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Abstract

We compare two approaches to using information about the signs of struc-

tural shocks at specific dates within a structural vector autoregression (SVAR):

imposing ‘narrative restrictions’ (NR) on the shock signs in an otherwise set-

identified SVAR; and casting the information about the shock signs as a discrete-

valued ‘narrative proxy’ (NP) to point-identify the impulse responses. The NP

is likely to be ‘weak’ given that the sign of the shock is typically known in a

small number of periods, in which case the weak-proxy robust confidence in-

tervals in Montiel-Olea et al. (2021) are the natural approach to conducting

inference. However, we show both theoretically and via Monte Carlo simula-

tions that these confidence intervals have distorted coverage – which may be

higher or lower than the nominal level – unless the sign of the shock is known

in a large number of periods. Regarding the NR approach, we show that the

prior-robust Bayesian credible intervals from Giacomini et al. (2021a) deliver

coverage exceeding the nominal level, but which converges towards the nominal

level as the number of NR increases.
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1 Introduction

Structural vector autoregressions (SVARs) are used in macroeconomics to estimate

the dynamic causal effects of structural shocks. A common approach to identifying the

effects of these shocks is to impose a set of sign and/or zero restrictions on functions

of the SVAR’s structural parameters that together result in set-identification of the

parameters of interest (e.g. sign restrictions on impulse responses, as in Uhlig (2005)).

A growing number of papers augment these ‘traditional’ set-identifying restrictions

with restrictions that involve the values of the structural shocks in specific periods.

For instance, Antoĺın-Dı́az and Rubio-Ramı́rez (2018) propose restricting the signs

of structural shocks based on the historical narrative about the nature of the shocks

hitting the economy in particular episodes. An example is the restriction that there

was a positive monetary policy shock in the United States in October 1979, which

is the year in which the Federal Reserve dramatically raised the federal funds rate

following Paul Volcker becoming chairman.1

In this paper, we compare two alternative approaches to using information about

the signs of structural shocks in specific periods in an SVAR framework. The first

approach is to impose the information as restrictions on the signs of the structural

shocks in an otherwise set-identified SVAR, as in Antoĺın-Dı́az and Rubio-Ramı́rez

(2018); we refer to this as ‘shock-sign narrative restrictions’ (NR). The second ap-

proach follows a suggestion in Plagborg-Møller and Wolf (2021a) that the information

about the shock signs could be recast as an external instrument or ‘proxy’ for use in

a proxy SVAR (e.g. Mertens and Ravn 2013; Stock and Watson 2018).2 We refer to

this as the ‘narrative-proxy’ (NP) approach.

Following Antoĺın-Dı́az and Rubio-Ramı́rez (2018), the literature that makes use of

NR typically imposes these restrictions within a Bayesian framework.3 This involves

specifying a uniform-normal-inverse-Wishart prior over the orthogonal reduced-form

parameterisation of the SVAR, which is the standard approach in set-identified SVARs

1Other papers that impose NR include Ben Zeev (2018), Ludvigson, Ma and Ng (2018, 2021),
Furlanetto and Robstad (2019), Cheng and Yang (2020), Kilian and Zhou (2020a, 2020b), Laumer
(2020), Redl (2020), Zhou (2020), Caggiano et al. (2021), Maffei-Faccioli and Vella (2021), Berger
et al. (2022) and Inoue and Kilian (in press).

2More precisely, the possibility of using narrative information to construct a proxy variable is
discussed in the Supplement to Plagborg-Møller and Wolf (2021a); see Plagborg-Møller and Wolf
(2021b).

3An exception is Ludvigson et al. (2018, 2021), who use a bootstrap to conduct inference.
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(e.g. Arias et al. 2018). However, Giacomini et al. (2021a) – henceforth, GKR – point

out some undesirable features of this approach. Under shock-sign restrictions, the

likelihood function possesses flat regions, which implies that a component of the prior

is never updated by the data. Furthermore, as discussed by Baumeister and Hamilton

(2015) in the context of standard sign restrictions, the prior is informative about

parameters of interest, such as impulse responses. Given that the prior is primarily

chosen for computational convenience and does not reflect credible prior information

about the parameters, these features of standard Bayesian inference under NR raise

the concern that posterior inference may be mainly driven by the choice of prior.4

To address the issue of posterior sensitivity to the choice of prior under NR,

GKR propose applying a variant of the ‘robust’ (multiple-prior) Bayesian approach

to inference for set-identified models developed in Giacomini and Kitagawa (2021).

This involves replacing the unrevisable component of the prior with a class of priors

that are consistent with the identifying restrictions. The class of priors generates a

class of posteriors, which can be summarised in various ways. For example, rather

than having a single posterior mean, there is a set of posterior means, which is an

interval containing every possible posterior mean that could be obtained under the

class of priors. One can also report a ‘robust credible interval’, which is an interval

that receives at least a given posterior probability under every posterior in the class

of posteriors. This approach eliminates the source of posterior sensitivity arising due

to the unrevisable component of the prior. See Giacomini et al. (2021b) for a review

of robust Bayesian approaches to inference in set-identified econometric models.

As noted in Plagborg-Møller and Wolf (2021a), an alternative way to use informa-

tion about the signs of a particular structural shock in specific periods is to recast this

information as a discrete-valued proxy for the structural shock. Specifically, construct

a variable that is equal to one in periods where the shock is known to be positive,

minus one in periods where it is known to be negative, and zero in all other periods.

This variable is positively correlated with the target structural shock (i.e. ‘relevant’)

4An additional problem arises under more-general classes of NR, such as restrictions on the
historical decomposition. In constructing the posterior, Antoĺın-Dı́az and Rubio-Ramı́rez (2018) use
the conditional likelihood, which is the likelihood function conditional on the NR holding. GKR
show that the use of this likelihood can distort the posterior distribution towards parameter values
that result in a lower ex ante probability that the NR are satisfied. To address this problem, GKR
propose using the unconditional likelihood to construct the posterior. This problem does not arise
under shock-sign restrictions, because the conditional and unconditional likelihoods are identical up
to a multiplicative constant.
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and uncorrelated with all other structural shocks (i.e. ‘exogenous’). The variable

is therefore a valid proxy for the structural shock and can be used to point-identify

impulse responses to that shock in a proxy SVAR (Mertens and Ravn 2013; Stock

and Watson 2018).5

Montiel-Olea et al. (2021) – henceforth, MSW – show that frequentist inference

about impulse responses is nonstandard when the proxy variable is only weakly cor-

related with the target structural shock (see also Lunsford (2015)). They propose

a weak-proxy robust approach to inference, which – under some conditions – has

asymptotically valid coverage of the true impulse response regardless of the strength

of the correlation between the proxy and shock. We show that the narrative proxy

is likely to be weakly correlated with the target structural shock when there are only

a small number of periods in which the sign of the shock is known, which tends to

be the case empirically; for example, the applications considered in Antoĺın-Dı́az and

Rubio-Ramı́rez (2018) impose NR in no more than a handful of periods. Accordingly,

the weak-proxy robust approach to inference is the natural approach to frequentist

inference when using NP.

We discuss the frequentist properties of the inferential procedures described above

when the parameter of interest is the impulse response to a unit structural shock (e.g.

a monetary policy shock that raises the federal funds rate by 100 basis points).6 When

the number of NR is fixed with the sample size, we show that the robust credible region

has asymptotic frequentist coverage of the true impulse response that is weakly greater

than the nominal level. When the number of NR increases proportionally with the

sample size, the coverage probability converges to the nominal level asymptotically.

We then show that the assumptions required for the asymptotic validity of the

weak-proxy robust confidence intervals in MSW are violated under the NP approach.

Specifically, the covariance between the NP and the reduced-form VAR innovations is

not
√
T -asymptotically normal (where T is the sample size) when the NP is nonzero

in a fixed number of periods. The MSW confidence intervals are constructed following

the Anderson-Rubin approach, which involves inverting a particular Wald test. The

5The proxy is also uncorrelated with leads and lags of the structural shocks, so it could alter-
natively be used to point-identify the impulse responses to that shock in an instrumental-variables
local projection, which does not require assuming that the structural shock is invertible (Stock and
Watson 2018).

6While most studies using set-identified SVARs focus on impulse responses to a standard-
deviation shock as the parameters of interest, the impulse responses to a unit shock are naturally of
greater interest to policymakers (e.g. Stock and Watson 2018).
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Wald statistic for this test is asymptotically χ2(1) under the assumptions in MSW.

We show that if the NP is nonzero in a fixed number of periods, the null distribution of

this test statistic is not χ2(1), no matter how large the sample size T is. Consequently,

the size of the test with χ2(1) critical values is generally not equal to the nominal

level and the confidence intervals obtained from inverting the test are not guaranteed

to attain correct coverage even when T is large. Thus, weak-proxy robust confidence

intervals based on the standard Anderson-Rubin approach are not recommended when

the NP is nonzero in only a small number of periods.

We provide Monte Carlo evidence in support of our theoretical results. The cover-

age probability of the weak-proxy robust confidence intervals differs from the nominal

level unless the sign of the shock is known in a relatively large number of periods.

Whether the intervals under- or over-cover depends on the confidence level. In con-

trast, the robust credible intervals always over-cover, but the coverage probability

converges towards the nominal level as the number of NR increases.

We focus our discussion on a bivariate, static SVAR. The main reason for this

simplification is that it allows us to derive an analytical expression for the ‘conditional

identified set’ (i.e. the set of parameter values that are consistent with the NR given

the reduced-form parameters), which is useful for both illustration and simulation of

the NR approach. The theoretical findings do not rely on this simplification, and we

provide some suggestions in the paper on how the analysis could be generalized to

incorporate dynamics or additional variables.

To the best of our knowledge, this is the first paper to explore whether information

about structural shocks should be used to impose NR in an otherwise set-identified

SVAR or to construct a proxy for use in a proxy SVAR. Boer and Lütkepohl (2021)

compare the efficiency of proxy SVAR estimators that use only the signs of structural

shocks on particular dates against proxies that also use information about the size of

the shock (i.e. standard proxies). Based on Monte Carlo simulations, they conclude

that the estimator that uses information only about the sign of the shock is nearly

as (or, in some cases, more) efficient than the estimator based on the quantitative

information. Budnik and Rünstler (2020) consider identification of impulse responses

in Bayesian proxy SVARs when the proxy represents the sign of a certain structural

shock in particular periods. Their approach to identification departs from the stan-

dard proxy SVAR setting and is implemented using linear discriminant analysis or a

non-parametric sign-concordance criterion.
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The remainder of the paper is structured as follows. Section 2 describes the two

approaches to using information about shock signs within the context of a stylised

SVAR. Section 3 examines the theoretical frequentist properties of the robust Bayesian

approach to inference under NR and the weak-proxy robust approach to inference

under NP. Section 4 provides results from Monte Carlo simulations supporting the

theoretical results. Section 5 concludes.

2 Frameworks For Using Information about Shock

Signs

This section introduces a stylised bivariate SVAR and discusses the two approaches

to using information about the sign of a structural shock.

2.1 Stylised SVAR

Consider the SVAR(0) for the 2× 1 vector of endogenous variables yt = (y1t, y2t)
′:

A0yt = εt, t = 1, . . . , T, (1)

where εt = (ε1t, ε2t)
′ with εt

iid∼ N (02×1, I2), where I2 is the 2×2 identity matrix. The

orthogonal reduced form of the model reparameterizes A−10 as ΣtrQ, where Σtr is the

lower-triangular Cholesky factor (with positive diagonal elements) of Σ = E(yty
′
t) =

A−10

(
A−10

)′
. We parameterize Σtr as

Σtr =

[
σ11 0

σ21 σ22

]
(σ11, σ22 > 0), (2)

and denote the vector of reduced-form parameters as φ = vech(Σtr). Q is an or-

thonormal matrix in the space of 2× 2 orthonormal matrices, O(2):

Q ∈ O(2) =

{[
cos θ − sin θ

sin θ cos θ

]
: θ ∈ [−π, π]

}
∪

{[
cos θ sin θ

sin θ − cos θ

]
: θ ∈ [−π, π]

}
,

(3)

where the first set is the set of ‘rotation’ matrices and the second set is the set of

‘reflection’ matrices.
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In the absence of any identifying restrictions, the identified set for A−10 (the matrix

of contemporaneous impulse responses) is

A−10 ∈

{[
σ11 cos θ −σ11 sin θ

σ21 cos θ + σ22 sin θ σ22 cos θ − σ21 sin θ

]
: θ ∈ [−π, π]

}

∪

{[
σ11 cos θ σ11 sin θ

σ21 cos θ + σ22 sin θ σ21 sin θ − σ22 cos θ

]
: θ ∈ [−π, π]

}
. (4)

The identified set for A0 is then

A0 ∈

{
1

σ11σ22

[
σ22 cos θ − σ21 sin θ σ11 sin θ

−σ21 cos θ − σ22 sin θ σ11 cos θ

]
: θ ∈ [−π, π]

}

∪

{
1

σ11σ22

[
σ22 cos θ − σ21 sin θ σ11 sin θ

σ22 sin θ + σ21 cos θ −σ11 cos θ

]
: θ ∈ [−π, π]

}
. (5)

Henceforth, we leave implicit that θ ∈ [−π, π] and we impose the sign normalisation

diag(A0) ≥ 02×1, which is a normalisation on the signs of the structural shocks.

The impulse response of the second variable to a shock to the first variable that

raises the first variable by one unit is

η21(φ, θ) =
σ21 cos θ + σ22 sin θ

σ11 cos θ
=
σ21
σ11

+
σ22
σ11

tan θ. (6)

In what follows, we assume that this is the parameter of interest.

2.2 Narrative Restrictions and Robust Bayesian Inference

Consider the NR that ε1t ≥ 0 for some t ∈ {1, . . . , T}, which is one of the restrictions

proposed by Antoĺın-Dı́az and Rubio-Ramı́rez (2018) and Ludvigson et al. (2018):

ε1t = e′1A0yt = (σ11σ22)
−1 (σ22y1t cos θ + (σ11y2t − σ21y1t) sin θ) ≥ 0, (7)

where e1 is the first column of the 2× 2 identity matrix, I2. Under the sign normal-

ization and the NR, θ is restricted to the set

θ ∈ {θ : σ21 sin θ ≤ σ22 cos θ, cos θ ≥ 0, σ22y1t cos θ ≥ (σ21y1t − σ11y2k) sin θ}
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∪ {θ : σ21 sin θ ≤ σ22 cos θ, cos θ ≤ 0, σ22y1t cos θ ≥ (σ21y1t − σ11y2t) sin θ} . (8)

Since y1t and y2t enter the inequalities characterising this set, the NR induces a set-

valued mapping from φ to θ – and thus to η21 – that depends on the realization of yt;

GKR refer to this mapping as the ‘conditional identified set’.7 For example, in the

case where σ21 < 0, h(φ,yt) = σ21y1t − σ11y2t > 0 and C(φ,yt) = σ22y1t/h(φ,yt) >

σ22/σ21, the conditional identified set for θ is

CISθ(φ|yt) =

[
arctan

(
σ22
σ21

)
, arctan(C(φ,yt))

]
, (9)

and the conditional identified set for η21 is

CISη(φ|yt) =

[
σ21
σ11

+
σ2
22

σ21σ11
,
σ21
σ11

+
σ22
σ11

C(φ,yt)

]
. (10)

The conditional identified set for η21 may be unbounded; for example, when σ21 < 0

and h(φ,y) < 0, the conditional identified set for θ includes π/2 and the conditional

identified set for η21 is (−∞,∞), which implies that the NR is completely uninfor-

mative about the impulse response.8

As in GKR, we do not model a mechanism for when the shock-sign restrictions be-

come available. Our analysis assumes that the sign of ε1t is revealed in the first K pe-

riods, but our results would also hold if we assumed that the sign of ε1t was revealed in

K random periods. The set of restrictions can be represented as {N(θ,φ,yt) ≥ 0}Kt=1.

The ‘unconditional’ likelihood based on the sample yT = (y′1, . . . ,y
′
T )′ and the NR is

p(yT , {N(θ,φ,yt) ≥ 0}Kt=1 |θ,φ) =

T∏
t=1

(2π)−1|Σ|−
1
2 exp

(
−1

2
y′tΣ

−1yt

) K∏
t=1

1(N(θ,φ,yt) ≥ 0), (11)

7The conditional identified set is the set of values of a particular parameter that are consistent
with the reduced-form parameters and the imposed restrictions (i.e. the NR and any other identifying
restrictions, such as sign restrictions on impulse responses). The concept of a conditional identified
set differs from that of a standard identified set. The latter is defined by a (set-valued) mapping from
reduced-form to structural parameters, while the former additionally depends on the realisation of
the data in particular periods. See GKR for further details.

8Appendix A characterises the conditional identified set for θ when σ21 < 0 under the restriction
that ε1t ≥ 0 or ε1t ≤ 0. It also explains how to obtain the conditional identified set for η21. We
draw on these analytical expressions when conducting Monte Carlo exercises in Section 4.

8



where 1(N(θ,φ,yt) ≥ 0) is the indicator function equal to one when N(θ,φ,yt) ≥ 0

and equal to zero otherwise.9 The dependence of the likelihood on θ is only through

the indicator functions. The NR truncate the likelihood so that it is flat for any θ

satisfying the NR and is zero otherwise, with the points of truncation depending on

the realisation of {yt}Kt=1.

The standard approach to Bayesian inference in this setting (e.g. Antoĺın-Dı́az

and Rubio-Ramı́rez 2018) would involve specifying a uniform prior over θ, which

corresponds to the usual uniform or ‘Haar’ prior over the orthonormal matrix Q (e.g.

Baumeister and Hamilton 2015; Arias et al. 2018). However, GKR argue that the

flat likelihood function raises concerns about the sensitivity of posterior inference

to the choice of prior, which is primarily chosen for computational convenience and

does not reflect actual subjective beliefs about the parameters; the posterior for θ

will be proportional to the prior whenever the likelihood is nonzero. This is similar

to the case under standard sign restrictions (e.g. Baumeister and Hamilton 2015).

GKR therefore propose extending the robust Bayesian approach of Giacomini and

Kitagawa (2021) to this setting.

The key feature of the robust Bayesian approach to inference under NR is that,

rather than imposing a single conditional prior over θ, we consider the class of all

priors that are consistent with any ‘traditional’ set-identifying restrictions (in this

case, the sign normalisations). Combining the class of priors with the unconditional

likelihood generates a class of posteriors for θ – and thus for η21 – that are consistent

with the NR. Importantly, this approach eliminates the source of posterior sensitivity

to the unrevisable component of the prior (i.e. the conditional prior for θ given φ).

In the current context, the robust Bayesian approach to conducting inference

about η21 proceeds as follows. First, impose a prior over φ and obtain draws of

φ from its posterior, πφ|YT . Second, for each draw of φ, compute the conditional

identified set for η21 given the NR:10

CISη

(
φ| {yt}Kt=1

)
=
{
η21(φ, θ) : {N(θ,φ,yt) ≥ 0}Kt=1

}
(12)

=
[
`
(
φ, {yt}Kt=1

)
, u
(
φ, {yt}Kt=1

)]
. (13)

9In this case the ‘conditional’ likelihood used by Antoĺın-Dı́az and Rubio-Ramı́rez (2018) is equal
to the unconditional likelihood up to a multiplicative constant that does not depend on θ; the
conditional likelihood is obtained from the unconditional likelihood by dividing by the probability
that the structural shocks satisfy the shock-sign restrictions, which is (1/2)K .

10In defining the conditional identified sets, we leave implicit the sign normalisation on A0.
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Finally, using the posterior draws of the bounds of the conditional identified set,

construct a robust credible region with credibility α as an interval Cα satisfying

πφ|YT

([
`
(
φ, {yt}Kt=1

)
, u
(
φ, {yt}Kt=1

)]
⊂ Cα

)
= α. (14)

This interval receives posterior probability at least α under all posterior distributions

within the class of posteriors for η21. The robust credible interval with credibility α

will be unbounded whenever πφ|YT

(
CISη

(
φ| {yt}Kt=1

)
= R

)
≥ 1− α.

2.3 Narrative Proxies and Weak-proxy Robust Inference

Plagborg-Møller and Wolf (2021a) suggest that the information about the signs of

structural shocks imposed under NR can alternatively be used to construct a proxy

variable, which can be used to point-identify impulse responses in a proxy SVAR or

instrumental-variable local projection.

Solving the equation for ε2t in (1) for y2t and plugging in (6), we obtain, for

t = 1, . . . , T ,

y2t = η21y1t + wt, (15)

where wt depends on ε2t, σ11 and θ. To identify the impulse response of interest η21,

consider using some variable zt satisfying E(ztε1t) 6= 0 (relevance) and E(ztε2t) = 0

(exogeneity) as an instrument for y1t.
11 Since y1t = e′1A

−1
0 εt, relevance of zt im-

plies E(zty1t) 6= 0. Hence, by the standard identification approach using the linear

instrumental-variable method, we can identify η21 by the Wald estimand (Stock and

Watson (2018)):

η21 =
E(zty2t)

E(zty1t)
. (16)

As above, we assume that the sign of the shock is observable in the first K periods.

The proposal from Plagborg-Møller and Wolf (2021a) is to use the information about

the shock signs to construct zt as:

zt =

sign(ε1t) if t = 1, . . . , K

0 otherwise.
(17)

11In a model with dynamics or additional variables, impulse responses would be identified from
the instrumental-variables regression of one reduced-form VAR innovation on another; see Stock and
Watson (2016, 2018) or MSW.
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sign(ε1t) is clearly (positively) correlated with ε1t itself and is uncorrelated with ε2t,

because the two shocks are independent by assumption. This proxy will therefore sat-

isfy the relevance and exogeneity requirements, and, therefore, at any t ∈ {1, . . . , K},
the Wald estimand (16) identifies η21. Since the expectations in (16) are common for

all t = 1, . . . , K, a sample analogue estimator for η21 can be formed as

η̂21 =
1
K

∑K
t=1 zty2t

1
K

∑K
t=1 zty1t

=
1
T

∑T
t=1 zty2t

1
T

∑T
t=1 zty1t

=

∑K
t=1 sign(ε1t)y2t∑K
t=1 sign(ε1t)y1t

, (18)

which is identical to the two-stage least square estimator using zt as an instrumental

variable for y1t.

In the case where K = 1, η̂21 = y2,1/y1,1. The point estimator of the impulse

response will therefore be sensitive to the realisation of the structural shocks in a

single period (i.e. the period in which the sign of the shock is known). For example,

if ε2t 6= 0 and ε1t ≈ 0, θ̂ ≈ arctan(− cot θ0) and η̂21 is approximately equal to

σ21
σ11

+
σ22
σ11

tan (arctan (− cot(θ0))) =
σ21
σ11
− σ22
σ11

cot θ0, (19)

which, rather than the true value of η21, equals the true impulse response of the second

variable to the second shock such that the first variable increases by one unit.12 More

generally, when K > 1, the estimator of the impulse response under NP may be

sensitive to the realisations of the non-target shocks in the periods in which the sign

of the target shock is known.

As discussed in MSW, standard approaches to inference (e.g. based on asymptotic

normality of the reduced-form parameters and the delta-method) in proxy SVARs are

invalid when the proxy is only weakly correlated with the target structural shock. This

is likely to be the case in applications using NP. For example, under the assumption

that the structural shocks are normally distributed and the sign of the shock is known

in K periods, the expected value of the sample covariance between the proxy variable

and the target structural shock is (K/T )
√

2/π, where T is the number of observations

and expectations are taken over alternative realisations of a time series of length T .

For K small relative to T , this expected covariance will be close to zero. Furthermore,

for K fixed as T approaches infinity, the expected covariance will converge to zero at

12The estimator under the NP when K = 1 coincides with the estimator that would be obtained
under the ‘narrative zero restriction’ ε2,1 = 0.
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rate T , which is faster than the
√
T rate of convergence typically considered under

weak-instrument asymptotics. The scenario where K is small (or fixed) relative to T

appears to be the empirically relevant case given that most studies that impose NR

do so in at most a handful of periods.13

Given that the NP is likely to be weakly correlated with the target structural

shock in typical empirical applications, it seems natural to turn to the weak-proxy

robust approach to inference developed in MSW. Building on the Anderson-Rubin

approach to weak-instrument robust inference in microeconometrics, they develop

weak-proxy robust confidence intervals for the impulse responses in a proxy SVAR.

MSW show that their weak-proxy robust confidence intervals have correct coverage

of the true impulse response under the assumption that the reduced-form parameters

are asymptotically normally distributed. Importantly, this result does not depend on

the strength of the covariance between the NP and the target structural shock.

The Anderson-Rubin confidence intervals are obtained as follows. Define the vec-

tor of average covariances between the NP and the observations by

ΓT ≡

[
γ1T

γ2T

]
=

1

T

T∑
t=1

E(ztyt). (20)

As noted above, we assume that the sign of ε1t is known in the first K periods. This

implies that the proxy {zt : t = 1 . . . T} is not weakly stationary and the covariance

E(ztyt) varies with t:

E(ztyt) =

E(sign(ε1t)yt) for 1 ≤ t ≤ K,

0, for t > K,

so ΓT = 1
T

∑K
t=1 E(sign(ε1t)yt).

Let Γ̂T denote an analogue estimator of ΓT . Because we know the signs of the

first structural shock in the first K periods only,

Γ̂T =

[
γ̂1T

γ̂2T

]
=

1

T

T∑
t=1

ztyt =
1

T

K∑
t=1

sign(ε1t)yt. (21)

13For example, when estimating the effects of US monetary policy, Antoĺın-Dı́az and Rubio-
Ramı́rez (2018) impose NR in a single period in their main specification and in eight periods in
a robustness exercise.
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The Anderson-Rubin confidence intervals in MSW are constructed by inverting

tests based on the Wald statistic

WT (η21) =
T (γ̂2T − η21γ̂1T )2(

−η21 1
)

Ω̂T

(
−η21 1

)′ , (22)

where Ω̂T is the sample variance-covariance matrix of (ztyt : t = 1, . . . , T ). Under the

assumptions in MSW, WT (η21) asymptotically follows the χ2(1) distribution under

the null. Constructing an α-level confidence interval for η21 requires finding the set

of values of η21 such that WT (η21) ≤ χ2
α(1), where χ2

α(1) is the α quantile of the χ2(1)

distribution. This inequality is quadratic in η21 and has an analytical solution.

3 Frequentist Properties of Approaches to Infer-

ence

This section discusses the asymptotic frequentist properties of the robust Bayesian

approach to inference under NR and the weak-proxy robust approach to inference

under NP.

3.1 Robust Bayesian Inference Under NR

GKR show that their robust Bayesian approach to inference under NR is asymptot-

ically valid from a frequentist perspective when the number of NR is fixed with the

sample size. In particular, the robust credible interval has at least the nominal level

of coverage for the true impulse response to a standard-deviation shock asymptoti-

cally under some high-level assumptions. These assumptions are that the conditional

identified set for the impulse response is closed and convex, and has lower and upper

bounds that are differentiable in φ at φ = φ0 with nonzero derivatives.14

In the current context, we are interested in the impulse response to a unit shock

rather than a standard-deviation shock. As discussed in Read (forthcoming), this shift

in the parameter of interest may give rise to an unbounded conditional identified set,

depending on φ and the realization of the data. This means that the asymptotic

14Propositions B.1–B.3 in GKR provide primitive conditions under which these assumptions hold
when there are shock-sign restrictions.
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validity claim from GKR does not immediately apply when the parameter of interest

is the impulse response to a unit shock. However, the following informal proof shows

that asymptotic validity of the robust credible interval also holds in the NR setting

considered in this paper.

Conditional on the realization of the data entering the NR, {yt}Kt=1, if the con-

ditional identified set is bounded at any φ in an open neighbourhood of φ0 and

has lower and upper bounds differentiable in φ (with nonzero derivatives), the ro-

bust credible interval will asymptotically contain the true conditional identified set,

CISη
(
φ0|{yt}Kt=1

)
, with probability α under the sampling distribution of the remain-

ing data (i.e. {yt}Tt=K+1). Assuming the NR are correctly specified, the true impulse

response will lie within the conditional identified set, so the robust credible interval

will also asymptotically contain the true impulse response with probability at least

α. If the conditional identified set is unbounded at φ = φ0 and its neighborhood,

the robust credible interval is also unbounded with a high probability in terms of the

sampling distribution of the remaining data, i.e., the robust credible interval contains

the true impulse response with probability approaching one under the sampling distri-

bution of the remaining data. Thus, regardless of whether the conditional identified

set is bounded around φ = φ0, the unconditional coverage probability – obtained

by averaging over the possible realisations of {yt}Kt=1 – is greater than the nominal

coverage probability.

GKR also show that when the number of NR increases with the sample size (i.e.

K →∞ in proportion to T →∞), the posterior distributions of the lower and upper

bounds of the conditional identified set for θ are
√
T -consistent for θ0. The posterior

consistency property will also carry over to the impulse response η21, in the sense that

the posterior distributions of the lower and upper bounds of the conditional identified

set for η21 converge to the true η21 so long as θ0 6= ±π/2, which are the points of

singularity for η21(φ, θ). Furthermore, the posteriors of the lower and upper bounds

of the conditional identified set for η21 are asymptotically normal, and the posterior

credible intervals constructed upon them as well as the robust Bayes credible interval

for η21 asymptotically attain the correct frequentist coverage.
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3.2 Weak-proxy Robust Inference Under NP

Assumption 2 of MSW requires that the reduced-form covariance estimator Γ̂T is

normally distributed asymptotically. However, in the NP setting with fixed K,

√
T (Γ̂T − ΓT ) =

√
T

(
1

T

T∑
t=1

[ztyt − E(ztyt)]

)

=
1√
T

A−10

K∑
t=1

[sign(ε1t)εt − E(sign(ε1t)εt)]

=
1√
T

A−10

K∑
t=1

[
sign(ε1t)εt −

K

T

√
2

π
e1

]
→p 02×1 as T →∞.

The reduced-form covariance between the NP and the data therefore has a degenerate

distribution asymptotically after rescaling by
√
T . Consequently, Assumption 2 in

MSW is not satisfied, and it is unclear whether the weak-proxy robust confidence

intervals will have valid coverage of the true impulse response in the NP setting.

To examine the coverage properties of the Anderson-Rubin confidence intervals in

this setting, express the parameter of interest η21 in terms of ΓT . η21 is identified by

the ratio of the second and first elements of ΓT :

η21 =
T−1

∑T
t=1 E(zty2t)

T−1
∑T

t=1 E(zty1t)
=
T−1

∑K
t=1 E(sign(ε1t)y2t)

T−1
∑K

t=1 E(sign(ε1t)y1t)
. (23)

Following MSW, we view the Anderson-Rubin confidence intervals as providing in-

ference for the ratio of the two means based on their unbiased statistics Γ̂T =
1
T

∑K
t=1 sign(ε1t)yt. As discussed above, with fixed K,

√
T (Γ̂T − ΓT ) is not asymp-

totically normal. In addition, even under the assumption that the structural shocks

are Gaussian, the distribution of Γ̂T is not jointly normal due to the multiplier term

sign(ε1t).

As described in Section 2.3, the standard Anderson-Rubin confidence intervals are

constructed by inverting a Wald test. Let η21 be the true impulse response specified

under the null. If we naively apply the Anderson-Rubin confidence intervals, the Wald

statistic for the test to be inverted is given by Equation (22). Ω̂T , which appears in

15



the denominator of the Wald statistic, can be expressed as

Ω̂T =
1

T

T∑
t=1

(ztyt − Γ̂T )(ztyt − Γ̂T )′

= A−10

[
1

T

K∑
t=1

εtε
′
t −

(
1

T

K∑
t=1

sign(ε1t)εt

)(
1

T

K∑
t=1

sign(ε1t)εt

)′]
(A−10 )′. (24)

Multiplying the numerator of the Wald statistic by T yields

T 2 (γ̂2T − η21γ̂1T )2 =(
−η21 1

)
A−10

[
K∑
t=1

sign(ε1t)εt

][
K∑
t=1

sign(ε1t)εt

]′
(A−10 )′

(
−η21 1

)′
. (25)

The Wald statistic (22) can then be expressed as

WT (η21) =(
−η21 1

)
A−10

[∑K
t=1 sign(ε1t)εt

] [∑K
t=1 sign(ε1t)εt

]′
(A−10 )′

(
−η21 1

)′
(
−η21 1

)
A−10

[∑K
t=1 εtε

′
t −
(

1√
T

∑K
t=1 sign(ε1t)εt

)(
1√
T

∑K
t=1 sign(ε1t)εt

)′]
(A−10 )′

(
−η21 1

)′ .
(26)

Under the assumptions in MSW, the Wald statistic has the χ2(1) distribution asymp-

totically. However, under NP, the expression above for the Wald statistic shows that

WT (η21) does not follow the χ2(1) distribution under the null even asymptotically

as T → ∞ with fixed K. First, the numerator is not a squared Gaussian random

variable when K ≥ 2. Second, the denominator remains random even asymptoti-

cally and does not converge in probability to the variance-covariance matrix of the

numerator random variable under the null. In the special case where K = 1, the

fact that (sign(ε11))
2 = 1 means that the numerator is a squared Gaussian random

variable. However, in this case the denominator is T−1
T

times the numerator, so the

Wald statistic is constant and equal to T
T−1 under the null. Performing the Wald test

using the statistic WT (η21) and critical values from the χ2(1) distribution therefore

does not generally control the type I error of the test, because the actual distribution

of WT (η21) is not χ2(1). Consequently, a naive application of the Anderson-Rubin

confidence intervals is not guaranteed to have the nominal coverage level of the true

16



impulse response.

To explore the severity of the distortion of the null distribution of the Wald statis-

tic under NP, Figure 1 plots the null distribution of the Wald statistics under the

distributional specification of εt
iid∼ N (02×1, I2) for different values of K, alongside

the χ2(1) distribution. When K = 1, the Wald statistic is constant and equal to

T/(T − 1), so the cumulative distribution function of the Wald statistic is a step

function. Since T/(T − 1) ≈ 1 lies below the 95th percentile of the χ2(1) distribution

(3.84), the 95 per cent Anderson-Rubin confidence intervals span the entire real line

and have a coverage probability equal to one. In contrast, since the 68th percentile

of the χ2(1) distribution (0.99) is less than T/(T − 1), the 68 per cent confidence

excludes any value of η21 except for η21 = γ̂2T/γ̂1T and the intervals have coverage

probability equal to zero. As K increases, the null distribution of the Wald statistic

converges towards the χ2(1) distribution. However, the 95th percentile of the null

distribution continues to lie below the 95th percentile of the χ2(1) distribution, so

the 95 per cent Anderson-Rubin confidence interval will have coverage probability

greater than the nominal level. The 68th percentile of the null distribution lies above

the 68th percentile of the χ2(1) distribution, so the 68 per cent confidence interval

will have coverage lower than the nominal level. For moderately large values of K

(e.g. 20), the null distribution of the Wald statistic is well-approximated by the χ2(1)

distribution and the coverage probabilities of the confidence intervals should be close

to the nominal level.

Note that, under the assumption that the distribution of εt is known (i.e., that it

is Gaussian), one approach to performing valid inference about the impulse response

under NP would be to use T 2 (γ̂2T − η21γ̂1T )2 as a test statistic and obtain the null

distribution of this statistic by simulating a feasible version of the right-hand side of

(25). Let Σ̂tr be a consistent estimator for Σtr (e.g. the maximum likelihood estima-

tor). Given η21 at the null and Σ̂tr, let Q̂ be the orthonormal matrix pinned down

by the value of θ solving (6) with Σ̂tr plugged in and under the sign normalizations.

We accordingly define Â−10 ≡ Σ̂trQ̂. A feasible version of the right-hand side of (25)

is then

(
−η21 1

)
Â−10

[
K∑
t=1

sign(ε1t)εt

][
K∑
t=1

sign(ε1t)εt

]′
(Â−10 )′

(
−η21 1

)′
, (27)

where εt ∼ N (0, I2), t = 1, . . . , K. In addition to relying on a strong distributional
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Figure 1: Cumulative (Null) Distribution Function of Wald Statistic
Under Narrative Proxy
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Note: Dashed lines represent 68th and 95th percentiles; data-generating process assumes T = 1, 000,
η21 = 0.4 and vech(Σtr) ≈ (0.7,−1.1, 1.4)′; null distribution approximated using 100,000 Monte
Carlo replications.

assumption, a practical drawback of this approach is that it is computationally bur-

densome; the null distribution of the statistic is not pivotal, which means that the

critical value of the test needs to be simulated at every null value of η21.

Finally, note that arguments similar to those derived in this section for the static

bivariate case also apply to the general case with additional variables and dynamics.15

15For instance, consider conducting inference about η21 in an n-variable SVAR with dynamics.
Analogously to Equation (20), ΓT is replaced by the n × 1 vector of average covariances between

the NP and the n × 1 vector of reduced-form VAR innovations, ut, and Γ̂T is the corresponding
sample analogue. The Wald statistic is still given by WT (η21) = T (γ̂2T − η21γ̂2T )2/ω̂T , where ω̂T is
the estimator of the asymptotic variance of

√
T (γ̂2T − η21γ̂2T ). yt is replaced with ut in Equation

(24) and the vector (−η21, 1) in Equations (25) and (26) is replaced with (−η21, 1,01×(n−2)).
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4 Monte Carlo

This section describes a Monte Carlo simulation designed to compare the properties

of the weak-proxy robust confidence intervals in the NP setting against that of the

robust Bayesian credible intervals under a corresponding set of shock-sign NR.

4.1 Design

For consistency with the theoretical results obtained above and to leverage analyti-

cal results about the conditional identified set under NR, we maintain the bivariate

SVAR(0) described in Section 2. We set

A−10 =

[
0.5 −0.5

0.2 1.8

]
⇒ Σ =

[
0.5 −0.8

−0.8 3.28

]
. (28)

The parameter of interest is the impulse response of y2t to a unit shock in y1t, which

is 0.2/0.5 = 0.4.

We proceed under the assumption that εt ∼ N (02×1, I2). We assume that the

sign of ε1t is revealed in the first K periods (although the results would be identical

if we assumed that the sign of the shock was revealed in K random periods). We fix

the sample length T = 1, 000 and compare the two approaches to identification and

inference under different assumptions about the number of periods in which the sign

of the shock is known.

Under the NP approach, the proxy zt is generated according to zt = sign(ε1t)

for t = 1, . . . , K and zt = 0 otherwise. For each of 10,000 Monte Carlo samples,

we compute weak-proxy robust confidence intervals by applying the replication code

from MSW.16

Under the NR approach, we impose the restriction sign(ε1t)ε1t ≥ 0 for t = 1, . . . , K

along with the sign normalisation e′1A0e1 ≥ 0. We conduct inference using the

robust Bayesian approach from GKR. We assume an improper Jeffreys’ prior over

Σ, which implies that the posterior is inverse-Wishart. In each of 1,000 Monte Carlo

samples, we obtain 1,000 draws of Σtr and compute the lower and upper bounds of

the conditional identified set for θ by first computing the lower and upper bounds

16The replication code was obtained from José Luis Montiel Olea’s website: http://www.

joseluismontielolea.com. We modify the code to omit a constant term from the VAR, since
no constant appears in the data-generating process.
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that would be obtained under each separate shock-sign restriction (for which we

have analytical expressions; see Appendix for details). We then intersect the bounds

obtained under each separate shock-sign restriction to obtain the bounds for the

conditional identified set under the joint set of restrictions. The conditional identified

set for θ is then projected into impulse-response space to obtain the conditional

identified set for η21. We construct a robust credible interval with credibility α by

computing the (1−α)/2 quantile of the posterior distribution of the lower bound and

the (1 + α)/2 quantile of the posterior distribution of the upper bound.

4.2 Results

To summarise the performance of the weak-proxy robust approach to inference in the

NP setting, we compute five statistics of interest. The first is the coverage probabil-

ity of the weak-proxy robust confidence interval, which is the share of Monte Carlo

replications in which the confidence interval includes the true value of the impulse

response. The second is the proportion of Monte Carlo samples in which the con-

fidence interval is unbounded. We also present the median width of the confidence

interval across the Monte Carlo replications. Finally, we present the average value

of the Wald statistic for testing the null hypothesis that the covariance between the

proxy and y1t is zero (i.e. γ̂1T = 0), which is a measure of the strength of the proxy.

The α-level weak-proxy robust confidence intervals are bounded if and only if this

statistic exceeds the α quantile of the χ2(1) distribution.

The 95 per cent weak-proxy robust confidence interval is always unbounded when

K = 1, 2, 3, so the coverage probability is trivially equal to one (Table 1). As K

increases, the confidence intervals are bounded with higher probability. Coverage

probabilities remain higher than the nominal level for small-to-moderate values of

K. Only for larger values of K do the confidence intervals possess approximately

correct coverage. The improving coverage properties of the confidence intervals as K

increases reflects the fact that null distribution of WT is better approximated by the

χ2(1) distribution (as discussed in the previous section). As K increases, the average

value of the Wald statistic for testing the null hypothesis that γ̂1T = 0 increases, which

indicates that the NP becomes a stronger (or more relevant) proxy as it becomes less

sparse.

Table 2 repeats this exercise when α = 0.68. Here, the key results are essentially
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Table 1: Weak-proxy Robust Inference – Monte Carlo Results for α = 0.95

K Coverage prob. Unbounded Median width Average W
1 1.000 1.000 ∞ 1.001
2 1.000 1.000 ∞ 1.194
3 1.000 1.000 ∞ 1.452
4 0.996 0.985 ∞ 1.761
5 0.978 0.887 ∞ 2.043
10 0.958 0.549 ∞ 3.623
20 0.952 0.180 8.222 6.800
30 0.951 0.047 5.067 10.009
40 0.954 0.011 3.975 13.256
50 0.951 0.001 3.371 16.550
100 0.947 0.000 2.133 33.362
500 0.950 0.000 0.894 189.693
1000 0.950 0.000 0.625 468.572

Notes: ‘Coverage prob.’ is the coverage probability of the 95 per cent weak-proxy robust confidence

interval; ‘Unbounded’ is the proportion of Monte Carlo samples in which the confidence interval is

unbounded; W is the Wald statistic for testing the null hypothesis that the covariance between the

proxy and y1t is zero.

the reverse of the case where α = 0.95. Consistent with the analysis in the previous

section, the 68 per cent confidence intervals have a coverage probability equal to

zero when K = 1; in this case, the confidence interval always has zero width – it

is a singleton equal to the point estimate. The confidence intervals possess coverage

probabilities lower than the nominal level for small values of K. Again, the coverage

probabilities approach the nominal level only for larger values of K.

Tables 3 and 4 present analogous statistics for the robust credible intervals ob-

tained under the shock-sign NR. When the restrictions are imposed in only a handful

of periods, the robust credible intervals are unbounded in a large proportion of the

Monte Carlo replications (this occurs in any particular sample when the conditional

identified set is unbounded with high posterior probability). The robust credible in-

terval contains the true impulse response with probability greater than the nominal

level at all values of K, which is consistent with the arguments in Section 3.1. Even

when K = 1, 000 – so that the sign of the shock is known in every period – the

coverage probabilities are a bit higher than the nominal level (e.g. 95.5 per cent for

a nominal level of 95 per cent and 71.8 per cent for a nominal level of 68 per cent).

These results suggest a trade-off when deciding whether to use the NP or NR
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Table 2: Weak-proxy Robust Inference – Monte Carlo Results for α = 0.68

K Coverage prob. Unbounded Median width Average W
1 0.000 0.000 0.000 1.001
2 0.493 0.376 7.824 1.194
3 0.581 0.360 8.549 1.452
4 0.603 0.311 7.008 1.761
5 0.627 0.276 6.075 2.043
10 0.654 0.109 3.634 3.623
20 0.654 0.020 2.386 6.800
30 0.667 0.003 1.895 10.009
40 0.674 0.000 1.640 13.256
50 0.674 0.000 1.457 16.550
100 0.682 0.000 1.008 33.362
500 0.687 0.000 0.448 189.693
1000 0.683 0.000 0.316 468.572

Notes: ‘Coverage prob.’ is the coverage probability of the 68 per cent weak-proxy robust confidence

interval; ‘Unbounded’ is the proportion of Monte Carlo samples in which the confidence interval is

unbounded; W is the Wald statistic for testing the null hypothesis that the covariance between the

proxy and y1t is zero.

approach. In particular, when the sign of the shock is known in a small number

of periods, the weak-proxy robust approach to inference under NP yields confidence

intervals with coverage that may differ markedly from the nominal level; whether

the confidence intervals under- or over-cover will depend on the confidence level. In

contrast, the robust Bayesian approach to inference under NR generates credible

intervals with a coverage probability that always exceeds the nominal level. In both

cases, the coverage probabilities converge towards the nominal level as K increases,

but our Monte Carlo results indicate that the rate of convergence is slower under the

NR approach than under the NP approach.

One limitation of this exercise is that it abstracts from the common practice of

imposing additional identifying restrictions alongside shock-sign NR. For example, it

is common to also impose sign restrictions on functions of the structural parameters,

such as impulse responses, as well as other types of NR, such as restrictions on the

historical decomposition (e.g. Antoĺın-Dı́az and Rubio-Ramı́rez 2018). A natural sign

restriction in this context – which we do not impose – is that the impulse response

of the first variable to the first shock is nonnegative on impact. We have deliberately

made this choice so that we are using the same information under both approaches
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Table 3: Robust Bayesian Inference – Monte Carlo Results for α = 0.95

K Coverage prob. Unbounded Median width
1 1.000 0.766 ∞
2 1.000 0.596 ∞
3 1.000 0.461 28.343
4 1.000 0.345 8.725
5 0.999 0.271 6.083
10 0.998 0.075 2.742
20 0.996 0.005 1.571
30 0.994 0.000 1.226
40 0.993 0.000 1.034
50 0.993 0.000 0.932
100 0.986 0.000 0.717
500 0.966 0.000 0.545
1000 0.955 0.000 0.522

Notes: ‘Coverage prob.’ is the coverage probability of the 95 per cent robust credible interval;

‘Unbounded’ is the proportion of Monte Carlo samples in which the robust credible interval is

unbounded.

to identification and inference. The imposition of additional restrictions under the

NR approach can tighten the robust credible intervals and yield frequentist coverage

probabilities closer to, but still exceeding, the nominal level.

5 Conclusion

Although it has become increasingly common to impose ‘narrative restrictions’ in

SVARs, there has been little formal work exploring econometric methods for imposing

these restrictions. Using the information underlying narrative restrictions about the

signs of structural shocks in particular periods to construct a proxy variable – as

proposed by Plagborg-Møller and Wolf (2021a) – is a potentially useful alternative

approach that in principle can be implemented using (relatively) standard inferential

procedures.

We show that the ‘narrative proxy’ is likely to be weak when the sign of the shock

is known in only a small number of periods, which tends to be the case empirically.

Furthermore, under this proxy approach, the weak-proxy robust confidence inter-

vals developed in MSW are not asymptotically valid when the sign of the shock is

known in a relatively small number of periods. Monte Carlo simulations suggest that
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Table 4: Robust Bayesian Inference – Monte Carlo Results for α = 0.68

K Coverage prob. Unbounded Median width
1 1.000 0.757 ∞
2 0.998 0.581 ∞
3 0.997 0.442 19.893
4 0.995 0.330 7.615
5 0.994 0.256 5.422
10 0.985 0.066 2.436
20 0.970 0.004 1.302
30 0.955 0.000 0.969
40 0.947 0.000 0.778
50 0.932 0.000 0.678
100 0.882 0.000 0.466
500 0.757 0.000 0.296
1000 0.718 0.000 0.275

Notes: ‘Coverage prob.’ is the coverage probability of the 68 per cent robust credible interval;

‘Unbounded’ is the proportion of Monte Carlo samples in which the robust credible interval is

unbounded.

the coverage probability of these intervals may be higher or lower than the nominal

level depending on the confidence level. The coverage probability of these intervals

approaches the desired level when the sign of the shock is known in a fairly large

number of periods. In contrast, the robust Bayesian credible intervals from GKR –

which are applicable when shock-sign restrictions are imposed in an otherwise set-

identified model – demonstrate coverage probabilities exceeding the nominal level but

that converge to the nominal level as the number of shock-sign restrictions increases.
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Appendices

A Conditional Identified Sets

We first present analytical expressions for the conditional identified set for θ obtained

under a single shock-sign NR. We consider the case where the restriction is that
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ε1t ≥ 0, which is the case considered in GKR, as well as the case where ε1t ≤ 0. These

analytical expressions are used to implement our Monte Carlo exercise; computing

the bounds of the conditional identified set using existing numerical methods would

be computationally demanding given the large number of Monte Carlo replications.

After presenting expressions for the conditional identified set for θ under a single

shock-sign NR, we explain how to use these to obtain the conditional identified set

for η21 under a set of shock-sign NR.

The expressions for the conditional identified set differ depending on the sign

of σ21. The data-generating process satisfies σ21 < 0. Since the sample length T is

sufficiently large in our Monte Carlo exercise, σ21 < 0 holds with posterior probability

one almost-surely under the sampling distribution of the data. Consequently, for our

exercise, it suffices to consider only the case where σ21 < 0.

In what follows, let h(φ,yt) = σ21y1t − σ11y2t and C(φ,yt) = σ22y1t/h(φ,yt).

Case 1: Consider the shock-sign restriction

ε1t = e′1A0yt = (σ11σ22)
−1 (σ22y1t cos θ + (σ11y2t − σ21y1t) sin θ) ≥ 0. (29)

Under the sign normalization and the shock-sign restriction, θ is restricted to the set

θ ∈ {θ : σ21 sin θ ≤ σ22 cos θ, cos θ ≥ 0, σ22y1t cos θ ≥ (σ21y1t − σ11y2t) sin θ}

∪ {θ : σ21 sin θ ≤ σ22 cos θ, cos θ ≤ 0, σ22y1t cos θ ≥ (σ21y1t − σ11y2t) sin θ} . (30)

First, consider the case where h(φ,yt) < 0. In this case, the conditional identified

set for θ is

θ ∈
[
arctan

(
max

{
σ22
σ21

, C(φ,yt)

})
, π + arctan

(
min

{
σ22
σ21

, C(φ,yt)

})]
. (31)

Next, assume that h(φ,yt) > 0, in which case

θ ∈


[
arctan

(
σ22
σ21

)
, arctan(C(φ,yt))

]
, if σ22

σ21
< C(φ,yt)[

π + arctan(C(φ,yt)), π + arctan
(
σ22
σ21

)]
, σ22

σ21
> C(φ,yt).

(32)

Case 2: Under the sign normalization and the shock-sign restriction that ε1t ≤ 0, θ
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is restricted to the set

θ ∈ {θ : σ21 sin θ ≤ σ22 cos θ, cos θ ≥ 0, σ22y1t cos θ ≤ (σ21y1t − σ11y2t) sin θ}

∪ {θ : σ21 sin θ ≤ σ22 cos θ, cos θ ≤ 0, σ22y1t cos θ ≤ (σ21y1t − σ11y2t) sin θ} . (33)

First, assume that h(φ,yt) < 0, in which case the conditional identified set for θ

takes the form

θ ∈


[
arctan

(
σ22
σ21

)
, arctan (C(φ,yt))

]
, if σ22

σ21
< C(φ,yt)[

π + arctan(C(φ,yt)), π + arctan
(
σ22
σ21

)]
, σ22

σ21
> C(φ,yt).

(34)

Next, assume that h(φ,yt) > 0, in which case

θ ∈
[
arctan

(
max

{
σ22
σ21

, C(φ,yt)

})
, π + arctan

(
min

{
σ22
σ21

, C(φ,yt)

})]
. (35)

Obtaining the Conditional Identified Set for η21. Let `(φ,yt) and u(φ,yt)

be the lower and upper bounds, respectively, of the conditional identified set for

θ given a shock-sign restriction imposed in period t. The conditional identified

set for θ given a set of shock-sign restrictions imposed in the first K periods is

[maxt∈{1,...,K} `(φ,yt),mint∈{1,...,K} u(φ,yt)]. The conditional identified set for η21 can

be obtained by projecting the conditional identified set for θ into impulse-response

space using Equation (6).

If the conditional identified set for θ does not include −π/2 and π/2, then η21(φ, θ)

is increasing in θ. Consequently, in this case the lower and upper bounds of the

conditional identified set for η21 can be obtained by plugging in the lower and upper

bounds of the conditional identified set for θ into Equation (6). If the conditional

identified set for θ includes −π/2 or π/2, the conditional identified set for η21 will be

unbounded. For example, consider a case where the conditional identified set for θ

is such that `(φ,yt) < π/2 < u(φ,yt). For θ ↗ π/2, tan θ → ∞, so η21 → ∞. For

θ ↘ π/2, tan θ → −∞, so η21 → −∞. Hence, the conditional identified set for η21 is

(−∞,∞).

A Note on Non-emptiness of the Conditional Identified Set. In principle,

the conditional identified set may be empty at particular values of φ and realisations

of the data. In empirical applications, it is therefore necessary to check whether the
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conditional identified set is nonempty before attempting to compute (or approximate)

the bounds of the conditional identified set. However, in our Monte Carlo exercise, the

sample size is sufficiently large such that the posterior probability that the conditional

identified set is nonempty is one almost-surely under the sampling distribution of the

data; intuitively, if the shock-sign NR are correctly specified, there must exist a value

of θ satisfying the restrictions when the values of the reduced-form parameters are

sufficiently close to their true values. This means that it is not necessary to check

whether the conditional identified set is nonempty at each draw of φ from its posterior,

which greatly reduces the computational demands of the Monte Carlo exercise.

30


	CEMMAP COVER.pdf
	NarrativeRestrictionsAndProxies.pdf
	Introduction
	Frameworks For Using Information about Shock Signs
	Stylised SVAR
	Narrative Restrictions and Robust Bayesian Inference
	Narrative Proxies and Weak-proxy Robust Inference

	Frequentist Properties of Approaches to Inference
	Robust Bayesian Inference Under NR
	Weak-proxy Robust Inference Under NP

	Monte Carlo
	Design
	Results

	Conclusion
	References
	Appendices
	Conditional Identified Sets




