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Abstract. We consider estimation of a dynamic distribution regression panel data

model with heterogeneous coefficients across units. The objects of interest are func-

tionals of these coefficients including linear projections on unit level covariates. We

also consider predicted actual and stationary distributions of the outcome variable.

We investigate how changes in initial conditions or covariate values affect these

objects. Coefficients and their functionals are estimated via fixed effect methods,

which are debiased to deal with the incidental parameter problem. We propose a

cross-sectional bootstrap method for uniformly valid inference on function-valued

objects. This avoids coefficient re-estimation and is shown to be consistent for a

large class of data generating processes. We employ PSID annual labor income data

to illustrate various important empirical issues we can address. We first predict the

impact of a reduction in income on future income via hypothetical tax policies. Sec-

ond, we examine the impact on the distribution of labor income from increasing the

education level of a chosen group of workers. Finally, we demonstrate the existence

of heterogeneity in income mobility, which leads to substantial variation in indi-

viduals’ incidences to be trapped in poverty. We also provide simulation evidence

confirming that our procedures work well.

Keywords: distribution regression, individual heterogeneity, panel data, uniform

inference, labor income dynamics, incidental parameter problem, poverty traps

1. Introduction

Empirical studies increasingly feature analyses of data comprising repeated obser-

vations on the same or similar units. While the most common example is panel data,
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many of its attractive features are found in other data structures, such as network

and spatial data. From an econometric perspective, the availability of panel data nat-

urally accommodates a treatment of time invariant unit-specific heterogeneity (see,

for example, Mundlak 1978) and also provides internal instruments in the presence

of time varying endogeneity (see, for example, Hausman and Taylor 1981, Arellano

and Bond 1991). It also facilitates the estimation of dynamic relationships within

unit, or contemporaneous relationships between units. However, a feature of the

panel data literature is its limited treatment of parameter heterogeneity. Although

the random coefficient panel model allows heterogeneous coefficients between units,

and some recent developments that we discuss below incorporate heterogeneous coef-

ficients within units, there are relatively few studies that incorporate heterogeneous

coefficients both between and within units.1

We consider panel models with coefficient heterogeneity between and within units,

using a dynamic distribution regression model with heterogeneous coefficients. This

model captures within unit heterogeneous relationships between outcome and covari-

ates through function-valued coefficients, and between unit heterogeneity by allowing

the coefficients to vary across units in an unrestricted fashion. The objects of interest

are functionals of the coefficients including linear projections on individual covari-

ates and predicted distributions. We also consider the impact on these objects from

manipulating the values of the initial conditions of the outcome or the covariates.

We consider both one-period-ahead and stationary counterfactual distributions to

measure the short and long term effects of these changes.

Our proposed estimator employs fixed effect methods, which allow an unrestricted

relationship between the unobserved unit-specific heterogeneity, the covariates, and

the initial conditions. Estimation and inference consists of four steps. First, we

estimate unit-specific coefficients by distribution regression exploiting the time series

dimension of the panel. Second, we estimate the functionals of interest using the

plug-in method. It is necessary to debias the resulting estimates to account for the

incidental parameter problem (Neyman and Scott, 1948). Third, we construct plug-in

estimators of quantiles and quantile effects of the counterfactual distributions. Fourth,

we perform inference using a cross-sectional bootstrap method which resamples with

replacement the estimated coefficients of the units and avoids the computationally

expensive first-step estimation. We show how to construct confidence bands and test

1Exceptions include Chetverikov et al. (2016), Okui and Yanagi (2019), Zhang et al. (2019) and
Chen (2021), which are discussed in the literature review.
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hypotheses for the quantiles and quantile effects, which are uniformly valid over a

prespecified region of quantile indexes.

We derive novel inferential theory of wider interest for estimating functionals. The

novelty lies in the unknown degree of heterogeneity that may affect both the rate of

convergence and the asymptotic distribution, making them unknown and continuously

varying across different assumptions on the heterogeneity. We identify an important

problem with traditional analytical plug-in methods in performing inference in models

with heterogeneous coefficients. We show these methods are very sensitive to the

degree of heterogeneity as measured by the variance of the coefficients unexplained

by the covariates. Formally, we establish that analytical methods break down in data

generating processes where there is coefficient homogeneity or, more broadly, when

the degree of heterogeneity is sufficiently small relative to the sample size. Both the

rate of convergence and the asymptotic distribution of the estimated quantities are

unknown and may vary depending on the unknown degree of heterogeneity. However,

we prove that a simple cross-sectional bootstrap method is uniformly valid for a large

class of data generating processes including the case of homogeneous coefficients.

Our methodology is applicable to a wide range of settings and we employ it to ex-

amine labor income dynamics. This is an important research area with a large litera-

ture, starting with Champernowne (1953), Hart (1976), Shorrocks (1976) and Lillard

and Willis (1978), but now also including a long list of papers featuring econometric

innovations. We apply our model to the Panel Study of Income Dynamics (PSID)

data to perform experiments corresponding to various counterfactual analyses which

cannot be conducted via existing methodologies. First, we consider how a reduction

in annual income in a given year, implemented via a flat or progressive tax, affects

future annual labor income. We find that the predicted effect on the cross-sectional

distribution of labor income after one period varies substantially after we account for

heterogeneity in the level and persistence of income. Interestingly, our model predicts

significantly smaller effects than do models that impose homogeneous effects. Sec-

ond, we consider a hypothetical scenario that assigns 12 years of schooling to those

individuals who have not completed high school. We find important short and long

run distributional effects as it increases the incomes of those in the lower tails of the

one-period ahead and stationary labor income distributions. However, it has little

effect on their upper tails. This exercise, which cannot be analyzed using traditional

homogeneous autoregressive models, illustrates the importance of individual char-

acteristics in earnings dynamics. We also investigate a number of issues related to
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heterogeneity that have implications for poverty and income inequality. We uncover

substantial cross-sectional heterogeneity in the level and persistence of annual labor

income and identify the responsible individual characteristics. We show that this

heterogeneity has implications for an individual’s tendency to remain below or above

specific quantiles of the income distribution.

1.1. Relationship with existing literature. The literature examining labor in-

come processes has typically focused on allocating the total error variances into tran-

sitory and permanent components. A summary is provided in Moffitt and Zhang

(2018) and two important recent innovations are Arellano et al. (2017) and Hu et al.

(2019). The first examined nonlinear persistence in the permanent component and

how it varies over the earnings distribution. The second allowed for a flexible repre-

sentation of the distributions of both components. Our approach is not intended to

supersede these methodologies. Rather, we examine earnings dynamics to illustrate

how we can complement these earlier studies. However, the approach most similar to

ours is Arellano et al. (2017). While that paper also focused on the impact of earnings

on consumption, an important feature is the treatment of the persistence in the earn-

ings process. They considered a dynamic earnings process with nonlinear persistence

that can vary by location in the earnings distribution. While our approach does not

nest the models above, it does incorporate a generalized linear process which not only

varies by location in the earnings distribution but also across workers. This cannot

be accommodated by existing approaches. Moreover, we allow persistence to be a

function of both observed and unobserved individual characteristics. Our analysis of

income mobility and persistence relies on a representation of the model as a discrete

Markov chain when labor income is treated as discrete. Champernowne (1953) and

Shorrocks (1976) previously used Markov chain representations of the labor income

process to analyze the same issue. We allow unrestricted heterogeneity across work-

ers by estimating a separate Markov chain for each worker.2 Finally, Hirano (2002)

and Gu and Koenker (2017) estimated autoregressive labor income processes using

flexible semiparametric Bayesian methods.

The model we consider differs from the traditional random coefficients model of

Swamy (1970), Hsiao and Pesaran (2008), Arellano and Bonhomme (2012), Fernández-

Val and Lee (2013) and Su et al. (2016), among others, as we allow for heterogeneous

2Lillard and Willis (1978) considered an alternative method to separate permanent and transitory
income and incorporate worker heterogeneity using a parametric linear panel model.
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coefficients both between and within units. It is more flexible than existing distri-

bution and quantile regression models with fixed effects that allow the intercepts

to vary across units but restrict the slopes to be homogeneous. See, for example,

Koenker (2004), Galvao (2011), Galvao and Kato (2016), Kato et al. (2012), Arellano

and Weidner (2017), and Chernozhukov et al. (2018a). Chetverikov et al. (2016),

Okui and Yanagi (2019), Zhang et al. (2019) and Chen (2021) are the closest pa-

pers to ours. Okui and Yanagi (2019) provided methods to estimate distributions of

heterogeneous moments such as means, autocovariances and autocorrelations. The

model and objects considered there are very different from ours. Zhang et al. (2019)

proposed a quantile regression grouped panel data model with heterogeneous coeffi-

cients, but where the distribution of the coefficients is restricted to have finite support.

Chetverikov et al. (2016) and Chen (2021) develop models similar to ours. They tar-

geted projections of the model coefficients as the objects of interest, but, unlike here,

did not consider counterfactual distributions. Chetverikov et al. (2016), Zhang et al.

(2019) and Chen (2021) focused on models with strictly exogenous covariates, which

rule out dynamic models that include lagged outcomes as covariates. Moreover, their

methodology is also based on quantile regression. Distribution regression has several

appealing features in our setting including: (i) It deals with continuous, discrete and

mixed outcomes without modification, and (ii) it yields simple analytical forms for

the functionals of interest. In this sense, we extend the use of the distribution regres-

sion of Foresi and Peracchi (1995) and Chernozhukov et al. (2013) to panel models

with random coefficients.

Bias correction methods based on large-T asymptotic approximations for fixed

effects estimators of dynamic and nonlinear panel models were studied in Nickell

(1981), Phillips and Moon (1999), Hahn and Newey (2004), Fernández-Val (2009),

Hahn and Kuersteiner (2011), Dhaene and Jochmans (2015), and Fernández-Val and

Weidner (2016), among others. We refer the readers to Arellano and Hahn (2007)

and Fernández-Val and Weidner (2018) for recent reviews. We extend these debias-

ing methods to functionals of the coefficients such as projections and counterfactual

distributions. The cross-sectional bootstrap was previously used for panel data as a

resampling scheme that preserves the dependence in the time series dimension, e.g.,

Kapetanios (2008), Kaffo (2014), and Gonçalves and Kaffo (2015). We demonstrate

that it also has robustness properties in models with heterogeneous coefficients.

1.2. Outline. The rest of the paper is organized as follows. Section 2 presents the

model and objects of interest. Section 3 discusses estimation and inference including
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an issue with standard inference on models with heterogeneous coefficients, which is

solved with the use of a cross-sectional bootstrap scheme. We present the empirical

application in Section 4. Section 5 establishes asymptotic theory for our estimation

and inference methods. Section 6 reports simulation evidences. Proofs and additional

results are gathered in the Appendix.

2. The model and objects of interest

2.1. The model. We observe a panel data set {(yit,xit) : 1 ≤ i ≤ N, 1 ≤ t ≤ T},
where i typically indexes observational units and t time periods. The scalar variable

yit represents the outcome or response of interest, which can be continuous, discrete or

mixed; and xit is a dx-vector of covariates, which includes a constant, lagged outcome

values, and other predetermined covariates denoted by vit, that is

xit = (1, yi(t−1), ..., yi(t−L),v
′
it)
′.

Let Fit be a filtration over t that includes xit and any time invariant variable for

unit i. We model the distribution of yit conditional on Fit as, for any y ∈ R,

Pr(yit ≤ y | Fit) = Λ(−x′itβi(y)), 1 ≤ t ≤ T, 1 ≤ i ≤ N, (2.1)

where Λ : R 7→ [0, 1] is a known, strictly increasing link function3 (e.g., the standard

normal or logistic distribution CDF), and y 7→ −x′itβi(y) is increasing almost surely

(a.s). The model is a distribution regression model for panel data with heterogeneous

coefficients. We allow the coefficient vector βi(y) to vary both between i and within

i over y. For example, in the empirical application, the intercept is a fixed effect

that measures the level of the distribution, whereas the coefficient of lagged labor

income measures persistence. Both level and persistence coefficients are heterogeneous

between and within workers. The model also embodies a Markov-type condition for

each individual as only the first L lags of the outcome and contemporaneous values

of the other covariates determine the conditional distribution of yit.
4 It also imposes

an index restriction on the effect of xit. This restriction can be considered mild as

the coefficient βi(y) varies with i and y, and can be further weakened by replacing

xit by T (xit), where T is a vector of transformations of xit. Our theory would still

apply provided that T is known and has a fixed dimension.

3We could allow Λ to vary across i and y, but we do not pursue those extensions here. One could
also allow Λ to be unknown via the use of semiparametric methods.
4Lagged values of the covariates can be included in vit.
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The heterogeneous distribution regression (HDR) model in (2.1) encompasses other

commonly used models. For example, the homogeneous location-shift model

yit = x′itβ + σεit, εit | Fit ∼ Λ,

is a special case of HDR with βi(y) = (β − e1y)/σ, where e1 is a unitary dx-vector

with a one in the first position. This model imposes that all components of βi(y) are

homogeneous across i and only the intercept can vary across y. Another important

case is the homogeneous location-shift model with fixed effects

yit = x′itβ + αi + σεit, εit | Fit ∼ Λ.

This is a special case of HDR with βi(y) = [β−e1(y+αi)]/σ. It is more flexible than

the location-shift model as the intercept is heterogeneous across i, but it imposes

strong homogeneity restrictions compared to HDR. The cross-sectional version of

the distribution regression model of Foresi and Peracchi (1995) and Chernozhukov

et al. (2013) imposes the restriction βi(y) = β(y), which allows for heterogeneity

within the distribution but not between units. We refer to this as the homogeneous

DR model. The panel distribution regression model of Chernozhukov et al. (2018a)

imposes βi(y) = β(y)+e1αi(y), which allows for heterogeneity in the intercept across

i, but restricts the slopes to be homogeneous between units.

When yit is continuous, the HDR has the following representation as an implicit

nonseparable model by the probability integral transform

−x′itβi(yit) = εit, εit | Fit ∼ Λ.

The rank of the error εit, Λ(εit), can be interpreted as the unobserved ranking of

the observation yit in the conditional distribution. The previous representation re-

duces to the homogeneous location-shift models described above by imposing suitable

restrictions on βi(y).

2.2. Objects of interest. We are interested in the following types of objects.

2.2.1. Projections of βi(y) on Covariates. Let wi, zi ∈ Fi1 denote time invariant

covariates such that dim(wi) ≥ dim(zi) and E(wiz
′
i) have full column rank. Consider

the instrumental variable projection of βi(y) on zi:

βi(y) = θ(y)zi + γi(y), E(γi(y) | wi) = 0, (2.2)

which covers the standard linear projection by setting wi = zi. This object is useful

for exploring which covariates are associated with the heterogeneity in βi(y) across i,
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where we allow these associations to vary within the distribution as indexed by y. For

example, in the empirical application, we explore whether initial income, education,

race and year of birth are associated with differences in the level and persistence of

labor income at different locations of the income distribution.

2.2.2. Cross-sectional Distributions.

Actual and predicted distributions: By iterating expectations, the cross-sectional

distribution of the observed outcome at time t can be written in terms of the model

coefficients as

Ft(y) := Et1{yit ≤ y} = EtE(1{yit ≤ y} | Fit) = EtΛ(−x′itβi(y)), (2.3)

where the expectation Et is taken with respect to the joint cross-sectional distribution

of the variables in Fit at time t.

This representation serves several purposes. First, it is the basis for a specification

test of the model where an estimator of (2.3) is compared with the cross-sectional

empirical distribution of yit. Second, in pure dynamic models where xit only includes

lagged values of yit, we can construct one-period-ahead predicted distributions by

setting t = T + 1. These distributions are useful for forecasting. Third, we can

analyze dynamics of the distribution of yit over time. In the empirical application,

for example, we analyze labor income mobility and the persistence of poverty traps.

Fourth, we can consider the impact of interventions by comparing the counterfactual

distribution after some intervention with the actual distribution.

Counterfactual distributions: From (2.3), we can construct counterfactual distri-

butions by manipulating the covariates xit and/or the coefficients βi(y), that is

Gt(y) = EtΛ(−hit(xit)′βgi (y)), (2.4)

where hit is a possibly data dependent transformation, and

βgi (y) = θ(y)g(zi) + γi(y) = βi(y) + θ(y)[g(zi)− zi],

for a known transformation g of the time invariant covariates zi.

We provide examples of hit and g in the context of the empirical application.

Starting with hit, we can study the effect of a proportional reduction of labor income

in the previous year using the transformation

hit(xit) = (1, yi(t−1) + log(1− κ))′, (2.5)
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where yi(t−1) is measured in logarithmic scale and κ is the tax rate. This can be

interpreted as a proportional or flat tax. Another example where the transformation

hit is data dependent is a progressive reduction of labor income in the previous year

depending on the ranking in the distribution. This could be implemented as

hit(xit) =
(

1, yi(t−1) + log(1− κit
2

)
)′
, κit = Et(1{yi(t−1) ≤ y})

∣∣
y=yi(t−1)

, (2.6)

which can be interpreted as a progressive tax where the tax rate is half of the ranking

of the worker in the distribution. These tax exercises are interesting as we can evaluate

their impact on future labor income operating through the inherent dynamics.

Turning to g, we can consider a hypothetical scenario at time t that increases

the number of years of schooling to 12 for those workers with less than 12 years of

schooling. If zi = (z1i, z
′
−1,i)

′, where z1i is the observed years of schooling of worker i

and z−1,i includes the remaining components of zi. This counterfactual scenario can

be implemented via the transformation

g(zi) = (max(z1i, 12), z−1,i). (2.7)

Gt(y) would then represent the counterfactual distribution at t. Another example is

g(zi) = (z1i + 1, z−1,i),

which corresponds to an additional year of schooling for all workers.

2.3. Stationary Distributions: Assume that the process {yi1, . . . , yiT} is ergodic

for each i, yit is discrete with support Yi = {y1
i < · · · < yKi }, which might be

different for each unit, and the only covariate is the first lag of the outcome, i.e.

xit = (1, yi(t−1))
′. The conditional distribution can now be represented by a time-

homogeneous K-state Markov chain and the stationary distribution can be charac-

terized from the transition matrix of the Markov chain. The method can be extended

to include more lags of the outcome at the cost of more cumbersome notation.

For each i, let P i be the K × K transition matrix. The typical element of this

matrix can be expressed as the following functional of the model:

Pi,jk = Pr(yit = yji | yi(t−1) = yki ,Fit) = Λ
(
−xk′i βi(y

j
i )
)
−1(j > 1)Λ

(
−xk′i βi(y

j−1
i )

)
,

(2.8)

where xki = (1, yki )′. By standard theory for Markov Chains, see, e.g., (Hamilton,

2020, p. 684), the ergodic probabilities πi = (πi1, . . . , πiK) are

πi = (A′iAi)
−1A′ieK+1, Ai =

(
IK − P i

1′

)
,
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where IK is the identity matrix of size K, 1 is a K-vector of ones, and eK+1 is the

(K + 1)th column of IK+1. The cross-sectional stationary actual distribution is now

F∞(y) = E[Fi,∞(y)], Fi,∞(y) =
∑
k:yki ≤y

πik,

where Fi,∞ is a step function with steps at the elements of Yi.
Stationary counterfactual distributions can be formed by replacing βi(y

j
i ) by βgi (y

j
i )

in (2.8). That is

P g
i,jk = Λ

(
−xk′i β

g
i (y

j
i )
)
− 1(j > 1)Λ

(
−xk′i β

g
i (y

j−1
i )

)
.

We denote the resulting cross-sectional stationary distribution as G∞. We do not

consider transformations hit as they would produce the stationary distribution F∞.

Note that changes in yi(t−1) do not affect the stationary distribution by the ergodicity

assumption.

2.3.1. Quantile effects. We consider quantiles of the actual and counterfactual cross-

sectional distributions, and define quantile effects as the difference between them.

Given a univariate distribution F , the quantile (left-inverse) operator is

φ(F, τ) := inf{y ∈ R : F (y) ≥ τ}, τ ∈ [0, 1].

We apply this operator to the cross-sectional distributions defined above to obtain

the quantile effects of interest as

QEt(τ) := φ(Gt, τ)− φ(Ft, τ), QE∞(τ) := φ(G∞, τ)− φ(F∞, τ), τ ∈ [0, 1].

These quantile effects measure the short and long term impacts of the hypothetical

policies at different parts of the outcome distribution. They are unconditional or mar-

ginal as they are based on comparisons between counterfactual and actual marginal

distributions.

3. Estimation and Inference Methods

3.1. Estimators. We employ a three-stage estimation procedure where the first step

obtains the model coefficients, the second constructs their functionals, and the third

calculates quantile effects. The coefficients are estimated by HDR applied separately

to the time series dimension of each unit, with debiasing to address the incidental

parameter problem. The functionals of the coefficients are estimated using the plug-

in method. The estimators of the distributions are debiased. The estimators of

the projection coefficients do not need to be debiased as these projections are linear
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functionals of the model coefficients. The quantile effects are estimated by applying

the generalized inverse operator of Chernozhukov et al. (2010).

3.1.1. First stage: Model coefficients. We start by obtaining the DR estimator of

βi(y), that is

β̃i(y) = arg max
β∈Rdx

Qy,i(β), y ∈ Yi, i = 1, ..., N,

where

Qy,i(β) =
T∑
t=1

1{yit ≤ y}Λ(−x′itβ) +
T∑
t=1

1{yit > y}[1− Λ(−x′itβ)],

and Yi is the set of observed values of the outcome for unit i, i.e. Yi = {yi1, . . . , yiT}.
If Λ is the standard normal or logistic link, these are logit or probit estimators that

can be computed using standard software. We then obtain β̃i(y) for other values of y

noting that y 7→ β̃i(y) is a vector of step functions with steps at the elements of Yi.
Two complications arise: β̃i(y) is well-defined only if y ∈ [y

i
, yi), where y

i
=

min1≤t≤T yit and yi = max1≤t≤T yit, and, when β̃i(y) is well-defined, it has bias of

order O(T−1). Let N0(y) be the number of indexes i for which y < y
i
, N1(y) be the

number of indexes i for which y ≥ yi, and N01(y) = N − N0(y) − N1(y), that is the

number of indexes i for which β̃i(y) exists. Without loss of generality we rearrange

the index i such that that β̃i(y) exists for all i = 1, . . . , N01(y). We show below how

to adjust the plug-in estimators of the functionals to incorporate the units i > N01(y).

Due to the incidental parameter bias, we should debias β̃i(y) when T is of moderate

size relative to N . Plug-in estimators of nonlinear functionals based on debiased

estimators are easier to debias than those based on the initial estimators. We debias

β̃i(y) using analytical methods. That is

β̂i(y) = β̃i(y)− B̂i,T (y)

T
, i = 1, . . . , N01(y), (3.1)

where B̂i,T (y) is a consistent estimator of the bias of β̃i(y) of order O(T−1). The

specific expressions of the bias and its estimator are presented in the Appendix,

where we also consider alternative debiasing methods based on Jackknife (Dhaene

and Jochmans, 2015). While our theory applies to both analytical and Jackknife

methods, we focus on analytical methods because they have less demanding data

requirements and perform better in our numerical simulations.

3.1.2. Second stage: Functionals. We provide estimators for all the functionals of

interest. Denote the second derivative of the link function by Λ̈.
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Projections of Coefficients. A plug-in estimator of θ(y) corresponds to applying

two-stage least squares to (2.2) replacing βi(y) by β̂i(y). This yields,

θ̂(y) =

N01(y)∑
i=1

β̂i(y)ẑi(y)′

N01(y)∑
i=1

ẑi(y)ẑi(y)′

−1

, (3.2)

where

ẑi(y) :=

N01(y)∑
j=1

zjw
′
j

N01(y)∑
j=1

wjw
′
j

−1

wi.

When wi = zi, the estimator simplifies to the OLS estimator with ẑi(y) = zi.

Actual and Counterfactual Distributions. The plug-in estimators of the actual

and counterfactual distributions are

F̂t(y) =
1

N

N01(y)∑
i=1

Λ(−x′itβ̂i(y)) +
N1(y)

N
− B̂(y)

T
,

Ĝt(y) =
1

N

N01(y)∑
i=1

Λ(−h(xit)
′β̂

g

i (y)) +
N1(y)

N
− B̂G(y)

T
, (3.3)

where

β̂
g

i (y) = β̂i(y) + θ̂(y)[g(zi)− zi],

B̂(y) =
1

2

1

N

N01(y)∑
i=1

tr
(

Λ̈(−x′itβ̂i(y))xitx
′
itΣ̂i(y)−1

)
B̂G(y) =

1

2

1

N

N01(y)∑
i=1

tr
(

Λ̈(−h(xit)
′β̂

g

i (y))h(xit)h(xit)
′Σ̂i(y)−1

)
.

Here B̂(y) and B̂G(y) are estimators of the first-order bias coming from the non-

linearity of Ft and Gt as a functional of β(y), and Σ̂i(y)−1 is an estimator of the

asymptotic variance-covariance matrix of
√
T (β̃i(y) − βi(y)). For units for which

β̂i(y) is not well-defined we set Λ(−x′itβi(y)) = Λ(−h(xit)
′βgi (y)) = 1 if y < y

i
and

Λ(−x′itβi(y)) = Λ(−h(xit)
′βgi (y)) = 0 if y ≥ yi.

Stationary Distributions. We start from a preliminary plug-in estimator of P i by

the empirical transition matrix, which we modify to enforce that all the entries are

non-negative and the rows add to one. More precisely, we define the K ×K matrix

Q̂i with typical element

Q̂i,jk = 1(j = K) + 1(j < K)Λ
(
−xk′i β̂i(y

j
i )
)
. (3.4)
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For each row of Q̂i, we sort (rearrange) the elements in increasing order to form the

matrix Q̌i with typical element Q̌i,jk. We then construct the empirical transition

matrix P̂ i with typical element

P̂i,jk = Q̌i,jk − 1(j > 1)Q̌i,(j−1)k.

The empirical ergodic probabilities π̂i = (π̂i1, . . . , π̂iK) are now

π̂i = (Â
′
iÂi)

−1Â
′
ieK+1 −

1

T
B̂πi , Âi =

(
IK − P̂ i

1′

)
,

where B̂πi is an estimator of the bias coming from the nonlinearity of πi as a functional

of (βi(y
1
i ), . . . ,βi(y

K
i )). We give the expression of B̂πi in the Appendix.

The estimator of the stationary distribution is

F̂∞(y) =
1

N

N∑
i=1

F̂i,∞(y), F̂i,∞(y) =
∑
k:yki ≤y

π̂ik.

Estimators of stationary counterfactual distributions can be formed by replacing

β̂i(y
j
i ) by β̂

g

i (y
j
i ) and modifying the bias estimator, B̂πi , in (3.3). The modified ex-

pression of the estimator of the bias is given in the Appendix. The resulting estimator

of G∞ is denoted by Ĝ∞.

3.1.3. Third stage: Quantile effects. The estimators of the short and long term quan-

tile effects are:

Q̂Et(τ) = φ̃(Ĝt, τ)− φ̃(F̂t, τ), Q̂E∞(τ) = φ̃(Ĝ∞, τ)− φ̃(F̂∞, τ), (3.5)

where φ̃ is the generalized inverse or rearrangement operator

φ̃(F, τ) =

∫ ∞
0

1{F (y) ≤ τ}dy −
∫ 0

−∞
1{F (y) ≥ τ}dy.

which monotonizes y 7→ F (y) before applying the inverse operator.

3.2. Inference. To begin we highlight an important problem with standard analyti-

cal plug-in methods where the heterogeneous coefficients are estimated via fixed effect

approaches. We show that these methods are not uniformly valid with respect to the

degree of heterogeneity as measured by the variance of the coefficients. We propose a

cross-sectional bootstrap scheme that has good computational properties and prove

its uniform validity over a large class of data generating processes in Section 5.4.1.
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3.2.1. Inference problem. While the inference problem affects all the functionals we

consider, we illustrate it via a simple example that abstracts from other complications

such as the need of debiasing. Consider the model

yit = βi + eit, E(eit | βi) = 0, E(βi) = θ,

where we allow Var(βi) ∈ [0, C] to be on a compact support, with zero as an ad-

missible value. This class of data generating processes captures different degrees of

heterogeneity that might arise in empirical applications. For simplicity, we assume

eit and βi are both i.i.d. sequences in both i and t and mutually independent. The

estimator of θ is

θ̂ =
1

N

N∑
i=1

β̂i, β̂i =
1

T

T∑
t=1

yit = βi +
1

T

T∑
t=1

eit.

The goal is to make inference about θ based on θ̂ that remains uniformly valid over

Var(βi) ∈ [0, C].

Let β =
∑N

i=1 βi/N . The asymptotic distribution of θ̂ is determined by two com-

ponents:

θ̂ − θ = (θ̂ − β) + (β − θ),

where

θ̂ − β =
1

NT

N∑
i=1

T∑
t=1

eit, β − θ =
1

N

N∑
i=1

(βi − E(βi)).

While both terms admit central limit theorems, they may have different rates of

convergence. The rate of convergence of β−θ depends on the degree of heterogeneity,

Var(βi), which is unknown. All we know is that it is supported on a compact set [0, C]

for some C > 0, with zero as an admissible boundary. This makes the final rate of

convergence and the associated asymptotic distribution unknown. To illustrate this,

consider two special extreme cases:

(1) Strong heterogeneity : It has been customary in the literature to assume that

Var(βi) is bounded away from zero, such that β − θ = OP (N−1/2). Then this

term dominates in the expansion, yielding
√
N(θ̂ − θ)→d N (0,Var(βi)).

(2) Weak heterogeneity : If Var(βi) is near the zero boundary, such that when

treated as a sequence, it decays faster than O(T−1), then θ̂ − β becomes the
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dominating term, yielding
√
NT (θ̂ − θ)→d N (0,Var(eit)).

We refer to this case as “weak heterogeneity” as it covers not only when βi is

homogeneous, but also when the degree of heterogeneity is small relative to

the sample size as formalized by Var(βi) = o(T−1). This case can be relevant

in many empirical applications where the degree of heterogeneity is unknown

and the time dimension is only moderately large.

It can be also shown that any degree of heterogeneity in between the above two

extreme cases would lead to an unknown rate of convergence θ̂− θ = OP (ξNT ) where

ξNT ∈ [(NT )−1/2, N−1/2].

The unknown rate of convergence has consequences for the properties of standard

inferential methods. Note that

Var(θ̂) =
1

NT
Var(eit) +

1

N
Var(βi). (3.6)

A common method to estimate this variance is to plug in sample analogs of Var(eit)

and Var(βi). This procedure, however, does not provide uniformly valid inference. To

understand the issue, consider the estimation of Var(βi). If βi were known, it could

have been estimated by

Ṽar(βi) :=
1

N

N∑
i=1

(βi − β)2. (3.7)

Replacing βi with its consistent estimator β̂i, we obtain

V̂ar(βi) :=
1

N

N∑
i=1

(β̂i − θ̂)2.

Then V̂ar(βi)− Var(βi) has the following decomposition:

1

N

N∑
i=1

[(β̂i − θ̂)2 − (βi − β)2]︸ ︷︷ ︸
β- estimation error

+
1

N

N∑
i=1

[(βi − β)2 − Var(βi)]︸ ︷︷ ︸
LLN- error

, (3.8)

where “LLN- error” refers to the error associated with the law of large numbers.

The main issue is that the β- estimation error cannot be controlled uniformly over

Var(βi) ∈ [0, C]. Note that

β̂i − θ̂ = βi − β + (ēi − ē), ēi =
1

T

T∑
t=1

eit, ē =
1

N

N∑
i=1

ēi.
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This leads to, if T = o(N),

β- estimation error =
1

N

∑
i

(ēi − ē)2 +
2

N

∑
i

(ēi − ē)(βi − β) � OP (T−1).

The β-estimation error is an incidental parameter bias whose order does not adapt to

Var(βi), leading to first order bias of V̂ar(θ̂) in the weak heterogeneity case. Thus, the

estimation error |V̂ar(θ̂)−Var(θ̂)| is lower bounded by an order of OP ((NT )−1), which

is not negligible when
√
NT (θ̂−θ)→d N (0,Var(eit)). Consequently, the usual plug-in

variance estimator using V̂ar(θ̂) would lead to an asymptotically incorrect inference.

To see this, note that the confidence interval will be distorted by a quantity of the

same order as the length of the interval, that is

CI1−p(θ) = θ̂ ± z1−p/2

√
V̂ar(θ̂) = θ̂ ± z1−p/2

√
Var(θ̂) +OP ((NT )−1),

where zp is the p-quantile of the standard normal. The two terms inside the square

root are of the same order since Var(θ̂) = O((NT )−1), leading to incorrect coverage

even asymptotically,

Pr(θ ∈ CI1−p(θ)) = 1− p+O(1).

Alternatively, ignoring Var(βi) by setting V̂ar(βi) = 0 would result in asymptotic

under-coverage unless we are in the weak heterogeneity case. We can conclude that

the plug-in method is not uniformly valid over Var(βi) ∈ [0, C].

A simple solution in this example is to estimate Var(θ̂) by

V̂ar(θ̂) =
1

N
V̂ar(β̂i),

i.e., omit the first term of (3.6) in the plug-in estimator. This is an appropriate

estimator since

N(V̂ar(θ̂)−Var(θ̂)) =
1

N

∑
i

[(ēi − ē)2 − Var(ēi)] +
2

N

∑
i

(ēi − ē)(βi − β)︸ ︷︷ ︸
β- estimation error

+LLN- error

automatically adapts to the rate of convergence of θ̂. The key is that the recentering

by Var(ēi) = Var(eit)/T reduces the order of the first term of the β- estimation

error. Note that the LLN-error is of a higher order regardless of the magnitude of

Var(βi) ∈ [0, C]. For example, the LLN- error= 0 if Var(βi) = 0 because βi = β almost

surely. In the next section, we propose a bootstrap method that is also robust to the

degree of heterogeneity and is convenient for simultaneous inference on function-

valued parameters.
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3.2.2. The cross-sectional bootstrap. We develop a simple cross-sectional bootstrap

scheme that is uniformly valid over a large class of data generating processes that

include both weak and strong heterogeneity. We introduce the method in the context

of the example from the previous section and provide implementation algorithms for

the functionals of interest in our model in Appendix A. The formal theoretical results

on the validity of cross-sectional bootstrap are given in Section 5.4.1.

The cross-sectional bootstrap is based on resampling with replacement of the es-

timated coefficients β̂i instead of the observations yit. We call this a cross-sectional

bootstrap because it is equivalent to resampling the entire time series {yi1, . . . , yiT} of

each cross-sectional unit. Let {β̂∗i : i = 1, ..., N} be random sample with replacement

from {β̂i : i = 1, ..., N}. The bootstrap draw of θ̂ is

θ̂∗ =
1

N

N∑
i=1

β̂∗i .

We approximate the asymptotic distribution of θ̂− θ by the bootstrap distribution of

θ̂∗ − θ̂. If qp is the p-quantile of the bootstrap distribution of |θ̂∗ − θ̂|/s∗, where s∗ is

the bootstrap standard deviation of θ̂∗, then the p-confidence interval for θ is

CIp(θ) = θ̂ ± qps∗.

This procedure is very simple, but perhaps surprisingly, leads to the desired uniform

coverage. To see this, note that the bootstrap variance of θ̂∗ is

1

N2

N∑
i=1

(β̂i − θ̂)2 =
1

N
V̂ar(β̂i),

which, as we have shown above, is an estimator of Var(θ̂) that adapts automatically

to the degree of heterogeneity.

Figure 3.1 provides a numerical comparison of analytical and cross-sectional boot-

strap estimators of the standard deviation of θ̂ using a design where eit ∼ N (0, 1),

βi ∼ N (θ,Var(βi)), Var(βi) ∈ {0, 0.1, . . . , 1}, θ = 1, N = 100, and T = 10. It reports

the (true) standard deviation of θ̂, based on Var(θ̂) = Var(eit)/(NT ) + Var(βi)/N , as

a function of Var(βi); together with averages over 5, 000 simulations of the following

estimators:

(1) Standard plug-in: based on

V̂ar(θ̂) =
1

N2T 2

N∑
i=1

T∑
t=1

(yit − β̂i)2 +
1

N2

N∑
i=1

(β̂i − θ̂)2.
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This estimator is labeled as “over”.

(2) Plug-in that omits the heterogeneity in βi: based on the first term of the

previous expression. This estimator is labeled as “under”.

(3) Cross-sectional bootstrap standard deviation based on 1, 000 draws.

0.0 0.2 0.4 0.6 0.8 1.0

0.
04

0.
06

0.
08

0.
10

Var(βi)

true
over
under
CSB

Figure 3.1. Comparison of analytical and cross-sectional bootstrap esti-

mators of standard deviation of θ̂ in this example.

We find that the standard analytical plug-in estimator overestimates the standard

error for any degree of heterogeneity, whereas the analytical plug-in estimator that

omits the heterogeneity in βi underestimates the standard error in the presence of any

heterogeneity. The mean of cross-sectional bootstrap estimator is very close to the

standard error uniformly for all the degrees of heterogeneity considered, as predicted

by the asymptotic theory.

3.2.3. Simultaneous Inference. The bootstrap algorithms for the model functionals

presented in Appendix A are designed to construct confidence bands that cover the

functionals simultaneously over the region of points of interest. For example, if we are

interested in the scalar function y 7→ ξ(y) over y ∈ Y , the asymptotic p-confidence

band CIp(ξ(y)) := [ξ̂l(y), ξ̂u(y)] is defined by the data dependent end-point functions

y 7→ ξ̂l(y) and y 7→ ξ̂u(y) that satisfy

Pr
(
ξ̂l(y) ≤ ξ(y) ≤ ξ̂u(y), y ∈ Y

)
→ p as N, T →∞.
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We illustrate in Section 4 how this confidence bands can be used to test multiple

hypotheses about the sign and shape of the functionals. Pointwise confidence intervals

are special cases by setting the region Y to include only one point.

4. The Dynamics of Labor Income

4.1. Data. We employ data from the Panel Study of Income Dynamics for the years

1967 to 1996 (PSID, 2020). The sample selection is the same as in Hu et al. (2019)

which restricts the sample to male heads of household working a minimum of 40

weeks.5 We drop the worker-year observations where labor income is above the 99

sample percentile or below the 1 sample percentile, and keep workers observed for

a minimum of 15 years. This selection results in an unbalanced panel with 1,629

workers and 33,338 worker-year observations.

The variables used in the analysis include measures of labor income, years of school-

ing, number of children, marital status, year of birth, survey year and an indicator for

the worker being white. The years of schooling variable is constructed from the cat-

egorical variable highest grade completed with the following equivalence: 0-5 grades

= 5 years, 6-8 grades = 7 years, 9-11 grades = 10 years, 12 grades = 12 years, some

college = 14 years, and college degree = 16 years. Following the literature on labor

income processes, we construct the outcome, yit, as the residuals of the pooled regres-

sion of the logarithm of annual real labor income in 1996 US dollars, deflated by the

CPI-U-RS price deflator, on indicators for marital status, number of children, year of

birth and survey year. We refer to these residuals as labor income.

4.2. Model coefficients. We estimate the HDR model (2.1) with xit = (1, yi,t−1)′.

We denote the model coefficients by βi(y) = (αi(y), ρi(y))′ and their bias corrected

estimates by β̂i(y) = (α̂i(y), ρ̂i(y))′, where we refer to y 7→ αi(y) as the intercept or

level function and y 7→ ρi(y) as the slope or persistence function. These estimates

are obtained using (3.1). The left panel of Figure 4.1 (Between Median) plots the

kernel density of the estimated slope function ρ̂i(y) at a fixed value of y correspond-

ing to the sample median of yit pooled across workers and years. We find substantial

heterogeneity between workers in this parameter. The density of the persistence

coefficient includes both positive and negative values corresponding to positive and

negative state dependencies in the labor income process at the median. The right

panel of Figure 4.1 (Within Median) plots the pointwise sample median of the func-

tion y 7→ ρ̂i(y) over a region Y that includes all the sample percentiles of the sample

5This sample is commonly employed in this literature as it represents full time full year workers.
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values of yit pooled across workers and years. The function is plotted with respect to

the probability level of the sample percentile to facilitate interpretation. We find sub-

stantial heterogeneity in the slope within the distribution of the median worker. The

slope is increasing with the percentile level indicating higher persistence parameter at

the upper tail of the distribution. The two figures combined illustrate the existence

of substantial heterogeneity in income dynamics both between and within workers.
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Figure 4.1. The left panel plots the cross-sectional density of ρ̂i(y) when
y is fixed to the sample median of yit in the pooled sample; the right panel
plots the cross-sectional pointwise median of the function y 7→ ρ̂i(y).

4.3. Goodness of Fit. To assess the model’s performance, Figure 4.2 compares the

empirical distributions of yit in 1981 and 1991 with the corresponding distributions

predicted by the HDR model. We find that the model provides a remarkably close fit

to the empirical distribution for all the values of y, including the tails.

4.4. Projections of Coefficients. We obtain projections of the estimated coeffi-

cients to explore if specific worker characteristics are associated with the heterogene-

ity in the level and persistence of labor income between workers. We apply (3.2)

with zi including a constant, the initial labor income, number of years of schooling,

a white indicator and year of birth, and wi = zi.

Figure 4.3 reports the estimates and 90% confidence bands of the projection coef-

ficient function y 7→ θ(y) for education over a region Y that includes all the sample

percentiles of the pooled sample of yit with probability levels {0.10, 0.11, . . . , 0.90},
plotted with respect to these probability levels. We find education level is associated
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Figure 4.2. Empirical and predicted actual distributions, Ft, t ∈ {1981, 1991}.
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Figure 4.3. Projection coefficients of βi(y) = (ρi(y), αi(y)) on worker
education levels. The confidence bands are obtained by cross-sectional boot-
strap using Algorithm A.1 with B = 500.

with coefficient heterogeneity at some locations of the distribution. For example, the

persistence parameter ρi(y) is negatively associated with education at the bottom of

the distribution, whereas the level parameter αi(y) is positively associated with edu-

cation in the middle of the distribution. The effect of education on ρi(y) is increasing

with y, although this pattern should be interpreted carefully as the function is not

very precisely estimated, as reflected by the width of the confidence band.

4.5. The Impact of Tax Policies. An important implication of the HDR repre-

sentation of labor income is that an individual’s location in the income distribution

in a specific time period partially depends on his location in previous periods. More-

over, the nature of this dependence varies by worker. This indicates that a shock to

current labor income will determine the path of future income. To illustrate the pres-

ence and heterogeneity of this dependence we examine the impact on future income
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resulting from a negative shock to initial income. We implement the shock through

two hypothetical tax policies corresponding to a proportional tax of 25 percent and

the progressive tax between 0 and 50 percent on labor income in 1985.6 We interpret

this as a partial equilibrium analysis in that we change the level of initial income

but keep all other aspects of the model constant. Specifically, we estimate the coun-

terfactual distribution (2.4) for the transformations hit given in (2.5) with κ = 0.25

and (2.6). Each transformation yields a counterfactual distribution of labor income

in t = 1986. We also estimate the actual distribution and the corresponding quantile

effects. We compare the estimates from the proposed HDR model with estimates

obtained from the homogenous location-shift, homogenous location-shift with fixed

effects and homogenous DR models described in Section 2.1.

The parameters of the location-shifts models are estimated by least squares; the

parameters of the homogeneous DR model are estimated by distribution regression

with Λ equal to the standard logistic distribution.
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prob

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05
proportional tax

0 0.2 0.4 0.6 0.8 1

prob

-0.5

-0.4

-0.3

-0.2

-0.1

0
progressive tax

Hetero. DR

LS

LS-fixed effect

Homo. DR

Confidence Band

Figure 4.4. Quantile effects of counterfactual tax policies. Left panel:
proportional tax; right panel: progressive tax. Hetero.DR refers to the pro-
posed approach; LS refers to the homogeneous location-shift model; LS-fixed
effect additionally adds fixed effects; Homo.DR refers to the homogeneous
DR model. The confidence band for the estimation of the heterogeneous DR
model (the proposed approach) is also plotted.

Figure 4.4 reports estimates and 90% confidence bands of the quantile effects for

the proportional tax in the left panel and for the progressive tax in the right panel, to-

gether with the estimates obtained from the alternative models. The confidence bands

are computed using Algorithm A.3 with p = .90, B = 500 and T = {.05, .06, . . . , .95}.
6We choose 1985 as the base year because it is the year with the largest number of observations in
the dataset.
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The estimates of the proportional tax show that the fully homogeneous location-shift

and DR models predict that the tax reduces next period income almost in a one-for-

one basis throughout the distribution. The model with fixed effects lowers the effect

to about 15%, whereas the HDR model further ameliorates it to about 10%. The

confidence band shows that there is no evidence of heterogeneous effects across the

distribution. The comparison of the estimated effects from the progressive tax from

each of the models reveals that allowing for heterogeneity again reduces the impact

of the tax. However, the progressive nature of the tax produces heterogeneous effects

across the distribution.

For both taxes, the confidence bands of the HDR model do not fully cover the esti-

mates of the other three models. This comparison provides the basis of a specification

test. The results in this plot are sufficient to formally reject the restrictions imposed

by the alternative models.

4.6. Dynamic Aspects of Relative Poverty. We now analyze labor income mo-

bility and the existence of “relative poverty” traps. We evaluate the probability of

remaining in lower locations of the residual distribution noting that we refer to this

as relative poverty as we acknowledge that the total income level may not be below

the poverty line. We do so via the model from Section 2.3, where the conditional

distribution is represented by a discrete Markov chain. We set the states for each

worker as the observed values of yit, that is Yi := {yit : t = 1, ..., T} and K = T .

Following Hu et al. (2019), consider the following probabilities to describe mobility:

Pi(p, q, h) := Pr(yi(t+h) < yp | yit < yq,Fit), i = 1, ..., N,

where yp and yq are the p-quantile and q-quantile of the distribution of labor income.

These probabilities correspond to the following experiment: If we exogenously set

labor income below yq at time t, then Pi(p, q, h) is the probability labor income is

below yp after h years.7 For example, if we define the poverty line as the 10-percentile,

then Pi(0.1, 0.1, 5) is the probability that worker i would remain in poverty after 5

years if he falls below the poverty line due to, for example, a negative income shock.

Our model allows the probabilities Pi(p, q, h) to be heterogeneous across workers.

To summarize this heterogeneity, we can examine the average probability:

P̄ (p, q, h) =
1

N

N∑
i=1

Pi(p, q, h).

7The probability Pi(p, q, h) is identified if yit is observed below yp for some t. We restrict the sample
to workers that satisfy this condition in the sample period to estimate these probabilities.
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For instance, P̄ (0.3, 0.1, 1) is the probability that a randomly chosen worker is below

the 30-percentile if the previous year he was below the 10-percentile. We also examine

quantiles of the probabilities such as:

Qτ (p, q, h)

which denotes the τ -quantile of {Pi(p, q, h) :, i = 1, ..., N} for fixed (p, q, h). For

example, Q0.25(0.3, 0.1, 1) is the first quartile of the probability that a worker is below

the 30-percentile if the previous year he was below the 10-percentile.

The upper panel of Figure 4.6 plots p 7→ P̄ (p, q, h) for p ∈ [0, 0.5], q ∈ {0.1, 0.25, 0.5}
and h ∈ {1, 2, 5}. We find heterogeneity with respect to the initial condition that van-

ishes with time due to the ergodicity of the process. The probability that a randomly

selected worker remains below the 10-percentile after one year is more than 50%,

whereas this probability decreases by about half if the worker was initially below the

median. This difference in probabilities reduces after two years and almost vanishes

after five years. The lower panel of Figure 4.6 plots p 7→ Qτ (p, q, h) for p ∈ [0, 0.5],

q = 0.1, h ∈ {1, 2, 5} and τ ∈ {0.1, 0.5, 0.9}. We uncover significant heterogeneity

across workers that is hidden in the analysis of the mean worker. Even after 5 peri-

ods the deciles of the probability of remaining below the 10-percentile range from 0

to more than 0.9. This illustrates the importance of accounting for heterogeneity in

understanding labor income risk.

Let hi(p) denote the recurrence time of yp, that is, starting from {yit < yp}, the

number of years h until the first occurrence of {yi(t+h) > yp}. For example, if y0.10

is the poverty line, hi(0.10) is a random variable that measures the number of years

that worker i takes to escape from poverty. Then,

Pr(hi(p) = h) = Pr(yi(t+h) > yp, yi(t+h−1) < yp, ..., yi(t+1) < yp | yit < yp,Fit),

which can be expressed as a functional of the parameters of the HDR model. Another

interesting quantity is

Hi(p) =
∑
h

hPr(hi(p) = h),

which gives the expected recurrence time for each individual. In the previous example,

Hi(0.10) gives the expected number of years that worker i would take to escape from

poverty. Figure 4.6 plots a histogram of the estimated Hi(0.10). More than 60% of

the workers would escape from the poverty in two or less years, but about 10% of the

workers would stay for more than 20 years. Table 4.6 reports several quantiles of the

estimated Hi(0.1) for groups stratified by education and race. We find substantial
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Figure 4.5. Means and quantiles of probabilities of income mobility. The
upper panels report P̄ (p, q, h) and the lower panels report Qτ (p, q, h).

heterogeneity between workers associated with education and race. Whereas the

deciles of the expected recurrence time range from 1 to 7 years for workers with at

least high school, the corresponding value of 176 years indicates there are more than

10% of workers with less than high school that would never escape poverty. The

distribution of the expected recurrence time also differs by race. The upper decile of

the expected recurrence time is about 20 years higher for nonwhite than for white

workers. This heterogeneity in the persistence of poverty has clear implications for

the design of poverty alleviation policies. As they employ a different sample to ours

and employ a different definition of “relative poverty” we do not directly compare

these results to Lillard and Willis (1978). However, in addition to confirming the

dependence in labor income documented in their study, we illustrate the remarkable

difficulty facing some workers in escaping relative poverty.

4.7. The Impact of Completing High School. We now evaluate a hypothetical

scenario in which workers with less than 12 years of schooling are assigned a high

school degree (12 years of schooling). This also reflects a form of partial equilibrium

analysis as the model parameters and the income distribution are based on the pre-

intervention setting and we do not allow for possible general equilibrium effects. In
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Figure 4.6. Histogram of expected recurrence time out-of-poverty in
years, Hi(0.10)

Table 4.1. Quantiles of expected recurrence time out-of-poverty in years,
Hi(0.10), by education and racial groups

Quantiles
0.10 0.25 0.50 0.75 0.90

All 1.00 1.00 1.47 3.63 19.45
Edu< 12 years 1.00 1.35 2.92 9.75 175.8
Edu≥ 12 years 1.00 1.00 1.20 2.39 7.37

White 1.00 1.00 1.27 3.12 13.88
non-White 1.00 1.11 1.81 5.52 33.91

particular, we assume that the resulting distribution is (2.4) with h(xit) = xit and

g defined in (2.7). We set the values of yi(t−1) to the observed values in 1985 and

assume that the change occurs at the beginning of 1986. We estimate the actual

and counterfactual distributions in 1986 using (3.3), and the short and long term

quantile effects using (3.5). To estimate the stationary distributions, we set the

states for each worker in the Markov chain to the observed values of yit, that is

Yi := {yit : t = 1, ..., T} and K = T .

Figure 4.7 reports estimates and 90% confidence bands of QEt in the left panel

and QE∞ in the right panel. The confidence bands are computed using Algorithm

A.3 with p = .90, B = 500 and T = {.05, .06, . . . , .95}. We find this intervention

has heterogeneous effects across the distribution. The lower tail increases by around

7.5% after one year to almost 15% in the long run, whereas there is very little effect

at the upper tail both in the short and long run. The confidence bands show that the

results at the lower tail are statistically significant and allow us to formally reject the
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hypothesis of constant effects across the distribution. The magnitudes of the effects

are economically noteworthy given the policy affects a relatively small fraction of the

population. The results indicate that the increase in education for those with lower

levels of education shifts the bottom tail of the labor income distribution of the entire

population. This supports the commonly held policy view that increasing education

of the lowly educated will reduce the level of inequality. There is no evidence of

movements in the distribution at higher levels of labor income.
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Figure 4.7. Quantile effects of counterfactual high school policy.

5. Asymptotic Theory

This section develops asymptotic theory for the estimators of the functionals of

interest. We start by introducing some notation. Recall that the loss function for the

estimation of the coefficients is: Qy,i(b) = T−1
∑T

t=1 qy,it(b), where

qy,it(b) = 1{yit ≤ y}Λ(−x′itb) + 1{yit > y}[1− Λ(−x′itb)].

Let

ψit(y) = ∇qy,it(βi(y))

$d
it(y) = ∇dqy,it(βi(y))− E∇dqy,it(βi(y)), d = 1, 2, 3.

A1i(y) = [E∇2qy,it(βi(y))]−1, A2i(y) = E∇3qy,it(βi(y)),

where all terms are defined using the true βi(y). Specifically, when β is a vector, the

third order derivative matrix∇3q(β) is a dβ×d2
β matrix, defined as (∇B1(β), ...,∇Bdβ(β)),

where Bj(β) is the dβ × dβ Jacobian of the j th row of ∇2q, here dβ := dim(β).
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5.1. Sampling. The following assumptions relate to the properties of the sampling

process. Recall that Fi1 ⊂ ... ⊂ FiT is the sequence of filtrations over time that

include covariates and any time invariant variables for unit i.

Assumption 5.1 (Cross-section dimension). (i) E(γi(y1)|wi, ψit(y2)) = 0 for any

y1, y2 and i = 1, ..., N.

(ii) The filtrations FiT are independent across i = 1, ..., N .

(iii) {(Yit,xit,wt) : t ≤ T} are identically distributed across i = 1, ..., N .

Assumption 5.2 (Time series dimension). There are universal constants C, c > 0

such that almost surely,

max
i≤N

E

[
sup
y∈Y
‖ 1√

T

∑
t

$d
it(y)‖8+c

]
< C,

max
i≤N

E

[
sup

|y1−y2|≤ε
‖ 1√

T

∑
t

$d
it(y1)− 1√

T

∑
t

$d
it(y2)‖8

]
< Cε2,

for d = 1, 2, 3.

Assumption 5.2 imposes conditions regarding serial dependence. We impose two

high level conditions regarding the empirical process for weakly dependent data. It

requires some primitive conditions, e.g., mixing conditions, so that {(Yit,xit) : t ≤ T}
is serially weakly dependent.

5.2. Projections of Coefficients. The main result of this section is to show that

θ̂(y)− θ(y) converges to a Gaussian process.

We start by defining the covariance kernel of the limiting process of θ̂ − θ. For a

given integer M > 0, let YM = (y1, ..., yM)′ be an arbitrary M -dimensional vector on

⊗Mi=1Y . Let Swz := C−1
1 C2(C ′2C

−1
1 C2)−1 where C1 = Ewiw

′
i, C2 = Ewiz

′
i, and

Vψ(yk, yl) = E

{
(S ′wzwiw

′
iSwz)⊗

[
A1i(yk)E(

1

T

∑
s,t≤T

ψit(yk)ψit(yl)
′|wi)A1i(yl)

]}
.

Vγ(yk, yl) = E {(S ′wzwiw
′
iSwz)⊗ E(γi(yk)γi(yl)

′ | wi)}
ΣNT (yk, yl) =

1

NT
Vψ(yk, yl) +

1

N
Vγ(yk, yl)

ΣNT (y) = ΣNT (y, y). (5.1)

The covariance kernel is now given by the limit of the elements of the following M×M
matrix:

Hη,NT = (Hη,NT (yk, yl))M×M
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where

Hη,NT (yk, yl) =
η′ΣNT (yk, yl)η

[η′ΣNT (yk)η]1/2[η′ΣNT (yl)η]1/2

and η ∈ Rdim(vecθ). We make the following assumptions about the covariance kernel:

Assumption 5.3 (Covariance kernel). For any η ∈ Rdim(vecθ) and ‖η‖ > c > 0, any

integer M > 0, and any M-dimensional vector YM = (y1, ..., yM)′ on ⊗Mi=1Y, there is

an M ×M matrix Hη, such that almost surely,

lim
N,T→∞

Hη,NT = Hη. (5.2)

In addition, there is cYM ,η > 0 such that

λmin(Hη) > cYM ,η. (5.3)

Here cYM ,η may depend on YM ,M and η.

Condition (5.3) is used to establish the finite dimensional distribution (f.i.d.i.) of

η′vec(θ̂(·)− θ(·)), which is required for a given YM ,M and η. Therefore, the constant

cYM ,η is allowed to depend on these parameters. To show that Assumption 5.3 is

reasonable even though the variance of γi(y) = βi(y) − θ(y)zi may vary across y in

the second-stage regression, we consider the following model:

γi(y) = ξNT (y)γ̄i(y), ∀y ∈ Y ,∀i ≤ N.

Vγ(yk, yl) = ξNT (yk)ξNT (yl)Vγ̄(yk, yl), inf
y
λmin(Vγ̄(y, y)) > c. (5.4)

Here ξNT (y) is a bounded non-stochastic sequence that may converge to zero, whose

rate depends on y; γ̄i(y) is a random vector of “normalized” γi(y) , so Vγ̄(y, y) can

be understood as a normalized covariance matrix. Hence the strength of γi(y) is

determined by the rate of convergence of ξNT (y). Given this setting, consider the

following special cases:

Case 1: ξNT (yk) = o(T−1/2) and ξNT (yl)� T−1/2. Here the explanatory power

of wi is strong for βi(yk), but relatively weak for βi(yl). Then

lim
N,T→∞

Hη,NT (yk, yl) = 0.

Note that the opposite case of ξNT (yk) � o(T−1/2) and ξNT (yl) = T−1/2 is

also covered.



30 FERNÁNDEZ-VAL, GAO, LIAO, AND VELLA

Case 2: Both ξNT (yk), ξNT (yl) � T−1/2. Here the explanatory power of wi is

strong for both βi(yk) and βi(yl). Then

lim
N,T→∞

Hη,NT (yk, yl) = lim
N→∞

η′Vγ̄(yk, yl)η

[η′Vγ̄(yk, yk)η]1/2[η′Vγ̄(yl, yl)η]1/2
,

where the limit of the right hand side is assumed to exist.

Case 3: Both ξNT (yk), ξNT (yl) � T−1/2. Here the explanatory power of wi is

relatively weak for both βi(yk) and βi(yl). Then

lim
N,T→∞

Hη,NT (yk, yl) = lim
N→∞

η′Vψ(yk, yl)η

[η′Vψ(yk, yk)η]1/2[η′Vψ(yl, yl)η]1/2
,

where the limit of the right hand side is assumed to exist.

So each element has a limit given on the right hand side. With sufficient variations

(across yk), one may assume the limit of the matrix Hη,NT is non-degenerate that

satisfies (5.3).

The following condition describes the continuity of some moment functions. For

notational simplicity, we write

Vγ(y) := Vγ(y, y), Vψ(y) := Vψ(y, y).

Assumption 5.4 (Continuity). There is a universal constant C > 0 such that for

all y1, y2 ∈ Y,

‖Vψ(y1)− Vψ(y2)‖+ max
i≤N
‖Ad,i(y1)− Ad,i(y2)‖ < C|y1 − y2|, d = 1, 2.

In addition, for all ε > 0,

1

N

N∑
i=1

E

[
sup

|y1−y2|<ε

‖γi(y1)w′i − γi(y2)w′i‖4

M(y1, y2)2

]
< Cε

sup
|y1−y2|<ε

‖Vγ(y1)− Vγ(y2)‖
M(y1, y2)

≤ Cε.

where M(y1, y2) := min{λmin(Vγ(y1)), λmin(Vγ(y2))}.

Assumption 5.5 (Moment bounds). There are universal constants C, c > 0 so that

(i) For some a > 0,

E

sup
y∈Y

(
‖γi(y)w′i‖
λ

1/2
min(Vγ(y))

)4
 < C.

(ii) Let Θ be the parameter space for {β1(y), ..., βN(y) : y ∈ R}. The following

moment bounds hold:
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(a) maxi≤N supy∈Y [‖A1i(y)‖+ ‖A2i(y)‖] < C

(b) supy supb∈Θ maxi≤N [‖∇3Qy,i(b)‖+ ‖∇4Qy,i(b)‖+ ‖(∇2Qy,i(b))
−1‖] = OP (1)

(c) maxi≤N E‖wi‖8+c < C.

(iii) For all y ∈ Y, and all i = 1, ..., N , we have mint≤T yit < y < maxt≤T yit with

probability approaching one.

(iv) Let Sψ,i(y) = Var
(

1√
T

∑T
t=1 ψit(y)|wi

)
. Then almost surely,

min
i

inf
y∈Y

λmin(Sψ,i(y)) > c.

In addition, all eigenvalues of C1 and C ′2C2 are bounded away from zero and infinity,

where C1 = Ewiw
′
i and C2 = Ewiz

′
i, with rank(C2) ≥ dim(zi).

(v) 1
T

∑
t Eixitx′it is of full rank for each i, where the expectation Ei is taken with

respect to the joint density of (xi1, ...,xiT ) conditional on Fi1.

Condition (i) of this assumption requires that the fourth moment of γi(y) is bounded

by its second moment up to a constant, uniformly in y. To see the plausibility of this

condition, again consider model (5.4). Then the left hand side of condition (i) becomes

E

[
sup
y∈Y

(
‖γi(y)w′i‖2

λmin(Vγ(y))

)2
]

=
1
N

∑N
i=1 E(‖γ̄i(y)w′i‖4)

infy∈Y λ2
min(Vγ̄(y, y))

,

which is upper bounded by a constant provided 1
N

∑N
i=1 E(‖γ̄i(y)w′i‖4) < C. Other

conditions of this assumption are standard. Condition (iii) requires that we only focus

on y ∈ Y that are in the range of the observed outcomes. Finally, conditions (iv) and

(v) of Assumption 5.5 identify the parameters θ(y) and βi(y). To see this, note that

the model implies

− 1

T

T∑
t=1

EixitΛ−1 (Pr(yit ≤ y|Fit)) =

(
1

T

T∑
t=1

Eixitx′it

)
βi(y).

Inverting 1
T

∑T
t=1 Eixitx′it leads to the identification of βi(y). In addition, rank(C2) ≥

dim(zi) implies the identification of θ(y).

In the theorem below, L denotes the number of lags used for the Newey-West

truncation for long-run variance, which is needed for analytical bias corrections.

Theorem 5.1. Suppose N = o(T 2) and NL2 = o(T 3). Assumptions 5.1-5.5 hold. If

βi(y) is estimated using Jackknife-debias, then we additionally assume Assumption

C.1. For any η such that ‖η‖ > c > 0,

η′vec(θ̂(·)− θ(·))
[η′ΣNT (·)η]1/2

⇒ G(·)



32 FERNÁNDEZ-VAL, GAO, LIAO, AND VELLA

where ΣNT (y) = 1
NT
Vψ(y) + 1

N
Vγ(y) and G(·) is a centered Gaussian process with a

covariance function H(yk, yl) as the (k, l) element of Hη.

5.3. Counterfactual distributions and quantile effects. For a generic estimator

F̂ (y) of F (y), which may be one of the cross-sectional distributions that we discussed

earlier, one can show that it has the following expansion

F̂ (y)− F (y) =
1

N

N∑
i=1

[
1√
T
dψ,i(y) + dγ,i(y)] + oP (ζNT (y))

where ζNT (y) = (NT )−1/2 + N−1/2Vart(dγ,i)
1/2, and the two leading terms dψ,i(y)

and dγ,i(y) are asymptotically independent, and respectively capture the sampling

variation from the first-stage and second-stage. The quantile effects have similar

expansions:

Q̂E(τ)− QE(τ) =
1

N

N∑
i=1

[
1√
T
pψ,i(τ) + pγ,i(τ)] + oP (ζ̄NT (τ)) (5.5)

where ζ̄NT (τ) = (NT )−1/2 + N−1/2Vart(pγ,i(τ))1/2, and pψ,i(τ) and pγ,i(τ) are zero-

mean uncorrelated terms.

We make the following additional assumptions, which are assumed to hold for

all x̃it ∈ {xit, hit(xit)}, i.e., either the original variable xit or the counterfactual

hit(xit). The formal definitions of (dψ,i, dγ,i, pψ,i, pγ,i) depend on the specific F ∈
{Ft, Gt, F∞, G∞} and QE ∈ {QEt,QE∞}, which are given in the Appendix. We em-

phasize that Ft, Gt respectively denote the actual and counterfactual distributions

at time t and F∞, G∞ respectively denote the actual and counterfactual stationary

distributions.

Let Λ̇(s) = d
ds

Λ(s) and Λ̈(s) = d2

ds2
Λ(s).

Assumption 5.6 (Moment bounds). (i) sups |Λ̇(s)|+ sups |Λ̈(s)| < C.

(ii) E[ψit(yk)|βi(yl), x̃it, zi,wi, γi(yl)] = 0 for any yk, yl ∈ Y .
(iii) Et‖x̃it‖8 + E‖xit‖8‖g(zi)− zi‖8 < C.

(iv)

Et sup
y

[
dγ,i(y)

Vart(dγ,i(y))1/2

]4

< C, inf
y
λmin(Vart(dψ,i(y))) > c > 0.

Assumption 5.7 (Continuity). (i) There are C > 0 and k ≥ 4, for any y1, y2 ∈ Y,

Et|Λ̈(−x̃′itβi(y1))− Λ̈(−x̃′itβi(y2))|k‖x̃it‖2k ≤ C|y1 − y2|k

Et|Λ̇(−x̃′itβi(y1))− Λ̇(−x̃′itβi(y2))|k‖x̃it‖k ≤ C|y1 − y2|k
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Et|Λ̈(−x′itβ
g
i (y1))− Λ̈(−x′itβ

g
i (y2))|k‖xit‖2k ≤ C|y1 − y2|k

Et|Λ̇(−x′itβ
g
i (y1))− Λ̇(−x′itβ

g
i (y2))|k‖xit‖k ≤ C|y1 − y2|k

Et|Λ̇(−x′itβ
g
i (y1))− Λ̇(−x′itβ

g
i (y2))|‖xit[g(zi)− zi]′‖ ≤ C|y1 − y2|.

(ii) There is C > 0, for all ε > 0,

sup
|y1−y2|<ε

|Vart(dγ,i(y1))− Vart(dγ,i(y2))|
M(y1, y2)

≤ Cε

sup
|τ1−τ2|<ε

|Vart(pγ,i(τ1))− Vart(pγ,i(τ2))|
M2(τ1, τ2)

≤ Cε

Et

[
sup

|y1−y2|<ε

|dγ,i(y1)− dγ,i(y2)|4

M(y1, y2)2

]
< Cε.

where M(y1, y2) = Vart(dγ,i(y1))1/2Vart(dγ,i(y2))1/2 and M2(τ1, τ2) = Vart(pγ,i(τ1))1/2

Vart(pγ,i(τ2))1/2.

We present the notation of (dγ,i, dψ,i, pγ,i, pψ,i) for all objects of interest in the

appendix. The theorems below additionally require Assumptions C.2, C.3, which are

based on some additional notation for the stationary distribution. We present them

in the appendix.

Theorem 5.2. Suppose the assumptions of Theorem 5.1 and Assumptions 5.6-5.7,

C.3 hold. Then for F ∈ {Ft, Gt, F∞, G∞} and F̂ ∈ {F̂t, Ĝt, F̂∞, Ĝ∞}, we have

F̂ (·)− F (·)
υNT (·)

⇒ G(·)

where v2
NT (y) = 1

NT
Vart(dψ,i(y)) + 1

N
Vart(dγ,i(y)) and G(·) is a centered Gaussian

process with covariance kernel function

lim
N,T

v2
NT (yk, yl)

vNT (yk)vNT (yl)
, v2

NT (yk, yl) :=
1

NT
Etdψ,i(yk)dψ,i(yl) +

1

N
Etdγ,i(yk)dγ,i(yl),

assuming that limNT exists for each pair (yk, yl).

Theorem 5.3. Suppose the assumptions of Theorem 5.2 and Assumption C.2 hold.

Assume also, for all F ∈ {Ft, Gt, F∞, G∞}, F is continuously differentiable, whose

density (denoted by Ḟ ) satisfies infτ inf |y−φ(F,τ)|<C Ḟ (y) > c for some C, c > 0.

Then for QE ∈ {QEt,QE∞} and Q̂E ∈ {Q̂Et, Q̂E∞},

Q̂E(·)− QE(·)
JNT (·)

⇒ GQE(·),
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where J2
NT (y) := J2

NT (y, y), with

J2
NT (yk, yl) :=

1

NT
Etpψ,i(yk)pψ,i(yl) +

1

N
Etpγ,i(yk)pγ,i(yl),

and GQE(·) is a centered Gaussian process with covariance kernel function

lim
N,T

J2
NT (yk, yl)

JNT (yk)JNT (yl)
,

assuming that limNT exists for each pair (yk, yl).

5.4. Discussion of asymptotic behavior. To discuss the asymptotic behavior of

the estimators, we closely examine the spot counterfactual effect QE = QEt, estimated

by Q̂E = Q̂Et. We illustrate the complications that arise in our context and the need

for a new inference method that is uniformly valid.

The asymptotic properties of other estimators are very similar. In this case, ex-

pansion (5.5) holds, with two leading terms 1√
T
pψ,i and pγ,i. The first term arises

from the effect of estimating βi(y). The second term is due to the cross-sectional

projection, and can be expressed as

pγ,i(τ) = κII(τ) · (a) + κII(τ) · (b) + κ0(τ) · (c)
(a) = w′iSwzḠ(y1)γi(y1)

(b) = Λ(−hit(xit)′βgi (y1))− EtΛ(−hit(xit)′βgi (y1))

(c) = Λ(−x′itβi(y0))− EtΛ(−x′itβi(y0)),

where y1 = φ(Gt, τ) and y0 = φ(Ft, τ), and other related quantities such as κII(τ),

κ0(τ) and Ḡ(y1) are given in the supplementary appendix, and for now we treat

them as constants that do not affect the asymptotic behavior. The key feature of

our asymptotic analysis is that we allow any or all of the three terms to be either

equal to or arbitrarily close to zero, leading to the robustness on the magnitude of

Vart(pγ,i(τ)). Robustness on (a) is equivalent to robustness to the explanatory power

in the random coefficient model βi(y) = θ(y)wi + γi(y), while being robust on either

(b) or (c) admits cross-sectional homogeneous models as special cases. This may also

vary across quantile levels τ . For instance, at some quantiles, the model might be

homogeneous in which both (b) and (c) are exactly zero; at other quantiles, the model

might be heterogeneous, leaving one or both of them being nonzero. In practice, the

heterogeneity is unobservable, and we make no assumptions about it.

The weak convergence of Theorem 5.3 implies that for each fixed τ ,

Q̂E(τ)− QE(τ)

JNT (τ)
→d N (0, 1).
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Consider a local sequence ξNT (τ) ≥ 0 and represent

pγ,i(τ) = ξNT (τ)p̄γ,i(τ)

where Vart(p̄γ,i(τ)) > c > 0. So ξ2
NT (τ) is the local rate of Vart(pγ,i(τ)), and

Q̂E(τ)− QE(τ) = OP (
1√
NT

+
ξNT (τ)√

N
).

If ξ2
NT (τ) > c for some constant c > 0, then

√
NVart(pγ,i(τ))−1/2[Q̂E(τ)− QE(τ)]→d N (0, I).

The effect of the first-stage time series is absorbed by the cross-sectional regression.

This leads to the usual
√
N - rate of convergence for two-step panel regressions. If,

however, ξ2
NT (τ) = o(T−1), then

√
NTVart(pψ,i(τ))−1/2[Q̂E(τ)− QE(τ)]→d N (0, I).

This occurs when the observed characteristic wi has almost full explanatory power of

θi(τ) and the model is cross-sectionally homogeneous at the quantile level τ . The effect

of the first stage time series regression plays the leading role in the final estimator,

and the rate of convergence is much faster.

While the above considers two special cases, ξNT (y) can be any sequence on a

compact set [0, C] that includes 0 as an admissive boundary point. This results in

possibly varying rates of convergence for Q̂E(τ) − QE(τ) at various values of τ and

data generating processes. This suggests the need for a uniform inferential method.

5.4.1. Uniform inference using cross-sectional bootstrap. The following result proves

the validity of cross-sectional bootstrap in our setting, uniformly over a large class of

data generating processes with varying degrees of coefficient heterogeneity.

Theorem 5.4. Suppose the assumptions of Theorem 5.1 hold for all probability se-

quences {PT : T ≥ 1} ⊂ P, where the universal constants do not depend on the

specific choice of PT . Then uniformly for all {PT : T ≥ 1} ⊂ P,

(i) For the confidence level 1− a, we have

PT (η′vec(θ(y)) ∈ CIa(y),∀y ∈ Y)→ 1− a,

where CIa(y) = {m : |θ̂(y) −m| ≤ qas̃
∗(y)}, and qa and s̃∗ are defined corresponding

to (θ, θ̂) using the cross-sectional bootstrap algorithm in Appendix A.
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(ii) For (F, F̂ ) ∈ {(Ft, F̂t), (Gt, Ĝt), (F∞, F̂∞), (G∞, Ĝ∞)}

PT (F (y) ∈ CIa(y),∀τ ∈ Y)→ 1− a.

where CIa(y) = {m : |F̂ (y)−m| ≤ qas̃
∗(y)}, and qa and s̃∗ are defined corresponding

to the specific (F, F̂ ) using the cross-sectional bootstrap algorithm in Appendix A.

(iii) For (QE, Q̂E) ∈ {(QEt, Q̂Et), (QE∞, Q̂E∞)}

PT (QE(τ) ∈ CIa(τ),∀τ ∈ T )→ 1− a.

where CIa(τ) = {m : |Q̂E(τ)−m| ≤ qas̃
∗(τ)}, and qa and s̃∗ are defined corresponding

to the specific (QE, Q̂E) using the cross-sectional bootstrap algorithm in Appendix A.

6. Simulation Evidence

We report finite-sample performances of our methods using simulations for two ob-

jects of interest: the projection parameters and the counterfactual treatment effects.

Our simulation results illustrate the importance of bias correction and the uniform

validity of our inference methods. The online appendix presents further simulation

results using a calibrated model based on the PSID dataset.

Consider the following dynamic distribution regression model,

Pr(yit ≤ y | Fit) = Φ(yi(t−1)βi(y)),

βi(y) = θ(y)wi + θ(y)γ̄i, E(γ̄i | wi) = 0.

with

θ(y) = 3 sgn(y − 2)(y − 2)2, for y ∈ Y .

We set Y = {1.7, 1.8, ..., 2.3}, where the two endpoints of Y are chosen to avoid the

estimation of extreme quantiles. The marginal probabilities Pr(yit < 1.7) and Pr(yit >

2.3) are both approximately 0.1. We generate the simulated data by independently

drawing (eit, wi, γ̄i) from:

eit ∼ N (0, 1), wi ∼ Uniform(1.5, 2.5), γ̄i ∼ Uniform(−0.5, 0.5).

Finally, yit is initialized by yi0 ∼ Uniform(0.52, 1.52), and iteratively generated via

yit = θ−1

(
eit

yi(t−1)(wi + γ̄i)

)
.

The parameters of this DGP are chosen so that yi(t−1)(wi + γ̄i) > 0 for all t almost

surely. Therefore, Pr(yit ≤ y | Fit) = Φ(yi(t−1)βi(y)) is satisfied.
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Figure 6 plots the variance of γi(y) = θ(y)γ̄i, the noise level of βi(y), across y ∈ Y .

By construction, Var(γi(y)) degenerates at y = 2, and increases as y deviates from 2,

which affects the rate of convergence for estimating θ(y). The right panel plots the

true standard error of the estimator θ̂(y), along with three estimators: the proposed

bootstrap standard error se∗(y) and two additional plug-in estimators defined below.

The plug-in methods are clearly not robust to changes in Var(γi(y)) across y.
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Figure 6.1. Left: Var(γi(y)). Right: estimated and true standard errors

of θ̂(y) for y ∈M in the dynamic DR model. In the right panel, we plot four
“standard errors” for y ∈ Y under N = T = 300. The true standard error

is calculated as the standard deviation of θ̂(y) from 1,000 simulations, while
the other three are calculated using a fixed simulation of data.

6.1. Coverage Probabilities of θ(y). We examine the coverage properties of θ(y)

and compare five inferential methods: (i ) Proposed : the proposed uniform inference

procedure using the interquartile range described in Remark A.1. (ii) No-debias : this

method does not debias, while all other steps are the same as the proposed method.

We expect it to perform unsatisfactorily when T ≤ N. (iii) Conser-boot : this method

replaces Steps 4-5 of Algorithm A.1: Let q∗τ be the (1− τ) th bootstrap quantile of{
sup
y∈Y
|η′vec(θ̂∗b (y)− θ̂(y))|

}B
b=1

.

Compute the confidence band

[η′vec(θ̂(y))− q∗τ , η′vec(θ̂(y)) + q∗τ ].

Since the critical value q∗τ is chosen for the worst case y ∈ Y , we expect this method to

be conservative. (iv) Plug-in-over : this method plugs in the estimated standard error,

while assumes the second stage regression error to be non-degenerate. Specifically, it
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estimates the two components Vψ(y) and Vγ(y) in the standard error, and constructs

confidence band:

[η′vec(θ̂(y))− qτ (η′Σ̂NT (y)η)1/2, η′vec(θ̂(y)) + qτ (η
′Σ̂NT (y)η)1/2],

where

Σ̂NT (y) =
1

NT
V̂ψ(y) +

1

N
V̂γ(y).

As noted above, the estimation error of V̂γ(y) is not negligible when Vγ(y) is near

the boundary so this approach should have an over coveraging probability. (iv) Plug-

in-under : this method also plugs in the estimated standard error, but assumes that

wi fully explains βi(y), which is the standard treatment in the varying coefficient

literature. Specifically, it replaces Σ̂NT (y) of the Plug-in-over method with

Σ̃NT (y) =
1

NT
V̂ψ(y).

We expect the confidence band resulting from Σ̃NT (y) would under-cover θ(y).

The last two “plug-in” procedures estimate Vψ(y) and Vγ(y) by:

V̂ψ(y) =
1

N

N∑
i=1

(S ′wzwiw
′
iSwz)⊗

[
Ây,1iΞ(y)Ây,1i

]
.

V̂γ(y) =
1

N

N∑
i=1

(S ′wzwiw
′
iSwz)⊗ (γ̂i(y)γ̂i(y)′)

where computing the estimators Ây,1i and γ̂i(y) are straightforward. Meanwhile, we

apply the Newey-West type estimator Ξ(y) to estimate E( 1
T

∑
s,t≤T ψit(yk)ψit(yl)

′ |
W ), which is given by, for the bandwidth L,

Ξ(y) :=
1

T

T∑
t=1

ψ̂it(y)ψ̂it(y)′ +
1

T

L∑
h=1

(1− h

L
)
∑
t>h

[ψ̂it(y)ψ̂i(t−h)(y)′ + ψ̂i(t−h)(y)ψ̂it(y)′].

Table 6.1 summarizes the coverage probabilities of {θ(y) : y ∈ Y} where Y =

{1.7, 1.8, ..., 2.3} out of 1,000 replications. The results are genearlly as expected al-

though the conservative bootstrap does not appear conservative.

6.2. Coverage probabilities for quantile treatment effects. We now investigate

the performance of our proposed estimators of counterfactual QEs arising from the

change of wi, and the corresponding inferential methods. Specifically, we investigate

how the analytical debiasing and the jack-knife debiasing help reduce the MSEs of the

estimators and improve the coverage probabilities of the confidence intervals relative
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Table 6.1. Coverage Probabilities of {θ(y) : y ∈ Y}

Methods
T N Proposed No-debias Conser-boot Plugin-over Plugin-under
50 300 0.942 0.576 0.944 0.994 0.894

400 0.945 0.440 0.952 0.998 0.899
100 300 0.946 0.813 0.957 0.995 0.854

400 0.947 0.740 0.943 0.996 0.852
200 300 0.951 0.914 0.954 0.975 0.632

400 0.958 0.883 0.947 0.970 0.621

those without debiasing. We consider the QEt at t = 1 of a counterfactual increase in

wi by the amount of 0.5 for all i and the consequent changes in βi (y), while keeping

yi,t−1 of each i unchanged. We set N = 200 and T = 50.

Table 6.2. QEt at t = 1

Estimator MSE ×10−6 95% CI Coverage
quantiles 15% 25% 50% 75% 85% 15% 25% 50% 75% 85% joint

No-debias 0.47 0.32 0.27 0.39 0.63 0.95 0.94 0.90 0.89 0.93 0.89
Analytical 0.44 0.32 0.24 0.29 0.47 0.92 0.93 0.89 0.95 0.92 0.91
Jackknife 0.45 0.31 0.24 0.28 0.47 0.94 0.94 0.91 0.96 0.94 0.94

The left panel of Table 6.2 reports the MSE of the three versions of our estimators

for the QE at the 15%, 25%, 50%, 70% and 85% quantiles. The right panel reports

the coverage rates of the 95% confidence intervals, first separately for each of the five

quantiles separately, and then uniformly for the five quantiles together (“joint”). The

CIs are constructed based on our cross-sectional bootstrap procedures in Algorithm

A.3. The results illustrate that both the analytical debiasing and the jackknife de-

biasing improve the finite-sample performances of our QE estimators and CIs. The

estimator MSEs under the analytical debiasing and the jackknife debiasing are uni-

formly lower than those without debiasing across all five quantiles. There is also a

noticeable improvement in the coverage rates of the uniform CIs with debiasing.

7. Conclusion

We develop estimation and inference methods for dynamic distribution regression

panel models that incorporate heterogeneity both within and between units. Our

model can be employed in a large number of empirical settings. An empirical investi-

gation of labor income processes illustrates some economic insights our approach can
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provide. We find that accounting for individual heterogeneity is important in study-

ing the potential impact of taxes on future income and evaluating how the income

distribution responds to increases in the education levels of sub-populations of the

data. Individual heterogeneity is also important in understanding income mobility

and poverty persistence.

In the econometric analysis, the unknown degree of heterogeneity affects both the

rate of convergence and the asymptotic distribution, making them unknown and con-

tinuously varying across different assumptions on the heterogeneity. While analytical

plug-in methods for inference break down when the degree of heterogeneity varies,

we prove that a simple cross-sectional bootstrap method is uniformly valid for a large

class of data generating processes including the case of homogeneous coefficients.

We could extend our model in several directions. For instance, we could explicitly

include time fixed effects and covariates with homogeneous coefficients in the first

stage. This could be useful in empirical applications which directly model an outcome

variable with trends rather than the residuals. To reduce the number of estimated

parameters, we could model the individual coefficients in HDR using factor structures

as in Chernozhukov et al. (2018b). We could also reduce dimensionality by modeling

the between and within heterogeneity though a pseudo-factor structure where the

value y plays the role of time. For example, in the empirical application we can

model the persistence coefficient as ρi(y) ≈ λ′if y, where λi is a vector of loadings and

f y a vector of factors. Alternatively, we could use the grouped fixed effects approach

of Bonhomme and Manresa (2015). Finally, while our focus here is a panel comprising

repeated time series observations on the same unit our approach could be applied to

a network setting in which there is contemporaneous dependence across units. We

leave these extensions to future work.

Appendix A. The bootstrap algorithms

In this section we introduce the bootstrap algorithm for confidence bands.

Algorithm A.1 (Confidence Band for Projections of Coefficients).

Step 0: Pick the confidence level p, number of bootstrap repetitions B, region

Y and a component of the linear projection. This amounts to selecting a

vector η such that η′vec(θ(y)) over y ∈ Y is the function of interest.

Step 1: For any y ∈ Y , obtain the debiased DR coefficient estimates

β̂(y) := {β̂i(y) : i = 1, ..., N01(y)}
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using (3.1), and the estimates of the linear projection, θ̂(y), using (3.2).

Step 2: For any y ∈ Y , let {(β̂
∗
i (y),w∗i , z

∗
i ) : i = 1, ..., N01(y)} be a random

sample with replacement from {(β̂i(y),wi, zi) : i = 1, ..., N01(y)}. Compute

θ̂
∗
(y) =

N01(y)∑
i=1

β̂
∗
i (y)ẑ∗i (y)′

N01(y)∑
i=1

ẑ∗i (y)ẑ∗i (y)′

−1

,

ẑ∗i (y) :=

N01(y)∑
j=1

z∗jw
∗′
j

N01(y)∑
j=1

w∗jw
∗′
j

−1

w∗i .

Step 3: Repeat Step 2 for B times to obtain {θ̂
∗
b(y)}Bb=1 for each y ∈ Y .

Step 4: Let qτ be the booststrap τ -quantile of{
sup
y∈Y

∣∣∣∣∣η′vec(θ̂∗b (y)− θ̂(y))

s∗(y)

∣∣∣∣∣
}B

b=1

where s∗(y) could be either the bootstrap standard deviation or rescaled in-

terquartile range of {η′vec(θ̂
∗
b(y)}Bb=1. See remark A.1 below.

Step 5: Compute the asymptotic p-confidence band

CIp(η
′vec(θ(y))) := [η′vec(θ̂(y))− qτs∗(y),η′vec(θ̂(y)) + qτs

∗(y)].

Remark A.1 (Standard Errors). We show in the appendix that the bootstrap stan-

dard deviation s∗(y) is consistent, (s∗(y)−σ(y))/σ(y) = oP (1), uniformly in y, where

σ(y) =
√
η′ΣNT (y)η. The bootstrap interquartile range rescaled with the standard

normal distribution is an alternative: s∗(y) = (q∗.75(y) − q∗.25(y))/(z.75 − z.25), where

q∗p is the bootstrap p-quantile of η′vec(θ̂
∗
b(y) − θ̂(y)) and zp is the p-quantile of the

standard normal. Our theory covers both cases.

For the actual and counterfactual distributions, it is convenient to express the

estimator in (3.3) as

Ĝt(y) =
1

N

N∑
i=1

Ψi(y;h(xit), β̂
g

i (y))

with

Ψi(y;x, b) = 1{i ≤ N01(y)}Λ(−x′b) +
N1(y)

N

−1{i ≤ N01(y)} 1

2T
tr
(

Λ̈(−x′b)xx′Σ̂i(y)−1
)
,

to simplify the notation.
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Algorithm A.2 (Confidence Band for Actual and Counterfactual Distribution).

Step 0: Pick the confidence level p, number of bootstrap repetitions B, and

region Y .

Step 1: For each y ∈ Y , obtain the debised estimate Ĝt from (3.3).

Step 2: Let {(x∗it, β̂
∗
i (y),w∗i , z

∗
i ) : i = 1, ..., N01(y)} be a random sample with

replacement from {(xit, β̂i(y),wi, zi) : i = 1, ..., N01(y)}. Compute

Ĝ∗t (y) =
1

N

N∑
i=1

Ψi(y;hit(x
∗
it), β̂

g∗
i (y), β̂

g∗
i (y) = β̂

∗
i (y) + θ̂

∗
(y)[g(z∗i )− z∗i ],

where θ̂
∗
(y) is defined as in Step 2 of Algorithm A.1

Steps 3-5: The same as Steps 3-5 of Algorithm A.1, with (Ĝ∗, Ĝ) in place of

(η′vec(θ̂
∗
),η′vec(θ̂)).

The bootstrap inference for the actual distribution Ft(y) is a special case with

h(xit) = xit and g(zi) = zi. Finally, the algorithm below computes the confidence

band for the quantile effects.

Algorithm A.3 (Confidence Bands for Quantile Effect).

Step 0: Pick the confidence level p, number of bootstrap repetitions B, and

region of quantile indexes T .

Step 1: For any τ ∈ T , obtain the estimate Q̂Et(τ) using (3.5).

Step 2: Compute the bootstrap draws of Q̂Et(τ):

(1) Obtain F̂ ∗t and Ĝ∗t as in step 2 of Algorithm A.2. For F̂ ∗t , set h(xit) = xit

and g(zi) = zi.

(2) For any τ ∈ T , calculate

Q̂E
∗
t (τ) = φ̃(Ĝ∗t , τ)− φ̃(F̂ ∗t , τ).

Steps 3-5: The same as Steps 3-5 of Algorithm A.1, with (Q̂E
∗
t , Q̂Et) in place

of (η′vec(θ̂∗),η′vec(θ̂)).

Remark A.2 (Computation). The most computationally expensive task is the com-

putation of coefficient estimates, which is conducted only in Step 1 of the algorithms.

Remark A.3 (Stationary Distributions and Effects). The bootstrap algorithms for

stationary distributions and quantile effects are omitted because their steps are similar

to the corresponding steps in Algorithms A.2 and A.3.
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Appendix B. Additional Simulation Results

B.1. Design 2: Calibrated Model. Next, we simulate a dynamic distribution re-

gression model from a heterogeneous-coefficient autoregressive model with calibrated

parameters using the PSID data.

Specifically, using the empirical data, we first estimate the following model

Yi,t = −β0i − β1iYi,t−1 + σεit, (B.1)

for each in-sample individual i to calibrate β0i, β1i and σ, which we then use to

calibrate the second-stage model parameters (θ00, θ01, θ10, θ11) and σ0, σ1 by running

the regressions

β0,i = θ00 + w′1iθ01 + σ0γ0,i, (B.2)

β1,i = θ10 + w′1iθ11 + σ1γ1,i.

where Yi,t is the outcome variables (residual log income), and w1i is the vector of in-

dividual characteristics consisting of the variables edu, race, birth, and initialsalary.

Letting xit := (1, Yi,t−1)′, wi := (1, w′1i)
′ and assume εit ∼ N (0, 1), we may then

rewrite (B.1) and (B.2) into the following heterogeneous dynamic distribution regres-

sion model

P (Yi,t ≤ y|xit) = Φ
(
β̃0,i (y) + β̃1,i (y)Yi,t−1

)
where

β̃0,i (y) :=
y + β0,i

σ
= θ̃0 (y)′wi + σ0γ0,i, (B.3)

β̃1,i (y) :=
β1,i

σ
= θ̃1 (y)′wi + σ1γ1,i,

θ̃0 (y) :=

(
y + θ00

σ
,
θ01

σ

)′
,

θ̃1 (y) :=

(
θ10

σ
,
θ11

σ

)′
.
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Table B.1. QTE of Increasing edu by 1

Estimator MSE ×10−2

Quantiles 15% 25% 50% 75% 85%

No-debias 0.015 0.015 0.022 0.019 0.015
Analytical 0.012 0.07 0.016 0.016 0.015
Jackknife 1.99 1.54 1.48 1.76 2.03

We then simulate Yi,t according to models (B.1) and (B.2) based on the calibrated

values of β, σ, σ0 and σ1 and calculate the implied distribution regression parameters

β̃0,i (y), β̃1,i (y), θ̃0 (y) and θ̃1 (y) based on (B.3), and apply the estimation methods we

proposed in this paper to estimate the quantile treatment effects of a counterfactual

increase of edui (education) by 1 year for every individual in the sample.

Table B.1 reports the results about the MSEs of our proposed estimators, one using

analytical debiasing (“Analytical”) and one using jackknife debiasing (“Jackknife”),

in comparison with the estimator without debiasing (“No-debias”). Here we note that,

while the estimator with analytical debiasing performs well and generally better than

the one with no debiasing, the jackknife debiased estimator suffers from notably larger

MSEs. The main reason underlying the problem with jackknife debiasing here is a

drastic worsening of the split-sample estimator on half of time periods, which seems

to come from a reduction in the variations of the outcome variable. This suggests

that the anlaytical debiasing be used when the number of time periods is relatively

small.

B.2. Dynamic probit model. We also consider a dynamic probit model

P (yi,t+1(y) = 1|yi,t(y), βi(y)) = Φ(yi,t(y)βi(y) + 0.1)

βi(y) = θ(y)w1,i + 0.3w2,i + θ(y)γ̄i.

The outcome variable depends on y ∈ (0, 1) through the coefficient βi(y). We inde-

pendently simulate the relevant variables and the initial yi,0 as follows:

(w1,i, w2,i, γ̄i) ∼ Uniform(−0.5, 0.5), yi,0(y) ∼ Bernoulli(0.7).

As for the coefficient function, we take θ(y) = 0.5/T 2y2 which is strictly decreasing

and depends on T . Note that

ΣNT (y) ≈

 1
NT
Vψ(y), y → 1

1
N

3Var(γ̄i), y → 0
.
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Hence the convergence rate of ΣNT (y) varies as y approaches to either boundary of

its support. Also note that |βi(y)| < 0.65 almost surely so Yit(y) is stationary.

Table B.2 reports the coverage probabilities of the confidence band for {θ(y) : y ∈
M}, where M = {0, 0.2, ..., 1}. The three bootstrap based methods: proposed, no-

debias and conservative bootstrap, perform overall satisfactorily, while the two plug-

in methods are either very conservative or under-coveraging. In addition, Figure B.1

plots the true and estimated standard errors of θ̂(y). As expected, the two plug-in

standard errors are not uniformly good.

Table B.2. Coverage Probabilities of {θ(y) : y ∈M} in dynamic probit model

Methods
T N Proposed No-debias Conser-boot Plugin-over Plugin-under

200 300 0.947 0.945 0.950 0.996 0.894
400 0.961 0.956 0.954 0.995 0.910

250 300 0.945 0.940 0.943 0.997 0.886
400 0.951 0.948 0.949 0.997 0.909

300 300 0.950 0.951 0.959 0.996 0.894
400 0.953 0.947 0.953 0.996 0.886

Figure B.1. Var(γi(y)) and estimated and true standard errors of θ̂(y) for
y ∈M in the dynamic probit model. N = 400, T = 300.
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Appendix C. Technical Details

C.1. Debiased estimators for βi(y). First of all, recall that N0(y) is the number

of indexes i for which y < y
i
, N1(y) be the number of indexes i for which y ≥ yi, and

N01(y) = N −N0(y)−N1(y), that is the number of indexes i for which β̃i(y) exists.
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In addition, the imposed assumptions ensure that with probability approaching one,

the following event holds:

For all y ∈ Y , and all i = 1, ..., N , we have mint≤T yit < y < maxt≤T yit.

Under this event, N0(y) = N1(y) = 0 and N01(y) = N for all y ∈ Y . So throughout

the technical proofs, we condition on this event, which would not affect the asymptotic

results.

C.1.1. Analytical Debias. The initial estimator can be expanded as

β̃i(y)− βi(y) = −A1i(y)∇Qy,i(βi(y))− 1

T
Bi,1T (y)− 1

T
Bi,2T (y) +Ri(y)

where A1i = [∇2EQy,i(βi(y))]−1, ∇Qy,i(βi(y)) = − 1
T

∑T
t=1 ψit(y) and Ri(y) is the

higher order term. To describe the first-order biases Bi,1T (y) and Bi,2T (y), write

A1i = [∇2Qy,i(βi(y))]−1, A2i = ∇3Qy,i(βi(y)), and A2i = ∇3EQy,i(βi(y)). Then

A1i

√
T∇Qy,i(βi(y)) =

1√
T

∑
t

A1iψit(y),
√
T [A−1

1i − A−1
1i ] =

1√
T

∑
t

$2
it(y).

Here $2
it(y) is dim(βi)× dim(βi). Let $2

it,k(y) be its k th column and

Vi,k(y) := Var

[
1√
T

∑
t

`it

]
=

(
M1(y) M2,k(y)′

M2,k(y) M3k(y)

)
, `it :=

(
A1iψit(y)

$2
it,k(y)

)
.

Then

Bi,1T (y) =
1

2
A1iA2ivec(M1(y))

Bi,2T (y) = −A1i

 tr(M2,1(y))
...

tr(M2,dim(βi)(y))

 . (C.1)

Hence we can estimate Bi,1T (y) and Bi,2T (y) by replacing Vi,k(y) by its estimator

V̂i,k(y); the latter can be obtained by the Newey-West truncation.

V̂i,k(y) =
1

T

T∑
t=1

̂̀
it
̂̀′
it +

1

T

L∑
h=1

∑
t>h

[̂̀it̂̀′i(t−h) + ̂̀i(t−h)
̂̀′
it].

Let B̂i,1T = 1
2
Â1iÂ2ivec(M̂1(y)) and B̂i,2T be defined as Bi,2T (y) with A1i and M2,k(y)

replaced with their estimates.

C.1.2. Jackknife Debias. Alternative to the analytical debias, we can also employ the

sample-splitting Jackknife debias to remove the higher order bias, which was used for

instance, by Dhaene and Jochmans (2015); Okui and Yanagi (2019).
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Randomly split {1, ..., T} = I ∪ Ic, so that |I| = T/2. Let β̃i,I(y) be the same

estimated βi(y), but using data only for t ∈ I. Similarly, let β̃i,Ic(y) be the estimated

βi(y), but using data only for t ∈ Ic. Let

β̄i(y) =
1

2
[β̃i,I(y) + β̃i,Ic(y)].

Then the Jackknife debiased estimator is defined as:

β̂i(y) = 2β̃i(y)− β̄i(y).

C.2. The counterfactual distribution of stationary distribution.

C.2.1. The model. We recall that the stationary distribution is defined as F∞(y) =

E[Fi,∞(y)], where Fi,∞(y) =
∑

k:yki ≤y
πik; the ergodic probabilities πi = (πi1, . . . , πiK)

are

πi = (A′iAi)
−1A′ieK+1, Ai =

(
IK − P i

1′

)
and eK+1 is the (K+ 1)th column of IK+1. Also, P i is a K×K matrix with element

Pi,jk = Pr(yit = yji | yi(t−1) = yki ,Fit) = Λ
(
−xk′i βi(y

j
i )
)
− 1(j > 1)Λ

(
−xk′i βi(y

j−1
i )

)
.

Hence we can write

F∞(y) = Efi(βi, y)

where βi = vec(βi(y
1
i ), ..., βi(y

K
i )) and

fi(βi, y) =
K∑
k=1

1{yki ≤ y}e′kGi(βi), Gi(βi) = (A′iAi)
−1A′ieK+1.

The counterfactual stationary distribution is defined as

G∞(y) = Efi(βi,θi, y), θi = vec(θ(y1
i ), ..., θ(y

K
i )),

where

fi(βi,θi, y) =
K∑
k=1

1{yki ≤ y}e′k(Ai(βi,θi)
′Ai(βi,θi))

−1Ai(βi,θi)
′eK+1

and Ai(βi,θi) is defined as Ai but with βi replaced by

βgi = vec(βi(y
k
i ) + θ(yki )(g(zi)− zi) : k = 1, ..., K).
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C.2.2. The Estimators of stationary distributions. Under the condition that Λ
(
−xk′i βi(y

j
i )
)

=

1 for j = K, we have

F̂∞(y) =
1

N

N∑
i=1

fi(β̂i, y)− 1

T

1

N

N∑
i=1

B̂πi

where B̂πi = 1
2
tr
[
∂2
βfi(β̂i, y) 1

T

∑
t ẐitẐ

′
it

]
and

Ẑit = vec(Â1i(y
1
i )ψ̂it(y

1
i ), ..., Â1i(y

K
i )ψ̂it(y

K
i )).

Similarly, we estimate G∞ by the following bias-corrected estimator:

Ĝ∞(y) =
1

N

∑
i

fi(β̂i, θ̂i, y)− 1

2NT

∑
i

tr

[
∂2
βfi(β̂i, θ̂i, y)

1

T

∑
i

ẐitẐ
′
it

]
.

C.3. Definitions of leading terms in expansions. We shall show that

F̂t(y)− Ft(y) =
1

N

N∑
i=1

[
1√
T
d0
ψ,i(y) + d0

γ,i(y)] + oP (ζNT (y))

Ĝt(y)−Gt(y) =
1

N

N∑
i=1

[
1√
T
dIIψ,i(y) + dIIγ,i(y)] + oP (ζNT (y))

F̂∞(y)− F∞(y) =
1

N

N∑
i=1

[
1√
T
d∞ψ,i(y) + d∞γ,i(y)] + oP (ζNT (y))

Ĝ∞(y)−G∞(y) =
1

N

N∑
i=1

[
1√
T
d∞,IIψ,i (y) + d∞,IIγ,i (y)] + oP (ζNT (y))

Q̂Et(τ)− QEt(τ) =
1

N

N∑
i=1

[
1√
T
pIIψ,i(y) + pIIγ,i(τ)] + oP (ζ̄NT (τ))

Q̂E∞(τ)− QE∞(τ) =
1

N

N∑
i=1

[
1√
T
p∞,IIψ,i (y) + p∞,IIγ,i (τ)] + oP (ζ̄NT (τ)).

The involved terms are defined as follows. We introduce some notation. Let

Zjt,i = vec(A1j(y
1
i )ψjt(y

1
i ), ...,A1j(y

K
i )ψjt(y

K
i )). Zit := Zit,i.

In addition, q∞,0(τ) = φ(F∞, τ), and q∞,II(τ) = φ(G∞, τ), and γj,i = vec(γj(y
1
i ), ..., γj(y

K
i )).

d0
ψ,i(y) :=

1√
T

T∑
t=1

Λ̇(−x′itβi(y))x′itA1i(y)ψit(y),

dIIψ,i(y) =
1√
T

T∑
t=1

[w′iSwzḠ(y) + Λ̇(−hit(xit)′βgi (y))x′it]A1i(y)ψit(y)
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d0
γ,i(y) = Λ(−x′itβi(y))− EtΛ(−x′itβi(y))

dIIγ,i(y) = w′iSwzḠ(y)γi(y) + Λ(−hit(xit)′βgi (y))− EtΛ(−hit(xit)′βgi (y)),

d∞ψ,i(y) := −∂βfi(βi, y)′
1√
T

T∑
t=1

Zit,

d∞γ,i(y) := f(βi, y)− Ef(βi, y)

d∞,IIψ,j (y) := − 1√
T

∑
t

∂βfj(y)′Zjt +
1√
T

∑
t

Hjt(y)w′jSwz, Hjt(y) :=
1

N

∑
i

∂θfi(y)′Zjt,i

d∞,IIγ,j (y) :=
1

N

∑
i

∂θfi(βi,θi, y)′γj,iw
′
jSwz +

1

N

∑
i

f(βi,θi, y)− Ef(βi,θi, y),

pIIψ,i(τ) = κII(τ)dIIψ,i(φ(Gt, τ)) + κ0(τ)d0
ψ,i(φ(Ft, τ))

pIIγ,i(τ) = κII(τ)dIIγ,i(φ(Gt, τ)) + κ0(τ)d0
γ,i(φ(Ft, τ))

p∞,IIψ,i (τ) = κ∞,II(τ)d∞,IIψ,i (φ(G∞, τ)) + κ∞(τ)d∞ψ,i(φ(F∞, τ))

p∞,IIγ,i (τ) = κ∞,II(τ)d∞,IIγ,i (φ(G∞, τ)) + κ∞(τ)d∞γ,i(φ(F∞, τ)).

where Ḡ(y) = −EtΛ̇(−hit(xit)′βgi (y))vec(xit(g(zi)− zi)′), and

κII(τ) =
−1

Ġt(φ(Gt, τ))
, κ0(τ) =

1

Ḟt(φ(Ft, τ))

κ∞,II(τ) =
−1

Ġ∞(φ(G∞, τ))
, κ∞(τ) =

1

Ḟ∞(φ(F∞, τ))
. (C.2)

C.4. Further technical conditions. We additional assume the following assump-

tions.

Assumption C.1 (For Jackknife). (i) For each i, {(Yit,xit) : t = 1, ..., T} is serially

strictly stationary.

(ii) Long-run covariance: write

µi,T (y) :=
1√
T

T∑
t=1

(ψit(y)′, vec($2
it(y))′).

Then almost surely, limT→∞ Cov(µi,T (y)) exists and

max
i

sup
y
‖Cov(µi,T (y))− lim

T→∞
Cov(µi,T (y))‖ = O(T−1/2).

For the estimation of QE, we additionally require the following.

Assumption C.2 (For QE). There is C > 0, so that

Vart(d
0
γ,i(q0(τ))) + Vart(d

I
γ,i(qI(τ))) ≤ CVart(κ

0(τ)d0
γ,i(q0(τ)) + κI(τ)dIγ,i(qI(τ)))

Vart(d
0
γ,i(q0(τ))) + Vart(d

II
γ,i(qII(τ))) ≤ CVart(κ

0(τ)d0
γ,i(q0(τ)) + κII(τ)dIIγ,i(qII(τ))).
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Assumption C.3 (For stationary distributions). (i) For d = 1, 2, maxi E supy ‖∂dβfi(βi, y)‖2 <

C. Also

maxi E supy ‖∂dβfi(βi,θi, y)‖2 < C and maxi E supy ‖∂dθfi(βi,θi, y)‖4 < C.

(ii) For every y1, y2, for d = 1, 2,

E sup
|y1−y2|≤ε

‖∂dβfi(βi, y1)− ∂dβfi(βi, y2)‖4 ≤ Cε4

E sup
|y1−y2|≤ε

‖∂dβfi(βi,θi, y1)− ∂dβfi(βi,θi, y2)‖4 ≤ Cε4

E sup
|y1−y2|≤ε

‖∂dθfi(βi,θi, y1)− ∂dθfi(βi,θi, y2)‖4 ≤ Cε4

In addition, for fi ∈ {fi(βi, y), fi(βi,θi, y)}.

E sup
ρ(y1,y2)<δ

|fi(y1)− Efi(y1)− (fi(y2)− Efi(y2))|2√
Var(fi(y1))Var(fi(y2))

≤ δ2

sup
ρ(y1,y2)<δ

|Var(fi(y1))− V̄ar(fi(y2))|2

Var(fi(y1))Var(fi(y2))
≤ δ2

E sup
ρ(y1,y2)<δ

‖∂θfi(βi,θi, y1)− ∂θfi(βi,θi, y2)‖2‖γj,iw′j‖2√
V̄γ(y1)V̄γ(y2)

≤ δ2

sup
ρ(y1,y2)<δ

|V̄γ(y1)− V̄γ(y2)|2

V̄γ(y1)V̄γ(y2)
≤ δ2

(iii) ‖∂2
βfi(b1, y)−∂2

βfi(b2, y)‖ ≤ Ci(y)‖b1−b2‖ and ‖∂2
βfi(b1,θi, y)−∂2

βfi(b2,θi, y)‖ ≤
Ci(y)‖b1 − b2‖ where supy

1
N

∑
iCi(y)4 = OP (1).

(iv) E supy ‖ 1√
T

∑T
t=1 ∂βfi(βi, y)′Zit‖2+a ≤ C for some a ≥ 2. In addition,

E sup
y
‖ 1√

T

T∑
t=1

∂βfi(βi,θi, y)′Zit‖2+a + E sup
y
‖ 1√

T

T∑
t=1

Hit(y)wi‖2+a ≤ C.

(v) E supy [Zt(gi(y))]2a < C, for all

gi(y) ∈ {f(βi, y), ∂θfi(βi,θi, y)′γj,iw
′
jSwz + fi(βi,θi, y)}

(vi) E[‖ 1√
T

∑T
t=1Zit‖4|βi] < C and 1

N

∑
i E‖w′jSwz‖4‖ 1√

T

∑
tZjt,i‖4 < C.

(vii) Let Vk1,k2 denote the (k1, k2) th block of Var( 1√
T

∑
t Z̄jt|β,wj), which is a ma-

trix collecting pairwise conditional covariances between elements of Zjt,k1 and Zjt,k2.

We have maxk1,k2≤N ‖Vk1,k2‖ ≤ C.

(viii) Vart(d
∞
γ,i) + Vart(d

∞,II
γ,i ) = O(Var(p∞,IIγ,i )).
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Appendix D. Theories for the debiased estimators β̂i

Using the true value βi := βi(y) (we drop y for notational simplicity), define

Ri,4 =
1

2
A1iA2iE[(A1i∇Qi(βi))⊗ (A1i∇Qi(βi))]−

1

2
A1iA2i[(A1i∇Qi(βi))⊗ (A1i∇Qi(βi)]

Ri,5 = A1i[(A
−1
1i − A−1

1i )A1i∇Qi(βi)− E((A−1
1i − A−1

1i )A1i∇Qi(βi))]

Bi,1T =
1

2
A1iA2iE[(A1i

√
T∇Qi(βi))⊗ (A1i

√
T∇Qi(βi)]

Bi,2T = −A1iE[
√
T (A−1

1i − A−1
1i )A1i

√
T∇Qi(βi)].

Standard first-order Taylor expansion gives

β̃i − βi = −∇2Qi(βi)
−1∇Qi(βi) + ∆i (D.1)

where for some β∗i between β̃i and βi,

∆i = −∇2Qi(βi)
−1[∇2Qi(β

∗
i )−∇2Qi(βi)](β̃i − βi).

Let A1i = [∇2Qi(βi)]
−1, A2i = ∇3Qi(βi), A1i = [∇2EQi(βi)]

−1, A2i = ∇3EQi(βi).

D.1. Asymptotic expansion for β̂i. Recall that the jackknife debiased estimator

is

β̂i := β̃i − (β̄i − β̃i)

and the analytical debiased estimator is given by

β̂i = β̃i +
1

T
[B̂i,1T + B̂i,2T ].

Lemma D.1 (Jackknife debias). Additionally assume Assumption C.1. Let Ri,d,I be

similarly defined using data in I, and R̄i,d = 1
2
[Ri,d,I + Ri,d,Ic ]. Then the jackknife

estimator satisfies: for some Ri,9, (we drop y for notational simplicity)

β̂i − βi = −A1i
1

T

∑
t

ψit(y) +Ri,9 + 2Ri,4 + 2Ri,5 − R̄i,4 − R̄i,5

where supy
1
N

∑
i ‖Ri9‖2 = OP (T−3) and 1

T

∑
t ψit(y) = ∇Qi(βi).

Proof. By Lemma D.3, for supy
1
N

∑
i ‖∆i‖2 = OP (T−3),

β̃i − βi = −A1i∇Qi(βi)−
1

T
Bi,1T −

1

T
Bi,2T +Ri,4 +Ri,5 + ∆i

= −A1i∇Qi(βi)−
1

T
Bi +Ri,4 +Ri,5 + ∆i +Ri,7

where

Bi = lim
T→∞

Bi,1T + lim
T→∞

Bi,2T
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Ri,7 =
1

T
( lim
T→∞

Bi,1T + lim
T→∞

Bi,2T −Bi,1T −Bi,2T ).

Note that the existence of limT→∞Bi,1T + limT→∞Bi,2T follows from Assumption 5.2

because Bi,1T + Bi,2T is a function of Cov(µi,T (y)|wi) and A1i; A1i does not depend

on T due to the serial stationarity. We introduce Bi = limT→∞Bi,1T + limT→∞Bi,2T

in the above expansion so that the higher-order bias − 1
T
Bi becomes independent of

T ; in contrast Bi,1T +Bi,2T may depend on T due to the weak serial dependence. The

fact that Bi is independent of T is required to apply the jackknife debias devise, as

we show below. By Assumption 5.2

1

N

∑
i

‖Ri,7‖2 ≤ O(T−3).

Similar expansion holds for β̃i,I and β̃i,Ic , whose sample size is T/2. For instance,

β̃i,I − βi = −A1i∇Qi,I(βi)−
1

T/2
Bi +Ri,4I +Ri,5I + ∆iI +Ri,7I .

Let ∆̄i = 1
2
[∆i,I + ∆i,Ic ]. Therefore, with β̄i = 1

2
[β̃i,I + β̃i,Ic ]:

β̄i − βi = −A1i
1

2
[∇Qi,I(βi) +∇Qi,Ic(βi)]−

2

T
Bi + R̄i,4 + R̄i,5 + R̄i,7 + ∆̄i

= −A1i∇Qi(βi)−
2

T
Bi + R̄i,4 + R̄i,5 + R̄i,7 + ∆̄i +Ri,8

where we note that the definition of Bi does not depend on the split sample, and

R̄i,7 =
1

2
[Ri7,I +Ri7,Ic ]⇒

1

N

∑
i

‖R̄i,7‖2 = OP (T−3),

1

N

∑
i

‖∆̄i‖2 = OP (T−3)

Ri,8 = −1{T is odd} A1i

T − 1
[∇Qi(βi)−∇Qi,I(βi)], if |I| = (T + 1)/2when T is odd.

Then uniformly in y,

1

N

∑
i

‖Ri,8‖2 ≤ OP (
1

T 2
)

1

N

∑
i

[‖∇Qi(βi)‖2 + ‖∇Qi,I(βi)‖2] = OP (T−3).

Hence

β̄i − β̃i = − 1

T
Bi + ∆̄i + R̄i,4 + R̄i,5 + R̄i,7 +Ri,8 − (∆i +Ri,4 +Ri,5 +Ri,7).

So the jackknife debiased estimator β̂i := β̃i − (β̄i − β̃i) admits:

β̂i − βi = −A1i∇Qi(βi) +Ri,9 + 2Ri,4 + 2Ri,5 − R̄i,4 − R̄i,5
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where Ri,9 = 2∆i − ∆̄i −Ri,8 + 2R̄i,7 − R̄i,7 and 1
N

∑
i ‖Ri,9‖2 = OP (T−3). �

The following lemma characterizes the analytical debias, without assuming time

series stationarity.

Lemma D.2 (Analytical debias). Use the true value βi := βi(y) (we drop y for

notational simplicity). The analytical-debiased estimator satisfies: for some Ri,9,

β̂i − βi = −A1i
1

T

∑
t

ψit(y) +Ri,4 +Ri,5 + ∆̃i

where supy
1
N

∑
i ‖∆̃i‖2 = OP (L2T−3).

Proof. It follows from Lemma D.5 and Lemma D.3,

β̃i − βi = − 1

T
Bi,1T (y)− 1

T
Bi,2T (y)− A1i

1

T

∑
t

ψit(y) +Ri,4 +Ri,5 + ∆i

= − 1

T
B̂i,1T (y)− 1

T
B̂i,2T (y)− A1i

1

T

∑
t

ψit(y) +Ri,4 +Ri,5

+ ∆i − (
1

T
B̂i,1T (y)− 1

T
Bi,1T (y))− (

1

T
B̂i,2T (y)− 1

T
Bi,2T (y))︸ ︷︷ ︸

∆̃i

,

where supy
1
N

∑
i ‖∆̃i‖2 = OP (L2/T 3). �

Note that Lemma D.3 below does not assume the serial stationarity.

Lemma D.3 (Undebiased estimator). Then for some ∆i,

β̃i − βi = − 1

T
Bi,1T (y)− 1

T
Bi,2T (y)− A1i

1

T

∑
t

ψit(y) +Ri,4 +Ri,5 + ∆i

where supy
1
N

∑
i ‖∆i‖2 = OP (T−3) and 1

T

∑
t ψit(y) = ∇Qi(βi).

Proof. For notational simplicity, we drop y. The notation for higher order matrix

derivatives associated with Taylor expansions are as defined in Rilstone et al. (1996).

For a real-valued function Q(β), let ∇3Q(β) be a dim(β) × dim(β)2 matrix, whose

j th row is given by [vec∇2(∂jQ(β))]′. For instance, when β = (x, y)′, then the first

row of ∇3Q(x, y) is given by

[∂2
xg, ∂xyg, ∂yxg, ∂

2
yg], g = ∂xQ(x, y).

With this notation, the third-order Taylor expansion leads to

β̃i − βi = −∇2Qi(βi)
−1∇Qi(βi)−

1

2
∇2Qi(βi)

−1∇3Qi(βi)[(β̃i − βi)⊗ (β̃i − βi)] +Ri,1
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where ⊗ denotes Kronecker product and

Ri,1 = −1

6
∇2Qi(βi)

−1∇4Qi(β
∗
i )[(β̃i − βi)⊗ (β̃i − βi)⊗ (β̃i − βi)].

Substituting from (D.1),

β̃i − βi = −A1i∇Qi(βi)−
1

2
A1iA2i[(−A1i∇Qi(βi) + ∆i)⊗ (−A1i∇Qi(βi) + ∆i)] +Ri,1

= −A1i∇Qi(βi)−
1

2
A1iA2i[(A1i∇Qi(βi))⊗ (A1i∇Qi(βi)] +Ri,1 +Ri,2

= −A1i∇Qi(βi)−
1

2
A1iA2i[(A1i∇Qi(βi))⊗ (A1i∇Qi(βi)] +Ri,1 +Ri,2 +Ri,3

= −A1i∇Qi(βi)−
1

T
Bi,1T +

4∑
d=1

Ri,d + [A1i − A1i]∇Qi(βi)

= −A1i∇Qi(βi)−
1

T
Bi,1T +

6∑
d=1

Ri,d −
1

T
Bi,2T (D.2)

where

Ri,2 = A1iA2i {[(−A1i∇Qi(βi) + ∆i)⊗ (−A1i∇Qi(βi) + ∆i)]− [(A1i∇Qi(βi))⊗ (A1i∇Qi(βi)]}
Ri,3 =

1

2
A1iA2i[(A1i∇Qi(βi))⊗ (A1i∇Qi(βi)]−

1

2
A1iA2i[(A1i∇Qi(βi))⊗ (A1i∇Qi(βi)].

Ri,6 = A1i[A
−1
1i − A−1

1i ](A1i − A1i)∇Qi(βi).

By CS and Holder’s inequalities, and Lemma D.4, Assumption 5.5,

1

N

∑
i

‖Ri,1‖2 ≤ OP (1)(
1

N

N∑
i=1

‖β̃i − βi‖8)3/4 = OP (T−3). (by Holder p = 4/3, q = 4)

1

N

∑
i

‖Ri,2‖2 ≤ OP (1)

√√√√ 1

N

N∑
i=1

‖∇Qy,i(βi(y))‖4
1

N

N∑
i=1

‖∆i‖4 +OP (1)
1

N

N∑
i=1

‖∆i‖4 = OP (T−3).

1

N

∑
i

‖Ri,3‖2 ≤ OP (1)

√
1

N

∑
i

‖A1i − A1i‖4 +
1

N

∑
i

‖A2i − A2i‖4

√
1

N

∑
i

‖∇Qy,i(βi(y))‖8

= OP (T−3).

1

N

∑
i

‖Ri,6‖2 ≤ OP (1)

√
1

N

∑
i

‖A1i − A1i‖4

√
1

N

∑
i

‖A−1
1i − A−1

1i ‖2

√
1

N

∑
i

‖∇Qy,i(βi(y))‖4

= OP (T−3).
1

N

∑
i

‖Ri,7‖2 ≤ O(T−3), (Assumption 5.2).

Hence for ∆i := Ri,1 +Ri,2 +Ri,3 +Ri,6 +Ri,7, we have

β̃i − βi = −A1i∇Qi(βi)−
1

T
Bi,1T −

1

T
Bi,2T +Ri,4 +Ri,5 + ∆i
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and supy
1
N

∑
i ‖∆i‖2 = OP (T−3).

�

D.2. Technical lemmas. Lemmas in this subsection do not assume the serial sta-

tionarity.

Lemma D.4. Uniformly in y ∈ Y,

(i) 1
N

∑N
i=1 ‖β̃i − βi‖8 = OP (T−4).

(ii) 1
N

∑N
i=1 ‖∆i‖4 = OP (T−4).

(iii) 1
N

∑
i ‖A1i − A1i‖4 = OP (T−2) and 1

N

∑
i ‖A2i − A2i‖4 = OP (T−2).

Proof. For notational simplicity, we drop y in these quantities. We have

β̃i − βi = −∇2Qi(bi)
−1∇Qi(βi)

where bi is between β̃i and βi. Hence

sup
y

1

N

N∑
i=1

‖β̃i − βi‖8 ≤ OP (1) sup
y

1

N

N∑
i=1

‖∇Qi(βi)‖8

≤ OP (T−4) max
i

E sup
y
‖ 1√

T

∑
t

ψit(y)‖8 = OP (T−4)

where the first inequality is from: supy supb ‖∇2Qi(b)
−1‖ = OP (1) (Assumption 5.5).

(ii) Since ∇2Qi(β) is differentiable with a uniformly bounded gradient,

1

N

N∑
i=1

‖∆i‖4 ≤ C

N

N∑
i=1

‖β̃i − βi‖8 = OP (T−4).

(iii) Since supy maxi ‖A1i‖ < C almost surely and supy maxi ‖A1i‖ < C,

1

N

∑
i

‖A1i − A1i‖4 ≤ OP (
1

T 2
) max

i
E sup

y
‖ 1√

T

∑
t

$2
it(y)‖4 = OP (

1

T 2
).

1

N

∑
i

‖A2i − A2i‖4 ≤ OP (
1

T 2
) max

i
E sup

y
‖ 1√

T

∑
t

$3
it(y)‖4 = OP (

1

T 2
).

�

Lemma D.5. Suppose Vi,k(y) is independent of W . In addition, suppose there is ady,it
so that for d = 1, 2,, supy

1
NT

∑
it ‖ady,it‖4 = OP (1) and for all b1, b2,

‖∇dqy,it(b1)−∇dqy,it(b2)‖ ≤ ‖ady,it‖‖b1 − b2‖.
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Also suppose as N, T, L→∞,

E sup
y

∥∥∥∥∥ 1

T

T∑
t=1

`it`
′
it +

1

T

L∑
h=1

∑
t>h

[`it`
′
i(t−h) + `i(t−h)`

′
it]− Var(

1√
T

∑
t

`t)

∥∥∥∥∥
2

= OP (T−1).

Then uniformly in y ∈ Y,

(i) 1
N

∑
i ‖B̂i,1T −Bi,1T‖2 = OP (T−1).

(ii) 1
N

∑
i ‖B̂i,2T −Bi,2T‖2 = OP (L2/T ).

Proof. (i) By Assumption 5.5, ‖A1i‖, ‖A2i‖ and Â2i‖ are all bounded uniformly in i

and y. Then by Lemma D.4 1
N

∑
i ‖B̂i,1T −Bi,1T‖2 ≤ a1 + a2 + a3 where

a1 =
1

N

∑
i

‖Â1i − A1i‖2‖Â2ivec(M̂1(y))‖2 ≤
√
C

N

∑
i

‖Â1i − A1i‖4

√
C

N

∑
i

‖M̂1(y)‖4

≤ OP (T−1)

a2 =
1

N

∑
i

‖A1i(Â2i − A2i)vec(M̂1(y))‖2 ≤
√
C

N

∑
i

‖Â2i − A2i‖4

√
C

N

∑
i

‖M̂1(y)‖4

≤ OP (T−1)

a3 =
1

N

∑
i

‖A1iA2ivec(M̂1(y)−M1(y))‖2 ≤ C

N

∑
i

‖Σ̂i(y)− Var(
1√
T

∑
t

A1iψit(y))‖2

and Σ̂i(y) = 1
T

∑
t Â1iψ̂it(y)ψ̂it(y)′Â1i. Note that

C

N

∑
i

‖Σ̂i(y)− Var(
1√
T

∑
t

A1iψit(y)|W )‖2 ≤ OP (T−1) +

√
C

NT

∑
it

‖ψ̂it(y)− ψit(y)‖4

≤ OP (T−1) +

√
C

NT

∑
it

‖a1
1,it‖4‖β̃i(y)− βi(y)‖4

≤ OP (T−1) + (
C

NT

∑
it

‖a1
1,it‖8)1/4(

1

N

∑
i

‖β̃i(y)− βi(y)‖8)1/4 = OP (T−1).

(ii) 1
N

∑
i ‖B̂2,1T −B2,1T‖2 ≤ a1 + a2 where

a1 =
1

N

∑
i

‖Â1i − A1i‖2‖M̂2(y)‖2 ≤
√
C

N

∑
i

‖Â1i − A1i‖4

√
C

N

∑
i

‖M̂2(y)‖4

≤ OP (T−1)

a2 =
1

N

∑
i

∥∥∥∥∥∥∥A1i

 tr(M2,1(y)− M̂2,1(y))
...

tr(M2,dim(βi)(y)− M̂2,1(y))


∥∥∥∥∥∥∥

2

≤ max
k

C

N

∑
i

∥∥∥M2,k(y)− M̂2,k(y)
∥∥∥2
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≤ max
k

C

N

∑
i

∥∥∥∥∥ 1

T

T∑
t=1

`it`
′
it +

1

T

L∑
h=1

∑
t>h

[`it`
′
i(t−h) + `i(t−h)`

′
it]− Var(

1√
T

∑
t

`t)

∥∥∥∥∥
2

+ max
k

C

N

∑
i

‖Jit(y)Jit(y)′ − Ĵit(y)Ĵit(y)′‖2

+ max
k

C

N

∑
i

‖ 1

T

L∑
h=1

∑
t>h

[JitJ
′
i(t−h) − ĴitĴ ′i(t−h)]‖2 = OP (L2/T ).

where Jit(y) := A1iψit(y)$2
it,k(y) and Ĵit(y) is its estimator by replacing A1i, ψit(y)

and $2
it(y) with their estimates.

�

Appendix E. Proof of Theorem 5.1

E.1. A high-level weak convergence result. Suppose a functional estimator has

the following expansion:

ϑ̂(y)− ϑ(y) =
1

N

N∑
i=1

[
1√
T
dψ,i(y) + dγ,i(y)

]
+ oP (ζNT (y)) (E.1)

where ζNT (y) = (NT )−1/2 +N−1/2‖V̄γ(y)‖, and define

V̄ψ(yk, yl) = Edψ,i(yk)dψ,i(yl), V̄γ(yk, yl) = Edγ,i(yk)dγ,i(yl)

σ2
T (yk, yl) =

1

T
V̄ψ(yk, yl) + V̄γ(yk, yl)

σ2
T (y) = σ2

T (y, y), s2
NT (y) =

1

N
σ2
T (y)

V̄ψ(y) = V̄ψ(y, y), V̄γ(y) = V̄γ(y, y)

H = lim
T

(
σ2
T (yk, yl)

σT (yk)σT (yl)
)M×M

We make the following assumption.

Assumption E.1. (i) Edψ,i(y) = Edγ,i(y) = 0, Edψ,i(yk)dγ,i(yl) = 0 for all y, yk, yl.

(ii) We have 0 < c < infy V̄ψ(y) < C. In addition, V̄γ(y) ∈ [0, C], with zero as a

feasible value for V̄γ(y).

(ii) E supy |dψ,i(y)|2+a + E supy |
dγ,i(y)2

V̄γ(y)
|a < C for some a ≥ 2.

(iii) For any δ > 0,

E sup
ρ(y1,y2)<δ

|dψ,i(y1)− dψ,i(y2)|2 + E sup
ρ(y1,y2)<δ

|dγ,i(y1)− dγ,i(y2)|2√
V̄γ(y1)V̄γ(y2)

≤ δ2

sup
ρ(y1,y2)<δ

|V̄ψ(y1)− V̄ψ(y2)|2 + sup
ρ(y1,y2)<δ

|V̄γ(y1)− V̄γ(y2)|2

V̄γ(y1)V̄γ(y2)
≤ δ2.
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Proposition E.1. Suppose {dψ,i(y), dγ,i(y) : y ∈ T } are i.i.d. across i. Assumption

E.1 holds. In addition, for each M , and any (y1, ..., yM), suppose the M ×M matrix

H as defined above exists, and λmin(H) > c > 0.

Then
ϑ̂(·)− ϑ(·)
sNT (·)

⇒ G(·)

where G(·) is a centered Gaussian process with covariance kernel

H(yk, yl) = lim
T

σ2
T (yk, yl)

σT (yk)σT (yl)
.

Proof. We have ϑ̂(y)− ϑ(y) =
∑N

i=1 αi(y) + oP (ζNT (y)) where

αi(y) =
1

N

1√
T
dψ,i(y) +

1

N
dγ,i(y).

Below we prove the weak convergence of
∑

i αi(.)/sNT (.).

(i) show the fidi of
∑

i αi(.)/sNT (.). For any finite integer M > 0, and any y1, ..., yM .

Let Ai = (αi(y1)/sNT (y1), ..., αi(yM)/sNT (yM))′. We shall show

g′
∑

iAi√
g′Hg

→d N (0, 1),

for any g 6= 0 as an M -dimensional fixed vector. Here

HT = Var(
∑
i

Ai) = (
σ2
T (yk, yl)

σT (yk)σT (yl)
)M×M , H = lim

T
HT ,

Then the fidi follows from the Cramer-Wold theorem.

We proceed by verifying the Lindeberg condition. First, we bound
∑

i E ((g′Ai)
4).∑

i

E
(
(g′Ai)

4
)
≤ M‖g‖4

∑
i

E

(
M∑
m=1

αi(ym)4

s4
NT (ym)

)

≤ M‖g‖4 1

N4

∑
i

E

(
M∑
m=1

‖dψ,i(ym)‖4

s4
NT (ym)

1

T 2
+
‖dγ,i(ym)‖4

s4
NT (ym)

)

≤ C‖g‖4 1

N

M∑
m=1

E
[
dψ,i(ym)4

V̄ψ(ym)2
+
dγ,i(ym)4

V̄γ(ym)2

]
= O(

‖g‖4

N
). (E.2)

In addition, λmin(HT ) > λmin(H) − o(1) > c for large T . Therefore, for all ε > 0,

we use the inequality that E|Y |1{|X| > a} ≤ E|Y X2|/a2,

1

g′HTg

∑
i

E
(

(g′Ai)
21{|g′Ai| > ε

√
g′HTg}

)
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≤ 1

(g′HTg)2ε2

∑
i

E
(
(g′Ai)

4
)
≤ O(N−1).

The Lindeberg’s central limit theorem then gives

YNT := g′
∑

iAi/
√
g′HTg →d N (0, 1). Therefore,

g′
∑

iAi√
g′Hg

= YNT + YNT

(√
g′HTg

g′Hg
− 1

)
= YNT + oP (1)→d N (0, 1).

(ii) Let `∞(Y) be the set of all uniformly bounded real functions on Y . We show∑
i αi(.)/sNT (.) is asymptotically tight in `∞(Y), by verifying the three conditions of

Theorem 2.11.11 in van der Vaart and Wellner (1996). Let

bi(y) =

1√
T
dψ,i(y)

σT (y)
, ci(y) =

dγ,i(y)

σT (y)
.

b̄i(y) =

1√
T
dψ,i(y)[

1
T
V̄ψ(y)

]1/2 , c̄i(y) =
dγ,i(y)

V̄γ(y)1/2
. (E.3)

Let Fi(y) = ai
sNT

= 1√
N

(bi(y) + ci(y)). Define ρ(y1, y2) = C|y1− y2|1/4 for some C > 0.

Condition (1). For every η > 0, and an arbitrarily small a > 0,∑
i

E sup
y
|Fi(y)|1{sup

y
|Fi(y)| > η}

≤ η−1 1

N

∑
i

E sup
y
|bi(y) + ci(y)|21{sup

y
|bi(y) + ci(y)| >

√
Nη}

≤ C

ηa+1Na/2

1

N

∑
i

E sup
y
|b̄i(y)|2+a +

1

ηa+1Na/2

1

N

∑
i

E sup
y
|c̄i(y)|2+a = o(1).

Condition (2): For every y1, y2 ∈ Y ,∑
i

E|Fi(y1)− Fi(y2)|2 ≤ C
1

N

∑
i

E|bi(y1)− bi(y2)|2 + C
1

N

∑
i

E|ci(y1)− ci(y2)|2

≤ CE[dψ,i(y1)− dψ,i(y2)]2 + C|V̄ψ(y1)− V̄ψ(y2)|2 + C
|V̄γ(y1)− V̄γ(y2)|2

V̄γ(y1)V̄γ(y2)

+
E|dγ,i(y1)− dγ,i(y2)|2√

V̄γ(y1)V̄γ(y2)
≤ C|y1 − y2|1/2 ≤ ρ(y1, y2)2.

Condition (3): By Assumption 5.4, for every δ > 0,

sup
η>0

∑
i

η2P

(
sup

ρ(y1,y2)<δ

|Fi(y1)− Fi(y2)| > η

)

≤
∑
i

E

(
sup

ρ(y1,y2)<δ

|Fi(y1)− Fi(y2)|2
)
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≤ 1

N

∑
i

E

(
sup

ρ(y1,y2)<δ

|bi(y1)− bi(y2)|2
)

+
1

N

∑
i

E

(
sup

ρ(y1,y2)<δ

|ci(y1)− ci(y2)|2
)

≤ CE sup
ρ(y1,y2)<δ

|dψ,i(y1)− dψ,i(y2)|2

+C

[
sup

ρ(y1,y2)<δ

|V̄ψ(y1)− V̄ψ(y2)|2 + sup
ρ(y1,y2)<δ

|V̄γ(y1)− V̄γ(y2)|2

V̄γ(y1)V̄γ(y2)

]
E
[
sup
y
dψ,i(y)2 + sup

y

dγ,i(y)2

V̄γ(y)

]
+E sup

ρ(y1,y2)<δ

|dγ,i(y1)− dγ,i(y2)|2√
V̄γ(y1)V̄γ(y2)

≤ δ2. (E.4)

Thus all conditions are satisfied;
∑
i αi

sNT
is asymptotically tight.

Together, the process
∑

i αi(.)/sNT (.) weakly converges to a centered Gaussian

process, with covariance kernel

H(yk, yl) = lim
T

σ2
T (yk, yl)

σT (yk)σT (yl)
.

(iii) Next, we show that oP (1) supy ζNT (y)s−1
NT (y) = o(1). We have

o(
1√
NT

)
1

infy sNT (y)
=

1

infy V̄ψ(y)
o(1) = o(1)

o(
1√
N

) sup
y
‖V̄γ(y)‖1/2s−1

NT (y) ≤ o(1) sup
y

(
V̄γ(y)

V̄γ(y)
)1/2 = o(1).

Hence uniformly in y,

ϑ̂(y)− ϑ(y)

sNT (y)
=

∑
i αi(y)

sNT (y)
+ oP (1)⇒ G

This implies the weak convergence .

�

E.2. Proof of Theorem 5.1.

Proof. Recall that wi is the exogenous variable and

θ̂(y) =
1

N

N∑
i=1

β̂i(y)w′iSwz,N , Swz,N := (
1

N
W ′W )−1W ′Z(Z ′PWZ)−1.

Let Swz := C−1
1 C2(C ′2C

−1
1 C2)−1 where C1 =

∑
i Ewiw

′
i and C2 = Ewiz

′
i. Then

‖Swz,N−Swz‖ = OP (N−1/2). Also by Lemma H.2, ‖ 1
N

∑N
i=1 γi(y)w′i‖ = oP (1)‖V̄γ(y)‖1/2

uniformly in y. It implies that

1

N

N∑
i=1

γi(y)w′iSwz,N =
1

N

N∑
i=1

γi(y)w′iSwz + oP (
1√
N

)‖V̄γ(y)‖1/2. (E.5)
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Write

ζNT (y) :=
1√
NT

+
1√
N
‖V̄γ(y)‖1/2. (E.6)

By Lemmas D.3, E.1, with assumption N = o(T 2), uniformly in y ∈ Y ,

θ̂(y)− θ(y) =
1

N

N∑
i=1

[β̂i(y)− βi(y)]w′iSwz,N +
1

N

N∑
i=1

γi(y)w′iSwz,N

=
1

NT

N∑
i=1

T∑
t=1

A1i(y)ψit(y)w′iSwz,N +
1

N

N∑
i=1

γi(y)w′iSwz,N

+
1

N

N∑
i=1

Ri,9w
′
iSwz,N +

1

N

N∑
i=1

[2Ri,4 + 2Ri,5 − R̄i,4 − R̄i,5]w′iSwz,N

=(a) 1

NT

N∑
i=1

T∑
t=1

A1i(y)ψit(y)w′iSwz +
1

N

N∑
i=1

γi(y)w′iSwz

+OP (T−3/2 + T−1N−1/2 + T−1/2N−1) + oP (
1√
N

)‖V̄γ(y)‖1/2

=
1

NT

N∑
i=1

T∑
t=1

A1i(y)ψit(y)w′iSwz +
1

N

N∑
i=1

γi(y)w′iSwz + oP (ζNT (y)),

(E.7)

where (a) follows from (E.5) and Lemma H.2. So for η 6= 0, uniformly in y, η′vec(θ̂(y)−
θ(y)) = 1

N

∑
i η
′vec( 1√

T
aψ,i(y) + aγ,i(y) + oP (ζNT (y)) where

aψ,i(y) =
1√
T

T∑
t=1

A1i(y)ψit(y)w′iSwz

aγ,i(y) = γi(y)w′iSwz

Vψ(yk, yl) =
1

N

N∑
i=1

E (vec(aψ,i(yk))vec(aψ,i(yl))
′)

= E

[
(S ′wzwiw

′
iSwz)⊗

(
A1i(yk)E(

1

T

∑
s,t≤T

ψit(yk)ψit(yl)
′|wi)A1i(yl)

)]
.

Vγ(yk, yl) =
1

N

N∑
i=1

E (vec(aγ,i(yk))vec(aγ,i(yl))
′)

= E [(S ′wzwiw
′
iSwz)⊗ E(γi(yk)γi(yl)

′|wi)]

Vψ(y) = Vψ(y, y), Vγ(y) = Vγ(y, y).

Note that vec(aψ,i(y)) = (S ′wzwi) ⊗ 1√
T

∑T
t=1 A1i(y)ψit(y), and vec(aγ,i(yk)) =

(S ′wzwi)⊗ γi(y). Hence θ̂ − θ can be written as (H.1) with notation

dψ,i(y) = η′vec(aψ,i(y)), dγ,i(y) = η′vec(aγ,i(y))
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V̄ψ(yk, yl) = η′Vψ(yk, yl)η, V̄γ(yk, yl) = η′Vγ(yk, yl)η.

We apply Proposition E.1 by verifying Assumption E.1.

Condition (i). This follows from the assumption that E(γi(yl)|ψit(yk),wi) = 0 for

all yk, yl.

Condition (ii). First, note that V̄γ(y) ≥ ‖η‖2λmin(Vγ(y)) and

|dψ,i(y)| ≤ C‖wi‖‖
1√
T

T∑
t=1

ψit(y)‖, |dγ,i(y)| ≤ C‖γi(y)w′i‖

V̄γ(y) ≥ ‖η‖2λmin(Vγ(y)).

E sup
y
|dψ,i(y)|2+a ≤ C

√√√√E‖wi‖4+2aE sup
y
‖ 1√

T

T∑
t=1

ψit(y)‖4+2a < C

E sup
y
|dγ,i(y)2

V̄γ(y)
|a ≤ CE sup

y

[
‖γi(y)w′i‖2

λmin(Vγ(y))

]a
< C.

Condition (iii). We have

E sup
ρ(y1,y2)<δ

|dψ,i(y1)− dψ,i(y2)|2 ≤ C sup
ρ(y1,y2)<δ

‖A1i(y1)− A1i(y2)‖2E sup
y
‖ 1√

T

∑
t

ψitw
′
i‖2

+CE sup
ρ(y1,y2)<δ

‖ 1√
T

∑
t

ψit(y1)− 1√
T

∑
t

ψit(y2)‖2‖wi‖2 ≤ δ2.

E sup
ρ(y1,y2)<δ

|dγ,i(y1)− dγ,i(y2)|2√
V̄γ(y1)V̄γ(y2)

≤ CE sup
ρ(y1,y2)<δ

‖γi(y1)wi − γi(y2)wi‖2√
λmin(Vγ(y1))λmin(Vγ(y2))

< δ2

sup
ρ(y1,y2)<δ

|V̄ψ(y1)− V̄ψ(y2)|2 ≤ C sup
ρ(y1,y2)<δ

‖Vψ(y1)− Vψ(y2)‖2 ≤ δ2

sup
ρ(y1,y2)<δ

|V̄γ(y1)− V̄γ(y2)|2

V̄γ(y1)V̄γ(y2)
≤ C sup

ρ(y1,y2)<δ

‖Vγ(y1)− Vγ(y2)‖2

λmin(Vγ(y1))λmin(Vγ(y2))
≤ δ2

Hence Assumption E.1 holds. Thus the weak convergence of η′vec(θ̂(y)−θ(y))
sNT (y)

follows

from Proposition E.1.

�

Lemma E.1. Uniformly in y ∈ Y,

(i) 1
N

∑
iRi,4w

′
i = OP ( 1

T
√
N

), 1
N

∑
i R̄i,4w

′
i = OP ( 1

T
√
N

)

(ii) 1
N

∑
iRi,5w

′
i = OP ( 1

T
√
N

), and 1
N

∑
i R̄i,5w

′
i = OP ( 1

T
√
N

).

Proof. (i) Term 1
N

∑
iRi,4w

′
i. Recall that 1

N

∑
iRi,4w

′
i = 1

N

∑
i[E(Mi(y))−Mi(y)]w′i.

where by (AB)⊗ (AB) = (A⊗ A)(B ⊗B),

Mi(y) =
1

2
A1iA2i(A1i∇Qi(βi))⊗ (A1i∇Qi(βi))
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=
1

2
A1iA2i(A1i ⊗ A1i)(∇Qi(βi)⊗∇Qi(βi))

While this is a random matrix, as the dimension is fixed, we consider a one-dimensional

case without loss of generality. In this case, Mi(y) is a scalar variable, which depends

on y through βi. Let bi(y) = 1
2
A1iA2i(A1i ⊗ A1i) and

ai(y) = T∇Qi(βi)⊗∇Qi(βi)− TE[∇Qi(βi)⊗∇Qi(βi)].

Also, let Fi(y) = − 1√
N
ai(y)bi(y)w′i. Then T

√
N

N

∑
iRi,4w

′
i =

∑
i Fi(y) and EFi(y) = 0.

Let `∞(Y) be the set of all uniformly bounded read functions on Y . It suffices

to show that
∑

i Fi(y) is asymptotically tight in `∞(Y), by verifying conditions of

Theorem 2.11.11 in van der Vaart and Wellner (1996).

Define a semi-metric ρ(y1, y2) = C̄|y1 − y2|1/4 for all y ∈ Y and some large C̄ > 0.

To verify Condition (1) of the cited theorem, note for every η > 0, and fix some

0 < a < 2, we use the inequality xb1{x > η} ≤ xb+aη−a for x > 0 to have:∑
i

E sup
y
|Fi(y)|1{sup

y
|Fi(y)| > η}

≤ η−1 1

N

∑
i

E sup
y
|ai(y)bi(y)wi|21{sup

y
|ai(y)bi(y)wi| >

√
Nη}

≤ 1

ηa+1Na/2

1

N

∑
i

E sup
y
|ai(y)bi(y)wi|2+a

≤ C

ηa+1Na/2

1

N

∑
i

[E sup
y
|ai(y)|m]b‖wi‖4

for some constants b > 0 and m = 4(2 + a)/(2− a) using Holder’s inequality.

By assumption 5.2 for some c > 0, E[supy(
1√
T

∑
t ψ

j
it(y))8+c|W ] < C. Note that

without loss of generality, we can write

ai(y) =
1√
T

∑
t

ψ1
it(y)

1√
T

∑
t

ψ2
it(y)− E[

1√
T

∑
t

ψ1
it(y)

1√
T

∑
t

ψ2
it(y)]

for some functions Eψ1
it(y) = Eψ2

it(y) = 0. This implies 1
N

∑
i E supy |ai(y)|m < C.

This verifies Condition (1).

Condition (2): For every y1, y2 ∈ Y ,∑
i

E|Fi(y1)− Fi(y2)|2 ≤ 1

N

∑
i

(E|ai(y1)bi(y1)− ai(y2)bi(y2)|4)1/2(E‖wi‖4)1/2

≤ C
1

N

∑
i

bi(y1)2 1

N

∑
i

(E|ai(y1)− ai(y2)|4)1/2 + C
1

N

∑
i

|bi(y1)− bi(y2)|2 1

N

∑
i

(Eai(y2)4)1/2
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≤ C
1

N

∑
i

(E|ai(y1)− ai(y2)|4)1/2 + C
1

N

∑
i

|bi(y1)− bi(y2)|2

≤ C|y1 − y2|1/2 ≤ Cρ(y1, y2)2.

In the third line above, 1
N

∑
i |bi(y1) − bi(y2)|2 < C|y1 − y2|2 since A1i(y) and A2i(y)

are Lipschitz continuous with universe constants.

To show 1
N

∑
i(E|ai(y1) − ai(y2)|4)1/2 < C|y1 − y2|1/2, note that the left hand side

is bounded by I1 + I2 where for A⊗2 := A⊗ A,

I1 =

[
1

N

∑
i

|E(
1√
T

∑
t

ψit(y1))⊗2 − E(
1√
T

∑
t

ψit(y2))⊗2|4
]1/2

≤ C|y1 − y2|2

I2 =

[
1

N

∑
i

E|( 1√
T

∑
t

ψit(y1))⊗2 − (
1√
T

∑
t

ψit(y2))⊗2|4
]1/2

.

The bound for I1 is due to the Lipschitz continuity with a universe constant (As-

sumption 5.4). To bound I2, we fix any two elements of ψit(y): ψit(y1)1 and ψit(y1)2,

and let fj(y) = 1√
T

∑
t ψit(y)j for j = 1, 2. Then[

1

N

∑
i

E|f1(y1)f2(y1)− f1(y2)f2(y2)|4
]1/2

≤ C(max
j=1,2

1

N

∑
i

E|f1(y1)− f1(y2)|8)1/4(max
j=1,2

sup
y

1

N

∑
i

E|fj(y)|8)1/4

≤ C|y1 − y2|1/2.

The last inequality is due to Assumption 5.2. This verifies Condition (2).

Condition (3): For every δ > 0,

sup
η>0

∑
i

η2P

(
sup

ρ(y1,y2)<δ

|Fi(y1)− Fi(y2)| > η

)

≤
∑
i

E

(
sup

ρ(y1,y2)<δ

|Fi(y1)− Fi(y2)|2
)

≤ 1

N

∑
i

E

(
sup

ρ(y1,y2)<δ

|ai(y1)bi(y1)− ai(y2)bi(y2)|2‖wi‖2

)
≤ C

1

N

∑
i

(E sup
|y1−y2|<(δ/C̄)4

|ai(y1)− ai(y2)|4)1/2 + C
1

N

∑
i

sup
|y1−y2|<(δ/C̄)4

|bi(y1)− bi(y2)|2

≤ δ2

by choosing a sufficiently large C̄ in the definition of ρ. In the above, to bound
1
N

∑
i(E sup|y1−y2|<(δ/C̄)4 |ai(y1)−ai(y2)|4)1/2, note that a similar argument as verifying
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Condition (2) yields, by Assumption 5.2,

1

N

∑
i

(E sup
|y1−y2|<(δ/C̄)4

|f1(y1)f2(y1)− f1(y2)f2(y2)|4)1/2

≤ C
1

N

∑
i

(E sup
|y1−y2|<(δ/C̄)4

|f1(y1)− f1(y2)|8)1/4

≤ C(δ/C̄)2 < δ2.

Hence all sufficient conditions of Theorem 2.11.11 in van der Vaart and Wellner

(1996) are verified. Thus
∑

i Fi(y) = OP (1) uniformly in y.

(ii) Term 1
N

∑
iRi,5w

′
i. Recall that

1

N

∑
i

Ri,5w
′
i =

1

T
√
N

∑
i

Fi(y)

Fi(y) =
1√
N
A1iMi(y)w′i

Mi(y) = T (A−1
1i − A−1

1i )A1i∇Qi(βi)− TE((A−1
1i − A−1

1i )A1i∇Qi(βi))

We note EFi(y) = 0. It remains to show
∑

i Fi(y) to be asymptotically tight by

verifying the conditions of Theorem 2.11.11 in van der Vaart and Wellner (1996).

Condition (1): for every η > 0, fix 0 < a < 2, by the same argument as for
1
N

∑
iRi,4w

′
i,∑

i

E sup
y
|Fi(y)|1{sup

y
|Fi(y)| > η} ≤ C

ηa+1Na/2

1

N

∑
i

E sup
y
|Mi(y)|2+a‖wi‖2+a

≤ C

ηa+1Na/2

1

N

∑
i

[E sup
y
|
√
T (A−1

1i − A−1
1i )|4+2a]1/2|[E sup

y
|
√
T∇Qi(βi)|8+4a]1/4 + o(1)

= o(1).

Condition (2). Define ai(y) =
√
TA1i[A

−1
1i −A−1

1i ]A1i and bi(y) =
√
T∇Qi(βi). Then

Fi(y) = 1√
N

[ai(y)bi(y)− Eai(y)bi(y)]w′i, for E = E(|wi),∑
i

E|Fi(y1)− Fi(y2)|2 ≤ C
1

N

∑
i

E|ai(y1)bi(y1)− ai(y2)bi(y2)|2‖wi‖2

+C
1

N

∑
i

E‖Eai(y1)bi(y1)− Eai(y2)bi(y2)‖2‖wi‖2

≤ C
1

N

∑
i

[E‖ai(y1)− ai(y2)‖4]1/2 + C
1

N

∑
i

[E‖bi(y1)− bi(y2)‖4]1/2.

where we used assumption Var(ai(y)|wi) <∞. The second term is bounded by C|y1−
y2|1/2 = Cρ(y1, y2)2. We now work on the first term. Let ci(y) =

√
T [A−1

1i (y)−A−1
1i (y)].

ai(y1)− ai(y2) = A1i(y1)ci(y1)A1i(y1)− A1i(y2)ci(y2)A1i(y2)
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= [A1i(y1)− A1i(y2)]ci(y1)A1i(y1) + A1i(y2)[ci(y1)− ci(y2)]A1i(y1)

+A1i(y2)ci(y2)[A1i(y1)− A1i(y2)].

Hence

[
1

N

∑
i

E‖ai(y1)− ai(y2)‖4]1/2 ≤ C max
i
‖A1i(y1)− A1i(y2)‖2[

1

N

∑
i

E‖ci(y1)‖8]1/4

+[
1

N

∑
i

E‖ci(y1)− ci(y2)‖4]1/2

≤ C|y1 − y2|2 + [
1

N

∑
i

E‖ci(y1)− ci(y2)‖4]1/2

≤ C|y1 − y2|1/2,

where the bound for terms involving A1i(y1)−A1i(y2) simply applies the fact that A1i

is continuously differentiable with respect to y, with bounded gradients uniformly in

(y, i) (almost surely).

Condition (3): For every δ > 0, for sufficiently large C̄,

sup
η>0

∑
i

η2P

(
sup

ρ(y1,y2)<δ

|Fi(y1)− Fi(y2)| > η

)

≤ 1

N

∑
i

E

(
sup

ρ(y1,y2)<δ

|ai(y1)bi(y1)− ai(y2)bi(y2)− E[ai(y1)bi(y1)− ai(y2)bi(y2)]|2 ‖wi‖2

)
≤ C

1

N

∑
i

(E sup
|y1−y2|<(δ/C̄)4

|ai(y1)− ai(y2)|4)1/2 + C
1

N

∑
i

(E sup
|y1−y2|<(δ/C̄)4

|bi(y1)− bi(y2)|4)1/2

+C
1

N

∑
i

E

(
sup

ρ(y1,y2)<δ

E‖ai(y1)− ai(y2)‖2‖wi‖2

)
sup
y

E‖bi(y)‖2

+C
1

N

∑
i

E

(
sup

ρ(y1,y2)<δ

E‖bi(y1)− bi(y2)‖2‖wi‖2

)
sup
y

E‖ai(y)‖2

≤ (C/C̄)δ2 + C[
1

N

∑
i

E sup
|y1−y2|<(δ/C̄)4

‖ci(y1)− ci(y2)‖4]1/2

+C
1

N

∑
i

(E sup
|y1−y2|<(δ/C̄)4

|bi(y1)− bi(y2)|4)1/2

+C sup
wi

sup
|y1−y2|<(δ/C̄)4

[E‖ci(y1)− ci(y2)‖2 + ‖bi(y1)− bi(y2)‖2] ≤ δ2.

The proof of 1
N

∑
i R̄i,dw

′
i is the same.

�

Lemma E.2. infy λmin(Vψ(y)) > c > 0.
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Proof. We first define some notation. For matrices we write A ≥ 0 if A is semipositive

definite, and writeA ≥ B ifA−B ≥ 0. LetGi(y) := A1i(y)Var( 1√
T

∑
t≤T ψit(y))A1i(y).

Let Si = S ′wzwiw
′
iSwz and Sψ,i(y) = Var( 1√

T

∑
t≤T ψit(y)|wi). Then almost surely

inf
YM

min
i
λmin(Gi(y)) ≥ inf

YM
min
i
λ2

min(Ai,y1) min
i
λmin(Sψ,i(y)) > c.

So Si ⊗ [Gi(y) − cI] ≥ 0, which implies Si ⊗ Gi(y)) ≥ Si ⊗ (cI). Let vy be the

eigenvector of Vψ(y) corresponding to its smallest eigenvalue,

inf
YM

λmin(Vψ(y)) = inf
YM

v′yE[Si ⊗Gi(y)]vy ≥ inf
YM

v′y[ESi ⊗ (cI)]vy

= inf
YM

v′y[(ESi)⊗ (cI)]vy ≥ λmin[(ESi)⊗ (cI)]

= cλmin(ESi) = cλmin(S ′wzEwiw
′
iSwz) > c.

�

Lemma E.3. Let Xi(y1, y2) be a random variable so that there are C, c > 0, for all

ε > 0 1
N

∑
i E sup|y1−y2|≤ε ‖Xi(y1, y2)‖ < Cεc. Then for all y1 6= y2,

1

N

∑
i

E‖X(y1, y2)‖ < C|y1 − y2|c.

Proof.

1

N

∑
i

E|X(y1, y2)| ≤ sup
ε>0

1

εc
1

N

∑
i

E sup
|y1−y2|=ε

‖X(y1, y2)‖|y1 − y2|c ≤ C|y1 − y2|c.

�

Appendix F. Proof of Theorem 5.2

We present the proof for a general case where, consider functionals taking the form

ϑg(y) = Etf(βi(y),θ(y), Dit)

for some known function f and “data” Dit. This admits both the actual distribution

f(βi(y),θ(y), Dit) = Λ(−x′itβi(y)), and the counterfactual distribution f(βi(y),θ(y), Dit) =

Λ(−hit(xit)′βgi (y)), where βgi (y) = θ(y)[g(zi)− zi] + βi(y), as special cases.

We apply Proposition E.1 by verifying Assumption E.1. For any random variable

xit, let

Zt(xit) :=
xit − Etxit√
Vart(xit)

where Et and Vart are the expectation and variance operators with respect to the

cross-sectional distribution of xit given t.
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F.1. The functional ϑg(y) = Etf(βi(y),θ(y), Dit). We estimate it by the debiased

estimator

ϑ̂g(y) =
1

N

∑
i

f(β̂i(y), θ̂(y), Dit)−
1

2NT

∑
i

tr
[
∂2
βf(β̂i(y), θ̂(y), Dit)Σ̂i(y)−1

]
where Σ̂i(y) = −∇2Qy,i(β̂i(y)).

Let ∂βfi(y) = ∂βfi(βi(y),θ(y), y), f̈i,β := ∂2
βf(βi(y),θ(y), Dit), f̈i,θ := ∂2

θf(βi(y),θ(y), Dit),,

and f̈i,βθ := ∂2
βθf(βi(y),θ(y), Dit). In addition, let Ḡ(y) = Et∂θf(βi(y),θ(y), Dit)

′,

where ∂θ is taken with respect to the coordinates of vec(θ).

Assumption F.1. (i) maxi E supy ‖∇fi‖8 + maxi E supy ‖∇2fi‖4 < C.

(ii) There is C > 0, for all y1, y2, and i,

E|∂βfi(y1)− ∂βfi(y2)|4 + E|f̈i,β(y1)− f̈i,β(y2)|4 ≤ C|y1 − y2|4.

(iii) E[ψit(yk)|βi(yl), Dit] = 0 and Vart(dψ,i(y)) > c > 0.

(iv) E supy
[
Zt(w′iSwzḠ(y)γi(y) + f(βi(y),θ(y), Dit))

]4
< C.

(v) Write f(y) = f(βi(y),θ(y), Dit) for simplicity.

E sup
ρ(y1,y2)<δ

|f(y1)− Ef(y1)− (f(y2)− Ef(y2))|2√
V̄γ(y1)V̄γ(y2)

≤ δ2

E sup
ρ(y1,y2)<δ

‖γi(y1)w′ − γi(y2)w′‖2√
V̄γ(y1)V̄γ(y2)

≤ δ2, sup
ρ(y1,y2)<δ

|V̄γ(y1)− V̄γ(y2)|2

V̄γ(y1)V̄γ(y2)
≤ δ2.

(vi) supy ‖Ḡ(y)‖ < C, and ‖Ḡ(y1)− Ḡ(y2)‖ < C|y1 − y2|.

Define

V̄ψ(yk, yl) = Et[∂βfi(yk)′A1i(yk)
1

T

∑
sl

ψis(yk)ψil(yl)
′A1i(yl)∂βfi(yl)],

V̄γ(yk, yl) = Covt[f(βi(yk),θ(yk), Dit), f(βi(yl),θ(yl), Dit)]

σ2
T (yk, yl) =

1

T
V̄ψ(yk, yl) + V̄γ(yk, yl)

σ2
T (y) = σ2

T (y, y), s2
NT (y) =

1

N
σ2
T (y)

H = lim
T

(
σ2
T (yk, yl)

σT (yk)σT (yl)
)M×M

Proposition F.1. Suppose Assumption F.1 holds. Also, N = o(T 2) and NL2 =

o(T 3). Then

ϑ̂g(·)− ϑg(·)
sNT (·)

⇒ G(·)
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where G(·) is a centered Gaussian process with covariance kernel

H(yk, yl) = lim
T

σ2
T (yk, yl)

σT (yk)σT (yl)
.

Proof. Lemma F.1 shows uniformly in y,

ϑ̂g(y)− ϑg(y) =
1

N

N∑
i=1

[
1√
T
dψ,i(y) + dγ,i(y)

]
+ oP (ζNT (y)),

where ∂βfi(y) := ∂βf(βi(y),θ(y), Dit), ζNT = 1√
NT

+ V̄γ(y),

dψ,i(y) =
1√
T

T∑
t=1

(w′iSwzḠ(y)− ∂βfi(y)′)A1i(y)ψit(y)

dγ,i(y) = w′iSwzḠ(y)γi(y) + f(βi(y),θ(y), Dit)− Etf(βi(y),θ(y), Dit).

We now verify the three conditions in Assumption E.1.

Assumption E.1 (i). This follows from E[ψit(yk)|γi(yl),wi, βi(yl), Dit] = 0.

Assumption E.1 (ii).

E sup
y
|dψ,i(y)|2+a ≤ CE sup

y
‖ 1√

T

T∑
t=1

ψit(y)w′i‖2+a + CE sup
y
‖ 1√

T

T∑
t=1

ψit(y)∂βfi(y)′‖2+a

< C

E sup
y
|dγ,i(y)2

V̄γ(y)
|a ≤ CE sup

y

[
Zt(w′iSwzḠ(y)γi(y) + f(βi(y),θ(y), Dit))

]2a
< C.

Assumption E.1 (iii). This condition is verified using the triangular inequality and

the primitive inequalities in Assumption F.1.

Hence Assumption E.1 is verified. We then have the weak convergence, following

from Proposition E.1. �

Lemma F.1. Uniformly in y,

ϑ̂g(y)− ϑg(y) = oP (ζNT (y)) +
1

NT

∑
it

(w′iSwzḠ(y)− ∂βfi(y)′)A1i(y)ψit(y)

+
1

N

N∑
i=1

(
w′iSwzḠ(y)γi(y) + [f(βi(y),θ(y), Dit)− Etf(βi(y),θ(y), Dit)]

)
.

Proof. Write ∂βfi(y) := ∂βf(βi(y),θ(y), Dit). LetGN(y) := 1
N

∑
i ∂θf(βi(y),θ(y), Dit),

where ∂θ is taken with respect to the coordinates of vec(θ). By the Taylor expan-

sion up to the second order, (for the first term involving θ̂ − θ, use the identity
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tr(A′B) = vec(A)′vec(B)):

1

N

∑
i

f(β̂i(y), θ̂(y), Dit)− f(βi(y),θ(y), Dit) = D0 + ...+D3 +R1

D0 :=
1

N

∑
i

∂βfi(y)′(β̂i(y)− βi(y))

D1 :=
1

2N

∑
i

tr
[
f̈i,β(β̂i(y)− βi(y))(β̂i(y)− βi(y))′

]
D2 := tr[GN(y)(θ̂(y)− θ(y))],

= tr[
1

NT

∑
it

GN(y)A1i(y)ψit(y)w′iSwz] + tr[
1

N

N∑
i=1

GN(y)γi(y)w′iSwz] + oP (ζNT (y))

=
1

NT

∑
it

w′iSwzG(y)A1i(y)ψit(y) +
1

N

N∑
i=1

w′iSwzG(y)γi(y) + oP (ζNT (y))

D3 :=
1

N

∑
i

(β̂i(y)− βi(y))′f̈i,βθ(θ̂ − θ) + (θ̂ − θ)′ 1

2N

∑
i

f̈i,θ(θ̂ − θ) = oP (ζNT (y))

(F.1)

where for some ai,

R1 =
1

6N

∑
i

∂3
βf(ai, Dit)(β̂i(y)− βi(y))⊗ (β̂i(y)− βi(y))⊗ (β̂i(y)− βi(y)).

We have

sup
y
R1 ≤ sup

y

C

N

∑
i

‖β̂i − βi‖3 = OP (
1

T 3/2
) = oP (

1√
NT

).

In the above, D2 is analyzed by using (E.7). Also all oP terms are uniform in y.

To analyze D0 +D1, by Lemma D.2, β̂i − βi = −A1i
1
T

∑
t ψit(y) +Ri,4 +Ri,5 + ∆̃i

where supy
1
N

∑
i ‖∆̃i‖2 = OP (L2T−3). Substitute to the above expression,

D0 +D1

= − 1

N

∑
i

∂βfi(y)′A1i
1

T

∑
t

ψit(y) +
1

2NT

∑
i

tr
[
f̈i,βEvi(y)

]
+

3∑
d=1

Hd

H1 :=
1

2NT

∑
i

tr
[
f̈i,β(vi(y)− Evi(y))

]
H2 :=

1

N

∑
i

∂βfi(y)′(Ri,4 +Ri,5)

H3 :=
1

N

∑
i

∂βfi(y)′∆̃i −
1

2N

∑
i

tr

[
f̈i,βA1i

1

T

∑
t

ψit(y)(Ri,4 +Ri,5)′

]

− 1

2N

∑
i

tr

[
f̈i,βA1i

1

T

∑
t

ψit(y)∆̃′i

]
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+
1

2N

∑
i

tr
[
f̈i,β(Ri,4 +Ri,5)(β̂i(y)− βi(y))′

]
+

1

2N

∑
i

tr
[
f̈i,β∆̃i(β̂i(y)− βi(y))′

]
vi(y) := A1i

1√
T

∑
t

ψit(y)
1√
T

∑
s

ψis(y)′A1i.

We proceed as following steps. Step 1, show
∑3

d=1 Hd is negligible. Step 2, estimate

the bias Evi(y) by Σ̂i(y)−1 and compute the debiased estimator, and show that the

bias estimation is negligible.

step 1. Write Fi(y) = 1
2
√
N
tr
[
f̈i,β(vi(y)− Evi(y))

]
. Then H1 = 1

T
√
N

∑
i Fi(y). We

now show
∑

i Fi(y) = OP (1) uniformly in y by showing it is asymptotically tight.

For notational simplicity, we focus on an arbitrary element of f̈i,βBi(y) and continue

using f̈i,βBi(y) to denote this element with abuse of notation. Since the dimension

of βi(y) is fixed, this does not affect the asymptotic behavior. For any η > 0, and

a > 0,∑
i

E sup
y
|Fi(y)|1{sup

y
|Fi(y)| > η} ≤ 1

η

∑
i

E sup
y
|Fi(y)|21{sup

y
|Fi(y)| > η}

=
1

4Nη

∑
i

E sup
y

[
f̈i,β(vi(y)− Evi(y))

]2

1{sup
y
|
[
f̈i,β(vi(y)− Evi(y))

]
| > 2

√
Nη}

≤ 1

4Na/2η1+a

1

N

∑
i

E sup
y

[
f̈i,β(vi(y)− Evi(y))

]2+a

≤ C

Na/2η1+a

1

N

∑
i

[E sup
y

[vi(y)− Evi(y)]4](2+a)/4 = o(1)

provided that E supy [vi(y)− Evi(y)]4 ≤ CE supy vi(y)4 and maxi E supy ‖f̈‖4/3 < C.

We recall that f̈i,β depends on y through βi(y). For every y1, y2 ∈ Y , by Assumption

5.2 and Lemma E.3, 1
N

∑
i E(vi(y1)− vi(y2))4 ≤ C|y1 − y2|. Hence∑

i

E|Fi(y1)− Fi(y2)|2 ≤ C

N

∑
i

(E|f̈i,β(y1)− f̈i,β(y2)|4)1/2(Evi(y1)4)1/2

+[
C

N

∑
i

E(vi(y1)− vi(y2))4]1/2 ≤ C|y1 − y2|2 + C|y1 − y2|1/2 ≤ C|y1 − y2|1/2.

For every δ > 0, and ρ(y1, y2) = C̄|y1 − y2|1/4, for sufficiently large C̄,

sup
η>0

∑
i

η2P

(
sup

ρ(y1,y2)<δ

|Fi(y1)− Fi(y2)| > η

)
≤
∑
i

E

(
sup

ρ(y1,y2)<δ

|Fi(y1)− Fi(y2)|2
)

≤ C

N

∑
i

(E sup
ρ(y1,y2)<δ

|f̈i,β(y1)− f̈i,β(y2)|4)1/2(E sup
y
vi(y)4)1/2
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+[
C

N

∑
i

E sup
ρ(y1,y2)<δ

(vi(y1)− vi(y2))4]1/2 ≤ δ2.

Hence all conditions of Theorem 2.11.11 in van der Vaart and Wellner (1996) are

verified. Thus
∑

i Fi(y) = OP (1) uniformly in y. This implies supyH1 = OP ( 1
T
√
N

).

In addition, it follows from the same argument of that of Lemma E.1 that supyH2 =

OP ( 1
T
√
N

). Next, by Cauchy-Schwarz inequality, uniformly in y,

H2
3 ≤ OP (1)

1

N

∑
i

‖∆̃i‖2 +OP (1)

 1

N

∑
i

[
1

T

∑
t

ψit(y)

]4
1/2

1

N

∑
i

[
‖Ri,4 +Ri,5‖2 + ‖∆̃i‖2

]

+OP (1)

(
1

N

∑
i

[
β̂i − βi

]4
)1/2

1

N

∑
i

[
‖Ri,4 +Ri,5‖2 + ‖∆̃i‖2

]
= OP (

1

T 3
+
L2

T 4
).

Together, provided that N = o(T 2) and NL2 = o(T 3),

sup
y
|H1 +H2 +H3| = OP (

1

T
√
N

+
1

T 3/2
+

L

T 2
) = oP (

1√
NT

).

Step 2. Bias correction. Because ψis(y) is a martingale difference, and the loss

function is the log-likelihood,

Evi(y) = A1i
1

T

∑
t

Eψit(y))ψit(y))′A1i = −A1i.

The effect of bias correction is: uniformly in y,

1

2NT

∑
i

tr
[
∂2
βf(β̂i(y), Dit)Σ̂i(y)−1

]
− 1

2NT

∑
i

tr
[
∂2
βf(βi(y), Dit)Evi(y)

]
≤ 1

2NT

∑
i

tr
[
∂2
βf(β̂i(y), Dit)− ∂2

βf(βi(y), Dit)
]

Σ̂i(y)−1

+
1

2NT

∑
i

tr∂2
βf(βi(y), Dit)

[
Σ̂i(y)−1 − Evi(y)

]
≤ C

T
(

1

N

∑
i

‖β̂i(y)− βi(y)‖2)1/2(
1

N

∑
i

‖Σ̂i(y)‖2)1/2 +
C

T
(

1

N

∑
i

‖Σ̂i(y)−1 − Evi(y)‖2)1/2

= OP (
1

T 3/2
) = oP (

1√
NT

),

where we used

1

N

∑
i

‖Σ̂i(y)−1 − Evi(y)‖2 ≤ OP (1)
1

N

∑
i

‖[∇2Qi(β̂i(y))]−1 − [∇2EQi(βi(y))]−1‖2 = OP (
1

T
).

So
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1

N

∑
i

f(β̂i(y), θ̂(y), Dit)−
1

2NT

∑
i

tr
[
∂2
βf(β̂i(y), θ̂(y), Dit)Σ̂i(y)−1

]
− f(βi(y),θ(y), Dit)

=
1

NT

∑
it

[w′iSwzG(y)− ∂βfi(y)′]A1i(y)ψit(y) +
1

N

N∑
i=1

w′iSwzG(y)γi(y) + oP (ζNT (y)).

�

F.2. Proof of Theorem 5.2.

Proof. We now apply Proposition F.1 to obtain the weak convergence of the cross-

sectional distributions. This boils down to verifying Assumption F.1 for Gt.

For Ft. In this case f(b,Dit) = Λ(−x′itb).
Verifying Assumption F.1(i). We have ∂βfi = −Λ̇(−x′itβi(y))xit, and f̈i = Λ̈(−x′itβi(y))xitx

′
it

Then

max
i

E sup
y
‖∂βfi‖8 + max

i
E sup

y
‖f̈i,β‖4 ≤ C max

i
E‖xit‖8 < C

Verifying Assumption F.1(ii). For k ≥ 4,

E‖f̈i,β(y1)− f̈i,β(y2)‖4 ≤ E|Λ̈(−x′itβi(y1))− Λ̈(−x′itβi(y2))|4‖xit‖8 ≤ C|y1 − y2|4

E|∂βfi(y1)− ∂βfi(y2)|4 ≤ E|Λ̇(−x′itβi(y1))− Λ̇(−x′itβi(y2))|4‖xit‖4 ≤ C|y1 − y2|4.

Verifying Assumption F.1(iii). This holds given E[ψit(yk)|βi(yl),xit] = 0 and

Vart(dψ,i(y)) = EtΛ̇(−x′itβi(y))2x′itA1iVart(
1√
T

∑
s

ψis(y)|xit,βi(y))A1ixit

≥ λmin(Vart(
1√
T

∑
s

ψis(y)|xit,βi(y)))λmin(A1i(y)2)EtΛ̇(−x′itβi(y))2‖xit‖2 > c.

Verifying Assumption F.1(iv). This holds since E supy [Zt(Λ(−x′itβi(y)))]4 < C.

Verifying Assumption F.1(v). This holds for f(βi(y), Dit) = Λ(−x′itβi(y)).

Therefore by Proposition F.1,

F̂t(·)− Ft(·)
sNT (·)

⇒ G(·), F̂t,I(·)− Ft,I(·)
sNT,I(·)

⇒ GI(·).

For Gt. In this case f(βi(y),θ(y), Dit) = Λ(−hit(xit)′βgi (y)), where

βgi (y) = θ(y)[g(zi)− zi] + βi(y).

Verifying Assumption F.1(i). We have ∂βfi = −Λ̇(−hit(xit)′βgi (y))hit(xit), and

f̈i,β = Λ̈(−hit(xit)′βgi (y))hit(xit)hit(xit)
′.

max
i

Et sup
y
‖∂βfi‖8 + max

i
Et sup

y
‖∂θfi‖8 ≤ CEt‖hit(xit)‖8 + CE‖hit(xit)‖8‖g(zi)− zi‖8 < C
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max
i

Et sup
y
‖f̈i,β‖4 + max

i
Et sup

y
‖f̈i,θ‖4 ≤ CEt‖hit(xit)‖8 + CE‖hit(xit)‖8‖g(zi)− zi‖8 < C

max
i

Et sup
y
‖f̈i,βθ‖4 ≤ CE‖hit(xit)‖8‖g(zi)− zi‖4 < C.

Verifying Assumption F.1(ii). This holds by the assumption that for k ≥ 4,

Et|Λ̈(−hit(xit)′βgi (y1))− Λ̈(−hit(xit)′βgi (y2))|k‖hit(xit)‖2k ≤ C|y1 − y2|k

Et|Λ̇(−hit(xit)′βgi (y1))− Λ̇(−hit(xit)′βgi (y2))|k‖hit(xit)‖k ≤ C|y1 − y2|k.

Verifying Assumption F.1(iii). This holds for E[ψit(yk)|βi(yl), hit(xit), zi,wi] = 0

and

Vart(dψ,i(y)) ≥ λmin(Vart(
1√
T

∑
s

ψis(y)|hit(xit), zi,βi(y)))λmin(A1i(y)2)

×Et‖w′iSwzḠ(y) + Λ̇(−hit(xit)′βgi (y))hit(xit)
′‖ > c.

Verifying Assumption F.1(iv). This holds since

E sup
y

[
Zt(w′iSwzḠ(y)γi(y) + Λ(−hit(xit)′βgi (y)))

]4
< C.

Verifying Assumption F.1(v). This holds for f(βi(y),θ(y), Dit) = Λ(−hit(xit)′βgi (y)).

Verifying Assumption F.1(vi). Note that

Ḡ(y) = −EtΛ̇(−hit(xit)′βgi (y))vec(hit(xit)(g(zi)− zi)′).

Hence supy ‖Ḡ(y)‖ ≤ CEt‖hit(xit)‖‖g(zi)− zi‖ < C, and

‖Ḡ(y1)−Ḡ(y2)‖ ≤ CEt|Λ̇(−hit(xit)′βgi (y1))−Λ̇(−hit(xit)′βgi (y2))|‖hit(xit)[g(zi)−zi]′‖ ≤ C|y1−y2|.

Therefore by Proposition F.1, for F ∈ {Ft, Gt} and F̂ ∈ {F̂t, Ĝt}

F̂ (·)− F (·)
sNT (·)

⇒ G(·).

�

Appendix G. Proof of Theorem 5.3: the Counterfactual QE

Consider a generic F ∈ {Ft, Gt}. Let F̂ ∈ {F̂t, Ĝt} be its estimator. The goal

is to obtain an expansion for φ(F̂ , τ) − φ(F, τ) uniformly in τ. The novelty of our

analysis is that F̂ − F does not weakly converge due to the issue of unknown rate

of convergence we discussed earlier. Hence the usual functional delta-method is not

directly applicable. Instead, we obtain an expansion for the standardized φ(F̂ , τ) −
φ(F, τ).
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Proof. Lemma G.1 below shows the uniform expansions of φ(F̂ , τ)− φ(F, τ) for F ∈
{Ft, Gt} and F̂ ∈ {F̂t, Ĝt}. This implies

Q̂E(τ)− QE(τ) =
1

N

N∑
i=1

[
1√
T
pIIψ,i(τ) + pIIγ,i(τ)

]
+ oP (

1√
NT

+ Vart(p
II
γ,i(τ))),

where for q0(τ) = φ(Ft, τ), qII(τ) = φ(Gt, τ),

pIIψ,i(τ) =
−dIIψ,i(qII(τ))

Ġt(qI(τ))
+
d0
ψ,i(q0(τ))

Ḟt(q0(τ))
, pIIγ,i(τ) =

−dIIγ,i(qII(τ))

Ġt(qII(τ))
+
d0
γ,i(q0(τ))

Ḟt(q0(τ))
.

(G.1)

We also used the assumption that Vart(d
0
γ,i) + Vart(d

II
γ,i) = O(Vart(p

II
γ,i)). From here,

establishing the weak convergence can be done via applying Proposition E.1. We now

verify the three conditions in Assumption E.1.

Assumption E.1 (i). This follows from the assumption.

Assumption E.1 (ii).

E sup
y
|pIIψ,i(y)|2+a ≤ CE sup

y
[|d0

ψ,i(y)|+ |dIIψ,i(y)|]2+a < C

E sup
y
|

pIIγ,i(y)2

Vart(pIIγ,i(y))
|a ≤ E sup

y
|

d0
γ,i(y)2

Vart(pIIγ,i(y))
|a + E sup

y
|

dIγ,i(y)2

Vart(pIIγ,i(y))
|a

≤ E sup
y
|

d0
γ,i(y)2

Vart(d0
γ,i(y))

|a + E sup
y
|

dIIγ,i(y)2

Vart(dIIγ,i(y))
|a ≤ C

where we also used the assumption Vart(d
0
γ,i) + Vart(d

I
γ,i) = O(Vart(p

I
γ,i)).

Assumption E.1 (iii). This condition is verified using the triangular inequality and

the primitive inequalities in Assumption F.1.

Hence Assumption E.1 is verified. We then have the weak convergence, following

from Proposition E.1. �

Lemma G.1. Let Ḟ be the density of F ∈ {Ft, Gt}. Let q(τ) = φ(F, τ), z(y) =

(NT )−1/2 +N−1/2Vart(dγ,i(y))1/2. Uniformly in τ , we have

φ(F̂ , τ)− φ(F, τ) =
−1

Ḟ (q(τ))

1

N

∑
i

[
1√
T
dψ,i(q(τ)) + dγ,i(q(τ))

]
+ oP (z(q(τ))),

where (dψ,i, dγ,i) ∈ {(d0
ψ,i, d

0
γ,i), (d

II
ψ,i, d

II
γ,i)}, corresponding to F ∈ {Ft, Gt}.

Proof. Consider a generic F ∈ {Ft, Gt}. Let F̂ ∈ {F̂t, Ĝt} be its estimator. Note that

F (φ(F, τ)) = F̂ (φ(F̂ , τ)) = τ , we have

F (φ(F̂ , τ))− F (φ(F, τ)) = −[F̂ (φ(F̂ , τ))− F (φ(F̂ , τ))]. (G.2)
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Applying the mean value theorem to the left hand side, there is q̃τ so that

φ(F̂ , τ)− φ(F, τ) =
−1

Ḟ (q̃τ )
[F̂ (φ(F̂ , τ))− F (φ(F̂ , τ))].

We have proved that supy |F̂ − F | = oP (1), e.g., Lemma F.1. By the continuous

mapping theorem supτ |φ(F, τ)− φ(F, τ)| = oP (1). Hence 1/Ḟ (q̃τ ) < C uniformly in

τ . This implies |φ(F̂ , τ)− φ(F, τ)| ≤ C|∆F (φ(F̂ , τ))| where

∆F (y) := F̂ (y)− F (y).

Applying the second-order mean value theorem to the left hand side of (G.2), there

is cτ so that, for q(τ) := φ(F, τ),

Ḟ (q(τ))(φ(F̂ , τ)− q(τ)) +
1

2

d2F (cτ )

dy
(φ(F̂ , τ)− q(τ))2 = −[F̂ (φ(F̂ , τ))− F (φ(F̂ , τ))].

Rearranging and applying |φ(F̂ , τ)− φ(F, τ)| ≤ C|∆F (φ(F̂ , τ))|, we have

φ(F̂ , τ)− q(τ) =
−1

Ḟ (q(τ))
∆F (φ(F̂ , τ)) +M1(τ)

=
−1

Ḟ (q(τ))
∆F (q(τ)) +M1(τ) +M2(τ)

M1(τ) ≤ C∆F (φ(F̂ , τ))2 ≤ C|∆F (φ(F̂ , τ))−∆F (q(τ))|2 + C∆F (q(τ))2

M2(τ) = −∆F (φ(F̂ , τ))−∆F (q(τ))

Ḟ (q(τ))
≤ C|∆F (φ(F̂ , τ))−∆F (q(τ))|.

(G.3)

Apply Lemma F.1, with ϑg(y) = EtΛ(hit(xit)
′βgi (y)). We have, for all F ∈ {Ft, Gt},

∆F (y) =
1

N

∑
i

[
1√
T
dψ,i(y) + dγ,i(y)

]
+ oP (z(y))

where z(y) = 1√
NT

+ 1√
N
Vart(dγ,i(y))1/2. By Lemma G.2, 1√

N

∑
i dψ,i(y)

and Vart(dγ,i(y))−1/2 1√
N

∑
i dγ,i(y) are stochastically equicontinuous in `∞(Y). Then

for q(τ) = φ(F, τ), q̂(τ) = φ(F̂ , τ), VF (y) := Vart(dγ,i(y)),

|∆F (φ(F̂ , τ))−∆F (q(τ))| ≤ 1√
NT

∣∣∣∣∣ 1√
N

∑
i

dψ,i(q̂(τ))− dψ,i(q(τ))

∣∣∣∣∣
+

1√
N

∣∣∣∣∣ 1√
N

∑
i

dγ,i(q̂(τ))− dγ,i(q(τ))

∣∣∣∣∣+ oP (z(q(τ)))

=
VF (q̂(τ))1/2

√
N

∣∣∣∣∣VF (q̂(τ))−1/2 1√
N

∑
i

dγ,i(q̂(τ))− VF (q(τ))−1/2 1√
N

∑
i

dγ,i(q(τ))

∣∣∣∣∣
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+
1√
N

∣∣VF (q̂(τ))1/2VF (q(τ))−1/2 − 1
∣∣ ∣∣∣∣∣ 1√

N

∑
i

dγ,i(q(τ))

∣∣∣∣∣
= oP (z(q(τ)))

M1(τ) +M2(τ) = oP (z(q(τ))).

The desired expansion then follows from (G.3).

�

Lemma G.2. 1√
N

∑
i dψ,i(y), and Vart(dγ,i(y))−1/2 1√

N

∑
i dγ,i(y) are asymptotically

stochastically equicontinuous (ASE).

Proof. We show respectively that both 1√
N

∑
i dψ,i(y), and Vart(dγ,i(y))−1/2 1√

N

∑
i dγ,i(y)

are asymptotically tight under the metric ρ(y1, y2) = C̄|y1 − y2|1/4 for some large C̄.

(i) For any η, δ > 0, by Assumption E.1,∑
i

E sup
y
|N−1/2dψ,i(y)|1{sup

y
|N−1/2dψ,i(y)| > η}

≤ 1

Nη

∑
i

E sup
y
|dψ,i(y)|21{sup

y
|dψ,i(y)| >

√
Nη}

≤ C
√
P (sup

y
|dψ,i(y)|2 > Nη2) ≤ C

N

√
E sup

y
|dψ,i(y)|2 = o(1).

1

N

∑
i

E|dψ,i(y1)− dψ,i(y2)|2 ≤ C|y1 − y2|1/2.

sup
η>0

∑
i

η2P

(
sup

ρ(y1,y2)<δ

|dψ,i(y1)− dψ,i(y2)| >
√
Nη

)
≤ E

(
sup

ρ(y1,y2)<δ

|dψ,i(y1)− dψ,i(y2)|2
)

≤ δ2.

Hence all conditions of Theorem 2.11.11 in van der Vaart and Wellner (1996) are

verified. This implies the ASE of 1√
N

∑
i dψ,i(y).

(ii) Write v(y) = Vart(dγ,i(y))1/2. Suppose v(y1) ≥ v(y2). Still by Assumption E.1,∑
i

E sup
y
|N−1/2v(y)−1dγ,i(y)|1{sup

y
|N−1/2v(y)−1dγ,i(y)| > η}

≤ 1

Nη

∑
i

E sup
y

[
|dγ,i(y)|
v(y)

]21{sup
y
v(y)−1|dγ,i(y)| >

√
Nη}

≤ C

N

√
E sup

y
[
|dγ,i(y)|
v(y)

]2 = o(1).

1

N

∑
i

E|v(y1)−1dψ,i(y1)− v(y2)−1dψ,i(y2)|2 ≤ E
|dγ,i(y1)− dγ,i(y2)|2

v(y1)v(y2)
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+

√
E
|dγ,i(y2)|4
v4(y2)

√
E
|v(y1)2 − v(y2)2|2
v(y1)2v(y2)2

≤ C|y1 − y2|1/2.

sup
η>0

∑
i

η2P

(
sup

ρ(y1,y2)<δ

|v(y1)−1dγ,i(y1)− v(y2)−1dγ,i(y2)| >
√
Nη

)

≤ E

(
sup

ρ(y1,y2)<δ

|v(y1)−1dγ,i(y1)− v(y2)−1dγ,i(y2)|2
)

≤ E sup
ρ(y1,y2)<δ

|dγ,i(y1)− dγ,i(y2)|2

v(y1)v(y2)
+

√
E sup
ρ(y1,y2)<δ

|dγ,i(y2)|4
v4(y2)

√
E sup
ρ(y1,y2)<δ

|v(y1)2 − v(y2)2|2
v(y1)2v(y2)2

≤ δ2.

Hence all conditions of Theorem 2.11.11 in van der Vaart and Wellner (1996) are

verified. This implies the ASE of Vart(dγ,i(y))−1/2 1√
N

∑
i dγ,i(y).

E sup
ρ(y1,y2)<δ

|dψ,i(y1)− dψ,i(y2)|2 + E sup
ρ(y1,y2)<δ

|dγ,i(y1)− dγ,i(y2)|2√
V̄γ(y1)V̄γ(y2)

≤ δ2

sup
ρ(y1,y2)<δ

|V̄ψ(y1)− V̄ψ(y2)|2 + sup
ρ(y1,y2)<δ

|V̄γ(y1)− V̄γ(y2)|2

V̄γ(y1)V̄γ(y2)
≤ δ2.

�

Appendix H. Proof of Theorem 5.4: Bootstrap Validity

H.1. Boostrap weak convergence. Suppose a functional estimator, whose boot-

strap version also has the following expansion:

ϑ̂∗(y)− ϑ(y) =
1

N

N∑
i=1

[
1√
T
d∗ψ,i(y) + d∗γ,i(y)

]
+ oP ∗(ζNT (y)) (H.1)

where (d∗ψ,i(y), d∗γ,i(y)) is an SRS with replacement from (dψ,i(y), dγ,i(y)).

Proposition H.1. Suppose ϑ̂ satisfies conditions in Proposition E.1. We have

(i)

ϑ̂∗(·)− ϑ̂(·)
sNT (·)

⇒∗ G(·),

where s2
NT (y) = 1

NT
Vart(dψ,i) + 1

N
Vart(dγ,i), and G(·) is a centered Gaussian process

with covariance kernel

H(yk, yl) = lim
T

σ2
T (yk, yl)

σT (yk)σT (yl)
.
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(ii) For the same G,

ϑ̂∗(·)− ϑ̂(·)
s̃∗(·)

⇒∗ G(·)

where s̃∗ is the interquartile range of ϑ̂∗(·)− ϑ̂(·), defined as

s̃∗(y) =
q∗.75(y)− q∗.25(y)

z.75 − z.25

;

here q∗p(y) is the p th bootstrap quantile of ϑ̂∗(y)− ϑ̂(y) and zp is the p th quantile of

standard normal distribution.

(iii) Let qτ be the bootstrap quantile of supy |ϑ̂∗(y) − ϑ̂(y)|/s̃∗(y). Uniformly for

P ∈ P,

P (|ϑ̂(y)− ϑ(y)| ≤ qτ s̃
∗(y), ∀y ∈ Y)→ 1− τ.

Proof. (i) Comparing the expansions of ϑ̂∗ with ϑ̂, we have

ϑ̂∗(y)− ϑ̂(y) =
N∑
i=1

[α∗i (y)− E∗α∗i (y)] + oP ∗(ζNT (y))

where α∗i (y) = 1
N

1√
T
d∗ψ,i(y) + 1

N
d∗γ,i(y). Below we prove the weak convergence of∑

i[α
∗
i − E∗α∗i ]/sNT , where sNT = 1

NT
Vart(dψ,i) + 1

N
Vart(dγ,i).

(i) show the fidi. For any finite integer M > 0, and any y1, ..., yM . Let A∗i =

((α∗i (y1)− E∗α∗i (y1))/sNT (y1), ..., ((α∗i (yM)− E∗α∗i (yM))/sNT (yM))′. We shall show

g′
∑

iA
∗
i√

g′Hg
→d N (0, 1),

for any g 6= 0 as an M -dimensional fixed vector. Note that Var∗(A∗i ) →P H. This

implies Var∗(g′
∑

iA
∗
i )− g′Hg = oP (g′Hg), given that λmin(H) > c > 0. Hence by the

central limit theorem for i.i.d. data (the bootstrap data is i.i.d. since they are SRS

draws with replacement),

g′
∑

iA
∗
i√

g′Hg
=

g′
∑

iA
∗
i√

Var∗(g′
∑

iA
∗
i )

+ oP (1)→d∗ N (0, 1).

(ii) Let `∞(Y) be the set of all uniformly bounded real functions on Y . We show the

asymptotic tightness in `∞(Y), by verifying the three conditions of Theorem 2.11.11

in van der Vaart and Wellner (1996). Let

b∗i (y) =

1√
T
d∗ψ,i(y)

σT (y)
, ci(y) =

d∗γ,i(y)

σT (y)
.

b̄i(y) =

1√
T
d∗ψ,i(y)[

1
T
V̄ψ(y)

]1/2 , c̄i(y) =
d∗γ,i(y)

V̄γ(y)1/2
. (H.2)
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Let F ∗i (y) =
α∗i
sNT

= 1√
N

(b∗i (y) + c∗i (y)). Define ρ(y1, y2) = C|y1 − y2|1/4/
√
ε for some

C > 0 and an arbitrarily small ε > 0. Also recall the definition of bi, ci, b̄i, c̄i in (E.3).

Condition (1). For every η > 0, and an arbitrarily small a > 0,∑
i

E∗ sup
y
|F ∗i (y)|1{sup

y
|F ∗i (y)| > η}

≤ η−1 1

N

∑
i

sup
y
|bi(y) + ci(y)|21{sup

y
|bi(y) + ci(y)| >

√
Nη}

≤ C

ηa+1Na/2

1

N

∑
i

sup
y
|b̄i(y)|2+a +

1

ηa+1Na/2

1

N

∑
i

sup
y
|c̄i(y)|2+a

= OP (1)
C

ηa+1Na/2
E sup

y
|b̄i(y)|2+a +OP (1)

1

ηa+1Na/2
E sup

y
|c̄i(y)|2+a = oP (1).

Condition (2): For every y1, y2 ∈ Y , and every ε > 0, with probability at least 1−ε,
1
N

∑
i |Fi(y1)− Fi(y2)|2 ≤ 1

N

∑
i E|Fi(y1)− Fi(y2)|2/ε. On this event,∑

i

E∗|F ∗i (y1)− F ∗i (y2)|2 =
∑
i

|Fi(y1)− Fi(y2)|2

≤
∑
i

E|Fi(y1)− Fi(y2)|2/ε ≤ CE|bi(y1)− bi(y2)|2/ε+ CE|ci(y1)− ci(y2)|2/ε

≤ CE[dψ,i(y1)− dψ,i(y2)]2/ε+ C|V̄ψ(y1)− V̄ψ(y2)|2/ε+ C
|V̄γ(y1)− V̄γ(y2)|2

V̄γ(y1)V̄γ(y2)
/ε

+
E|dγ,i(y1)− dγ,i(y2)|2√

V̄γ(y1)V̄γ(y2)
/ε ≤ C|y1 − y2|1/2/ε ≤ ρ(y1, y2)2.

Condition (3): For every δ > 0, on the event
∑

i

(
supρ(y1,y2)<δ |Fi(y1)− Fi(y2)|2

)
≤∑

i E
(
supρ(y1,y2)<δ |Fi(y1)− Fi(y2)|2

)
/ε,

sup
η>0

∑
i

η2P ∗

(
sup

ρ(y1,y2)<δ

|Fi(y1)− Fi(y2)| > η

)
≤
∑
i

E∗
(

sup
ρ(y1,y2)<δ

|Fi(y1)− Fi(y2)|2
)

=
∑
i

(
sup

ρ(y1,y2)<δ

|Fi(y1)− Fi(y2)|2
)
≤
∑
i

E

(
sup

ρ(y1,y2)<δ

|Fi(y1)− Fi(y2)|2
)
/ε

≤ 1

N

∑
i

E

(
sup

ρ(y1,y2)<δ

|bi(y1)− bi(y2)|2
)
/ε+

1

N

∑
i

E

(
sup

ρ(y1,y2)<δ

|ci(y1)− ci(y2)|2
)
/ε

≤ δ2. (H.3)

Thus all conditions are satisfied. Together, the process
∑

i[α
∗
i (.) − E∗α∗i (.)]/sNT (.)

weakly converges to a centered Gaussian process, with covariance kernel

H(yk, yl) = lim
T

σ2
T (yk, yl)

σT (yk)σT (yl)
.
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Hence uniformly in y,

Z∗NT (y) :=
ϑ̂∗(y)− ϑ̂(y)

sNT (y)
=

∑
i[α
∗
i (y)− E∗α∗i (y)]

sNT (y)
+ oP ∗(1)⇒ G

This implies the weak convergence .

(ii) The interquartile range is defined as

s̃∗(y) =
q∗.75(y)− q∗.25(y)

z.75 − z.25

,

where q∗p(y) is the p th bootstrap quantile of ϑ̂∗(y)− ϑ̂(y) and zp is the p th quantile

of standard normal distribution. It suffices to prove

sup
y

∣∣∣sNT
s̃∗
− 1
∣∣∣ = oP (1). (H.4)

To see this, note that P ∗(Z∗NT (y) < v)→P P (G(y) < v) uniformly in (y, v) ∈ Y×R.

Let κp(y) be the p th bootstrap quantile of Z∗NT (y). Note that the covariance kernel of

G(y) satisfies H(y, y) = 1, so G(y) is standard normal for any give y. Thus κp(y)→P

zp uniformly in y. Recall that q∗p(y) is the p th bootstrap quantile of ϑ̂∗(y)− ϑ̂(y) =

sNT (y)Z∗NT (y), we have q∗p(y) = sNT (y)κp(y). Let ∆q∗(y) = q∗.75(y)− q∗.25(y); similarly

define ∆κ(y) and ∆z. We have ∆q∗(y) = sNT (y)∆κ(y). Therefore

s̃∗(y)

sNT (y)
− 1 =

∆q∗(y)/∆z − sNT (y)

sNT (y)
=

∆κ(y)

∆z
− 1 =

κ.75 − z.75

∆z
− κ.25 − z.25

∆z
,

which converges to zero in probability uniformly in y. This also implies (H.4).

(iii) Let

A := sup
y

∣∣∣∣∣ ϑ̂(y)− ϑ(y)

sNT (y)

∣∣∣∣∣ , B := sup
y

∣∣∣∣∣ ϑ̂(y)− ϑ(y)

s̃∗(y)

∣∣∣∣∣
CI(y) :=

{
a : |ϑ̂(y)− a| ≤ qτ s̃

∗(y)
}
.

By Proposition E.1 and the continuous mapping theorem, A →d supy |G(y)|. In ad-

dition, by (H.4)

|B − A| ≤ A sup
y

∣∣∣∣sNTs̃∗
(

1− s̃∗

sNT

)∣∣∣∣ = oP (1),

implying B →d supy |G(y)|. Next, by part (ii) of the proposition,

C := sup
y

∣∣∣∣∣ ϑ̂∗(y)− ϑ̂(y)

s̃∗

∣∣∣∣∣→d∗ sup
y
|G(y)|.
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Therefore for the event: E := {ϑ(y) ∈ CIτ (y),∀y}, we have

P (E) = P (B ≤ qτ )→ P ∗(C ≤ qτ ) = 1− τ.

Now consider a DGP sequence {PT : T ≥ 1} ⊂ P and its subsequence {PTk : k ≥ 1}
so that

lim sup
T

sup
P∈P
|P (E)− (1− τ)| = lim sup

T
|PT (E)− (1− τ)| = lim

k
|PTk(E)− (1− τ)|.

Note that {PTk : k ≥ 1} ⊂ P so the probability measure PTk satisfies the conditions

of this proposition. It implies limk PTk(E)→ 1− τ. Hence

lim sup
T

sup
P∈P
|P (E)− (1− τ)| = 0.

�

H.2. Proof of Theorem 5.4 (i): coverage of θ(y).

Proof. The expansion of Lemma D.3 still holds:

β̂
∗
i − β∗i = −A∗1i

1

T

∑
t

ψit(y)∗ +R∗i,9 + 2R∗i,4 + 2R∗i,5 − R̄∗i,4 − R̄∗i,5

where the ∗ variables are defined as a cross-sectional random sample with replacement.

Define, for P ∗W = W ∗(W ∗′W ∗)−1W ∗′ ,

θ̂∗(y) =
1

N

N∑
i=1

β̂
∗
i (y)w∗

′

i S
∗
wz,N , S∗wz,N := (

1

N
W ∗′W ∗)−1W ∗′Z∗(Z∗

′
P ∗WZ

∗)−1.

Also note that β∗i = θw∗i + γ∗i . Then similar to (E.7), by Lemmas H.1 and H.2,

θ̂∗(y)− θ(y) =
1

NT

N∑
i=1

T∑
t=1

A∗1i(y)ψ∗y,itw
∗′
i S
∗
wz,N +

1

N

N∑
i=1

γ∗i (y)w∗
′

i S
∗
wz,N

+
1

N

N∑
i=1

R∗i,9w
∗′
i S
∗
wz,N +

1

N

N∑
i=1

[2R∗i,4 + 2R∗i,5 − R̄∗i,4 − R̄∗i,5]w∗
′

i S
∗
wz,N

=
1

NT

N∑
i=1

T∑
t=1

A∗1i(y)ψit(y)∗w∗
′

i S
∗
wz,N +

1

N

N∑
i=1

γ∗i (y)w∗
′

i S
∗
wz,N + oP ∗(

1√
NT

)

=
1

NT

N∑
i=1

T∑
t=1

A∗1i(y)ψit(y)∗w∗
′

i Swz +
1

N

N∑
i=1

γ∗i (y)w∗
′

i Swz + oP ∗(ζNT (y))

=
1

NT

N∑
i=1

[
1√
T
d∗ψ,i(y) + d∗γ,i(y)

]
+ oP ∗(ζNT (y)). (H.5)
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Hence expansion (H.1) holds. This leads to the desired result, following from Propo-

sition H.1.

�

Lemma H.1. For the cross sectional bootstrap, uniformly in y ∈ Y, 1
N

∑
i ‖R∗i8‖2 =

OP ∗(T
−3), 1

N

∑
iR
∗
i,4w

∗′
i = OP ∗(

1
T
√
N

), and 1
N

∑
i R̄
∗
i,4w

∗′
i = OP ∗(

1
T
√
N

).

Also, 1
N

∑
iR
∗
i,5w

∗′
i = OP ∗(

1
T
√
N

), and 1
N

∑
i R̄
∗
i,5w

∗′
i = OP ∗(

1
T
√
N

).

Proof. First of all, the same proof of Lemma D.4, D.3 in the bootstrap world still

holds. So it is easy to claim 1
N

∑
i ‖R∗i8‖2 = OP ∗(T

−3). The proof is similar to that

of Lemma E.1, with a slight modification.

(i) For 1
N

∑
iR
∗
i,4w

∗′
i , we define b∗i (y) = 1

2
A∗1iA∗2i(A∗1i ⊗ A∗1i) and

a∗i (y) = T∇Q∗i (βi)⊗∇Q∗i (βi)− T (E[∇Qi(βi)⊗∇Qi(βi)])
∗.

Again, the star variable means a cross-sectional random sample from i = 1, ..., N.

Also, let F ∗i (y) = − 1√
N
a∗i (y)b∗i (y)w∗i . Now E∗F ∗i (y) =

∑
i Fi(y). Hence

T
√
N

N

∑
i

R∗i,4w
∗
i =

∑
i

F ∗i (y) =
∑
i

[F ∗i (y)− E∗F ∗i (y)] +
∑
i

Fi(y).

The proof of Lemma E.1 shows supy ‖
∑

i Fi(y)‖ = OP (1). It remains to prove∑
i[F
∗
i (y)−E∗F ∗i (y)] is asymptotically tight. The proof is mimicking that of Lemma

E.1 in the bootstrap world, so we are briefly outlying it here.

For Condition (1) of Theorem 2.11.11 in van der Vaart and Wellner (1996),∑
i

E∗ sup
y
|F ∗i (y)|1{sup

y
|F ∗i (y)| > η} ≤ 1

ηa+1Na/2
E∗ sup

y
|a∗i (y)b∗i (y)w∗i |2+a

≤ OP (
1

ηa+1Na/2
)

1

N

∑
i

E sup
y
|ai(y)bi(y)wi|2+a ≤ OP (1).

The bound 1
N

∑
i E supy |ai(y)|m < C follows from the proof of Lemma E.1.

Condition (2): Take y1, y2 ∈ Y . For an arbitrarily small ε > 0, with probability at

least 1− ε,
∑

i |Fi(y1)− Fi(y2)|2 ≤
∑

i E|Fi(y1)− Fi(y2)|2/ε. On this event,∑
i

E∗|F ∗i (y1)− F ∗i (y2)|2 =
∑
i

|Fi(y1)− Fi(y2)|2 ≤
∑
i

E|Fi(y1)− Fi(y2)|2/ε

≤ C
1

N

∑
i

(E|ai(y1)− ai(y2)|4)1/2/ε+ C
1

N

∑
i

|bi(y1)− bi(y2)|2/ε

≤ C|y1 − y2|1/2/ε ≤ ρ(y1, y2)2,

where ρ(y1, y2) = C̄|y1 − y2|1/4/
√
ε for sufficiently large C̄.
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Condition (3): For every ε > 0, with probability at least 1− ε,∑
i

(
supρ(y1,y2)<δ |Fi(y1)− Fi(y2)|2

)
≤
∑

i E
(
supρ(y1,y2)<δ |Fi(y1)− Fi(y2)|2

)
/ε. On this

event, for every δ > 0,

sup
η>0

∑
i

η2P ∗

(
sup

ρ(y1,y2)<δ

|F ∗i (y1)− F ∗i (y2)| > η

)

≤
∑
i

E∗
(

sup
ρ(y1,y2)<δ

|F ∗i (y1)− F ∗i (y2)|2
)

=
∑
i

(
sup

ρ(y1,y2)<δ

|Fi(y1)− Fi(y2)|2
)

≤ 1

N

∑
i

E

(
sup

ρ(y1,y2)<δ

|ai(y1)bi(y1)− ai(y2)bi(y2)|2‖wi‖2

)
/ε

≤ C
1

N

∑
i

(E sup
|y1−y2|<(δ/C̄)4ε2

|ai(y1)− ai(y2)|4)1/2/ε+ C
1

N

∑
i

sup
|y1−y2|<(δ/C̄)4ε2

|bi(y1)− bi(y2)|2/ε

≤ δ2 Cε

C̄2ε
< δ2

by choosing a sufficiently large C̄ in the definition of ρ. Hence all sufficient conditions

of Theorem 2.11.11 in van der Vaart and Wellner (1996) are verified. Thus
∑

i[F
∗
i (y)−

E∗F ∗i (y)] is asymptotically tight.

(ii) For 1
N

∑
iR
∗
i,5w

∗′
i , similar to Lemma E.1, we show supy ‖

∑
i F
∗
i (y)‖ = OP ∗(1)

where

F ∗i (y) =
T√
N
A∗1i[A∗−1

1i −A∗−1
1i ]A∗1i∇Q∗i (β∗i )w∗i −

T√
N

(EA1i[A
−1
1i −A−1

1i ]A1i∇Qi(βi)wi)
∗.

By Lemma E.1,

E∗
∑
i

F ∗i (y) =
T√
N

∑
i

A1i[A
−1
1i −A−1

1i ]A1i∇Qi(βi)wi−E(A1i[A
−1
1i −A−1

1i ]A1i∇Qi(βi)wi)

is asymptotically tight. Hence it remains to show
∑

i(z
∗
i (y) − E∗z∗i (y)) is asymp-

totically tight by verifying the conditions of Theorem 2.11.11 in van der Vaart and

Wellner (1996).

Condition (1): for every η > 0, fix 0 < a < 2,∑
i

E∗ sup
y
|F ∗i (y)|1{sup

y
|F ∗i (y)| > η} =

∑
i

sup
y
|Fi(y)|1{sup

y
|Fi(y)| > η}

≤ OP (
C

ηa+1Na/2
)

1

N

∑
i

[E sup
y
|
√
T (A−1

1i − A−1
1i )|4+2a]1/2|[E sup

y
|
√
T∇Qi(βi)|8+4a]1/4

≤ oP (1).

Condition (2). Define ai(y) =
√
TA1i[A

−1
1i − A−1

1i ]A1i , bi(y) =
√
T∇Qi(βi) and

ci(y) =
√
T [A−1

1i (y)− A−1
1i (y)]. With probability at least 1− ε,
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i |Fi(y1)− Fi(y2)|2 ≤ E

∑
i |Fi(y1)− Fi(y2)|2/ε. On this event,∑

i

E∗|F ∗i (y1)− F ∗i (y2)|2

=
∑
i

|Fi(y1)− Fi(y2)|2 ≤
∑
i

E|Fi(y1)− Fi(y2)|2/ε

≤ C
1

N

∑
i

[E‖ai(y1)− ai(y2)‖4]1/2/ε+ C
1

N

∑
i

[E‖bi(y1)− bi(y2)‖4]1/2/ε

≤ C|y1 − y2|2/ε+ [
1

N

∑
i

E‖ci(y1)− ci(y2)‖4]1/2/ε+ C|y1 − y2|1/2/ε

≤ C|y1 − y2|1/2/ε ≤ ρ(y1, y2)2.

Condition (3): Define

M :=
1

N

∑
i

(
sup

ρ(y1,y2)<δ

|ai(y1)bi(y1)− ai(y2)bi(y2)|2‖wi‖2

)
.

For every ε > 0, with probability at least 1− ε, M ≤ EM/ε. On this event, for every

δ > 0, and sufficiently large C̄, recall ρ(y1, y2) = C̄|y1 − y2|1/4/
√
ε.

sup
η>0

∑
i

η2P ∗

(
sup

ρ(y1,y2)<δ

|F ∗i (y1)− F ∗i (y2)| > η

)

≤ 1

N

∑
i

E∗
(

sup
ρ(y1,y2)<δ

|a∗i (y1)b∗i (y1)− a∗i (y2)b∗i (y2)|2‖w∗i ‖2

)

+
1

N

∑
i

E∗
(

sup
ρ(y1,y2)<δ

|(Eai(y1)bi(y1))∗ − (Eai(y2)bi(y2))∗|2‖w∗i ‖2

)

= M +
1

N

∑
i

E

(
sup

ρ(y1,y2)<δ

|Eai(y1)bi(y1)− Eai(y2)bi(y2)|2‖wi‖2

)

≤ EM/ε+
1

N

∑
i

E

(
sup

ρ(y1,y2)<δ

E‖ai(y1)− ai(y2)‖2‖wi‖2

)
sup
y

E‖bi(y)‖2

+
1

N

∑
i

E

(
sup

ρ(y1,y2)<δ

E‖bi(y1)− bi(y2)‖2‖wi‖2

)
sup
y

E‖ai(y)‖2

≤ C
1

N

∑
i

(E sup
|y1−y2|<(δ/C̄)4ε2

|ai(y1)− ai(y2)|4)1/2/ε

+C
1

N

∑
i

(E sup
|y1−y2|<(δ/C̄)4ε2

|bi(y1)− bi(y2)|4)1/2/ε

+C sup
wi

sup
|y1−y2|<(δ/C̄)4

[E‖ci(y1)− ci(y2)‖2 + ‖bi(y1)− bi(y2)‖2] ≤ δ2.

The proof of 1
N

∑
i R̄
∗
i,5w

∗
i is the same.
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�

Lemma H.2. Let V̄γ(y) = E(wiw
′
i)⊗ E(γi(y)γi(y)′|wi). Then

(i) supy ‖ 1
NT

∑N
i=1

∑T
t=1 A1i(y)ψit(y)w′i‖ = OP ( 1√

NT
),

(ii) supy ‖V̄γ(y)−1/2vec( 1
N

∑
i γi(y)w′i)‖ = oP (1),

(iii) 1
N

∑N
i=1

1
T

∑T
t=1 A∗1i(y)ψit(y)∗w∗

′
i (S∗wz,N − Swz) = oP ∗(

1√
NT

),

(iv) 1
N

∑N
i=1 γ

∗
i (y)w∗

′
i (S∗wz,N − Swz) = oP ∗(

1√
N
‖V̄γ(y)‖1/2).

Proof. Let bi(y) = 1√
N

1√
T

∑T
t=1 A1i(y)ψit(y)w′i; b

∗
i (y) = 1√

N
1√
T

∑T
t=1 A∗1y,iψ∗it(y)w∗

′
i .

Also let ci(y) be any component of V̄γ(y)−1/2vec( 1√
N

∑
i γi(y)w′i), and c∗i (y) be any

component of V̄γ(y)−1/2vec( 1√
N

∑
i γ
∗
i (y)w∗

′
i ). In addition, let Fi,1(y) = 1√

N
bi(y),

F ∗i,1(y) = 1√
N
b∗i (y), Fi,2(y) = 1√

N
ci(y), and F ∗i,2(y) = 1√

N
c∗i (y).

Then, the same argument in part (ii) of the proof for Theorem 5.1 can be applied,

to show that both
∑

i Fi,1(y) and
∑

i Fi,2(y) are asymptotically tight in `∞(Y). This

leads to (i) and (ii).

In addition, the same argument can be applied to show that both
∑

i F
∗
i,1(y) and∑

i F
∗
i,2(y) are asymptotically tight. Hence supy ‖ 1

NT

∑N
i=1

∑T
t=1 A∗1y,iψ∗it(y)w∗

′
i ‖ =

OP ∗(
1√
NT

), and supy ‖V̄γ(y)−1/2vec( 1
N

∑
i γ
∗
i (y)w∗

′
i )‖ = oP ∗(1). Finally, ‖S∗wz,N−Swz‖ =

oP ∗(1). This leads to (iii)(iv).

�

H.3. Proof of Theorem 5.4 (ii): coverage of cross-section distributions.

Proof. We first prove the expansion of Ĝt. By (H.5),

θ̂∗(y)− θ(y) =
1

NT

N∑
i=1

T∑
t=1

A∗1i(y)ψit(y)∗w∗
′

i Swz +
1

N

N∑
i=1

γ∗i (y)w∗
′

i Swz + oP ∗(ζNT (y)).

Recall that β̂
g∗
i (y) = β̂

∗
i (y) + θ̂∗(y)[g∗(zi)− z∗i ]. Similar to (F.1),

1

N

∑
i

Λ(−x∗′it β̂
g∗
i (y))− 1

N

∑
i

Λ(−hit(xit)∗
′
βg∗i (y)) = D∗0 + ...+D3 + oP ∗(ζNT )

D∗0 := − 1

N

∑
i

Λ̇(−hit(xit)∗
′
βg∗i (y))x∗

′

it (β̂
∗
i (y)− β∗i (y))

= − 1

NT

∑
it

Λ̇(−hit(xit)∗
′
βg∗i (y))x∗

′

itA∗1iψ∗it(y) + oP ∗(ζNT (y))

D∗1 :=
1

2N

∑
i

tr
[
Λ̈(−hit(xit)∗

′
βg∗i (y))x∗itx

∗′
it (β̂

∗
i (y)− β∗i (y))(β̂∗i (y)− β∗i (y))′

]
=

1

2NT

∑
i

tr
[
Λ̈(−hit(xit)∗

′
βg∗i (y))x∗itx

∗′
it B̂
∗
i (y)−1

]
+ oP ∗(ζNT (y))
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D∗2 := tr[Ḡ(y)(θ̂∗(y)− θ(y))]

=
1

NT

∑
it

w∗
′

i SwzḠ(y)A∗1i(y)ψ∗it(y) +
1

N

N∑
i=1

w∗
′

i SwzḠ(y)γ∗i (y) + oP ∗(ζNT (y))

D∗3 :=
1

N

∑
i

(β̂
∗
i (y)− β∗i (y))′Λ̈(−hit(xit)∗

′
βg∗i (y))x∗itx

∗′
it (θ̂

∗ − θ)[g∗(zi)− z∗i ]

+
1

2N

∑
i

Λ̈(−hit(xit)∗
′
βg∗i (y))[x∗

′

it (θ̂
∗ − θ)(g∗(zi)− z∗i )]2 = oP ∗(ζNT (y)).

Recall that Ψ∗i,II(y; β̂
g∗
i (y)) = Λ(−x∗′it β̂

g∗
i (y))− 1

2T
tr
(

Λ̈(−hit(xit)∗
′
βg∗i (y))x∗itx

∗′
it B̂
∗
i (y)−1

)
.

Hence

Ĝ∗t (y) :=
1

N

∑
i

Ψ∗i,II(y; β̂
g∗
i (y)) =

1

N

∑
i

Λ(−hit(xit)∗
′
βg∗i (y)) +

1

N

N∑
i=1

w∗
′

i SwzḠ(y)γ∗i (y)

+
1

NT

∑
it

[w∗
′

i SwzḠ(y)− Λ̇(−hit(xit)∗
′
βg∗i (y))x∗

′

it ]A∗1i(y)ψ∗it(y) + oP ∗(ζNT (y))

=
1

N

∑
i

1√
T
dII∗ψ,i (y) +

1

N

∑
i

dII∗γ,i (y) +Gt(y) + oP ∗(ζNT (y)) (H.6)

This shows

Ĝ∗t (y)−Gt(y) =
1

N

N∑
i=1

[
1√
T
dII∗ψ,i (y) + dII∗γ,i (y)

]
+ oP ∗(ζNT (y)).

Hence expansion (H.1) holds for Gt. The same proof also carries over to obtaining

expansions for Ft and Ft,I , so we omit the proof for brevity. This leads to the desired

coverage for following from Proposition H.1.

�

H.4. Proof of Theorem 5.4 (iii): coverage of QE.

Proof. For a generic and F̂ ∗ ∈ {F̂ ∗t , Ĝ∗t}, and F ∈ {Ft, Gt}, we have

F̂ ∗(φ(F̂ ∗, τ)) = F (φ(F, τ)) = τ.

Thus similar to the proof of Lemma G.1, for qτ := φ(F, τ),

φ(F̂ ∗, τ)− φ(F, τ) =
−1

Ḟt(qτ )
∆F (qτ ) +M1(τ) +M2(τ)

∆F (y) := F̂ ∗(y)− F (y)

M1(τ) ≤ C|∆F (φ(F̂ ∗, τ))−∆F (qτ )|2 + C∆F (qτ )
2

M2(τ) ≤ C|∆F (φ(F̂ ∗, τ))−∆F (qτ )|. (H.7)
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Expansion (H.6) can be proved very similarly for F̂ ∗t . Hence in general,

∆F (y) =
1

N

∑
i

1√
T
d∗ψ,i(y) +

1

N

∑
i

d∗γ,i(y) + oP ∗(ζNT (y)). (H.8)

By Lemma H.3, 1√
N

∑
i d
∗
ψ,i(y), and Vart(dγ,i(y))−1/2 1√

N

∑
i d
∗
γ,i(y) are asymptotically

stochastically equicontinuous. Then M1 + M2 = oP ∗(ζNT (y)). Combine (H.8) and

(H.7),

φ(F̂ ∗, τ)− φ(F, τ) =
−1

Ḟt(qτ )

[
1

N

∑
i

1√
T
d∗ψ,i(qτ ) +

1

N

∑
i

d∗γ,i(qτ )

]
+ oP ∗(ζNT (qτ )).

Thus

Q̂E
∗
t (τ)− QEt(τ) =

1

N

N∑
i=1

[
1√
T
pII∗ψ,i (τ) + pII∗γ,i (τ)

]
+ oP ∗(

1√
NT

+ Vart(p
II
γ,i(τ))),

where pII∗ is SRS with replacement from pII ; the latter is defined in (G.1). Hence

expansion (H.1) holds forQ̂E
∗
t (τ)−QEt(τ). This leads to the desired coverage result,

following from Proposition H.1.

�

Lemma H.3. 1√
N

∑
i d
∗
ψ,i(y), and Vart(dγ,i(y))−1/2 1√

N

∑
i d
∗
γ,i(y) are asymptotically

stochastically equicontinuous.

Proof. The proof is the mimick of that of Lemma G.2 in the bootstrap world. As it

is almost the same, we omit the proof for brevity.

�

Appendix I. Proofs for the Stationary Distribution

I.1. The asymptotic distribution.

Proposition I.1. We have

F̂∞(·)− F∞(·)
sNT (·)

⇒ G(·)

where G(·) is a centered Gaussian process with covariance kernel

H(yk, yl) = lim
T

σ2
T (yk, yl)

σT (yk)σT (yl)
.
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Proof. For notational simplicity, we write dψ,i = d∞ψ,i and dγ,i = d∞γ,i. Lemma I.1 shows

uniformly in y, ζNT = 1√
NT

+ V̄γ(y),

F̂∞(y)− F∞(y) =
1

N

N∑
i=1

[
1√
T
dψ,i(y) + dγ,i(y)

]
+ oP (ζNT (y)).

We now verify the three conditions in Assumption E.1.

Assumption E.1 (i). This follows from E[ψit(yk)|γi(yl),wi, βi(yl), Dit] = 0.

Assumption E.1 (ii).

E sup
y
|dψ,i(y)|2+a ≤ CE sup

y
‖ 1√

T

T∑
t=1

∂βfi(βi, y)′Zit‖2+a ≤ C

E sup
y
|dγ,i(y)2

V̄γ(y)
|a ≤ CE sup

y
[Zt(f(βi, y))]2a < C.

Assumption E.1 (iii). For any δ ∈ (0, 1), and ρ(y1, y2) = C̄1/4|y1 − y2|1/4

E sup
ρ(y1,y2)<δ

|dψ,i(y1)− dψ,i(y2)|2

≤ E sup
ρ(y1,y2)<δ

‖∂βfi(βi, y1)′ − ∂βfi(βi, y2)′‖2‖ 1√
T

T∑
t=1

Zit‖2

≤ C

(
E sup
|y1−y2|≤C̄δ4

‖∂βfi(βi, y1)′ − ∂βfi(βi, y2)′‖4

)1/2

≤ CC̄δ4 ≤ δ2.

Let V = Var( 1√
T

∑T
t=1Zit|βi) and r(y) = ∂βfi(βi, y). Then V̄ψ(y) = Er(y)′V r(y).

Hence

sup
ρ(y1,y2)<δ

|V̄ψ(y1)− V̄ψ(y2)|2

≤ sup
ρ(y1,y2)<δ

|E(r(y1)− r(y2))′V r(y1)|2 + |E(r(y1)− r(y2))′V r(y2)|2

≤ C sup
|y1−y2|<C̄δ4

E‖r(y1)− r(y2)‖2 sup
y

E‖r(y)‖2 ≤ C sup
|y1−y2|<C̄δ4

E‖r(y1)− r(y2)‖2

≤ CC̄δ8 ≤ δ2.

Also, it is our assumption that

E sup
ρ(y1,y2)<δ

|fi(βi, y1)− Efi(βi, y1)− (fi(βi, y2)− Efi(βi, y2))|2√
Var(fi(βi, y1))Var(fi(βi, y2))

≤ δ2

sup
ρ(y1,y2)<δ

|Var(fi(βi, y1))− V̄ar(fi(βi, y2))|2

Var(fi(βi, y1))Var(fi(βi, y2))
≤ δ2.
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Hence Assumption E.1 is verified. We then have the weak convergence, following

from Proposition E.1. �

Lemma I.1. Suppose Assumption F.1 holds. Uniformly in y,

F̂∞(y)− F∞(y) = − 1

NT

∑
it

∂βfi(βi, y)′Zit

+
1

N

∑
i

[fi(βi, y)− Efi(βi, y)] + oP (
1√
NT

). (I.1)

Proof. By Lemma D.2,

β̂i − βi = − 1

T

∑
t

Zit +Ri,4 +Ri,5 + ∆̃i

where supy
1
N

∑
i ‖∆̃i‖2 = OP (L2T−3) and Ri,d is the vectorization of (Ri,d(y) : y =

y1
i , ..., y

K
i ). Hence

1

N

N∑
i=1

fi(β̂i, y)− F∞(y)

=
1

N

∑
i

ḟi(y)′(β̂i − βi) +
1

2N

∑
i

tr
[
f̈i,β(y)(β̂i − βi)(β̂i − βi)′

]
+

1

N

∑
i

fi(βi, y)− Efi(βi, y) +R1

= − 1

NT

∑
it

ḟi(y)′Zit +
1

2NT

∑
i

tr
[
f̈i,β(y)Evi

]
+

1

N

∑
i

[fi(βi, y)− Efi(βi, y)] +
4∑
d=1

Hd

where for some ai,

H1 :=
1

2NT

∑
i

tr
[
f̈i,β(y)(vi − Evi)

]
H2 :=

1

N

∑
i

ḟi(y)′(Ri,4 +Ri,5)

H3 :=
1

N

∑
i

ḟi(y)′∆̃i −
1

2N

∑
i

tr

[
f̈i,β(y)

1

T

∑
t

Zit(Ri,4 +Ri,5)′

]

− 1

2N

∑
i

tr

[
f̈i,β(y)

1

T

∑
t

Zit∆̃
′
i

]
+

1

2N

∑
i

tr
[
f̈i,β(y)(Ri,4 +Ri,5)(β̂i − βi)′

]
+

1

2N

∑
i

tr
[
f̈i,β(y)∆̃i(β̂i − βi)′

]
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H4 =
1

6N

∑
i

∂3
βfi(ai, y,Dit)(β̂i − βi)⊗ (β̂i − βi)⊗ (β̂i − βi)

vi :=
1√
T

∑
t

Zit
1√
T

∑
s

Z ′is ḟ(y) = ∂βfi(β, y), f̈(y) = ∂2
βfi(β, y)

We proceed as following steps. Step 1, show
∑4

d=1 Hd is negligible. Step 2, estimate

the bias Evi and compute the debiased estimator, and show that the bias estimation

is negligible.

step 1. Write Fi(y) = 1
2
√
N
tr
[
f̈i,β(y)(vi − Evi)

]
. Then H1 = 1

T
√
N

∑
i Fi(y). We

now show
∑

i Fi(y) = OP (1) uniformly in y by showing it is asymptotically tight. For

any η > 0, and a > 0,∑
i

E sup
y
|Fi(y)|1{sup

y
|Fi(y)| > η} ≤ 1

η

∑
i

E sup
y
|Fi(y)|21{sup

y
|Fi(y)| > η}

≤ 1

4Na/2η1+a

1

N

∑
i

E sup
y

[
f̈i,β(y)(vi − Evi)

]2+a

≤ C

Na/2η1+a

1

N

∑
i

[E [vi − Evi]4](2+a)/4 = o(1)

provided that Ev4
i and maxi E supy ‖f̈(y)‖4/3 < C.

Next, for every y1, y2 ∈ Y ,∑
i

E|Fi(y1)− Fi(y2)|2 ≤ C

N

∑
i

(E‖f̈i,β(y1)− f̈i,β(y2)‖4)1/2(E‖vi‖4)1/2

≤ C|y1 − y2|2.

For every δ > 0, and ρ(y1, y2) = C̄|y1 − y2|, for sufficiently large C̄,

sup
η>0

∑
i

η2P

(
sup

ρ(y1,y2)<δ

|Fi(y1)− Fi(y2)| > η

)
≤
∑
i

E

(
sup

ρ(y1,y2)<δ

|Fi(y1)− Fi(y2)|2
)

≤ C

N

∑
i

(E sup
ρ(y1,y2)<δ

|f̈i,β(y1)− f̈i,β(y2)|4)1/2(E‖vi‖4)1/2 ≤ δ2.

Hence all conditions of Theorem 2.11.11 in van der Vaart and Wellner (1996) are

verified. Thus
∑

i Fi(y) = OP (1) uniformly in y. This implies supyH1 = OP ( 1
T
√
N

).

In addition, it follows from the same argument that supyH2 = OP ( 1
T
√
N

). Next, by

Cauchy-Schwarz inequality, uniformly in y,

H2
3 ≤ OP (1)

1

N

∑
i

‖∆̃i‖2 +OP (1)

 1

N

∑
i

[
1

T

∑
t

Zit

]4
1/2

1

N

∑
i

[
‖Ri,4 +Ri,5‖2 + ‖∆̃i‖2

]
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+OP (1)

(
1

N

∑
i

[
β̂i − βi

]4
)1/2

1

N

∑
i

[
‖Ri,4 +Ri,5‖2 + ‖∆̃i‖2

]
= OP (

1

T 3
+
L2

T 4
).

Together, provided that N = o(T 2) and NL2 = o(T 3),

sup
y
|H1 +H2 +H3| = OP (

1

T
√
N

+
1

T 3/2
+

L

T 2
) = oP (

1√
NT

)

sup
y
H4 ≤ sup

y

C

N

∑
i

‖β̂i − βi‖3 = OP (
1

T 3/2
) = oP (

1√
NT

).

Step 2. Bias correction. Because ψis(y) is a martingale difference,

Evi =
1

T

∑
t

EZitZ
′
it.

The effect of bias correction is: uniformly in y,

1

2NT

∑
i

tr

[
∂2
βfi(β̂i, y)

1

T

∑
t

ẐitẐ
′
it

]
− 1

2NT

∑
i

tr
[
∂2
βfi(βi, y)Evi(y)

]
≤ 1

2NT

∑
i

tr
[
∂2
βfi(β̂i, y)− ∂2

βfi(βi, y)
] 1

T

∑
t

ẐitẐ
′
it

+
1

2NT

∑
i

tr∂2
βfi(βi, y)

[
1

T

∑
t

ẐitẐ
′
it − Evi

]
≤ 1

T
(

1

N

∑
i

‖β̂i − βi‖4)1/4OP (1) +
C

T
(

1

N

∑
i

‖ 1

T

∑
t

ẐitẐ
′
it − Evi‖2)1/2

= OP (
1

T 3/2
) = oP (

1√
NT

).

�

Proposition I.2. We have

Ĝ∞(·)−G∞(·)
sNT (·)

⇒ G(·)

where G(·) is a centered Gaussian process with covariance kernel

H(yk, yl) = lim
T

σ2
T (yk, yl)

σT (yk)σT (yl)
.

Proof. For notational simplicity, we write dψ,i = d∞,IIψ,i and dγ,i = d∞,IIγ,i . Write

∂βfi(y) := ∂βfi(βi,θi, y). Then uniformly in i ≤ N , (E.7) implies

θ̂i − θi =
1

NT

∑
jt

Zjt,iw
′
jSwz +

1

N

∑
j

γj,iw
′
jSwz + oP (ζNT (y)).
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By the Taylor expansion up to the second order,

1

N

∑
i

fi(β̂i, θ̂i, y)− 1

N

∑
i

f(βi,θi, y) = D0 + ...+D3 +R1

D0 :=
1

N

∑
i

∂βfi(y)′(β̂i − βi) = − 1

NT

∑
it

∂βfi(y)′Zit + oP (ζNT (y))

D1 :=
1

2N

∑
i

tr
[
f̈i,β(β̂i − βi)(β̂i − βi)′

]
=

1

2NT

∑
i

tr

[
∂2
βfi(β̂i, θ̂i, y)

1

T

∑
i

ẐitẐ
′
it

]
+ oP (ζNT (y))

D2 :=
1

N

∑
i

∂θfi(βi,θi, y)′(θ̂i − θi)

=
1

N2T

∑
ijt

∂θfi(βi,θi, y)′Zjt,iw
′
jSwz +

1

N2

∑
ij

∂θfi(βi,θi, y)′γj,iw
′
jSwz + oP (ζNT (y))

D3 :=
1

N

∑
i

(β̂i(y)− βi(y))′f̈i,βθ(θ̂i − θi) +
1

2N

∑
i

(θ̂i − θi)′f̈i,θ(θ̂i − θi) = oP (ζNT (y)).

This implies

Ĝ∞(y)−G∞(y) =
1

N

∑
j

[
1√
T
dψ,j(y) + dγ,j(y)

]
+ oP (ζNT (y)). (I.2)

We now verify the three conditions in Assumption E.1.

Assumption E.1 (i)(ii) hold by the assumption.

Assumption E.1 (iii). Let A := 1
N

∑
i E‖w′jSwz‖4‖ 1√

T

∑
tZjt,i‖4. For any δ ∈

(0, 1), and ρ(y1, y2) = C̄1/4|y1 − y2|1/4

E sup
ρ(y1,y2)<δ

|dψ,i(y1)− dψ,i(y2)|2

≤ E sup
ρ(y1,y2)<δ

‖∂βfi(βi,θi, y1)′ − ∂βfi(βi,θi, y2)′‖2‖ 1√
T

T∑
t=1

Zit‖2

+CE sup
ρ(y1,y2)<δ

‖ 1√
T

∑
t

Hit(y1)−Hit(y2)‖2‖w′jSwz‖2

≤ CC̄δ4 + C

[
E sup
ρ(y1,y2)<δ

‖∂θfi(y1)− ∂θfi(y2)‖4

]1/2√
A ≤ CC̄δ4 ≤ δ2.

Next, dψ,j(y) can be expressed in a more compact form. Let

∂θf(y)′ = (∂θf1(y)′, ..., ∂θfN(y)′), Z̄jt = vec(Zjt,1, ...,Zjt,N), ēj = (0, ...,0, I︸︷︷︸
j th block

,0...).
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Then

dψ,j(y) =

[
1

N
w′jSwz∂θf(y)′ − ∂βfj(y)′ē′j

]
1√
T

∑
t

Z̄jt

Let r1(y)′ = 1
N
w′jSwz∂θf(y)′, r2(y)′ = −∂βfj(y)′ē′j, V = Var( 1√

T

∑
t Z̄jt|β,wj). Also

let Vk1,k2 denote the (k1, k2) th block of V , which is a matrix collecting pairwise

covariances between elements of Zjt,k1 and Zjt,k2 . Then we have V̄ψ(y) = E(r1(y) +

r2(y))′V (r1(y) + r2(y)). Hence

sup
ρ(y1,y2)<δ

|V̄ψ(y1)− V̄ψ(y2)|2

≤ max
d=1,2

sup
ρ(y1,y2)<δ

|E(r1(y1)− r1(y2))′V r1(yd)|2 + max
d=1,2

sup
ρ(y1,y2)<δ

|E(r1(y1)− r1(y2))′V r2(yd)|2

+ max
d=1,2

sup
ρ(y1,y2)<δ

|E(r2(y1)− r2(y2))′V r1(yd)|2 + max
d=1,2

sup
ρ(y1,y2)<δ

|E(r2(y1)− r2(y2))′V r2(yd)|2

≤ a1 + ...+ a4

a1 ≤ max
d=1,2

sup
ρ(y1,y2)<δ

[
1

N2

∑
k1,k2≤N

E‖∂θfk1(y1)− ∂θfk1(y2)‖‖Vk1,k2‖‖∂θfk2(yd)‖‖wj‖2‖Swz‖2

]2

≤ C max
d=1,2

sup
ρ(y1,y2)<δ

max
k1,k2≤N

[
E‖∂θfk1(y1)− ∂θfk1(y2)‖4

]1/2 [E‖∂θfk2(yd)‖4
]1/2 E‖wj‖4

≤ δ2

a2 ≤ max
d=1,2

sup
ρ(y1,y2)<δ

[
1

N

N∑
k1=1

E‖∂θfk1(y1)− ∂θfk1(y2)‖‖Vk1,j‖‖wj‖‖Swz‖‖∂βfj(yd)‖

]2

≤ δ2

a3 ≤ max
d=1,2

sup
ρ(y1,y2)<δ

[
1

N

N∑
k2=N

E‖∂βfj(y1)− ∂βfj(y2)‖‖Vj,k2‖‖∂θfk2(yd)‖‖wj‖‖Swz‖

]2

≤ δ2

a4 ≤ max
d=1,2

sup
ρ(y1,y2)<δ

[E‖∂βfj(y1)− ∂βfj(y2)‖‖Vj,j‖‖∂βfj(yd)‖]2 ≤ δ2.

Also, it is our assumption that

E sup
ρ(y1,y2)<δ

|fi(βi, y1)− Efi(βi, y1)− (fi(βi, y2)− Efi(βi, y2))|2√
V̄γ(y1)V̄γ(y2)

≤ δ2

E sup
ρ(y1,y2)<δ

‖∂θfi(βi,θi, y1)− ∂θfi(βi,θi, y2)‖2‖γj,iw′j‖2√
V̄γ(y1)V̄γ(y2)

≤ δ2

sup
ρ(y1,y2)<δ

|V̄γ(y1)− V̄γ(y2)|2

V̄γ(y1)V̄γ(y2)
≤ δ2

Hence Assumption E.1 is verified. Then based on (I.2), we have the weak conver-

gence, following from Proposition E.1.

�
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Proposition I.3. For all F ∈ {F∞, G∞}, F is continuously differentiable, whose

density Ḟ satisfies: there are C, c > 0 so that infτ inf |y−φ(F,τ)|<C Ḟ (y) > c.

Then
Q̂E∞(·)− QE∞(·)

JNT (·)
⇒ GQE,∞(·),

and
Q̂E
∗
∞,II(·)− Q̂E∞(·)

JNT (·)
⇒∗ GQE,∞(·),

Proof. Similar to the proof of Lemma G.1, for F ∈ {F∞, G∞} and F̂ ∈ {F̂∞, Ĝ∞},

φ(F̂ , τ)− φ(F, τ) =
−1

Ḟ (q(τ))

1

N

∑
i

[
1√
T
dψ,i(q(τ)) + dγ,i(q(τ))

]
+ oP (z(q(τ))),

where q(τ) = φ(F, τ), z(y) = (NT )−1/2 +N−1/2Vart(dγ,i(y))1/2. This implies

Q̂E∞(τ)− QE∞(τ) =
1

N

N∑
i=1

[
1√
T
p∞,IIψ,i (τ) + p∞,IIγ,i (τ)

]
+ oP (

1√
NT

+ Var(p∞,IIγ,i (τ))),

From here, establishing the weak convergence can be done via applying Proposition

E.1, where all conditions in Assumption E.1 are straightforward to verify.

The bootstrap convergence for Q̂E
∗
∞(τ)− Q̂E∞(τ) follows from the same argument.

�
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