∈ R; P(‖Sn‖∞ 6 t) > α} , α ∈ (0, 1) ,

and let q̂n (α) be the α-quantile of ‖Ŝen‖∞ computed conditional on Xi’s and X̂i’s,

q̂n (α) := inf
{
t ∈ R; Pe(‖Ŝen‖∞ 6 t) > α

}
, α ∈ (0, 1) .

Theorem E.3 (Quantile Comparison). If (E.1) holds for some constants b ∈ R++ and Bn ∈
[1,∞), and

ρn := 2Cb

(
B4
n ln7 (pn)

n

)1/6

denotes two times the upper bound (E.2) in Theorem E.1, then

qNΣ (1− α− ρn) 6 qn (1− α) 6 qNΣ (1− α + ρn) for all α ∈ (0, 1) .

79



(ii) If, in addition, (E.3) holds for some sequences βn and δn of constants in R++ both

converging to zero, and

ρ′n := 2C ′b

(
δn ∨

(
B4
n ln6 (pn)

n

)1/6
)

denotes two times the upper bound (E.4) in Theorem E.2, then with probability at least

1− βn − 1/ ln2(pn),

qNΣ (1− α− ρ′n) 6 q̂n (1− α) 6 qNΣ (1− α + ρ′n) for all α ∈ (0, 1) .

Proof. Apply Lemma E.3 with U = Sn to obtain

qNΣ (1− α− 2ρ(Sn, NΣ)) 6 qn (1− α) 6 qNΣ (1− α + ρ(Sn, NΣ)) for all α ∈ (0, 1) .

The first pair of inequalities then follows from 2ρ(Sn, NΣ) 6 ρn (Theorem E.1). To establish

the second claim, apply Lemma E.3 with U = Ŝen and conditional on the Xi’s and X̂i’s to

obtain

qNΣ (1− α− 2ρ̃(Ŝen, NΣ)) 6 q̂n (1− α) 6 qNΣ (1− α + ρ̃(Ŝen, NΣ)) for all α ∈ (0, 1) .

The second pair of inequalities then follows on the event 2ρ̃(Ŝen, NΣ) 6 ρ′n, which by Theorem

E.2 occurs with probability at least 1− βn − 1/ ln2(pn).

Theorem E.4 (Multiplier Bootstrap Consistency). Let (E.1) and (E.3) hold for some con-

stants b ∈ R++ and Bn ∈ [1,∞) and some sequences δn and βn of constants in R++ both

converging to zero. Then there exists a constant Cb ∈ R++, depending only on b, such that

sup
α∈(0,1)

∣∣P(‖Sn‖∞ > q̂n (1− α)
)
− α

∣∣ 6 Cb max

{
βn, δn,

(
B4
n ln7 (pn)

n

)1/6

,
1

ln2 (pn)

}
.

Thus, if in addition B4
n ln7 (pn) /n→ 0, then

sup
α∈(0,1)

∣∣P(‖Sn‖∞ > q̂n (1− α)
)
− α

∣∣→ 0.
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Proof. By Theorems E.1 and E.3,

P
(
‖Sn‖∞ 6 q̂n (1− α)

)
6 P

(
‖Sn‖∞ 6 qNΣ (1− α + ρ′n)

)
+ βn +

1

ln2(pn)

6 P
(
‖NΣ‖∞ 6 qNΣ (1− α + ρ′n)

)
+ ρn + βn +

1

ln2(pn)

6 1− α + ρ′n + ρn + βn +
1

ln2(pn)
.

A parallel argument shows

P
(
‖Sn‖∞ 6 q̂n (1− α)

)
> 1− α−

(
ρ′n + ρn + βn +

1

ln2(pn)

)
.

The claim now follows from combining and rearranging the previous two displays.
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