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Abstract

This paper studies models of processes generating censored outcomes with endoge-

nous explanatory variables and instrumental variable restrictions. Tobit-type left cen-

soring at zero is the primary focus in the exposition. Extension to stochastic censoring

is sketched. The models do not specify the process determining endogenous explanatory

variables and they do not embody restrictions justifying control function approaches.

Consequently, they can be partially or point identifying. Identified sets are character-

ized and it is shown how inference can be performed on scalar functions of partially

identified parameters when exogenous variables have rich support. In an application

using data on UK household tobacco expenditures inference is conducted on the co-

effi cient of an endogenous total expenditure variable with and without a Gaussian
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distributional restriction on the unobservable and compared with the results obtained

using a point identifying complete triangular model.

Keywords: censored outcomes, endogeneity, incomplete models, instrumental variables,

partial identification, stochastic censoring.
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1 Introduction

This paper develops and applies results on the identifying power of models for censored

continuous outcomes, focussing on cases with left censoring at a fixed known value. In

econometrics the Tobit model, Tobin (1958), is the iconic example. A simple example of

the models considered here is the Tobit model with a linear index, endogenous variables

Y ≡ (Y1, Y
′
2)
′, and exogenous variables Z and U such that

Y1 = max(0, Y ∗1 ) Y ∗1 = αY2 + βZ + U (1)

with U unobserved and α, β parameter row vectors conformable with Y2 and Z, respectively.

In the classical Tobit model there are no endogenous variables, Y2, equivalently α = 0.

Here we study cases in which some explanatory variables may be endogenous. There are

instrumental variables, components of Z, with restricted effect on Y ∗1 , delivered for example

by exclusion restrictions requiring elements of β to be zero. The instrumental variables (IVs)

are restricted to be distributed to some degree independently of the unobserved variable in

the structural equation for the censored outcomes. We consider mean, quantile, and full

stochastic independence restrictions, with both parametric and nonparametric specifications

of the distribution of unobserved variables. In this simple example Y ∗1 is a linear index.

Our results are derived under a nonlinear index specification and there can be a parametric,

semiparametric or nonparametric specification.

The IV models employed here are incomplete1 in the sense that there is no specification

of the determination of the endogenous explanatory variables. If a complete model is used,

obtained by adding an equation for Y2, there is the danger of misspecification of the genesis

of endogenous explanatory variables. Incomplete IV models provide a robust alternative.

1Complete models place restrictions on the determination of endogenous variables such that at every
value of observed and unobserved exogenous variables a unique value of the endogenous variables eventuates.
Models that do not possess this property are incomplete. The terminology is due to Koopmans, Rubin and
Leipnik (1950).
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STATA’s ivtobit command,2 despite its name, uses a complete triangular model assum-

ing Gaussian unobserved variables to compute estimates of Tobit models with endogenous

explanatory variables. That attack does not deliver consistent estimates when endogenous

variables are discrete3 or determined by multiple sources of heterogeneity or when there is

simultaneity which breaks the triangular restriction. By contrast, the IV approach employed

here can be used when endogenous variables are discrete and when there is simultaneous

determination of endogenous variables, and it places no restrictions on the way in which

endogenous explanatory variables’values are generated. The IV approach is also a useful al-

ternative to control function approaches which require endogeneity to be absent once there is

conditioning on identifiable functions of observed variables. This paper shows how inferences

can be drawn using censored data and weakly-restrictive, robust IV models.

The models studied here fall in the class of Generalized Instrumental Variable (GIV)

models introduced in Chesher and Rosen (2017) (CR). We use techniques developed in that

paper to carry out identification analysis, and we show how to implement the high level

results given in CR in models for censored outcomes.4 The models may be partially identi-

fying but they can be point identifying. Often it is not possible to determine identification

status using the data available in applications so a cautious approach allowing, as here, for

the possibility of partial identification is sensible.

We conduct inference on scalar functions or subvectors of potentially partially identified

parameters using a “minmax”statistic as in Belloni, Bugni, and Chernozhukov (2018) with

a self-normalized critical value from Chernozhukov, Chetverikov, and Kato (2019), appro-

priate for inference based on a very large number of moment inequalities as we find here.

The approach applies regardless of identification status, and we propose a method for im-

plementation when exogenous variables have rich support. We illustrate with an application

to UK household survey data recording tobacco expenditure shares in which around 70% of

households record zero expenditures.

The focus here is on IV Tobit models with left censoring at zero, with and without a

Gaussian distributional restriction on the scalar unobserved variable, with and without a

parametric specification of the index in the model. It is trivial to extend to cases with right

censored outcomes and straightforward to extend to cases in which the censoring value is

2StataCorp (2019).
3The triangular model is not point identifying when Y2 is discrete, see Chesher (2005).
4An interesting feature of the problem here is that outcomes are continuous rather than discrete as is the

case in many other applications of GIV such as Berry and Compiani (forthcoming), Chesher, Rosen, and
Siddique (2019), Chesher and Rosen (2020b), and Chesher and Rosen (2020a).
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stochastic as shown in Section 6.5 Leading examples with right censoring arise when the

censored outcome is the time until an event occurs, so the methods developed here find

application in models of durations admitting endogenous explanatory variables.6

Much of the prior literature studying models with censored outcomes and endogenous ex-

planatory variables relies on a complete model for the determination of endogenous variables.

Examples include the fully parametric specifications studied in Heckman (1978), Nelson and

Olson (1978), Amemiya (1979), Smith and Blundell (1986), Newey (1987), and Blundell

and Smith (1989) that made early contributions to the study of limited dependent variable

models (including Tobit models in particular) permitting endogenous explanatory variables

and enabling consistent estimation by way of control function approaches and marginal or

conditional maximum likelihood procedures.7 Control function approaches for semipara-

metric triangular models for censored outcomes are provided in Das (2002), Blundell and

Powell (2007), and Chernozhukov, Fernandez-Val, and Kowalski (2015). These papers do

not require parametric distributional restrictions on unobservable heterogeneity, with Das

(2002) employing symmetry restrictions and Blundell and Powell (2007) and Chernozhukov,

Fernandez-Val, and Kowalski (2015) using conditional quantile restrictions.

The approach taken here is in the spirit of Manski and Tamer (2002), which pioneered

the use of incomplete models for censored outcomes or covariates and developed partial

identification analysis. That paper characterized identified sets and proposed consistent

set estimators for a variety of models with censored variables and exogenous explanatory

variables, in which the censoring process is not specified. In the IV Tobit models studied

here, the censoring process is specified, but endogenous explanatory variables are permitted

and it is the lack of a specification of their determination that renders the models incomplete.

In this respect the models studied here have similarities to the incomplete models studied

in Hong and Tamer (2003), Honore and Hu (2004), Chen and Wang (2020) and Wang and

Chen (2021), which also do not impose a specification of the process determining values

of endogenous explanatory variables. Hong and Tamer (2003) employs conditional quantile

restrictions with a censored outcome variable, and focuses on settings in which the para-

meters are point identified. Suffi cient conditions for point identification are proposed along

5In ongoing research we study cases in which the censoring variable is a function of endogenous variables
as arises, for example, in competing risk models with endogenous variables affecting risks.

6See for example Lancaster and Chesher (1984), Lancaster (1985), Olsen and Farkas (1989), Frandsen
(2015), and Wrenn, Klaiber, and Newburn (2017).

7Comparisons of the effi ciency of different procedures are provided in Newey (1987) and Blundell and
Smith (1989).
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with an estimator, and the asymptotic properties of the estimator are characterized. The

support conditions shown to deliver point identification are strong. In many cases they will

not be satisfied in the sample to hand. Honore and Hu (2004) focus primarily on panel

data models with a censored outcome, but in Section 4 moment conditions are derived for

cross-sectional settings under different conditions on the distribution of unobservables, such

as independence, symmetry, and quantile restrictions. Honore and Hu (2004) investigate

the performance of a moment-based point estimator in Monte Carlo analyses, but they do

not provide conditions for point identification. Chen and Wang (2020) and Wang and Chen

(2021) propose moment-based estimators for models with censored outcomes under inde-

pendence and quantile restrictions, respectively. They provide high-level conditions on the

distribution of observable variables under which parameters are point-identified, but these

are not always easy to verify in practice.

We characterize sharp identified sets for parameters applicable whether or not such ad-

ditional conditions hold, and we employ inference that is robust to the possibility of partial

identification. The analysis we provide thus does not require additional assumptions be

made on the process being in studied in order to guarantee point identification. If, however,

the distribution of observable variables is suffi ciently rich to achieve point identification, the

sharp identified set delivered by our analysis will, by construction, be a singleton set.

There is also research that considers the different but important problems of endogenous

censoring of explanatory variables. This includes Khan and Tamer (2009), Khan, Pono-

mareva, and Tamer (2011), and Section 7 of Chesher and Rosen (2020b).

This paper makes contributions to the literature on models of censoring with endogenous

explanatory variables and instrumental variable restrictions, as follows.

1. Most previous papers on this topic consider models that, unlike those considered here,

require a complete specification for the determination of endogenous explanatory vari-

ables. Our analysis shows what can be learned when the specification of the genesis of

endogenous explanatory variables is dropped.

2. Our analysis is robust to the possibility of partial identification, and is thus applicable

when data are not compatible with conditions that ensure point identification.

3. We consider the use of more or less demanding restrictions on the distribution of

unobservable heterogeneity conditional on instruments. This can be used to assess

how robust empirical findings are to, for example, relaxation from a full stochastic

independence restriction to selected conditional quantile independence restrictions.
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4. We conduct inference on functions or subvectors of parameters partially identified

by moment inequalities in these IV Tobit models, using recent developments in Cher-

nozhukov, Chetverikov, and Kato (2019) and Belloni, Bugni, and Chernozhukov (2018)

which allow for a large number of moment inequalities relative to the sample size, as

encountered in our application.

5. We show how quantile independence restrictions at multiple quantiles can be incorpo-

rated, extending results in Chesher and Rosen (2017). This enables investigation of the

increase in identifying power as one moves from invoking a single conditional quan-

tile restriction to successively more quantile restrictions, approaching full stochastic

independence as more such restrictions are imposed.

6. We show how to determine the identifying power of an IV model for censored outcomes

under a stochastic independence restriction with a nonparametric specification of the

distribution of the unobservable variable in the structural equation for the censored

outcome.

The paper proceeds as follows. In the next section we present the class of IV Tobit mod-

els studied here. In Section 3 we characterize the identified set of structures —combinations

of structural functions and distributions of unobserved heterogeneity —that are compatible

with the censored outcome model. The identified set is shown to comprise those structures

that lie in the intersection of two sets, each defined by a collection of conditional moment

inequalities. We show how under some circumstances certain subsets of the inequalities

reduce to moment equalities, and we show how exclusion restrictions can be incorporated

into the characterization of the identified set. In Section 4 we analyze the identifying con-

tent of various restrictions on the joint distribution of exogenous variables and unobservable

heterogeneity, such as conditional mean, conditional quantile, and stochastic independence

restrictions. In Section 5 we describe how inference is carried out using results from Cher-

nozhukov, Chetverikov, and Kato (2019) and Belloni, Bugni, and Chernozhukov (2018), and

we propose a practical approach for application of the inference method when an identified set

is characterized by conditional moment inequalities with continuous conditioning variables.

We illustrate with an application in which we focus on conducting inference on the effect

of total household nondurable expenditure on the share of expenditure spent on tobacco,

previously considered using a control function approach in Adams, Blundell, Browning, and

Crawford (2019). Section 6 sketches an extension to models with stochastic censoring. All

proofs and figures are provided in the Appendix.
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2 The IV Tobit model

Scalar endogenous outcome Y1, possibly endogenous vector Y2, exogenous vector Z ∈ RZ ,

and unobserved scalar U ∈ R satisfy:

Y1 = max(Y ∗1 , 0), Y ∗1 = m(Y2, Z, U) (2)

where the function m is continuous and strictly increasing in its third argument (U) and

for all y2 and z, m(y2, z,−∞) ≤ 0. Define Y ≡ (Y1, Y2). There is the inverse function

m−1(y2, z, y
∗
1) such that for all y

∗
1, y2 and z

m(y2, z,m
−1(y2, z, y

∗
1)) = y∗1.

Example. In a Gaussian Linear Tobit model (GLT model) the function m and its inverse

are linear

m(y2, z, u) = αy2 + βz + u

m−1(y2, z, y
∗
1) = y∗1 − αy2 − βz

and U ∼ N(0, σ2) is restricted to be independent of Z. The model studied in Tobin (1958)

has no endogenous explanatory variables (α = 0). The GLT model will be used as a running

example and it features in the empirical application. Models that maintain this linear spec-

ification for m(y2, z, u) with alternative distributional restrictions to Gaussianity of U and

independence of U and Z are referred to as linear Tobit models.

We cast the problem into the GIV framework set out in CR in which a structure, (m,GU |Z)

comprises two components.

1. A structural function determines which combinations of (Y, Z, U) can jointly occur. In

the IV Tobit model this is fully determined by the function m which may be paramet-

rically specified or nonparametrically specified, perhaps with shape restrictions.8

2. The second component of a structure is a collection of conditional distributions of U

given Z, denoted

GU |Z ≡
{
GU |Z(·|z) : z ∈ RZ

}
8In the notation of CR h : RY ZU → R is used to denote a structural function defined on the support of

(Y,Z, U) such that h (Y,Z, U) = 0 with probability one. In the IV Tobit model there is a unique mapping
from values of (Y2, Z, U) to values of Y1 and it is more transparent to work with the function, m, directly.
In the notation of CR, one would define h (Y,Z, U) ≡ Y1 −max (0,m (Y2, Z, U)).
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where for any set S ⊆ R

GU |Z(S|z) ≡ P[U ∈ S|Z = z].

Amodel, say A, comprises a list of restrictions on structures, defining a set containing the

admissible structures,MA, which satisfy the restrictions. A model’s restrictions may limit

the dependence between U and Z and may require that the function m satisfies conditions

additional to those so far imposed, for example functional form and exclusion restrictions. In

most applications exclusion restrictions will be prominent. When U and Z are stochastically

independent a collection GU |Z is a singleton {GU} where GU is the marginal distribution of

U . A model can additionally impose parametric restrictions on the distribution of U .

Example (continued). In the GLT model the structural function is characterized by pa-
rameters (α, β). The collection of distributions is a singleton, {GU}, where GU is a zero

mean Gaussian distribution with variance σ2. Each structure is characterized by a value of

θ ≡ (α, β, σ).

Throughout the paper a model is referred to as an IV Tobit Model if it satisfies the

following definition.

Definition 1 An IV Tobit Model, A, comprises a set of restrictions on the process gener-
ating observed variables Y and Z such that (i) Y1 = max (m (Y2, Z, U) , 0) as specified in (2)

for some unobservable variable U residing on the same probability space as (Y, Z), and (ii)

the function m and conditional distributions of U given Z are restricted to belong to some

set,MA, of admissible pairs (m,GU |Z).

A variety of IV Tobit Models are considered, imposing different restrictions on the pair

(m,GU |Z). Our analysis here focuses on settings in which the censored variable Y ∗1 is continu-

ously distributed with censoring probability strictly between zero and one conditional on any

realizations of Y2 and Z.9 Throughout the paper we assumeMA is such that m(y2, z, u) is

restricted strictly increasing in u. Where convenient, notation G̃U |Z (t|z) ≡ GU |Z((−∞, t] |z)

is used to denote the conditional cumulative distribution function of U given Z = z associ-

ated with GU |Z(·|z), and g̃U |Z (·|z) is used to denote the corresponding conditional density.

Notation M0
A is used to denote the collection of structural functions m allowed by model

MA.
9This affords simplification in the statement of some of our results, but is unnecessary for application of

the identification analysis from Chesher and Rosen (2017).
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3 Identification

3.1 Characterizations of identified sets

CR gives characterizations of identified sets of structures from which identified sets of struc-

tural features are obtained by projection. The characterizations make use of residual sets

associated with a structure (m,GU |Z). A residual set U(y, z,m) is the set of values of unob-

served U that, for a structural function m, are compatible with observed Y = y and Z = z.

In the IV Tobit model the residual sets are singleton when y1 > 0 and semi-infinite intervals

when y1 = 0, as follows.

U(y, z,m) =

{
(−∞,m−1(y2, z, 0)] , y1 = 0

{m−1(y2, z, y1)} , y1 > 0

Example (continued). In the GLT model the residual sets are as follows.

U(y, z, θ) =

{
(−∞,−αy2 − βz] , y1 = 0

{y1 − αy2 − βz} , y1 > 0

The parameter vector θ appears in place of m here because in the GLT model structures are

characterized by the value of θ.

Let FY |Z ≡{FY |Z(·|z) : z ∈ RZ} denote the collection of conditional distributions of Y
given Z, where for any set Y ⊆ RY

FY |Z(Y|z) ≡ P[Y ∈ Y|Z = z].

Data is informative about this collection of distributions, which is assumed to be identified.

Further define

B(z, t,m) ≡ P[0 < Y1 ≤ m(Y2, Z, t)|Z = z],

D(z, t,m) ≡ P[Y1 = 0 ∧ 0 ≤ m(Y2, Z, t)|Z = z],

C(z, t,m) ≡ P[Y1 ≤ m(Y2, Z, t)|Z = z] = D(z, t,m) +B(z, t,m),

∆ (z, t1, t2,m) ≡ B(z, t2,m)−B(z, t1,m),

all of which are identified for each (z, t,m) given knowledge of FY |Z .
The following Proposition characterizes the identified set of structures.
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Proposition 1 The identified set of structures delivered by an IV Tobit model, A, and a

collection of conditional distributions of Y given Z, FY |Z ≡{FY |Z(·|z) : z ∈ RZ} is the
intersection of two sets of structures

I(FY |Z ,RZ , A) = I1(FY |Z ,RZ , A) ∩ I2(FY |Z ,RZ , A), (3)

where I1(FY |Z ,RZ , A), associated with semi-infinite intervals, is:

I1(FY |Z ,RZ , A) ≡
{

(m,GU |Z) ∈MA : ∀t ∈ R, GU |Z((−∞, t]|z) ≥ C(z, t,m) a.e. z ∈ RZ

}
,

(4)

and I2(FY |Z ,RZ , A), associated with finite intervals, is:

I2(FY |Z ,RZ , A) ≡
{

(m,GU |Z) ∈MA : ∀[t1, t2] ⊂ R,
GU |Z([t1, t2]|z) ≥ ∆ (z, t1, t2,m) a.e. z ∈ RZ

}
. (5)

The proof of the Proposition, given in the Appendix, follows from application of the

inequality

GU |Z(S|z) ≥ P[U(Y, Z,m) ⊆ S|Z = z] (6)

to sets S comprising certain intervals on the real line.
The set

A(S, z,m) ≡ {y : U(y, z,m) ⊆ S} (7)

contains the values of Y that for structural function m only occur when U takes a value in

S. Accordingly Y ∈ A(S, z,m) =⇒ U ∈ S from which the inequality (6) follows directly.10

The probability P[U(Y, Z, h) ⊆ S|Z = z], is known as a containment probability.11 For

intervals (−∞, t] that are unbounded below:

P[U(Y, Z,m) ⊆ (−∞, t] |Z = z] = C(z, t,m). (8)

10Other characterizations of identified sets are available. One such will be employed when we consider
the force of the restriction that unobserved U is mean independent of Z. All of the characterizations follow
from the result that a structure (m,GU |Z) is in the identified set if and only if for all z in the support of
Z the distribution GU |Z(·|z) is selectionable with respect to the conditional distribution of the random set
U(Y, Z;m) given Z = z induced by the distribution of Y given Z = z delivered by the process under study.
Definitions and details are in CR.
11See Molchanov and Molinari (2018).
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For intervals [t1, t2], with t1 > −∞ but with t2 ≥ t1 unrestricted:

P[U(Y, Z,m) ⊆ [t1, t2]|Z = z] = ∆ (z, t1, t2,m) , (9)

from which it also follows that for intervals [t1,∞) with t1 > −∞:

P[U(Y, Z,m) ⊆ [t1,∞)|Z = z] = P [Y1 > 0|z]−B(z, t1,m). (10)

It will be useful later to have an expression for the containment probability which applies

for intervals [t1, t2] with t1 finite or infinite, as follows.

P[U(Y, Z,m) ⊆ [t1, t2]|Z = z] = 1[t1 = −∞]× P[Y1 = 0 ∧ 0 ≤ m(Y2, Z, t2)|Z = z]+

P[Y1 > 0 ∧m(Y2, Z, t1) ≤ Y1 ≤ m(Y2, Z, t2)|Z = z] (11)

Example (continued). In the GLT model there is

B(z, t, θ) = P[0 < Y1 ≤ αY2 + βz + t|Z = z]

D(z, t, θ) = P[Y1 = 0 ∧ 0 ≤ αY2 + βz + t|Z = z]

which can be estimated using realizations of observable variables (Y, Z), and

GU |Z([t1, t2]|z) = Φ

(
t2
σ

)
− Φ

(
t1
σ

)
. (12)

Throughout the paper Φ and φ denote respectively the standard Gaussian distribution and

density function.

3.2 Characterizations using singly-infinite systems of moment in-

equalities

The sets I1(FY |Z ,RZ , A) and I2(FY |Z ,RZ , A) are determined by systems of respectively

singly- and doubly-infinite moment inequalities. Under additional restrictions that imply

that B(z, t,m) is everywhere differentiable in t the doubly-infinite system can be replaced

with an equivalent singly-infinite system. This can have computational advantages.

With U continously distributed conditional on Z and G̃U |Z(·|z) denoting the conditional
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cumulative distribution function of U given Z = z the condition

GU |Z([t1, t2]|z) ≥ ∆ (z, t1, t2,m)

that appears in I2(FY |Z ,RZ) can be expressed as

G̃U |Z(t2|z)− G̃U |Z(t1|z) ≥ ∆ (z, t1, t2,m) .

From this, with a differentiability restriction, Proposition 2 provides a singly-infinite moment

inequality characterization for the set I2(FY |Z ,RZ , A) originally defined in (5).

Proposition 2 If m(y2, z, t) is everywhere differentiable with respect to t for all values of

(y2, z) and U is continuously distributed given Z with conditional density g̃U |Z(·|z) then

I2(FY |Z ,RZ , A) =
{

(m,GU |Z) ∈MA : ∀t ∈ R, g̃U |Z(t|z) ≥ b(z, t,m) a.e. z ∈ RZ

}
, (13)

where b(z, t,m) ≡ ∇tB(z, t,m) is the partial derivative of B(z, t,m) with respect to t.

Example (continued). In the GLT model, g̃U |Z(t|z) = σ−1φ( t
σ
) and b(z, t,m) is the

density function of Y1 − αY2 − βz conditional on Z = z.

3.3 Restrictions on the influence of exogenous Z on the structural

function

In applications there will be restrictions on the influence of exogenous Z on the structural

function. Consider Restriction ZD which requires that m depends on z solely through the

variation in a possibly vector-valued function, w(z), that arises as z varies across the support

of Z. In a commonly occurring case with z = (z1, z2), and z2 excluded from the structural

function, w(z) = z1. Index restrictions, for example requiring that there exists γ such that

for all z, w(z) = γz are also commonly employed.

Restriction ZD: Restricted Z dependence

∃w(·) s.t. ∀(z, z′) ∈ RZ ×RZ ,∀(y2, u), w(z) = w(z′) =⇒ m(y2, z, u) = m(y2, z
′, u)

Define the set of values that w(z) can take as z varies across its support

W(RZ) ≡ {w(z) : z ∈ RZ}

12



and for each element, w, of this set define the set of values of z such that w(z) = w:12

Z(w,RZ) ≡ {z ∈ RZ : w(z) = w}.

In the case in which there is a stochastic independence condition so that GU |Z = {GU}
with U continuously distributed the sets I1(FY |Z ,RZ , A) and I2(FY |Z ,RZ , A) are then as fol-

lows13, where, recall, G̃U(t) and g̃U(t) are respectively the marginal distribution and density

functions of U .

I1(FY |Z ,RZ , A) =

{
(m,GU |Z) : ∀w ∈ W(RZ), t ∈ R, G̃U(t) ≥ sup

z∈Z(w,RZ)
C(z, t,m)

}
,

I2(FY |Z ,RZ , A) =

{(
m,GU |Z

)
: ∀w ∈ W(RZ), t ∈ R, g̃U(t) ≥ sup

z∈Z(w,RZ)
b(z, t,m)

}
,

and the identified set of structures is as follows.

I(FY |Z ,RZ , A) = I1(FY |Z ,RZ , A) ∩ I2(FY |Z ,RZ , A)

3.4 Upper and lower bounds and moment equalities

The containment inequality (6) used to produce Proposition 1 provides a lower bound on the

distribution of U . It is shown in CR that applying the inequality in (6) to the complement

Sc of a set S delivers the following inequality satisfied by all structures in the identified set
for all z ∈ RZ and all closed sets S on the support of U .14

GU |Z(S|z) ≤ P[U(Y, Z,m) ∩ S 6= ∅|Z = z] (14)

So, for all structures in the identified set I(FY |Z ,RZ , A) the inequalities

P[U(Y, Z,m) ∩ S 6= ∅|Z = z] ≥ GU |Z(S|z) ≥ P[U(Y, Z,m) ⊆ S|Z = z] (15)

12When Z is entirely excluded from the structural function define w(z) = c where c is some constant, for
example c = 0. In this case W(RZ) = {c} and for all w, Z(w,RZ) = RZ .
13In order to deal with possibilities of zero measure sets and conditions required to hold almost everywhere,

here and throughout the paper the sup and inf operators are to be understood to mean “essential supremum”
and “essential infimum” when applied to functions of realizations of random variables. So for instance
sup
z∈Z

f (z) indicates the smallest value c such that f (Z) ≤ c with probability one given Z ∈ Z.
14The symbol ∅ denotes the empty set.
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hold for all z ∈ RZ and all intervals, S, on the real line.
There are moment equalities in the characterization of the identified set of structures

when there are z and S such that the probabilities on the left and right hand sides of (15)
are equal. In a suffi ciently restrictive model and for particular collections of distributions

FY |Z and support RZ , there is the possibility that these moment inequalities deliver point

identification.

In the IV Tobit model the upper bounding probability P[U(Y, Z,m)∩S 6= ∅|Z = z] is as

follows.

P[U(Y, Z,m) ∩ [t1, t2] 6= ∅|Z = z] = P[(Y1 = 0) ∧ (0 ≥ m(Y2, Z, t1))|Z = z]

+ P[(Y1 > 0) ∧ (m(Y2, Z, t1) ≤ Y1 ≤ m(Y2, Z, t2))|Z = z]. (16)

Considering (8), (9), and (16), bounding probabilities in (15) are equal for semi-infinite

intervals (−∞, t] when z and m are such that

P [Y1 = 0|Z = z] = P [Y1 = 0 ∧ 0 ≤ m(Y2, Z, t)|Z = z]

and for finite intervals [t1, t] when z and m are such that

P [Y1 = 0 ∧ 0 ≥ m(Y2, Z, t)|Z = z] = 0.

Both conditions are satisfied when m(Y2, Z, t) > 0 almost surely conditional on Z = z. A

leading case in which this can occur is when the endogenous explanatory variable Y2 has

bounded support and the function m is unbounded above as t becomes large.

Conditions such that the inequalities (15) reduce to equalities for some values of z, can

be the basis for establishing suffi cient conditions for point identification. For example, in

models for censored outcomes with a conditional median restriction (Hong and Tamer, 2003,

p. 908) provide support conditions under which certain resulting moment equalities can

establish point identification and a
√
n-consistent and asymptotically normal estimator of

model parameters when m is linear in parameters. Under the restriction that med (U |Z) = 0

and m(Y2, Z, 0) > 0 almost surely conditional on Z = z with m linear in parameters and

additive U there is in our notation

med (Y1 − αY2 − βZ|Z = z) = 0,

14



which corresponds to the moment equality delivered by the inequalities (15) applied to the

set (−∞, 0]. A condition requiring that the set of values of z ∈ RZ such that m(Y2, Z, 0) > 0

almost surely conditional on Z = z has positive measure, in conjunction with a condition

requiring suffi cient variation in included endogenous variables conditional on instruments, is

then used to establish suffi cient conditions for point identification in Lemma 2 of Hong and

Tamer (2003).

4 The impact of restrictions on the dependence be-

tween U and Z

In this Section we consider the identifying power of a conditional mean independence restric-

tion, a conditional quantile independence restriction focussing on median independence, a

stochastic independence restriction with no parametric specification of the distribution GU

and stochastic independence restriction with U restricted to be Gaussian.

We present characterizations of identified sets for models in which

Y1 = max(0,m(Y2, Z, U))

where there may be a parametric, semiparametric or nonparametric specification of the

function m. As each type of restriction is considered we provide calculations of features of

identified sets for the case in which models specify

m(Y2, Z, U) = β + αY2 + U.

In these calculations we use probabilities15

• Structure 1

Y1 = max(0, b+ aY2 + U1)

Y2 = d0 + d1Z + U2

15Probabilities delivered by Structure 1 are calculated using the pmvnorm function in the mvtnorm package
Genz, Bretz, Miwa, Mi, Leisch, Scheipl, and Hothorn (2021) which references Genz and Bretz (2009) and
is implemented in R, R Core Team (2022). Probabilities delivered by Structure 2 are calculated using the
quadinf function in R’s pracma package, Borchers (2022), delivered by two specific structures, as follows.
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• Structure 2

Y1 = max(0, b+ aY2 + U1)

Y2 = k − exp(−d0 − d1Z − U2)

In both cases

U =

[
U1

U2

]
∼ N2

([
0

0

]
,

[
s11 s12

s12 s22

])
with U and Z independently distributed and in all the calculations the support of scalar Z

is

RZ = {−1,−0.9,−0.8, . . . , 0, . . . , 0.8, 0.9, 1}.

A variety of parameter values are employed in the illustrations. These are set out in Tables 1

and 2 which give information about the incidence and extent of censoring delivered by each

structure and parameter constellation and projections of the identified sets (intervals) onto

the space of α, the coeffi cient on endogenous Y2, obtained under alternative restrictions on

the distribution of U and Z.

It is important to understand that these are specifications of complete structures. Only

for complete structures can the probabilities that appear in the characterizations of identified

sets be calculated. The incomplete models that we consider do not employ all the restrictions

embodied in the complete structures. None of the models specify a structural equation for

Y2 and in only one of the models is the unobserved variable in the structural equation for Y1
restricted to be Gaussian.

4.1 Mean independence

Consider models in which U is restricted to be mean independent of the instrumental vari-

ables. Absent censoring such a model is a linear in parameters IV model which is point

identifying under a suitable rank condition.

RESTRICTION MI - Mean Independence: Let GU |Z comprise all collections of con-
ditional distributions for U given Z, GU |Z, satisfying E[U |z] = 0, a.e. z ∈ RZ.

Manski and Tamer (2002) uses mean independence restrictions conditional on included

exogenous variables in models with censored outcomes or covariates but no endogenous ex-

planatory variables. Here we impose an IV version of a conditional mean restriction, condi-
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tioning on values of excluded instruments and any included exogenous variables. Restriction

MI appears in CR but here, to simplify, the value of the conditional expectation is restricted

to be zero rather than a member of a specified set of values. Modifying Theorem 5 of CR

delivers Proposition 3.

Proposition 3 Under Restriction MI the identified set for the function m is

{m ∈M0
A : 0 ≤ E[m−1(Y2, Z, Y1)|Z = z] a.e. z ∈ RZ}.

Example (continued). In a linear index Tobit model in which m(y2, z, u) = αy2 + zβ + u

under Restriction MI there is

E[m−1(Y2, Z, Y1)|Z = z] = E[Y1|z]− αE[Y2|z]− βz.

Write Z = (Z1, Z2) and suppose elements in β are restricted to be zero so that the variables

Z2 are excluded from the structural function. Then Restriction ZD16 holds with w(z) = z1

and there is W(RZ) ≡ {z1 : z ∈ RZ} and Z(w,RZ) = {z ∈ RZ : z1 = w}. The identified
set for (α, β) is{

(α, β) : ∀w ∈ W(RZ), 0 ≤ inf
z∈Z(w,RZ)

(E[Y1|z]− αE[Y2|z]− βz)

}
which is an intersection of linear half spaces and therefore a convex set. When, as in the

illustrations presented here, there are no included exogenous variables in the structural equa-

tion for the censored outcome, so βz = β is simply a scalar intercept and the identified set

is as follows. {
(α, β) : 0 ≤ inf

z∈RZ
(E[Y1|z]− αE[Y2|z]− β)

}
. (17)

The four panes of Figure 1 show identified sets for (α, β) for Cases 1-3 of Structure 1 (see

Table 1) and Case 1 of Structure 2 (see Table 2) under a variety of independence restrictions.

The value of a and b in the structure that generates the probabilities used in the calculations

is the green plotted point. The identified sets undermean independence comprise the regions

below all the blue straight lines. The projections of the sets onto the space of α is the entire

real line.17 The projections of the sets onto the space of β is the entire real line unless there

16See Section 3.3.
17This is the case for all the parameter values considered so projections under mean independence are not

reported in Tables 1 and 2.
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exist z and z′ in RZ such that E[Y2|z] ≤ 0 ≤ E[Y2|z′] (a condition which holds with strong
inequalities in the cases pictured in Figure 1) when the projection is a semi-infinite interval

with finite upper limit.

Clearly a conditional expectation restriction does not lead to informative identified sets in

these examples. We next consider the identifying power of conditional quantile restrictions.

4.2 Quantile independence

Now consider the identifying power of quantile independence restrictions.

RESTRICTION QI - Quantile Independence: Let GU |Z comprise all collections of
conditional distributions of U given Z satisfying P[U ≤ qj|z] = λj, a.e. z ∈ RZ for all

j ∈ {1, ..., J} where Λ ≡ {λ1, ..., λJ} is a collection of specified known values, and some
collection of values {q1, ..., qJ} ∈ Q with λj and qj both increasing in j and Q a specified

set of possible values of {q1, ..., qJ}.

Restriction QI restricts the J conditional quantiles of U given Z = z specified by Λ to

be invariant with respect to z. Q is a known set of possible values for these conditional

quantiles. For example, a conditional median restriction corresponds to Λ = {0.5} and
the usual normalization that this conditional median is zero is then captured by setting

Q = {0}. In this case J = 1. However, Restriction QI allows one to restrict the conditional

distributions of U to be Z-invariant at multiple quantiles.18 Unrestricted quantile values are

added to the list of unknown model parameters. In the application to tobacco expenditure

shares in Section 5.2 multiple quantile restrictions are employed.

Sharp characterization of the identified set of structures is obtained by considering test

sets comprising intervals of the form (−∞, qj] for all j = 1, ..., J and [qj, qj+1] for all j =

0, ..., J where q0 = −∞ and qJ+1 ≡ ∞.

Proposition 4 Let Restriction QI hold. Then the identified set of structural functions deliv-
ered by the IV Tobit Model is the set of functionsm ∈M0

A such that for some {q1, ..., qJ} ∈ Q,
it holds that ∀j ∈ {0, 1, ..., J}: (1) C (z, qj,m) ≤ λj, and (2) ∆ (z, qj, qj+1,m) ≤ λj+1 − λj.

In numerical illustrations considered now, Restriction QI is imposed employing a single

median independence restriction such that J = 1 and λ1 = 0.5 with the normalization

q1 = 0. Thus Q = {0}, the test sets employed are simply {(−∞, 0), (0,∞))}. Employing the
18It is straightforward to impose a symmetry restriction.
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inequalities (8) and (10) with GU |Z((−∞, 0]|z) = 0.5 delivers the identified set of structural

functions, m, under the median independence restriction, as follows.

{m : P[Y1 = 0 ∧ 0 ≤ m(Y2, Z, 0)|Z = z] + P[0 < Y1 ≤ m(Y2, Z, 0)|Z = z]

≤ 0.5 ≤
P[Y1 = 0|z] + P[0 < Y1 ≤ m(Y2, Z, 0)|Z = z] a.e. z ∈ RZ}.

Example (continued). In a linear index Tobit model with no included exogenous variables
such that m(y2, z, u) = αy2 + β + u, under Restriction QI with Λ = {0.5} and Q = {0} the
identified set of values of α and β is as follows.

{(α, β) : P[Y1 = 0 ∧ 0 ≤ αY2 + β|Z = z] + P[0 < Y1 ≤ αY2 + β|Z = z]

≤ 0.5 ≤
P[Y1 = 0|z] + P[0 < Y1 ≤ αY2 + β|Z = z] a.e. z ∈ RZ}.

Identified sets of values of α and β under a zero median restriction are the pink shaded

regions drawn in Figure 1.

Structure 1 Case 1 delivers a very small identified set. This is very substantially enlarged

on moving to Structure 1 Case 2 and then to Structure 1 Case 3. This occurs because the

instrument Z becomes a much less informative predictor of the value of Y2 - the value of d1
is reduced by 50% on moving to Case 2 and by a further 50% on moving to Case 3. The

lower right pane shows the identified set delivered by Structure 2 Case 1 under a conditional

median independence restriction.

In the cases illustrated in the lower two panes of Figure 1 the identified intervals for

α are unbounded above. Projections of identified sets onto the space of α obtained under

conditional median independence are shown for these cases and a variety of other cases in

the final two columns of Tables 1 and 2.

Considering Structure 1 (Table 1) there are two cases (6 and 9) with extensive censoring

in which the conditional median independence restriction is uninformative and the identified

interval for α is the entire real line. The cases in which the interval is semi-finite, unbounded

above (3, 4, 7 and 8), either have an instrument with low predictive power (Case 3, d1 =

0.25) or extensive censoring (Cases 4, 7 and 8). Case 1 of Structure 2 delivers a censoring

probability exceeding 50% on average and a semi-finite interval for α. The other cases of

Structure 2 illustrate quite extreme situations with low censoring (Cases 2 and 3) or highly
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informative instruments (Cases 4 with d1 = 5 and Case 5 with s22 = 0.1). In all these cases

the conditional median independence restriction is highly informative, delivering very short

identified intervals for α.

The median independence restriction can deliver substantially more informative identified

sets than the mean independence restriction and the identified sets it delivers can be very

small indeed but when there is extensive censoring or relatively uninformative instruments

the identified intervals can be unbounded.

4.3 Stochastic independence

Now consider a restriction requiring U and Z to be independently distributed but with no

parametric specification of the distribution of U . We shortly consider the effect of imposing

additionally a Gaussian restriction.

RESTRICTION NPSI - Nonparametric Stochastic Independence: Unobservable
random variable U is continuously distributed and stochastically independent of Z such that

GU |Z is the singleton set {GU}.

Recall the characterization of identified sets given in Section 3, repeated here for conve-

nience with the restriction NPSI imposed. The identified set of structures for a model A,

comprising restrictionsMA, I(FY |Z ,RZ , A), is the intersection of two sets.

I(FY |Z ,RZ , A) = I1(FY |Z ,RZ , A) ∩ I2(FY |Z ,RZ , A) (18)

where

I1(FY |Z ,RZ , A) =

{
(m, {GU}) ∈MA : ∀t ∈ R, G̃U(t) ≥ sup

z∈RZ
C(z, t,m)

}
(19)

I2(FY |Z ,RZ , A) ≡ {(m, {GU}) ∈MA : ∀[t1, t2] ⊂ R,

G̃U(t2)− G̃U(t1) ≥ sup
z∈RZ

∆ (z, t1, t2,m)

}
. (20)

Here G̃U(t) ≡ GU((−∞, t]) is the distribution function of U ,

∆ (z, t1, t2,m) ≡ B(z, t2,m)−B(z, t1,m)
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B(z, t,m) ≡ P[Y1 > 0 ∧ Y1 ≤ m(Y2, Z, t)|z]

and

C(z, t,m) ≡ P[Y1 = 0 ∧ 0 ≤ m(Y2, Z, t)|z] + P[Y1 > 0 ∧ Y1 ≤ m(Y2, Z, t)|z].

In the linear case used in the illustrations in which there is no exogenous variable in the

structural equation, these functions are as follows.

B(z, t, θ) = P[Y1 > 0 ∧ Y1 ≤ αY2 + β + t|z]

C(z, t, θ) = P[Y1 = 0 ∧ 0 ≤ αY2 + β + t|z] + P[Y1 > 0 ∧ Y1 ≤ αY2 + β + t|z].

In this case we use θ = (α, β) instead of m as an argument of these functions. Absent addi-

tional restrictions on the distribution of U , the distribution of observable variables contains

no information about the value of the constant term β, so, in determining the identified set

of values of α, β can be normalized, set equal to an arbitrary value. It is set to zero in the

numerical illustrations.

We now set out a method for calculating an outer set for the identified set of structures

onto the space of structural functions under the NPSI restriction. For this purpose partition

the support of U into N intervals: (−∞, t1], (t1, t2], . . . , (tN−1,∞) where N is large. For

each n ∈ {1, ..., N} define
pn ≡ GU ((tn−1, tn]) , (21)

where it is understood that (t0, t1] means (−∞, t1] and (tN−1, tN ] means (tN−1,∞).

It follows from Proposition 1 that for any structural function m such that there exists

a distribution GU such that (m,GU) is in the identified set, there must exist probabilities

p1, . . . , pN each nonnegative and summing to one such that

∀n = 1, ..., N :
n∑
i=1

pi ≥ C(z, tn,m), (22)

∀n = 1, ..., N : pn ≥ B(z, tn,m)−B(z, tn−1,m), (23)

for almost every z ∈ RZ .

Let I
(
FY |Z ,RZ , A, T

)
denote the set of admissible functionsm that satisfy these inequal-

ities using the partition of intervals whose endpoints are consecutive elements of T ≡{t0, t1, ..., tN}.
Inequalities of the form (22) correspond to those defining I1(FY |Z ,RZ , A) in the state-

ment of Proposition 1 with t = tn. Inequalities of the form (23) are those characterizing
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I2(FY |Z ,RZ , A) with tn−1 and tn in place of t1 and t2, respectively.19 Indeed, Proposition

1 implies that the identified set for m are those admissible structural functions that satisfy

these inequalities for all tn and tn−1 for some possible distribution GU , with GU ((tn−1, tn])

replacing pn, almost surely. Indeed, it is precisely the use of only a finite set of intervals

(tn−1, tn] that makes the resulting characterization non-sharp.

For any collection of N intervals the conditions determining when structural function m

is in I
(
FY |Z ,RZ , A, T

)
can be checked by solving a linear program as set out now. We

use the method developed in Theorem 4 of Chesher and Rosen (2020a) which explores the

identifying power of models of interdependent determination of discrete outcomes.

Define the following objects.20

A
1×N
≡ [1, 1, . . . , 1]︸ ︷︷ ︸

N times

x
N×1
≡ [p1, . . . , pN ]′ b = 1 (24)

B
R(2N−1)×N

=


B∗

...

B∗

 c(m)
R(2N−1)×1

=


c(z1,m)

...

c(zR,m)

 R = ](RZ) (25)

B∗
(2N−1)×N

= −



1 0 · · · 0 0

0 1 · · · 0 0
...

. . .
...
...

· · · . . .

0 0 · · · · · · 1 0

0 0 · · · · · · 0 1

1 0 0 · · · 0 0

1 1 0 · · · 0 0
...

...
...
...

1 1 1 · · · 0 0

1 1 1 · · · 1 0



c(z,m)
(2N−1)×1

=



B(z, t0,m)−B(z, t1,m)

B(z, t1,m)−B(z, t2,m)
...
...

B(z, tN−2,m)−B(z, tN−1,m)

B(z, tN−1,m)−B(z, tN ,m)

−C(z, t1,m)

−C(z, t2,m)
...

−C(z, tN−2,m)

−C(z, tN−1,m)


(26)

Application of Theorem 4 of Chesher and Rosen (2020a) to the characterization of I
(
FY |Z ,RZ , A, T

)
given by (22) and (23) then yields the following result.

19These are equivalently conditional containment probabilities applied to intervals of the form (−∞, tn]
and (tn−1, tn], respectively.
20This is set out in the notation in Chesher and Rosen (2020a) which employs matrix B, here denoted B,

not to be confused with the function B(z, t,m).
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Proposition 5 Let T ≡{t0, t1, ..., tN} be an increasing sequence of scalars with tN = −t0 =

∞. In an IV Tobit Model A restricting structural function m to the setM0
A and in which

Restriction NPSI holds, the set

I
(
FY |Z ,RZ , A, T

)
=
{
m ∈M0

A : v∗ (m) ≥ 0
}

comprises bounds on m, where v∗ (m) is the value attained by the linear program

min
s,t,v

v (27)

subject to the constraints

sA+ tB ≥ 0, (28)

t ≥ 0 (29)

and

s+ t · c(m) ≤ v, (30)

where s ∈ R, t ∈ RK, v ∈ R, and K = R(2N − 1).21

The outer set approximation to the identified set of structural functions can be made

closer to the sharp identified set by finer choice of T .22 Many points t1, ..., tN can be used
because large linear programs can be solved very quickly. In the illustrations N = 100 points

are used.23

Turning to the illustrative calculations, Tables 1 and 2 show identified sets (intervals

[α, α]) for α delivered by the NPSI restriction using probabilities delivered by various cases

of Structures 1 and 2.24 In all cases these sets, which are strictly speaking outer regions,

are subsets of the identified set for α obtained under the median independence restriction.

For Cases 6 and 9 of Structure 1 which have extensive censoring, the identified sets under

NPSI are bounded below unlike the sets obtained under median independence which were

21The proof of this proposition given in Chesher and Rosen (2020a) makes use of a version of Farkas’
Alternative. Again we stay with the notation in Chesher and Rosen (2020a) which employs a decision
variable t in R2, not to be confused with tn used to signify boundaries of intervals that partition the support
of U .
22The outer set is the sharp identified set under the additional restriction that the distribution G has a

piecewise constant density on each of the N intervals defined by successive points in T .
23The partition used in the illustrative calculations has T =

{
Φ−1(s) : s ∈ {0, 1/N, 2/N, . . . , 1

}
}.

24Calculations to compute α and α were done using R’s uniroot function with refinement via grid search,
as well as R’s lpSolveAPI package, Konis and Schwendinger (2020).
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uninformative. Case 3 of Structure 1 in which the instrument is relatively weak delivers a

semi-finite interval which is an improvement on the semi-finite identified set obtained under

median independence. The NPSI restriction delivers a finite interval for Case 1 of Structure

2 which has quite extensive censoring, a considerable improvement on the semi-finite interval

obtained under median independence. In all the other cases of Structure 1 and Structure 2

the NPSI restriction delivers very short identified intervals. It is interesting to see that close

to point identification can be obtained under a stochastic independence restriction without

imposing a parametric specification on the distribution of unobserved U .

4.4 Parametric restrictions - the Gaussian IV Tobit model

Now consider models in which in addition to a stochastic independence restriction there is

the requirement that the distribution of U belongs to a parametric family of distributions.

In the illustrative examples here a Gaussian distribution is employed as in the classic Tobit

model.

RESTRICTION GaussSI - Stochastic Independence - Gaussian U: The random
variables U and Z are independently distributed; GU |Z is a singleton set {GU} where GU is

a Gaussian distribution with variance σ2.

Tables 1 and 2 show projections of identified sets for (α, β, σ) onto the space of α under

the GaussSI restriction. In every case these projections are subsets of the ones obtained

under the our implementation of the NPSI restriction.25

Calculations are done using the characterization given in (18), (19) and (20). The struc-

tural function is written as

Y1 = max(0, αY2 + β + σU}

where U is now restricted Gaussian with variance 1. Inequalities delivered by a finite collec-

tion of intervals are employed using a partition T = {Φ−1(s) : s ∈ {0, 1/N, 2/N, . . . , 1}.26

In all the cases considered the identified intervals for α under the GaussSI restriction

are finite and intervals are very short27 except in three cases. These are cases 6 and 9

25If sharp identified sets were being calculated this subsetting would have to occur but outer sets are being
calculated here, so subsetting cannot be guaranteed.
26Calculations for Structure 1 use values of N as large as 1000; Calculations for Structure 2 which are

much more time consuming since they involve numerical integration, use values of N as large as 100. In
every case N ≥ 100.
27An identified interval reported as [1.00, 1.00] should not be taken to indicate that the model is point

identifying when the structure under consideration generates the probability distribution used to calculate
the interval. There may be point identification, but to obtain the GaussSI intervals a sequence of values of α
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of Structure 1 which have very extensive censoring, and Case 1 of Structure 2 which has

considerable censoring and a weak instrument relative to Cases 4 and 5 where censoring is

of a similar degree but identified intervals for α are short.

In the calculations done under the various independence restrictions, when censoring is

not extensive and instruments are good predictors of endogenous variables the IV Tobit

model can be close to point identifying even under a weak conditional median independence

restriction. Imposing a stochastic independence restriction produces very short identified

intervals except when censoring is extensive or the instrument is weak and in these cases ad-

ditionally specifying a parametric distribution for the unobserved variable shortens identified

intervals considerably.

5 Implementation

This section finishes with an application to a Tobit model of tobacco expenditure using UK

survey data from the period 2000-2009. First, the method employed to calculate confidence

regions on projections of the identified sets is set out.

5.1 Inference

We employ a test statistic proposed in Belloni, Bugni, and Chernozhukov (2018) (BBC18)

to calculate 95% confidence regions for functions of partially identified parameter vectors,

including subvectors, partially identified by a large number of moment inequalites. We

use a self-normalized critical value, shown to be asymptotically valid in Chernozhukov,

Chetverikov, and Kato (2019) (CCK19).28

In applications there will typically be many exogenous variables, Z, and some of these

may be continuous. In this circumstance it is hard to make progress using conditional

moment inequalities in which conditioning is on Z taking singleton values.29 Instead we

around α = 1 was considered, stepping up and down from 1 by increments of 0.01. Accordingly it should be
understood that identified intervals that are any subinterval of [0.995, 1.0049̇] can be the identified interval
for α when the identified interval in Tables 1 and 2 is reported as [1.00, 1.00].
28Belloni, Bugni, and Chernozhukov (2018) additionally provide theoretical justification for alternative

critical values using a bootstrap procedure that can further refine these confidence sets. We employ the
self-normalized critical value for its computational simplicity.
29When Z has rich support it will be diffi cult to obtain accurate estimates of conditional probabilities. Ker-

nel or sieve estimation would lead to estimated moment functions that are not simple means of contributions
which is required when the BBC18 procedure is used.
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conduct inference on outer regions obtained from moment inequalities derived by considering

conditioning on the event that Z takes a value in a set of values, Z.
In the models that we employ the moment inequalities arising when an interval [t1, t2] is

considered are

w(t1, t2, θ, z) ≤ p(t1, t2, θ, z). (31)

Here, employing (11),

w(t1, t2, θ, z) ≡ 1[t1 = −∞]× P[Y1 = 0 ∧ 0 ≤ αY2 + βZ + t2)|Z = z]+

P[Y1 > 0 ∧ αY2 + βZ + t1 ≤ Y1 ≤ αY2 + βZ + t2|Z = z]

and

p(t1, t2, θ, z) ≡ GU |Z([t1, t2]|z]

is the probability mass placed on the interval [t1, t2] by the distribution of U given Z = z

admitted by the model. This may depend on the value of the parameter θ.

In the empirical work we estimate using three models in which the Gaussian restriction

is dropped and quantile independence is imposed at 3, 5 or 7 quantiles associated with

selected probabilities. In these three cases, as set out at the start of Section 4.2, t1 and t2
are unknown values of quantiles at the selected specified probabilities and p(t1, t2, θ, z) is the

difference between those probabilities, independent of z. In these two cases the unknown

values of the quantiles are elements of the parameter vector θ. In all the cases considered

in the application p(t1, t2, θ, z) does not depend on z which we make explicit now by writing

the probability as p(t1, t2, θ).

Let the distribution function of Z be FZ(z). If for some value of θ, t1 and t2 the moment

conditions (31) hold for all z there is, for all sets Z ⊆ RZ∫
Z
w(t1, t2, θ, z)dFZ(z) ≤ p(t1, t2, θ)

∫
Z
dFZ(z)

and thus the moment conditions imply that, with

w̃(t1, t2, θ,Z) ≡ 1[t1 = −∞]× P[Y1 = 0 ∧ 0 ≤ αY2 + βZ + t2 ∧ Z ∈ Z]+

P[Y1 > 0 ∧ αY2 + βZ + t1 ≤ Y1 ≤ αY2 + βZ + t2 ∧ Z ∈ Z]
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the inequality

w̃(t1, t2, θ,Z) ≤ p(t1, t2, θ)P[Z ∈ Z] (32)

holds for that θ and and the interval [t1, t2] and for all sets Z ⊆ RZ .

Introducing the notation employed in BBC18, let the functions of moments required to

be nonpositive at a parameter value θ in an identified set be denoted mj(θ), j ∈ J .
The test set employed in constructing mj(θ) is the interval [t

k(j)
1 , t

k(j)
2 ] where {k(j) : j ∈

J } is a list of indexes identifying the endpoints of intervals and a set of values of Z, Z l(j),
is employed where {l(j) : j ∈ J } is a list of indexes identifying sets Z l(j) ⊆ RZ .30

The inequality (32) for each such interval [t1, t2] and Z can therefore be represented by
moment inequality mj (θ) ≤ 0 using moment function mj(θ) of the following form.

mj(θ) ≡ E
[
h
(
Y, Z, t

k(j)
1 , t

k(j)
2 ,Z l(j), θ

)]
,

h (Y, Z, t1, t2,Z, θ) ≡ (h1 (Y, Z, t1, t2,Z, θ) + h2 (Y, Z, t1, t2,Z, θ))× 1[Z ∈ Z],

h1 (Y, Z, t1, t2, θ) ≡ 1[t1 = −∞]× 1 [Y1 = 0 ∧ 0 ≤ αY2 + βZ + t2] ,

h2 (Y, Z, t1, t2, θ) ≡ 1[Y1 > 0 ∧ αY2 + βZ + t1 ≤ Y1 ≤ αY2 + βZ + t2]− p(t1, t2, θ).

With data {(yi, zi) : i ∈ {1, . . . , N}} define the estimator m̂j by the sample moment

m̂j(θ) ≡ N−1
N∑
i=1

mji(θ), mji(θ) ≡ h
(
yi, zi, t

k(j)
1 , t

k(j)
2 ,Z l(j), θ

)
.

A consistent estimator of the asymptotic variance of N1/2m̂j(θ) is then

σ̂2j(θ) ≡ N−1
N∑
i=1

(mji(θ)− m̂j(θ))
2 .

Using the self-normalization-based critical value given in BBC18 and CCK19 the 100(1−
γ)% confidence region for the projection of the identified set onto the space of an element

θk of θ is

CI(θk, γ) ≡ {r : TN,k(r) ≤ cN(J, γ)} (33)

where

TN,k(r) ≡ inf
{θ:θk=r}

max
j∈{1,...J}

(
N1/2 m̂j(θ)

σ̂j(θ)

)
, (34)

30When selected quantile independence is imposed the unique unknown elements in {tk(j)}Jj=1 are para-
meters, elements of θ.
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and where cN(J, γ) is the critical value:

cN(J, γ) ≡ Φ−1(1− γ/J)√
1− Φ−1(1− γ/J)2/N

.

5.2 Application: tobacco expenditure share

In this section, inspired by Adams, Blundell, Browning, and Crawford (2019) (ABBC), we

present confidence regions and estimates of parameters of models for the share of household

nondurable expenditure spent on tobacco.

ABBC estimate a Tobit model for tobacco expenditures expressed as a share of total

nondurable expenditure with, as explanatory variables, log total expenditure on nondurables

(potentially endogenous) and an OECD equivalence scale,31 with log household disposable

income as an excluded instrumental variable.

The data used in ABBC come from the UK Family Expenditure Survey (FES) 1980-2000

and are a sample of households with head of household aged 25-35 years in 1980. We do

not aim to reproduce their analysis, and while we use the same explanatory variables and

data source, we aim for reasonably large samples so we focus on households in the FES

and its successor surveys from 2000-2009 with head of household aged 25-60 at the time of

observation.32 ,33 We conduct separate analysis of the periods 2000-04 and 2005-09 in which

respectively 68% and 74% of households record zero tobacco expenditures in a two week

diary.

ABBC take a quantile control function approach specifying a model in which nondurable

expenditure is exogenous when there is conditioning on a control function which depends

on nondurable expenditures, log household disposable income and the equivalence scale.34

This control function restriction can arise in a complete triangular model in which there

is a structural equation for log nondurable expenditure with, as explanatory variables, log

disposable household income and the equivalence scale, and an unobserved variable which

jointly with the unobserved variable in the structural equation for the tobacco expenditure

31The OECD equivalence scale is 1+0.7×the number of adults in excess of one + 0.5*×the number of
children.
32In addition to the Family Expenditure Survey at the start of the sample period, the successor surveys

are, from 2001, the Expenditure and Food Survey and from 2008, the Living Costs and Food Survey, Offi ce
for National Statistics (2002) and Offi ce for National Statistics, Department for Environment, Food, and
Rural Affairs (2010). These data are accessible by registration with the UK Data Service.
33We exclude households comprising more than one tax unit, and households with disposable weekly

income recorded as £ 20 or less. All households have one or two adult members.
34Expenditures and income are recorded in UK pounds per week.
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share is independent of the exogenous variables.

We employ the less restrictive, incomplete, single equation, IV model studied in this

paper. The model has the same structural equation as in ABBC,

Y1 = max(0, β0 + αY2 + β1Z1 + σU1)

where Y1 denotes tobacco expenditure share, Y2 denotes log nondurable expenditure and

there are exogenous variables Z1 (the OECD equivalence scale), and Z2 (log household dis-

posable income), the latter excluded from the structural equation for the tobacco expenditure

share.35 The model we use places no restriction on the process delivering Y2.

We calculate confidence regions for the value of α using the method set out in Section

5.1.36 We consider models imposing conditional quantile independence restrictions at three

sets of quantile probabilities in turn, as follows,

QI3: (0.25, 0.5, 0.75)

QI5: (0.167, 0.333, 0.5, 0.666, 0.833)

QI7: (0.125, 0.25, 0.375, 0.5, 0.635, 0.75, 0.875)

with the median normalized equal to zero in each case, and the values of remaining quantiles

treated as parameters with unknown values. We also consider models (GQI3, GQI5, GQI7)

in which the values of the quantiles are standard Gaussian quantiles scaled by the unknown

value of the parameter σ.

We compare with estimates of α obtained using a classical Tobit model making no al-

lowance for endogeneity and with estimates of α obtained using a complete, point identifying,

triangular model in which there is the additional structural equation

Y2 = γ0 + γ1Z1 + γ2Z2 + U2

and the restriction that (U1, U2) have a Gaussian distribution independent of Z ≡ (Z1, Z2).

In the calculations using the IV model, sets of values of the exogenous variables are ob-

tained as follows. For Z1, the OECD equivalence scale, we define Z1 to be the list of sets {1.0},
35The partial correlation between log nondurable expenditure and log disposable household income given

the OECD equivalence scale, rY2Z2.Z1 , is 0.64 in 2000-04 and 0.62 in 2005-09.
36Notice that in the equation for Y1 the parameter σ multiplies U1 which is restricted to be N(0, 1) when

the GaussSI restriction is imposed. By this device we are able to define intervals [t1, t2] that span the effective
range of U1 at all values of the parameters.
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[1.5, 2.7], [3.0, 5.7], [1.0, 2.7], [1.5, 5.7], [3.0, 5.7].37 For Z2, log disposable household income,

we take Z2 to be the collection of all intervals with endpoints in {Q(0), Q(1
8
), ..., Q(7

8
), Q(1)},

where Q(p) is the sample p-quantile of log income in the data. There are 36 such intervals.

The sets Z employed in the calculations are the sets in the collection

{{Z : Z1 ∈ Z1 ∧ Z2 ∈ Z2} : Z1 ∈ Z1,Z2 ∈ Z2}.

In the calculations reported here there are 6× 36 = 216 such sets.

Table 3 shows maximum likelihood estimates (MLE) of α, the coeffi cient on log non-

durable expenditure, obtained using a classic Tobit model, in which Y2 is restricted to be

exogenous, and using a complete triangular model.38 The Tobit model estimate is less than

half the value obtained using the triangular model which allows Y2 to be endogenous. The

95% confidence intervals (CI) are short, of length 0.017 in 2000-04 and 0.018 in 2005-09,

giving a strong impression of accurate estimation

Table 4 shows 95% confidence regions for α obtained using the single equation IV model,

which may be partially identifying, with quantile independence imposed at 3, 5 and 7 quantile

probabilities. Figure 4 provides a convenient summary of the results.

Consider first the results for 2000-04 shown in the upper part of Figure 4. With 7

quantiles restricted independent of Z the length of the confidence region for α is 0.13, over

6 times longer than obtained using the complete triangular model.39 The IV model is quite

informative about the value of α but dropping the restrictions that complete the model

substantially reduces the calculated precision. Restricting just 5 (3) quantiles independent

of Z results in further reductions in precision delivering confidence regions with length 0.17

(0.57). Each confidence region is a subset of the regions delivered by less restrictive models.

Also reported are 50% confidence regions, promoted as half-median-unbiased set estimates in

Chernozhukov, Lee, and Rosen (2013) and Andrews and Shi (2013). A half-median-unbiased

set estimate employs a conservative median-bias correction for inward bias which arises when

using estimated intersection bounds. The correction is such that the upper (lower) endpoint

37Discrete Z1 has no support on (1.0, 1.5) and (2.7, 3.0).
38Estimates calculated using STATA’s ivtobit command.
39The QI3, QI5 and QI7 restrictions lead to identified sets defined by respectively 1944, 4320 and 7560

moment inequalities. In the estimations reported here all connected unions of the interquantile intervals
were employed as test sets instead of just simple interquantile intervals. Additional test sets were included
because it is possible that the functions of moments appearing in the inequalities delivered by some of the
unions of core determining sets are more accurately estimated than the moment functions arising if only core
determining test sets are employed.
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of the interval is lower than (greater than) the upper (lower) bound of the interval for α

delivered by a model with probability no greater than 1/2 asymptotically.

The lower part of Figure 4 shows results obtained using the 2005-09 data. The 2005-09

data deliver confidence regions which are unbounded below except in the case of the 50%

region under the QI7 restriction. The data are less informative than the 2000-04 data with

more zero expenditures (74%). However all the confidence regions suggest α is negative.

For these data it is remarkable how much the restrictions of the complete triangular model

deliver. Absent those restrictions the 2005-09 data has rather little to say other than to

strongly suggest that the value of α is negative.

The analysis using quantile independence restrictions was conducted again requiring the

values of the restricted quantiles to be, up to a scale factor σ, the values of standard Gaussian

quantiles.40 The results are reported in Table 5. In each case the confidence regions obtained

for α were nearly identical to those obtained without the Gaussian restriction, shown in Ta-

ble 4. So far as determining the value of α from these data the Gaussian restriction on the

distribution of U delivers very little additional to the quantile independence restriction. By

contrast the restrictions imposed by the complete triangular model are enormously influen-

tial.

6 Extensions

The models studied so far have left censoring at a known value. It is straightforward to

extend the analysis to models in which there is more complex censoring. Consider for example

models with stochastic censoring in which

Y1 = max(U2, αY2 + βZ + U1)

and there is an observed censoring indicator, Y3:

Y3 =

{
1 , U2 > αY2 + βZ + U1,

0 , U2 < αY2 + βZ + U1,

40The corresponding inequalities are given by (12) implied under the GaussSI restriction with t1 =
σΦ−1(λj) and t2 = σΦ−1(λj′) for pairs j′ > j.
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with Y3 taking either value 0 or 1 if U2 = αY2 + βZ +U1.41 Define θ ≡ (α, β), U ≡ (U1, U2),

Y ≡ (Y1, Y2, Y3) and u and y similarly.

This model has residual sets as follows.

U((y1, y2, 1), z, θ) = {u : u1 ≤ y1 − αy2 − βz ∧ u2 = y1} ,
U((y1, y2, 0), z, θ) = {u : u1 = y1 − αy2 − βz ∧ u2 ≤ y1} .

These are shown in Figure 2 where the sets U((y1, y2, 1), z, θ) and U((y1, y2, 0), z, θ) comprise

respectively the horizontal blue line and the vertical red line.42

The inequalities characterizing the identified set of structures delivered by this model

arise on applying the inequality (6) to sets S which are connected unions of these residual
sets. These take one of two forms, each determined by values of three real constants which

are denoted
(
uL1 , u

H
1 , a

)
when considering sets of the first type, S1

(
uL1 , u

H
1 , a

)
, and

(
uL2 , u

H
2 , a

)
when considering sets of the second type, S0(uL2 , uH2 , a). These are such that uLj ≤ uHj for

each j ∈ {1, 2}. The sets are defined by:

S0(uL1 , uH1 , a) ≡ {u : u1 ∈ [uL1 , u
H
1 ] ∧ u2 − u1 ≤ a},

S1(uL2 , uH2 , a) ≡ {u : u2 ∈ [uL2 , u
H
2 ] ∧ u2 − u1 ≥ a}.

Figure 3 shows an example in which S0(uL1 , uH1 , a) is oriented vertically and shaded pink and

S1(uL2 , uH2 , a) is oriented horizontally and shaded cyan.

Following the definition set out in (7), the values of Y that occur only when U takes a

value in S0(uL1 , uH1 , a) and S1(uL2 , uH2 , a), respectively, are:

A
(
S0(uL1 , uH1 , a), z, θ

)
= {y : y1 − αy2 − βz ∈ [uL1 , u

H
1 ] ∧ αy2 + βz ≤ a ∧ y3 = 0},

A
(
S1(uL2 , uH2 , a), z, θ

)
= {y : y1 ∈ [uL2 , u

H
2 ] ∧ αy2 + βz ≥ a ∧ y3 = 1}.

Applying the inequality (6), the sharp identified set of structures comprises those struc-

41In models in which variables exhibit continuous variation the probability that U2 = αY2 + βZ + U1 is
zero and determination Y3 in such cases is without consequence.
42In a model in which Y3 is not observed, y ≡ (y1, y2), and the residual sets are U((y1, y2, 1), z, θ) ∪
U((y1, y2, 0), z, θ). In this case the sets to be considered in obtaining a characterization of the sharp identified
set of structures are S1(uL, uH , a) ∪ S0(uL, uH , a) obtained as constants uL ≤ uH and a vary over the real
line, and all connected unions of such sets.
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tures such that, for all uL1 ≤ uH1 , u
L
2 ≤ uH2 , a ∈ R, and almost every z ∈ RZ :

P
[
uL1 + βZ ≤ Y1 − αY2 ≤ uH1 + βZ ∧ αY2 ≤ a− βZ ∧ Y3 = 0|Z = z

]
≤ GU |Z=z(S0(uL1 , uH1 , a)),

and

P
[
uL2 ≤ Y1 ≤ uH2 ∧ αY2 ≥ a− βZ ∧ Y3 = 1|Z = z

]
≤ GU |Z=z(S1(uL2 , uH2 , a)).

In practice there will be restrictions on the dependence of U and Z, for example sto-

chastic independence. Then, with a parametric specification of the distribution of U the

probabilities on the right hand sides of these inequalities can be calculated. Inference can

proceed as set out in Section 5.1. Under a nonparametric specification the support of U

can be partitioned into cells, the right hand side probabilities can be expressed as sums of

unknown cell probabilities and the method of Section 4.3 can be applied.

7 Concluding remarks

When working with censored data and endogenous explanatory variables the easy way to

obtain estimates of structural parameters is to employ a complete triangular model like the

Gaussian model underlying STATA’s ivtobit command or to assume directly that a valid

identifiable control function exists. When there is no economic rationale for such restric-

tions the IV model developed here provides a route to robust estimation. Even when more

restrictive models are thought to be appropriate the IV model can deliver useful informa-

tion regarding the force of additional restrictions. The IV model can signal misspecification

of more restrictive models. It can deliver results when the complete model attack is not

available, for example when endogenous variables are discrete or are determined by multiple

sources of heterogeneity.

In the application to tobacco expenditures the IV results reveal the enormous power of

the restrictions of the Gaussian triangular model in delivering not only point identification

but apparently highly accurate estimation. In practice there will be many plausible ways to

obtain a complete point identifying model. The unobserved variables could be non-Gaussian,

there could be multiple sources of heterogeneity determining the values of the endogenous

explanatory variable, in some applications there could be simultaneous not recursive deter-

mination of the endogenous variables. The identified sets delivered by the IV model contain

all the values of parameters under all possible completions of the single equation IV model
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that can deliver the distribution of observed variables used to calculate the set. Accordingly

the IV approach is a useful aid in sensitivity analysis.

The IV model can be partially or point identifying and it may not be possible to deter-

mine identification status in particular applications. So it is important to use methods for

estimation and inference that deliver results regardless of whether there is point or partial

identification, as has been done in the application presented here.

There is rarely a good economic argument for particular parametric restrictions on the

distribution of the unobserved variable U in the structural equation for a censored outcome.

Even so such restrictions are frequently imposed. We have shown how estimation and infer-

ence can be done using an IV Tobit model, dispensing with the commonly used Gaussian

restriction, using multiple quantile independence restrictions, requiring the p-quantiles of U

given instrumental variables, Z, to be independent of Z at selected quantile probabilities.

The values of quantiles at the selected probabilities become parameters with unknown val-

ues and we calculate confidence regions on projections of the identified set of values of the

augmented parameter vector onto the spaces of particular parameters of interest.

We have shown how to calculate outer regions for identified sets of structural parame-

ter values and their projections onto the space of individual parameters under a restriction

requiring U and Z to be stochastically independent with no further restriction on the dis-

tribution of U . A parameter value lies in the identified set if and only if the solution to a

linear program is nonnegative. Although the program can involve a very large number of

inequalities the solution is quick to calculate. Conducting inference using this method is

a research challenge not addressed here, and there remain other challenges. For example,

we have proposed and applied a procedure for conducting inference on a partially identified

parameter capturing the marginal effect of an endogenous variable on an outcome of inter-

est when instrumental variables are continuously distributed, in which one calculates joint

probabilities of events defined by sets of values of endogenous variables and sets of values

of instrumental variables. Finite sample performance will of course depend on the sets that

are chosen and future research to help guide these choices is warranted. We have sketched

an extension of our IV methods to a case with stochastic censoring. Further extension to

competing risks models with potentially endogenous explanatory variables is a fruitful area

for research.
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Appendix: Proofs and Figures

Proof of Proposition 1. Applying Theorem 1, Corollary 1 of CR gives the following

characterization of the identified set of structures delivered by a model, A, a collection of

conditional distributions of Y given Z and the support of Z:

I(FY |Z ,RZ , A) =
{

(m,GU |Z) ∈MA :

∀S ∈ F (RU) , GU |Z(S|z) ≥ P[U(Y, Z,m) ⊆ S|Z = z] a.e. z ∈ RZ

}
, (35)

where F (RU) denotes the collection of closed subsets of RU . By Lemma 1 of CR it follows

that the requirement that the inequality holds for all closed sets S can be replaced by the
requirement that it holds for all S that are unions of sets on the support of U(Y, Z,m) condi-

tional on Z = z. Each such set can be be written as a union of sets of the form (−∞, t] and
[t1, t2], where if t1 = t2 = t, the set [t1, t2] is simply the point {t}. All such unions are them-
selves either of the form S = (−∞, t] or S = [t1, t2]. The collections I1(FY |Z ,RZ , A) and

I2(FY |Z ,RZ , A) comprise those structures satisfying GU |Z(S|z) ≥ P [U(Y, Z,m) ⊆ S|Z = z]
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for each of these two types of sets S, respectively, completing the proof. �

Proof of Proposition 2. Existence of b(z, t,m) ≡ ∇tB(z, t,m) follows from differentiability

of m(y2, z, t) with respect to t and the existence of the density g̃U |Z(·|z). The inequality

G̃U |Z(t2|z)− G̃U |Z(t1|z) ≥ B(z, t2,m)−B(z, t1,m).

can then be expressed as ∫ t2

t1

(g̃U |Z(t|z)− b(z, t,m))dt ≥ 0,

which for any z holds for all [t1, t2] ⊆ R if and only if for all t, g̃U |Z(t|z) ≥ b(z, t,m). �

Proof of Proposition 3. Theorem 5 of CR implies that identified set for structural function
m comprises those functions m such that zero is an element of the Aumann expectation of

U(Y, Z,m) conditional on Z = z a.e. z ∈ RZ . Recall that the residual set in the model

under study is

U(y, z,m) =

{
(−∞,m−1(y2, z, 0)] , y1 = 0

{m−1(y2, z, y1)} , y1 > 0

and let E[A|z] denote the Aumann expectation of random set A conditional on Z = z.43

There is

E[U(Y, Z,m)|z] = E[U(Y, Z,m)|z, Y1 = 0]P [Y1 = 0|z] + E[U(Y, Z,m)|z, Y1 > 0]P [Y1 > 0|z]

where the sum is a Minkowski sum.44 Considering each term in turn there is45

E[U(Y, Z,m)|z, Y1 = 0] = (−∞, E[m−1(Y2, Z, 0)|z, Y1 = 0]]

43The Aumann expectation of a random set A is the set of expected values of all random variables A with
finite expected values having the property that A ∈ A with probability one.
44The Minkowski sum of sets A and B is the set of values obtained by adding each element of A to each

element of B.
A+B = {a+ b : a ∈ A, b ∈ B}

45See Example 3.14 in Molchanov and Molinari (2018).
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which is a semi-infinite interval and there is46

E[U(Y, Z,m)|z, Y1 > 0] = {E[m−1(Y2, Z, Y1)|z, Y1 > 0]}

which is a singleton. The Minkowski sum of a semi-infinite interval and a singleton set is a

semi-infinite interval. The result is that the conditional (on Z) Aumann expectation of the

residual set is the semi-infinite interval

E[U(Y, Z,m)|z] = (−∞, E[m−1(Y2, Z, Y1)|z]],

which leads directly to the result of the Proposition. �

Proof of Proposition 4. From Proposition 1 the identified set for
(
m,GU |Z

)
is

I(FY |Z ,RZ , A) = I1(FY |Z ,RZ , A) ∩ I2(FY |Z ,RZ , A).

It will be shown that under Restriction QI the identified set for structural function m, which

is the projection of I(FY |Z ,RZ , A) ontoM0
A, here denotedM∗, is equivalent to the set of

functions m ∈M0
A that satisfy conditions (1) and (2) in the statement of the Proposition.

Suppose first that m ∈M∗ such that for some GU |Z satisfying Restriction QI
(
m,GU |Z

)
∈

I(FY |Z ,RZ , A). Conditions (1) and (2) then hold because these are implied by the inequal-

ities that define the sets I1(FY |Z ,RZ , A) and I2(FY |Z ,RZ , A), respectively.

Now suppose that m satisfies conditions (1) and (2) for some {q1, ..., qJ} ∈ Q. To show
that m ∈ M∗ it will be shown by construction that there exists a collection of conditional

distributions GU |Z(·|z;m) with cumulative distribution functions G̃(·|z;m) = G̃U |Z(·|z;m)

for each z ∈ RZ satisfying Restriction QI such that
(
m,GU |Z(·|z;m)

)
∈ I(FY |Z ,RZ , A).

The inclusion of m in the notation GU |Z(·|z;m) signifies that the associated collection of

conditional distributions GU |Z(·|z) = GU |Z(·|z;m) in the construction will in general vary

with m.

Specifically, it needs to be shown that for almost every z ∈ RZ there exists a cumulative

distribution function G̃(·|z;m) such that the following three conditions (36)—(38) hold. For

all j ∈ {0, ..., J}:
G̃(qj|z;m) = λj. (36)

46See Example 3.12 in Molchanov and Molinari (2018).
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For all t ∈ R:
G̃(t|z;m) ≥ C(z, t,m). (37)

For all s ≤ t, each in R:

G̃(t|z;m)− G̃(s|z;m) ≥ ∆(z, s, t,m). (38)

Condition (36) ensures that Restriction QI holds and conditions (37) and (38) are the condi-

tions defining the identified set for (m,GU |Z), as shown in Proposition 1. Note that for (38)

it is equivalent to show that

G̃(t|z;m)−B(z, t,m) (39)

is weakly increasing in t.

Construction of G̃(t|z;m) : R → [0, 1] for each z,m is as follows, divided into separate

cases according to where argument t lies relative to q1, ..., qJ .

1. Case 1: t ∈ (−∞, q1]. Define

G̃(t|z;m) ≡ C(z, t,m) + (λ1 − C(z, q1,m)) exp (η(t− q1)) ,

where η > 0 is arbitrary.47 Since lim
t→−∞

C(z, t,m) = 0 and lim
t→−∞

exp (η(t− q1)) =

0 it follows that lim
t→−∞

G̃(t|z;m) = 0. There is also G̃(q1|z;m) = λ1. G̃(t|z;m) is

an increasing function of t because it is the sum of two increasing functions of t,

G̃(t|z;m) ≥ C(z, t,m) by definition and

G̃(t|z;m)−B(z, t,m) = D(z, t,m) + (λ2 − C(z, q2,m)) exp (η(t− q2))

is an increasing function of t because it is the sum of two increasing functions of t.

2. Case 2: t ∈ [qj, qj+1], each j = 1, ..., J − 1. Define

Lj(z, t,m) ≡ B(z, t,m) + λj −B(z, qj,m)

which is an increasing function of t with Lj(z, t,m)−B(z, t,m) constant and Lj(z, qj,m) =

λj. Condition (2) ensures

λj+1 −B(z, qj+1,m) ≥ λj −B(z, qj,m),

47Construction of G̃(t|z;m) employing functions other than the exponential function could also be used.
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from which it follows that Lj(z, qj+1,m) ≤ λj+1. Define

Mj(z, t,m) ≡ C(z, t,m) + (λj+1 − C(z, qj+1,m))
(t− qj)

(qj+1 − qj)
.

This is an increasing function of t with Mj(z, t,m) ≥ C(z, t,m), Mj(z, qj,m) =

C(z, qj,m), and Mj(z, qj+1,m) = λj+1. Define

G̃(t|z;m) = max(Lj(z, t,m),Mj(z, t,m)).

There is

G̃(qj|z;m) = max(λj, C(z, qj,m)) = λj,

and

G̃(qj+1|z;m) = max(Lj(z, qj+1,m), λj+1) = λj+1,

because as just shown, Lj(z, qj+1,m) ≤ λj+1. This is an increasing function of t in

the interval [qj, qj+1] because it is the maximum of two increasing functions of t, and

G̃(t|z;m) ≥ C(z, t,m) because G̃(t|z;m) is the maximum of two functions one of which

is at least equal to C(z, t,m) in the interval under consideration. Moreover,

G̃(t|z;m)−B(z, t,m) =

max

(
λj −B(z, qj,m), D(z, t,m) + (λj+1 − C(z, qj+1,m))

(t− qj)
(qj+1 − qj)

)
which is increasing in t because it is the maximum of two increasing functions of t,

verifying condition (39).

• Case 3: t ∈ [qJ ,∞). Define

G̃(t|z;m) ≡ max (C(z, t,m), B(z, t,m)−B(z, qJ ,m) + λJ) .

There is

G̃(qJ |z;m) = max(C(z, qJ ,m), λJ) = λJ ,

and then

lim
t→∞

G̃(t|z;m) = max(1, B(z,∞,m)−B(z, qJ ,m) + λJ) = 1
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because from condition (2)

λJ −B(z, qJ ,m) ≤ λJ+1 −B(z, qJ+1,m)

which implies

B(z, qJ+1,m)−B(z, qJ ,m) + λJ ≤ λJ+1 = 1.

G̃(t|z;m) is an increasing function of t because it is the maximum of two increasing

functions of t. Finally

G̃(t|z;m)−B(z, t,m) = max (D(z, t,m),−B(z, qJ ,m) + λJ)

which is an increasing function of t.

We have shown that for any z ∈ RZ and any function m satisfying the conditions of the

Proposition the piecewise function G̃(t|z,m) defined above can be constructed and we have

shown that it satisfies conditions (36), (37) and (38) Therefore any function m satisfying

the conditions of the Proposition is contained in the identified set of structural functions

delivered by the model. �

Proof of Proposition 5. Suppose that m is in the projection of the identified set of

structures
(
m,GU |Z

)
delivered by the IV Tobit Model A under consideration. Then under

Restriction NPSI there exists a distribution G such that (m, {G}) ∈ I(FY |Z ,RZ , A) and as

explained in the text it follows from Proposition 1 that (22) and (23) hold with p1, ..., pN
as defined in (21) as a function of that distribution G. The existence of a vector of proper

probabilities p = (p1, ..., pN) such that (22) and (23) hold almost surely is equivalent to the

existence of p ∈ RN satisfying

Ap = 1,

Bp ≤ c (m) ,

p ≥ 0,

a linear program in p. Then, applying the same steps as in Chesher and Rosen (2020a),

and in particular using the version of Farkas’s Alternative provided in Border (2020) —see

paragraph 12, Section 1.4 —such probabilities exist if and only if there is no solution for
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(s, t), s ∈ R, t ∈ RK , to the system

sA+ tB ≥ 0,

t ≥ 0,

s+ t · c(m) < 0,

which is equivalent there being a nonnegative value of the linear program (27) subject to

(28), (29), and (30). �
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Figure 1: Identified sets of values of α and β in a linear index IV Tobit model delivered by
Cases 1-3 of Structure 1 and Case 1 of Structure 2, see Tables 1 and 2. The area below all
the blue lines is the identified set under a zero conditional mean restriction, E[U |z] = 0 for
all z. Pink shaded regions are identified sets under a zero conditional median independence
restriction. The value of a and b (1 and 0) generating the probabilities used to calculate
each set is the point plotted in green. Note that the scale of the axes in the lower right pane
differs from the scale of the axes on the other panes.
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Figure 2: Sets of values of U delivering particular values y of Y for given values z of Z in a
model with stochastic censoring. Above the dashed 45◦ line where u2 ≥ αy2 + βz + u1 and
y3 = 1, lies the set U((y1, y2, 1), z, θ) drawn blue. In this set u2 = y1 and u1 ≤ y1−αy2−βz.
Below the 45◦ line where y3 = 0 lies the set U((y1, y2, 0), z, θ) drawn red. In this set u1 =
y1 − αy2 − βz and u2 ≤ y1.

y1 − αy2 − βz u1

u2

0

u2 = u1 + αy2 + βz

αy2 + βz

y1

U ((y1, y2, 1), z, θ)

U ((y1, y2, 0), z, θ)



Figure 3: Sets of values of U determining moment inequalities in a model with stochastic
censoring. The dashed line passing through the point (0, a) is a 45◦ line. The sets are
determined by the value of a and by intervals [uL1 , u

H
1 ] and [uL2 , u

H
2 ].
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Figure 4: Confidence regions for, and estimates of α, the coeffi cient on endogenous log
total expenditure on nondurables in the model for household tobacco expenditures. Results
in the upper part of the graph are for 2000-2004, 18,473 households, 68% recording zero
expenditure. Results in the lower part of the graph are for 2005-2009, 15,885 households,
74% recording zero expenditure.
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Table 3: Maximum likelihood estimates of α, the coeffi cient on log nondurable expenditure,
using a classical Tobit model making no allowance for endogeneity and using a complete
triangular model with Gaussian unobserved variables.

Years N % zero - Triangular model Tobit model

2000-04 18473 68
estimate
std err
95% CI

−0.130
(0.0043)

[−0.139,−0.122]

−0.048
(0.0027)

[−0.053,−0.043]

2005-09 15885 74
estimate
std err
95% CI

−0.121
(0.0046)

[−0.130,−0.112]

−0.043
(0.0028)

[−0.048,−0.038]

Table 4: Confidence regions for α, the coeffi cient on log nondurable expenditure, obtained
using an incomplete IVmodel with selected conditional quantiles of the unobservable required
to be independent of Z.

Years - Quantile independence restricting:
3 quantiles 5 quantiles 7 quantiles

2000-04
estimate
95% CI

[−0.450,−0.075]
[−0.698,−0.069]

[−0.241,−0.093]
[−0.262,−0.091]

[−0.214,−0.109]
[−0.236,−0.102]

2005-09
estimate
95% CI

(−∞,−0.050]
(−∞,−0.045]

(−∞,−0.075]
(−∞,−0.071]

[−0.497,−0.087]
(−∞,−0.084]

Table 5: Confidence regions for α, the coeffi cient on log nondurable expenditure, obtained us-
ing an incomplete IV model with selected conditional quantiles of the unobservable restricted
Gaussian, required to be independent of Z.

Years - Gaussian quantile independence restricting:
3 quantiles 5 quantiles 7 quantiles

2000-04
estimate
95% CI

[−0.450,−0.075]
[−0.698,−0.069]

[−0.240,−0.093]
[−0.261,−0.092]

[−0.206,−0.109]
[−0.236,−0.103]

2005-09
estimate
95% CI

(−∞,−0.050]
(−∞,−0.045]

(−∞,−0.075]
(−∞,−0.071]

[−0.496,−0.087]
(−∞,−0.084]
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