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ABSTRACT. We develop a distribution regression model under endogenous sample selection. This model

is a semi-parametric generalization of the Heckman selection model. It accommodates much richer ef-

fects of the covariates on outcome distribution and patterns of heterogeneity in the selection process, and

allows for drastic departures from the Gaussian error structure, while maintaining the same level tractabil-

ity as the classical model. The model applies to continuous, discrete and mixed outcomes. We provide

identification, estimation, and inference methods, and apply them to obtain wage decomposition for the

UK. Here we decompose the difference between the male and female wage distributions into composi-

tion, wage structure, selection structure, and selection sorting effects. After controlling for endogenous

employment selection, we still find substantial gender wage gap – ranging from 21% to 40% throughout

the (latent) offered wage distribution that is not explained by composition. We also uncover positive sort-

ing for single men and negative sorting for married women that accounts for a substantive fraction of the

gender wage gap at the top of the distribution.
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1. INTRODUCTION

Sample selection is ubiquitous in empirical economics. For example, it arises naturally in the esti-

mation of wage equations because we do not observe wages of individuals who do not work (Gronau,

1974; Heckman, 1974). Sample selection biases the estimation of causal and predictive effects when

the reasons for not observing the data are related to the outcome of interest. In the wage example,

there is sample selection bias whenever the employment status and offered wage depend on common

unobserved variables such as ability, motivation or skills. The most widely used solution to the sam-

ple selection bias is the Heckman selection model (HSM) introduced in Heckman (1974). The classical

HSM provides a parsimonious and convenient way to account for sample selection by assuming para-

metric Gaussian distributions for the outcome and selection processes and imposing strong homo-

geneity assumptions on the impact of exogenous covariates. In this paper, we present a generalization

of the HSM that allows for expressly non-Gaussian structures and eliminates the strong homogeneity

restrictions, resulting in a semi-parametric model with some key parameters represented as nonpara-

metric functions. This generalization enables a tractable econometric approach, similar in ease to the

classical HSM.

To illustrate the central concepts, we take labor supply as an example. Let Y ∗ denote the latent

offered wage (outcome), and D∗ be the net disutility from working (selection), e.g., difference between

reservation and offered wage. We observe the employment status indicator equal to one when the

offered wage is greater than the reservation wage, D = 1(D∗⩽ 0), and wage, Y = Y ∗, only in the case of

employment, D = 1. Assume that the drivers of the outcome and selection obey the additive structure:1

Y ∗ =µ+U , D∗ = ν(Z )+V , (1.1)

where (µ,ν(Z )) are the means of the outcome and selection, Z is an instrumental variable that shifts

the disutility of working but does not affect the offered wage, and (U ,V ) are centered stochastic shocks

independent of Z . The classical HSM results from restricting (U ,V ) to follow a Gaussian distribution:

P(U ⩽ u,V ⩽ v) =Φ2(u/σU , v/σV ;ρ), (1.2)

where Φ2(·, ·;ρ) denotes the standard bivariate normal distribution function with correlation ρ, and

σU and σV the standard deviations of U and V . This model allows one to identify the distribution of

the offered wage from the distribution of observed wage and provides tractable inference. The classical

HSM has been challenged for its reliance on parametric Gaussian assumptions to obtain identification,

and the data often reject these assumptions (e.g., due to clustering of offered and observed wages at

the minimum wage and other levels). These challenges motivate the generalizations we consider in

this study.

1We can have other exogenous covariates X affecting all model components. We interpret the discussion here as condi-

tional on X having taken a fixed value. We suppress the dependence on X here for notational convenience.
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FIGURE 1. Beyond Gaussian: The richness of joint density functions permitted by (1.3).

Notes. In the model (1.3) the marginals FU and FV are nonparametric. To generate the panels,

FU and FV are taken to be transformed power functions u 7→Φ(a (sign(u)|u|α+τ max(0,u)2)+
b) for different choices of τ and α, with a and b set such that the marginals have zero mean

and unit variance; these examples extend those of Liu, Lafferty, and Wasserman (2009). The

correlation parameter ρ is .7. The case τ = 0 and α = 1 for both FU and FV recovers the joint

Gaussian density (not shown).

We generalize the classical HSM in several dimensions. We start by relaxing the Gaussian assumption

on the marginal distributions of the stochastic shocks in (1.2):

P(U ⩽ u,V ⩽ v) =Φ2(Φ−1 (FU (u)) ,Φ−1 (FV (v)) ;ρ), (1.3)

where FU and FV are non-parametric marginal distributions of the stochastic shocks U and V , which

can be continuous, discrete or mixed, andΦ−1 is the quantile function of the standard normal. The dis-

tribution of the latent offered wage Y ∗ is characterized by the parameters (µ,FU ). Despite the still partly

Gaussian nature, the model can astutely generate drastically non-Gaussian distributional shapes, as

demonstrated by Liu, Lafferty, and Wasserman (2009) and illustrated in Figure 1. Our contribution is

to demonstrate that the distribution of the latent offered wage Y ∗ is still identified from the observed

distribution of wages and employment if the instrumental variable Z takes on at least two values, and

to provide tractable estimation and inference methods. Thus, by using (1.3) we break away from para-

metric assumptions and Gaussian behaviors of the classical sample selection model but maintain the

same level of tractability.

The generalized HSM. The semi-parametric model (1.3) presents an expressive generalization of the

classical model, but for us it merely serves as a starting point to fix ideas. We can get even more flexibil-

ity and expressivity while retaining the tractability of the identification and inference. We further relax

(1.1)-(1.2) by allowing the effect of Z on D∗ to be non-additive and the dependence between U and V

to be heterogeneous. The general form of our model specifies the joint distribution of latent outcome



DR WITH SELECTION 3

and selection drivers as

P(Y ∗⩽ y,D∗⩽ d | Z ) =Φ2(Φ−1 (
FY ∗(y)

)
,Φ−1 (FD∗(d | Z )) ;ρ(y,d)), (1.4)

where the entire conditional distribution of D∗ can now depend on Z ; and ρ(y,d) is a local correlation

parameter that measures the strength of selection or sorting. The model imposes exclusion restrictions

– Z affects the marginal distribution of D∗, but does not affect the marginal distribution of Y ∗ nor the

strength of selection. We show that this model admits identification and inference as convenient as

the classical model, requiring again only that Z takes on at least two values. Moreover, the model is

overidentified (hence testable) when Z takes on more than two values.

Finally, we incorporate exogenous covariates yielding the model:

P(Y ∗⩽ y,D∗⩽ d | Z , X ) =Φ2(Φ−1(FY ∗(y | X )),Φ−1(FD∗(d | Z , X )),ρ(y,d | X )), (1.5)

where the covariates X can affect both the marginal conditional distributions of Y ∗ and D∗ and the

sorting mechanism. This model expressly allows for heterogenous effects of X ’s on different parts of

distribution. The data on U.K. wages lends strong empirical support for this property, with marital

status and other variables heterogenously impacting different parts of the wage distribution. The het-

erogeneity in X property also contrasts sharply with the classical model (1.2) or its generalization (1.3),

which confine the covariates to shift the location of the distribution, but not other shape properties;

see Mulligan and Rubinstein (2008) for a use of the Gaussian model where covariates shift both loca-

tion and scale, but not other properties of the distribution. The data firmly reject the location shift

restrictions.

Our econometric development proceeds by specifying a flexible pointwise approximation to P(Y ∗⩽
y,D∗ ⩽ d | X , Z ) based upon the model’s logic, akin to those used in univariate distribution regres-

sion (DR) models (Foresi and Peracchi, 1995; Chernozhukov, Fernández-Val, and Melly, 2013).2 This

leads to a tractable Heckman-type approach to estimating the model parameter functions. The first

step consists of a probit regression for the selection equation, as in the Heckman two-step method

(Heckman, 1979). The second step estimates multiple bivariate probit regression with sample selection

correction. We derive functional central limit theorems for all the estimators and their bootstrapped

versions and use these results to perform uniform inference on function-valued parameters, for exam-

ple, the distribution of the offered wages as well as counterfactual distributions induced by various hy-

potheses. This type of inference provides simultaneous confidence bands and hypotheses tests about

the functions of interest. Specifically, we rely on multiplier bootstrap (Giné and Zinn, 1984), applied

to the estimated influence functions as in Lewbel (1995), Hansen (1996), Chernozhukov and Hansen

(2006), Kline and Santos (2012) and Chernozhukov, Chetverikov, and Kato (2013).

We utilize the proposed methods to analyze data on wages and employment in the UK, covering the

period from 1978 to 2013. By estimating the conditional wage distributions for men and women and

2Flexible refers to the use of regressors constructed from original raw regressors by taking series transformations and

interactions, for example.
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conducting wage decompositions that account for the endogeneity of employment selection, we shed

light on the relationship between wage and employment in the UK. The results highlight the existence

of positive sorting among single men and negative sorting among married women, which is consistent

with the assortative matching hypothesis in the marriage market. Furthermore, the findings show that

this difference in selection sorting explains a substantial portion of the gender wage gap at the upper

end of the distribution, aligning with recent theories centered on glass ceiling. We still find that most of

the gender gap in offered and observed wages can be attributed to differences in the wage structure that

are often associated with gender discrimination in the labor market. The effect of education on wages

is positive and increases with the distribution. In summary, our results demonstrate the significance

of considering selection and flexible heterogeneity in empirical analysis and provide support for the

use of the generalized Heckman selection model (1.5). Our results also align with those of Maasoumi

and Wang (2019) which applied a quantile-regression based methodology of Arellano and Bonhomme

(2017) to U.S. data over a similar period.

This paper contributes to the extensive literature on sample selection in economics and statistics.

The classical references in this field include works by Gronau (1974), Heckman (1974), Lee (1982),

Goldberger (1983), Amemiya (1985, Section 10.7), Maddala (1986, Section 9.4), Manski (1989), Manski

(1994), and Vella (1998). A commonly utilized approach to sample selection is the Heckman selection

model developed by Heckman (1974; 1976; 1979; 1990). Several extensions to the HSM have been made,

including parametric extensions by Lee (1983), Prieger (2002) and Smith (2003) using different distribu-

tions, and a bivariate t-distribution extension by Marchenko and Genton (2012) for heavy-tailed data.

Semi-parametric versions have been developed by Ahn and Powell (1993), Powell (1994), Andrews and

Schafgans (1998), and Newey (1999), while Das, Newey, and Vella (2003) introduced a nonparametric

version with additive shocks, all of which focus on location effect models with homogeneous effects.

None of these extensions can accommodate all sources of heterogeneity considered in our model. Pre-

vious studies on partial identification of unrestricted sample selection models include works by Manski

(1990), Balke and Pearl (1994), Manski (1994), Heckman and Vytlacil (2001), and Manski (2003), among

others. Our work contributes with new partial identification results to this development, with the main

emphasis on achieving point identification. In the online Supplemental material, we consider relaxed

forms of the exclusion restriction on the sorting that obtain a nested sequence of bounds, which starts

from a single point and ends with the (agnostic) Balke and Pearl (1994) bounds. This sequence pro-

vides a form of sensitivity analysis, analogous in spirit to Christensen and Connault (2019)’s sensitivity

analysis for structural models.

Arellano and Bonhomme (2017, AB17) proposed another extension of the HSM, which like our model

accounts for multiple sources of heterogeneity. Their approach is based on quantile regression, which

models the marginal distribution of the latent outcome, and a parametric copula model that links the

latent selection and outcome variables. However, compared to our approach, this model requires

the latent variables (Y ∗,D∗) to be continuous, while our approach accommodates mixed discrete-

continuous distributions, which is important given that offered wages are often constrained to be above
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a minimum wage level, and observed wages have point masses at minimum wage and other levels due

to wage rounding. Additionally, AB17 models the effect of covariates on the conditional quantile of the

latent distribution, while we model the effect on the conditional latent distribution. The identifica-

tion assumptions of the two models are also distinct, as our approach imposes more structure on the

dependence between the outcome and selection processes, whereas AB17 requires continuous varia-

tion in the instrument Z and real analyticity of the copula function governing the dependence of the

shocks in the outcome and selection structures. The analyticity condition implies extrapolability of the

conditional distribution of outcome to the case where there is no selection, enabling identification at

infinity. In this case, however, identification does not automatically imply consistent estimability, be-

cause the continuation of an analytical function is known to be an ill-posed problem. To overcome the

latter problem, regularization must be used: AB17 impose parametric assumptions on the copula as a

means of such regularization to carry-out estimation.

Finally, there are relevant connections to the work of Liu, Lafferty, and Wasserman (2009) on the

estimation of graphical models using the semi-parametric family (1.3). While our approach considers

the more general model (1.5), we contribute by offering a DR based approach, which can incorporate

covariates (X , Z ) in a general yet tractable manner. Furthermore, our focus is on addressing the sample

selection problem in the context of these models.

Outline. Section 2 examines the identification problem under sample selection using a new represen-

tation of a joint distribution. Section 3 introduces the DR model with selection and associated function-

als, estimators of the model parameters and functionals, and a multiplier bootstrap method to perform

functional inference. Section 4 reports the results of the empirical application. The proofs of the results

of Section 2 are gathered in Appendix A. The online Supplemental Material (SM) contains deferred dis-

cussions of Sections 2–4, the asymptotic theory for our estimation and inference methods, additional

empirical results, a Monte Carlo simulation calibrated to the empirical application and other technical

results.

2. LOCAL GAUSSIAN REPRESENTATION AND SAMPLE SELECTION

2.1. Local Gaussian Representation of a Joint Distribution. Our first result shows that any joint dis-

tribution of two random variables has a local Gaussian representation (LGR). This is a useful repre-

sentation for econometric analysis, because it naturally nests the joint normal distribution and rich

semi-parametric models that allow for nonparametric marginal distributions– with much more room

to spare. Indeed, we shall use the LGR to provide a new view of the identification problem with sample

selection and motivate our modeling choices later.

Let Y ∗ and D∗ be two random variables with joint cumulative distribution function (CDF) FY ∗,D∗

and marginal CDFs FY ∗ and FD∗ . We label these variables with asterisks because they will be latent

variables when we introduce sample selection.
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Lemma 2.1 (Local Gaussian Representation of Any Joint Distribution). The joint distribution FY ∗,D∗

can be represented via a standard bivariate normal distribution at any point (y,d) as

FY ∗,D∗(y,d) ≡Φ2(Φ−1(FY ∗(y)),Φ−1(FD∗(d));ρ(y,d)), (2.6)

where Φ2(·, ·;ρ) is the joint CDF of a standard bivariate normal random variable with parameter ρ;

and ρ(y,d) ∈ [−1,1] is the implied or local correlation parameter that depends on (y,d), whose value is

unique.

Lemma 2.1 establishes that any bivariate CDF admits a unique pointwise representation by standard

bivariate normal distributions. This result is related to Sklar’s copula representation of the joint distri-

butions but is different, especially in using the localized correlation. Also this result is stronger than

the comprehensive property of the Gaussian copula that establishes that this copula includes the two

Frechet bounds and independent copula by suitable choice of the correlation parameter, e.g., Smith

(2003). We also note that Lemma 2.1 easily extends to CDFs conditional on covariates by making all the

parameters dependent on the value of the covariates.

In what follows, it is convenient to define the LGR parameters:

µ(y) :=Φ−1(FY ∗(y)), ν(d) :=Φ−1(FD∗(d)),

noting thatµ(y) ∈R andν(d) ∈R, whereR :=R∪{−∞,+∞} is the extended real number line. By LGR, the

mapping between FY ∗,D∗(y) and its LGR parameters (µ(y),ν(d),ρ(d , y)) is bijective. Thus LGR carries

the same information as the joint CDF.

The implied correlation ρ(y,d) is a key parameter that measures local dependence. Indeed, ρ(y,d) =
0 if and only if the distribution FY ∗,D∗ factorizes at (y,d) because

FY ∗,D∗(y,d) =Φ2(Φ−1(FY ∗(y)),Φ−1(FD∗(d));0) = FY ∗(y)FD∗(d),

that is, ρ(y,d) = 0 if and only if the events {Y ∗⩽ y} and {D∗⩽ d} are independent. Moreover, ρ(y,d) is

positive if and only if correlation of 1(Y ∗⩽ y) and 1(D∗⩽ d) is positive. Thus, if ρ(y,d) is positive every-

where then Y ∗ and D∗ are positively quadrant dependent (Lehmann, 1966). We prove these assertions

and provide additional discussion in Appendix A.1 of the SM.3

2.2. Identification of Sample Selection Model. We consider now the sample selection problem where

we observe two random variables D and Y , which can be defined in terms of the latent variables D∗

and Y ∗ as

D = 1(D∗⩽ 0),

Y = Y ∗ if D = 1,

i.e., D is an indicator for D∗⩽ 0 and Y ∗ is only observed when D = 1. The goal is to identify features of

the joint distribution of the latent variables from the joint distribution of the observed variables.

3See also Tjøstheim, Otneim, and Støve (2018) for a recent review of copula-based measures of local dependence.
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We can write the distribution of the observed variables as

P(D = 1) =Φ(ν) and P(Y ⩽ y,D = 1) =Φ2(µ(y),ν;ρ(y)),

where µ(y), ν := ν(0) and ρ(y) := ρ(y,0) are the parameters of LGR for the latent distribution FY ∗,D∗ .

The identified set for these parameters determine the identified set for FY ∗(y). Note that in particular,

FY ∗(y) =Φ(µ(y)).

As shown below, µ(y) and ρ(y) are partially identified. We proceed by characterizing the identified

set for these parameters and provide exclusion restrictions to achieve point identification. We also

examine the role of relaxed exclusion and other restrictions in reducing the size of the identified set in

Appendix A.4 of the SM.

To understand the source of partial identification under sample selection, note that there are two

free probabilities, P(D = 1) and P(Y ⩽ y,D = 1), to identify three parameters, µ(y), ν and ρ(y). The

selection probability pins down ν: ν=Φ−1(P(D = 1)). The parameters µ(y) and ρ(y) are partially iden-

tified by the set of solutions in (µ,ρ) to the equation

P(Y ⩽ y,D = 1) =Φ2(µ,Φ−1(P(D = 1));ρ).

These solutions form a one-dimensional manifold in R× (−1,1) (Spivak, 1965; Munkres, 1991).4

Exclusion Restrictions. To state the exclusion restrictions, let Z be a candidate instrumental variable

and FY ∗,D∗|Z be the joint CDF of Y ∗ and D∗ conditional on Z . Then, FY ∗,D∗|Z admits the LGR:

FY ∗,D∗|Z (y,d | z) =Φ2(µ(y | z),ν(d | z);ρ(y,d | z)),

with parameters µ(y | z) ∈ R, ν(d | z) ∈ R, and ρ(y,d | z) ∈ [−1,1]. The exclusion restrictions are the

following.

Assumption 1 (Exclusion Restrictions). There is a binary random variable Z that satisfies:

(1) Non-Degeneracy: 0 < P(D = 1) < 1 and 0 < P(Z = 1 | D = 1) < 1.

(2) Relevance: P(D = 1 | Z = 0) < P(D = 1 | Z = 1) < 1.

(3) Outcome exclusion: µ(y | z) =µ(y) for all y ∈R and z ∈ {0,1}.

(4) Selection Sorting exclusion: ρ(y,0 | z) = ρ(y,0) for all y ∈R and z ∈ {0,1}.

The condition that Z is binary emphasizes that our identification strategy does not rely on large

variation of Z . If Z is not binary, we only require that Assumption 1 be satisfied for two values of Z . If it

is satisfied for more than two values of Z , then the model is overidentified and the exclusion restrictions

become testable.5 Non-degeneracy states that there is sample selection and that Z has variation in

the selected population. Relevance requires that Z affects the probability of selection. The condition

P(D = 1 | Z = 1) < 1 precludes identification at infinity, which we analyze separately in Remark 2.1.

4This is because ∂Φ2(µ, ·;ρ)/∂µ> 0, ∂Φ2(·, ·;ρ)/∂ρ > 0, and ∂2Φ2(·, ·;ρ)/∂µ∂ρ > 0.
5We leave the development of such specification test to future research.
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The sign of the first inequality can be reversed by relabelling the values of Z . Outcome exclusion is a

standard exclusion restriction, which is not sufficient for point identification in the presence of sample

selection (Balke and Pearl, 1994; Manski, 1994; Heckman and Vytlacil, 2001; Manski, 2003). It holds

when Y ∗ is independent of Z .6 Selection sorting exclusion requires the local correlation function to

be independent of Z .7 AB17 consider an alternative condition to selection sorting exclusion based

on real analyticity and continuous variation of Z . We refer to Appendices A.2 and A.3 in the SM for a

comparison with the analyticity approach and another alternative approach based on imposing semi-

parametric structure on the sorting mechanism when Z takes on more than 2 values.

We can get some intuition about the outcome and selection exclusion restrictions with the paramet-

ric and semi-parametric models of labor supply given in (1.1)–(1.3). These models trivially satisfy the

conditions stated above, because Z only affects the latent disutility D∗ through the location, and the

local correlation parameter is constant and does not depend on Z (or y for that matter). Yet the selec-

tion sorting exclusion does entail some loss of generality, which motivates forms of relaxed conditions

on selection sorting that we consider in Appendix A.4 of the SM.

We now show how the presence of exclusion restrictions helps identify the parameters. Under As-

sumption 1 the conditional LGR at d = 0 simplifies to

FY ∗,D∗|Z (y,0 | z) =Φ2(µ(y),ν(z);ρ(y)), z ∈ {0,1}, (2.7)

where we simplify the notation ν(z) := ν(0 | z) and ρ(y) := ρ(y,0). We can relate this representation to

the conditional distribution of observed variables as

P(D = 1 | Z = z) =Φ(ν(z)); P(Y ⩽ y,D = 1 | Z = z) =Φ2(µ(y),ν(z);ρ(y)), z ∈ {0,1}.

As before, ν(z) is identified from the conditional selection probability:

ν(z) =Φ−1 (P(D = 1 | Z = z)) , z ∈ {0,1}. (2.8)

Moreover, µ(y) and ρ(y) are identified as the solution in (µ,ρ) to

P(Y ⩽ y,D = 1 | Z = z) =Φ2(µ,Φ−1 (P(D = 1 | Z = z)) ;ρ), z ∈ {0,1}. (2.9)

This is a nonlinear system of two equations in two unknowns. The result below states that the solution

exists and is unique.

Theorem 2.1 (Identification under Assumption 1). Suppose that Assumption 1 holds. Suppose that the

distribution of the observed variables (Y ,D, Z ) implies ρ(y)2 < 1, then µ(y) and ρ(y) are point identified

as the unique interior solution of (2.9) in (µ,ρ).

The result follows by showing that the Jacobian of the equations in (2.9) is a P-matrix for all µ ∈ R
and ρ ∈ (−1,1), so uniqueness follows by the global univalence result in Theorem 4 of Gale and Nikaido

6Kitagawa (2010) developed a test for the outcome exclusion.
7Torgovitsky (2010) previously used this type of restriction to analyze identification of nonseparable models with contin-

uous endogenous explanatory variables.
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(1965). We defer to Appendix A.2 the analysis of the case ρ(y)2 = 1 due to its more technical nature.

This case deals with boundary situations that can occur at extreme values of y or other non-typical

circumstances. In these situations, we can have either point or partial identification. They are easy to

detect empirically.

Remark 2.1 (Identification at Infinity). When the instruments are strong enough to set

P(D = 1 | Z = 1) = 1

and provided that the exclusion conditions holds µ(y | z) =µ(y), the conditional LGR at z = 1 gives

P(Y ⩽ y,D = 1 | Z = 1) = lim
ν↗+∞

Φ2(µ(y),ν;ρ(y | 1)) =Φ(µ(y)),

which identifies µ(y) by

µ(y) =Φ−1(P(Y ⩽ y,D = 1 | Z = 1)),

without the selection sorting exclusion.8 This result is analogous to the identification at infinity of

Chamberlain (1986) where Z is continuous with unbounded support and limz↗+∞ P(D = 1 | Z = z) = 1;

see also Lewbel (2007) for an alternative identification at infinity strategy using the special regressor

approach. Interestingly we note that ρ(y | 1) is not point-identified without further restrictions. □

2.3. Selection Sorting Exclusion. We provide a further interpretation of the selection exclusion restric-

tion in a formulation of the sample selection problem in terms of the propensity score. The sample

selection process is often represented as D = 1{V ⩾ ν(Z )}, where ν(z) :=Φ−1(p(Z )), with p(Z ) := P(D =
1 | Z = z) being the propensity score, and V | Z ∼ N (0,1) is the unobserved selection normal score.

Here we shall maintain Assumption 1(1)–(3). The following theorem shows the condition that selection

sorting exclusion imposes on the relationship between Y ∗ and V . Let

FY ∗,V |Z (y, v | z) =Φ2(Φ−1(FY ∗(y)), v ; ρ̃(y, v | z))

be the LGR of the joint CDF of (Y ∗,V ) conditional on Z , where we use that Y ∗ is independent of Z and

V | Z ∼ N (0,1).

Theorem 2.2 (Interpretation of Selection Sorting Exclusion). Suppose Assumption 1(1)–(3) hold. Then

Assumption 1(4) holds if and only if ρ̃(y,ν(z) | z) = ρ̃(y) for any z in the support of Z .

Theorem 2.2 shows that selection exclusion holds whenever the implied correlation ρ̃(y, v | z) be-

tween Y ∗ and V does not depend on v and z. A sufficient condition is that (Y ∗,V ) are jointly inde-

pendent of Z and ρ̃(y, v) = ρ̃(y) for all v in the support of ν(Z ), where ρ̃(y, v) is the local dependence

parameter of the joint CDF of (Y ∗,V ). In the context of labor supply, Y ∗ is latent wage and V is the

ranking in the conditional distribution of utility/net benefit of employment. The classical HSM in (1.2)

8Despite its extreme nature, this identification strategy is useful in empirical economics: e.g., Mulligan and Rubinstein

(2008) use this reasoning to analyze wage penalty for highly educated women.
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and its semi-parametric generalization in (1.3) trivially satisfy this condition, because they have con-

stant local correlation, ρ̃(y, v) = ρ, that is, the strength of selection does not vary with the level of of-

fered wage or the employment ranking. Relative to such traditional models, the condition ρ̃(y, v) = ρ̃(y)

leaves some room for additionally flexibility – namely, the strength of selection can vary with the level

of offered wage. For example, y 7→ ρ̃(y) increasing means that workers are more likely to select into the

labor force if the offered wage’s rank is higher (holding the employment ranking fixed).

The selection exclusion ρ̃(y, v) = ρ̃(y) is essentially equivalent to the single index restriction:

P(Y ∗⩽ y |V = v) =Φ(
a(y)+b(y)v

)
, (2.10)

where y 7→ a(y) and y 7→ b(y) are nonparametric functions linked to the LGR of Y ∗ and V , FY ∗,V (y, v) =
Φ2(µ(y), v ; ρ̃(y)), via a(y) = µ(y)/

√
1− ρ̃(y)2 and b(y) = −ρ̃(y)/

√
1− ρ̃(y)2. This index form enhances

interpretability and also connects to the econometric literature that utilizes the simplifying index re-

strictions; e.g., Ichimura (1993), Klein and Spady (1993), Powell (1994) and Vytlacil (2002). The proof of

the equivalence in (2.10) is given in Appendix A.4. Homogeneous models, such as the classical Heck-

man’s labor supply model or the semi-parametric generalization (1.3), impose the much stronger single

index condition:

P(Y ∗⩽ y |V = v) =Φ(
a(y)+bv

)
,

for all y , for b =−ρ/
√

(1−ρ2) being a rescaled correlation coefficient; note that the Gaussian restriction

on Y ∗ of the HSM corresponds to the further linearity restriction: a(y) = ay . This connection highlights

the generalization our model brings: in the general model a(y) ̸= ay allows for expressive departures

from Gaussianity, and b(y) ̸= b allows for much richer patterns of dependence across the conditional

distribution.

We now elaborate on the value that the variation ρ(y) with respect to y brings to the table. What

does this property mean in terms of the flexibility of dependence patterns between net offered wage

Y ∗ and employment ranking V ? The standard models that have homogeneous ρ(y) = ρ or equivalently

homogeneous b(y) = b, are only able to generate limited forms of dependence. The left panel of Fig-

ure 2 presents an example of the contour of the joint pdf of (Y ∗,V ) when ρ(y) = .14. In contrast, our

model is able to generate richer forms of dependence between (Y ∗,V ) as illustrated in the middle and

right panels. The middle panel has the same correlation between Y ∗ and V as the left panel, but we

see that the dependence increases from small values as we move towards the upper-right tail corner.

The right panel is another example, where the correlation between Y ∗ and V is zero, but (Y ∗,V ) are

positively dependent when Y ∗ > 0 and negative dependent when Y ∗ < 0. In all examples, the marginal

distributions are fixed to be normal, but the joint distributions are not normal, except for the left panel.

The above discussions aim to support the idea of using sorting exclusion, but one may and should

challenge it in applications. To this end, we emphasize three points: First, as we mentioned in the

discussion of Assumption 1, selection exclusion is testable when Z takes on more than 2 values. Sec-

ond, one can work with the relaxed forms of exclusion restrictions, namely the sign restrictions and

r-relaxed exclusion restrictions and compute the bounds provided by Theorem A.1 in the SM. Third,
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FIGURE 2. Joint CDF of (Y ∗,V ) for different local correlation parameters ρ̃(y); marginal

CDFs of (Y ∗,V ) are standard normal.

Notes. Left panel: ρ̃(y) = .14; middle panel: ρ̃(y) = Φ(2(y −1)/3)/3; right panel: ρ̃(y) = 1(y ⩾

0)/2− 1(y < 0)/2. The marginal distribution of Y ∗ and V are chosen as standard normal for

simplicity.

if richer instruments are available, one can still obtain results for identification under analyticity or

other regularity assumptions on the local correlation function without selection sorting exclusion; see

Appendix A.3 in the SM.

3. ECONOMETRICS OF DISTRIBUTION REGRESSION MODEL WITH SAMPLE SELECTION

3.1. The Model. We consider a semi-parametric version of the LGR with covariates:

FY ∗,D∗(y,0 | Z = z) =Φ2(−x ′β(y),−z ′π;ρ(x ′δ(y))), (3.11)

where Y ∗ is the latent outcome of interest, which can be either continuous, discrete or mixed; D∗

is a latent variable that determines sample selection; X is a vector of covariates; Z = (Z1, X ); and Z1
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are excluded covariates, i.e., observed covariates that satisfy the exclusion restrictions.9 The excluded

covariates avoid reliance on functional form assumptions to achieve identification.

The model (3.11) is a semi-parametric version of (1.5), where we replace the componentsΦ−1(FY ∗(y |
X )), Φ−1(FD∗(d | Z , X )), and ρ(y,d | X ) by three indexes.10 We shall refer to −x ′β(y) as the outcome

equation, to −z ′π as the selection equation, and to ρ(x ′δ(y)) as the selection sorting equation. We

observe the selection indicator D = 1(D∗ > 0) and the outcome Y = Y ∗ when D = 1.11 In the empirical

application that we consider below, Y ∗ is offered wage, D∗ is the net utility from working, e.g., the

difference between offered wage and reservation wage, D is an employment indicator, Y is the observed

wage, X includes labor market characteristics such as education, age, number of children and marital

status, and Z1 includes measures of out-of-work income. We shall discuss the validity of these measures

as excluded covariates in Section 4.

The model (3.11) is semi-parametric because y 7→ β(y) and y 7→ δ(y) are unknown functions, i.e.

infinite dimensional parameters in general. This flexibility allows the effect of X on the outcome and

selection sorting equations to vary across the distribution. For example, it allows the return to edu-

cation to vary across the distribution, the selection sorting to be different for high and low educated

individuals, or to have positive selection sorting at the upper tail and negative at the bottom tail or

vice versa.12 The function u 7→ ρ(u) is a known link with range [−1,1], e.g. the Fisher transformation

(Fisher, 1915), ρ(u) = tanh(u). The corresponding distribution of Y ∗ conditional on Z is

FY ∗(y | Z = z) = lim
ν↗+∞

FY ∗,D∗(y, v | Z = z) =Φ(−x ′β(y)), z = (x, z1).

The selection bias arises because this distribution is different from the distribution of the observed

outcome Y , i.e. FY ∗(y | Z = z) ̸= FY (y | Z = z,D = 1)

Example 3.1 (Semi-Parametric version of Heckman Selection Model). Here we revisit the semi-parametric

special case given in the Introduction, where

D∗ = ν(Z )+V , Y ∗ =µ(X )+U ,

9It is understood that the models are flexible in the following sense. Given x and z, we can generate constructed regressors

t (x) and b(z) as technical transformations of x and z, for example, by taking powers or splines of the components and their

interactions. We then can reassign notation x ← t (x) and z ← b(z). This convention entails no loss of generality provided

that t (x) and b(z) contain the same information as x and z. In this paper, we do not formally consider the case where the

dimensions of t and b grow with the sample size, but this is possible along the lines of the series literature, with the inference

being operationally equivalent to the case with the fixed number of series terms, provided that the number of series terms is

small compared to the sample size and that the approximation errors are negligible; e.g., Newey (1997) and Chen (2007).
10Here we include the covariates X in Z to lighten the notation and denote the covariates that satisfy the exclusion restric-

tion by Z1 instead of Z .
11The minus signs in (3.11) are included to take into account that the selection is defined by D∗ > 0 instead of D∗⩽ 0. We

use this definition to facilitate the interpretation of the parameters and the comparison with the classical HSM; see Example

3.1.
12The parametric copula model of AB17 imposes that the sign of the sorting is the same across the latent wage distribution.
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where (U ,V ) is independent of Z (Z contains X here) such that

FU ,V (u, v | Z = z) =Φ2
(
Φ−1(FU (u)),Φ−1(FV (v));ρ

)
.

Therefore,

FY ∗,D∗(y,0 | Z = z) =Φ2
(
Φ−1(FU (y −µ(x))),Φ−1(FV (−ν(z)));ρ

)
.

As noted in the Introduction, this (strictly) nests the classical Gaussian selection model where FU (u) =
Φ(u/σU ) and FV (v) = Φ(v/σV ), where σU and σV are the standard deviations of U and V . For the

econometric specification, we use parametrization:

FU (y −µ(x)) =Φ(−x ′β(y)
)

; FV (−ν(z)) =Φ(−z ′π).

□

The parameters β(y) and π have the same interpretation as in probit models. Their signs are infor-

mative about the signs of the partial effects of the corresponding covariates on the conditional distri-

bution of the outcome or probability of selection, and ratios of their components yield ratios of partial

effects. Indeed, if X is continuous,

∂FY ∗(y | Z = z)

∂x
=−β(y)φ(−x ′β(y)),

whereφ is the standard normal PDF. The parameter δ(y) determines the sign of the effect of the covari-

ates on the sorting because

∂ρ(x ′δ(y))

∂x
= δ(y)ρ̇(x ′δ(y)),

and ρ̇(u) = ∂ρ(u)/∂u = 1− tanh(u)2 > 0. Appendix B in the SM provides additional discussion on the

interpretation of the model parameters.

Example 3.2 (Data Generating Process). The model (3.11) has multiple data generating process repre-

sentations as nonseparable systems. One example is

D∗ = Z ′π+V , V | Z ∼N (0,1),

X ′β(Y ∗) = ρ(X ′δ(Y ∗))V +
√

1−ρ(X ′δ(Y ∗))2U , U | Z ∼N (0,1),

where U and V are independent. For example, in the wage application V can be interpreted as un-

observed utility from working (unobserved benefit of working for money-metric utility), net of what

Z already captures, and U as unobserved skills or innate ability net of what V and X already capture.

This representation is similar to the semi-parametric HSM in Example 3.1 with the difference that the

equation for Y ∗ is nonseparable. □
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3.2. Functionals: Factual, Counterfactual & Decomposition. Several key functionals of the model’s

parameters (3.11) can be of interest. One is the marginal distribution of the latent outcome Y ∗

FY ∗(y) = FY ∗(y ;β,FX ) :=
∫

FY ∗(y | Z = z)dFZ (z) =
∫
Φ(−x ′β(y))dFX (x),

where FZ and FX are the marginal distributions of Z and X , respectively. In the case of the wage appli-

cation, FY ∗ corresponds to the distribution of the offered wage, which is a potential or latent outcome

free of selection. Using the formula above, we can also construct counterfactual distributions by re-

placing β(y) and FX by coefficients and distributions from different populations or groups, β̄(y) and

F̄X . These distributions are useful to decompose the distribution of offered wages between females

and males or between blacks and whites, which can be the basis to uncover discrimination in the labor

market. Another functional is the probability of selection

P(D = 1) = P(D = 1;π,FZ ) :=
∫

P(D = 1 | Z = z)dFZ (z) =
∫
Φ(z ′π)dFZ (z),

which we can also use to define counterfactuals and employ them to decompose differences in em-

ployment rates between employment structure effects, π, and composition effects, FZ .

We can also use the model to construct distributions for the observed outcome using that

FY |D (y | 1) = FY (y ;β,π,δ,FZ ) :=
∫
Φ2

(−x ′β(y), z ′π;−ρ(x ′δ(y))
)

Φ(z ′π)
dFZ (z | D = 1)

=
∫
Φ2

(−x ′β(y), z ′π;−ρ(x ′δ(y))
)

dFZ (z)∫
Φ(z ′π)dFZ (z)

,

where the second equality follows from the Bayes rule. We can again construct counterfactual distri-

butions by changing β(y), π, δ(y) and FZ . In the wage application, we will decompose the differences

in the wage distribution between genders or across time into changes in the worker composition FZ ,

wage structure β(y), selection structure π, and selection sorting δ(y). Both selection effects are new to

this model.

Quantiles and other functionals of the distributions of latent and observed outcomes can be con-

structed by applying the appropriate operator. For example, the τ-quantile of the latent outcome is

QY ∗(τ) = Qτ(FY ∗), where Qτ(F ) := inf{y ∈R : F (y)⩾ τ} is the quantile or left-inverse operator.

3.3. Estimation. To estimate the model parameters and functionals of interest, we assume that we

have a random sample of size n from (D,DY , Z ), {(Di ,Di Yi , Zi )}n
i=1, where we use DY to indicate that

we only observe Y when D = 1.

Before describing the estimators, it is convenient to introduce some notation. Let Y be the region

of interest of Y , and denote θy := (β(y),δ(y)), where we replace the arguments in y by subscripts to

lighten the notation.13

13If the support of Y is finite, Y can be the entire support, otherwise Y should be a subset of the support excluding low

density areas such as the tails.
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The estimation relies on the relationship between conditional distributions and binary regressions.

Thus, the CDF of Y at a point y conditional on X is the expectation that an indicator that Y is less than

y conditional on X ,

FY |X (y | x) = E[1(Y ⩽ y) | X = x].

To implement this idea, we construct the set of indicators for the selected observations

Iyi = 1(Yi ⩽ y) if Di = 1,

for each y ∈Y . In the presence of sample selection, we cannot just run a probit binary regression of Iyi

on Xi to estimate the parameter β(y) as in Foresi and Peracchi (1995) and Chernozhukov, Fernández-

Val, and Melly (2013). The problem is similar to running least squares in the HSM. Instead, we use

that

ℓi (π,θy ) = [
1−Φ(Z ′

iπ)
]1−Di ×Φ2(−X ′

iβ(y), Z ′
iπ;−ρ(X ′

iδ(y)))Di Iyi

×Φ2(X ′
iβ(y), Z ′

iπ;ρ(X ′
iδ(y)))Di (1−Iyi )

is the likelihood of (Di , Iyi ) conditional on Zi . This likelihood is the same as the likelihood of a bivariate

probit model or more precisely a probit model with sample selection (Zellner and Lee, 1965; Poirier,

1980; Van de Ven and Van Praag, 1981).

We estimate the model parameters using a computationally attractive two-step method to maximize

the average log-likelihood, similar to the Heckman two-step method. The first step is a probit regres-

sion for the probability of selection to estimate π, which is identical to the first step in the Heckman

two-step method. The second step consists of multiple distribution regressions (DRs) with sample se-

lection corrections to estimate β(y) and δ(y) for each value of y ∈ Y . These steps are summarized in

the following algorithm:

Algorithm 3.1 (Two-Step DR Method). (1) Run a probit for the selection equation to estimate π: (2) Run

multiple DRs with sample selection correction to estimate θy . That is,

(1) π̂= argmax
c∈Rdπ

1

n

n∑
i=1

[
Di logΦ(Z ′

i c)+ (1−Di ) logΦ(−Z ′
i c)

]
,

(2) θ̂y = argmax
t=(b,d)∈Θ

1

n

n∑
i=1

Di [ Iyi logΦ2
(−X ′

i b, Z ′
i π̂;−ρ(X ′

i d)
)

+ (1− Iyi ) logΦ2
(
X ′

i b, Z ′
i π̂;ρ(X ′

i d)
)]

, y ∈Y .

where Iyi = 1(Yi ⩽ y) andΘ ∈Rdθ is a compact parameter set, and

dπ := dimπ, dθ := dimθu , ρ(u) := tanh(u) = eu −e−u

eu +e−u ∈ [−1,1].

In practice we replace the set Y by a finite grid Ȳ if Y contains many values.

The estimators of the functionals of interest are constructed from the estimators of the parameters

using the plug-in method. For example, the estimator of the distribution of the latent outcome and the
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estimator of the probability of selection are

F̂Y ∗(y) := FY ∗(y ; β̂, F̂X ) = 1

n

n∑
i=1
Φ(−X ′

i β̂(y)), P̂(D = 1) := P(D = 1; π̂, F̂Z ) = 1

n

n∑
i=1
Φ(z ′π̂), (3.12)

and the estimators of the counterfactual distributions of the observed outcome are constructed from

F̂Y |D (y | 1) := FY (y ; β̂, π̂, δ̂, F̂Z ) =
∑n

i=1Φ2(−X ′
i β̂(y), Z ′

i π̂;−ρ(X ′
i δ̂(y)))∑n

i=1Φ(Z ′
i π̂)

, (3.13)

by choosing the estimators of β̂(y), π̂, and δ̂(y) and the sample values of Z appropriately. Estimators

of quantiles and other functionals of these distributions are obtained by applying the operators that

define the functionals to the estimator of the distribution. See Section D of SM for details.

3.4. Inference on Functional Parameters. The model parameters and functionals of interest are gen-

erally function-valued. We show how to construct confidence bands for them that can be used to test

functional hypotheses such as the entire function being zero, non-negative or constant. To explain the

construction, consider the case where the functional of interest is a linear combination of the model

parameter θy , that is the function y 7→ c ′θy , y ∈ Y , where c ∈ Rdθ . The set C Bp (c ′θy ) is an asymptotic

p-confidence band for c ′θy if it satisfies

P
[
c ′θy ∈C Bp (c ′θy ), for all y ∈Y

]→ p.

We form C Bp (c ′θy ) as C Bp (c ′θy ) := c ′θ̂y±cv(p)SE(c ′θ̂y ), where θ̂y is the estimator of θy defined in Algo-

rithm 3.1, SE(c ′θ̂y ) is the standard error of c ′θ̂y , and cv(p) is a critical value, i.e. a consistent estimator

of the p-quantile of the statistic

tY = sup
y∈Y

|c ′θ̂y − c ′θy |
SE(c ′θ̂y )

.

We obtain the standard error and critical value from the limit distribution of the stochastic process

y 7→ θ̂y derived in Section D of the SM. In practice, it is convenient to estimate the critical value using

resampling methods. Multiplier bootstrap is computationally attractive in our setting because it does

not require parameter re-estimation and therefore avoids the nonlinear optimization in both steps of

Algorithm 3.1. The multiplier bootstrap is implemented using the following algorithm:

Algorithm 3.2 (Multiplier Bootstrap). (i) For b ∈ 1, . . . ,B and the finite grid Ȳ ⊆ Y , repeat the steps:

(1) Draw the bootstrap multipliers {ωb
i : 1⩽ i ⩽ n} independently from the data and normalized them

to have zero mean, ωb
i = ω̃b

i −
∑n

i=1 ω̃
b
i /n, ω̃b

i ∼ i.i.d. N (0,1). (2) Obtain the bootstrap estimator of the

model parameter

θ̂b
y = θ̂y +n−1

n∑
i=1

ωb
i ψ̂i (θ̂y , π̂),

where ψ̂i (θ̂y , π̂) is an estimator of the influence function of θ̂y given in equation (D.24) of the SM. (3)

Construct bootstrap realization of maximal t-statistic tY for the functional of interest,

t b
Y = max

y∈Ȳ

|c ′θ̂b
y − c ′θ̂y |

SE(c ′θ̂y )
, SE(c ′θ̂y ) =

√
c ′Σ̂θyθy c,
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where Σ̂θyθy is an estimator of the asymptotic variance-covariance matrix of θ̂y given in equation (D.23)

of the SM. (ii) Compute the critical value cv(p) as the simulation p−quantile of t b
Ȳ

, cv(p) = p−quantile of {t b
Y

:

1⩽ b⩽B}

The centering of the multipliers in step (i1) of the algorithm is a finite sample adjustment. Confi-

dence bands for other functionals of the model parameter can be constructed using a similar bootstrap

method.

4. WAGE DECOMPOSITIONS IN THE UK

We apply the DR model with sample selection to carry out wage decompositions accounting for

endogenous employment participation using data from the United Kingdom.

4.1. Data. The data come from the U.K. Family Expenditure Survey (FES) for the years 1978 to 2001,

Expenditure and Food Survey (EFS) for the years 2002 to 2007, and Living Costs and Food Survey (LCFS)

for the years 2008 to 2013. Despite the differences in the name, these surveys contain comparable

information. Indeed, the FES was combined to the National Food Survey to form the EFS, which was

renamed LCFS when it became a module of the Integrated Household Survey. The data from the FES

has been previously used by Gosling, Machin, and Meghir (2000), Blundell, Reed, and Stoker (2003),

Blundell, Gosling, Ichimura, and Meghir (2007) and Arellano and Bonhomme (2017) to study wage

equations in the U.K. labor market. We are not aware of any previous use of the data from the EFS and

LCFS for this purpose.14 The three surveys contain repeated cross-sectional observations for women

and men. The selection of the sample is similar to the previous work that used the FES. Thus, we keep

individuals with ages between 23 to 59 years, and drop full-time students, self-employed workers, those

married with spouse absent, and those with missing education or employees whose wages are missing.

This leaves a sample of 258,900 observations, 139,504 of them correspond to women and 119,396 to

men. The sample size per survey year and gender ranges from 2,197 to 4,545.

The outcome of interest, Y , is the logarithm of real hourly wage rate. We construct this variable as

the ratio of the weekly usual gross main nominal earning to the weekly usual working hours, deflated

by the U.K. quarterly retail price index. The selection variable, D , is an indicator for being employed.15

The covariates, X , include 5 indicators for age when ceasing school (⩽15, 16, 17–18, 19–20, 21–22 and

⩾ 23), a quartic polynomial in age, an indicator of being married or cohabiting, 6 variables with the

number of kids by age categories (1, 2, 3–4, 5–10, 11–16, and 17-18), 36 survey year indicators, and

11 region indicators (Northern 5.48%, Yorkshire 9.56%, North Western 10.20%, East Midlands 7.36%,

West Midlands 9.13%, East Anglia 5.31%, Greater London 10.06%, South Eastern 16.82%, South Western

14See Roantree and Vira (2018) for another recent application of the data to the analysis of female labor force participation.
15For data before 1990, D = 0 if the individual is in one of the following status: seeking work, sick but seeking work, sick but

not seeking work, retired and unoccupied. For those in and after 1990, D = 0 if the individual is seeking work and available,

waiting to start work, sick or injured, retired or unoccupied.
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7.94%, Wales 4.99%, Scotland 8.92%, and Northern Ireland 4.23%).16 We provide descriptive statistics

of the variables and some background on the U.K. labor market using our data in Section G of the SM.

The excluded covariate, Z1, is a potential out-of-work income benefit interacted with the marital

status indicator used before in Blundell, Reed, and Stoker (2003) and Blundell, Gosling, Ichimura, and

Meghir (2007). This benefit is constructed with the Institute for Fiscal Studies (IFS) tax and welfare-

benefit model (TAXBEN). TAXBEN is a static tax and benefit micro-simulation model of taxes on per-

sonal incomes, local taxes, expenditure taxes, and entitlement to benefits and tax credits that operates

on large-scale, representative household surveys (Brewer, 2009). It is designed to calculate the income

of a tax unit if the individual was considered out-of-work.17 It is composed of eligible unemployment

and housing benefits, which are determined by the demographic composition of the tax unit and the

housing costs that the tax unit faces. These costs vary by region and over time due to numerous pol-

icy changes that have occurred over time. There is no consensus in the literature about the validity of

this variable as an excluded covariate. In our case, the outcome and selection sorting exclusions imply

that, conditional on the observed covariates, the offered wage and dependence between offered wage

and net reservation wage do not depend on the level of the benefit. We shall assume that the exclusion

restrictions are satisfied and refer to Blundell, Reed, and Stoker (2003) and Blundell, Gosling, Ichimura,

and Meghir (2007) for a discussion on the plausibility of the outcome restriction. In the Introduction,

we stated a rich semi-parametric generalization of Heckman’s labor supply model that trivially satisfies

the selection sorting exclusion, motivating their use in our analysis.

4.2. Empirical Specifications. We estimate the DR model for different samples and carry out several

wage decompositions where we compare the distributions of men and women, or the distributions

over time within genders. The specifications of the selection and outcome equations include all the

covariates described above except for the excluded covariates in the outcome equation. The parameter

of the selection sorting function is notoriously more difficult to estimate than the parameters of the

selection and outcome equations. We consider four simplified specifications of the sorting function

where the covariates included in the index X ′δ(y) are:

• Specification 1: a constant.

• Specification 2: a constant and the marital status indicator.

• Specification 3: a constant and a linear trend on the year of the survey.

• Specification 4: a constant and a linear trend on the year of the survey interacted with the mar-

ital status indicator.

16In the rest of the paper we shall refer to an individual being married or cohabiting as married.
17Our definition of the out-of-work benefit income is slightly different from the definition of Blundell, Reed, and Stoker

(2003) and Blundell, Gosling, Ichimura, and Meghir (2007). They calculated it as the income of a tax unit if all the individuals

within the tax unit were out of work. In our view our definition might better reflect the opportunity cost or outside value

option of working that the individual faces.
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We also experimented with other specifications that include the education indicators, indicators of

survey year, or age. We do not report these results because they do not show any clear pattern mainly

due to imprecision in the estimation of the parameter δ(y).18

4.3. Selection Sorting. We report point estimates and 95% confidence bands for the local correlation

function y 7→ ρ(x ′δ(y)) in the selection sorting equation. Estimates and 95% confidence bands for the

coefficients of the selection, outcome and selection sorting equations are given in Section G of the

SM. The estimates are obtained with Algorithm 3.1 replacing Y by a finite grid containing the sample

quantiles of log real hourly wage with indexes {0.10,0.11, . . . ,0.90} in the pooled sample of men and

women. We report all the estimates as a function of the quantile index. The confidence bands are

constructed by Algorithm 3.2 with B = 500 bootstrap repetitions and the same finite grid as for the

estimates. We also report estimates from the HSM of Example 3.1 with dashed lines as a benchmark of

comparison.

Figures 3–5 display the estimates of the sorting functions for specifications 1–3, respectively. Figure

3 shows positive selection sorting for men and negative selection sorting for women. In both cases we

cannot reject that the sorting is constant across the distribution. This finding is refined in Figure 4,

where we uncover that the positive male sorting comes mainly from bachelors, whereas the negative

female sorting comes from married women. This pattern is consistent with a marriage market where

there is assortative matching in offered wages given observable characteristics, where women with high

potential wages are married to highly paid working men and decide not to work (Neal, 2004). Figure 5

shows that the sorting homogeneity found in the pooled sample hides some heterogeneity across time.

Thus, we find that the male sorting is heterogeneous in the early years, negative at the bottom and pos-

itive at the top of the distribution, and progressively becomes homogenous. The female sorting is more

homogenous over time, but also displays a positive trend, especially at the bottom of the distribution.

Figure 16 in the SM shows that the trends in sorting are driven by married individuals at the bottom of

the distribution and single individuals at the top of the distribution.19

4.4. Distributions of Offered and Observed Wages, and Wage Decompositions. Figure 6 shows point

estimates of the quantiles of offered and observed wages for men and women based on specification

4. Estimates for the other specifications and confidence bands for all the specifications are given in the

SM. The offered wage is a latent variable defined for all the individuals that is free of sample selection.

As we showed in Section 3, the distributions of both types of wages can be expressed as functionals of

the model parameters, and estimated using the plug-in estimators (3.12) and (3.13).20 We find different

sample selection biases for men and women. Thus, the quantiles of the observed wages are below

18The main results on the wage decompositions presented below are not sensitive to the specification of the sorting

equation.
19We do not report confidence bands for specifications 3 and 4 to avoid cluttering. The confidence bands for the coeffi-

cients of the selection sorting function δ(y) in the SM show that the results on the trends are statistically significant.
20The model-based estimator of the observed distribution in (3.13) produces almost identical estimates to the empirical

distribution of the observed wages.
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FIGURE 3. Estimates and 95% confidence bands for the selection sorting function:

specification 1
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FIGURE 4. Estimates and 95% confidence bands for the selection sorting function:

specification 2

the quantiles of latent wages for men, consistent with the positive selection in the sorting equation,

whereas they are similar for women. In this case, the bias coming from the negative sorting is almost

exactly offset by the difference in the composition between working and non-working women.

Figure 7 compares the quantile function of offered wages between men and women and carries out

a gender wage gap analysis based on specification 4. The estimates and 95% confidence bands for the
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other specifications are reported in the SM. The gender wage gap analysis is based on the counterfac-

tual distributions

FY ∗〈 j ,k〉(y) = FY ∗(y ;β j ,FXk ) =
∫
Φ(−x ′β j (y))dFXk (x),
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wages and decomposition between women and men: specification 4

where β j (y) is the coefficient of the wage equation in group j , FXk is the distribution of the charac-

teristics in group k, and j and k are group indices for women and men. FY ∗〈 j ,k〉 corresponds to the

distribution of offered wages that we would observed when the wage structure is as in group j and the

distribution of characteristics is as in group k. We decompose the difference in the quantile functions

of the latent wages between women (group 1) and men (group 0) using the counterfactual distributions

as

FY ∗〈1,1〉−FY ∗〈0,0〉 = [FY ∗〈1,1〉−FY ∗〈0,1〉]+ [FY ∗〈0,1〉−FY ∗〈0,0〉],

where the first term is the wage structure or discrimination effect and the second term is the compo-

sition effect. We obtain estimates of the counterfactual distributions and quantile functions using the

plug-in estimator in (3.12) and the quantile and increasing rearrangement operators, see Section D of

the SM. We find that the wages offered to women are between 21 and 40% lower than the wages offered

to men at the same quantile index. The majority of this difference is explained by differences in the

wage structure, β(y), whereas differences in composition, FX , have very little explanatory power. This

result can be interpreted as evidence of gender discrimination in the labor market.

We next use the DR model to decompose changes in the distribution of the observed wage between

women and men, and between the first and second halves of the sample period for each gender. We

extract four components that correspond to different inputs of the DR model: (1) selection (employ-

ment) sorting: δ(y); (2) selection (employment) structure: π; (3) outcome (wage) structure: β(y); and

(4) composition: FZ . To define the effects of these components, let FY 〈t ,s,r,k〉 be the counterfactual dis-

tribution of wages when the sorting is as in group t , the employment structure is as in group s, the wage
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structure is as in group r , and the composition of the population is as in group k. The actual distribu-

tion in group t therefore corresponds to FY 〈t ,t ,t ,t〉. We assume that there are two groups indexed by 0

and 1 that correspond to demographic populations such as men and women, or time periods such as

the first and second halves of the sample years. Then, we can decompose the distribution of observed

wage between group 1 and group 0 as:

FY 〈1,1,1,1〉−FY 〈0,0,0,0〉 = [FY 〈1,1,1,1〉−FY 〈0,1,1,1〉]+ [FY 〈0,1,1,1〉−FY 〈0,0,1,1〉]

+ [FY 〈0,0,1,1〉−FY 〈0,0,0,1〉]+ [FY 〈0,0,0,1〉−FY 〈0,0,0,0〉],

where the first term in square brackets of the right hand side is a sorting effect, the second an employ-

ment structure effect, the third a wage structure effect, and the forth a composition effect. This is a

distributional version of the classical Oaxaca-Blinder decomposition that accounts for sample selec-

tion (Kitagawa, 1955; Oaxaca, 1973; Blinder, 1973). It is well-known that the order of extraction of the

components in this type of decompositions might matter. As a robustness check, we estimate the de-

composition changing the ordering of the components. In results not reported, we find that the main

findings are not sensitive to the change of ordering.

In terms of the DR model, the counterfactual distribution can be expressed as the functional

FY 〈t ,s,r,k〉(y) = FY (y ;βr ,πs ,δt ,FZk ) =
∫
Φ2

(−x ′βr (y), z ′πs ;−ρ(x ′δt (y))
)

dFZk (z)∫
Φ(z ′πs)dFZk (z)

,

where δt is the coefficient of the sorting function in group t , πs is the coefficient of the employment

equation in group s, βr is the coefficient of the wage equation in group r , and FZk is the distribution

of characteristics in group k. Given random samples for groups 0 and 1, we construct a plug-in esti-

mator of FY 〈t ,s,r,k〉 by suitably combining the estimators of the model parameters and distribution of

covariates from the two groups.

Remark 4.1 (Selection Effects). To interpret the selection effects, it is useful to consider a simplified

version of the model without covariates where FY (y ;π,ρ) =Φ2
(−β,π;−ρ)

/Φ(π). Here we drop the de-

pendence ofβ and ρ on y to lighten the notation, and make explicit the dependence of FY on the selec-

tion parameters π and ρ to carry out comparative statics with respect to them. Then, by the properties

of the normal distribution
∂FY (y ;π,ρ)

∂ρ
=−φ2(−β,π;−ρ)

Φ(π)
< 0,

and

∂FY (y ;π,ρ)

∂π
∝Φ

(
−β+ρπ√

1−ρ2

)
Φ(π)−

∫ π

−∞
Φ

(
−β+ρx√

1−ρ2

)
φ(x)d x


< 0 if ρ < 0,

= 0 if ρ = 0,

> 0 if ρ > 0,

where Φ and φ are the standard normal CDF and PDF, and φ2(·, ·;ρ) be the joint PDF of a standard

bivariate normal random variable with parameter ρ.21 Increasing ρ, therefore, shifts the distribution

to the right (increases quantiles) because it makes selection sorting more positive while the size of the

21To obtain the derivative we use thatΦ2
(−β,π;−ρ)= ∫ π

−∞Φ
(
−β+ρx√

1−ρ2

)
φ(x)d x.
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selected population is fixed. The effect of increasing π is more nuanced and depends on the sign of ρ.

Intuitively, π affects the size of the selected population and the relative importance of observables and

unobservables in the selection. For example, when selection sorting is negative, increasing the size of

the selected population by increasingπ shifts the distribution of the right (increases quantiles) because

the newly selected individuals have smaller (more negative) selection unobservables that correspond

to larger (more positive) outcome unobservables. In other words, the newly selected individuals are

relatively less adversely selected. The sign of the selection effects might be different in the presence of

covariates if the parameter variation changes the composition of the selected population. We provide

an example of this sign reversal in Appendix C of the SM. □

Figure 8 reports estimates of the quantile functions of observed wages for men and women, together

with the relative contributions of each component to the decomposition between men (group 0) and

women (group 1) based on specification 4. The bands for the contributions are joint for all the com-

ponents and rely on the delta method; see Remark D.3 in the SM. Estimates of the components of the

decomposition and the analysis based on specifications 1–3 are given in the SM. The distribution for

men first order stochastically dominates the distribution for women. Most of this gender wage gap is

explained by differences in the wage structure, i.e. differences in the returns to observed characteristics.

However, differences in sorting and employment structure also account for an important percentage

of the gap, especially at the top of the distribution. Thus, we uncover that the negative female sorting

explains about 30–40% of the gap at the top of the distribution. A possible explanation is that women

with very high potential wages decide not to work because there are no high-paid jobs available to

them due to glass ceiling (Albrecht, Bjorklund, and Vroman, 2003). The negative contribution of the

employment structure can be explained by the order of the decomposition where we are applying the

male employment structure to the female distribution with positive male sorting.22 In this case we are

increasing the proportion of employed women, where the added women come from a pool with lower

positive selection, and this negative effect is not reversed by a change in the composition of the work-

ing women; see Remark 4.1 for more details. The aggregate selection effect, defined as the sum of the

selection sorting and selection structure effects, is positive and statistically significant at the top of the

distribution; see Figure 23 in the SM. Differences in the composition of the characteristics contribute

very little to explain the gender gap. Finally, the estimates from the HSM in dotted lines pick up the

average contributions of the components, but miss all the heterogeneity across the distribution.

Figures 9 and 10 report estimates of the quantile functions of observed wages for the first and second

halves of the sample period, together with the relative contributions of each component to the decom-

position between second half (group 0) and first half (group 1) based on specification 2 for women and

men, respectively. Estimates of the components of the decompositions are given in the SM. The distri-

bution for the second half first order stochastically dominates the distribution for the first half in both

cases. For women, the most important components are the wage structure and composition effects

22While the sign of the employment structure contribution changes with the order of the decomposition, neither its im-

portance nor the significance of the contributions of the other components are sensitive to this order.
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FIGURE 8. Estimates and 95% confidence bands for the quantiles of observed wages

and decomposition between men and women in specification 4

in this order. The importance of the wage structure is decreasing along the distribution, whereas the

importance of the composition is increasing. Composition and wage structure are also the most impor-

tant components for men. The small contributions of the selection sorting component to the change

in the distribution of wages between the two time period for both genders seem to contradict the linear

time trends that we found in the coefficient of the sorting selection function. This might be explained

by the inability of a coarse partition of the sample into two halves to capture the gradual increase in

selection sorting, together with the changes in the composition.

4.5. Discussion. The main findings can be summarized as: (1) positive sorting for men and nega-

tive sorting for women driven by single men and married women, which is consistent with assortative

matching in the marriage market; (2) heterogeneity in selection sorting decreases gradually over time;

(3) differences in returns to characteristics in the wage equation, which might be associated with gen-

der discrimination in the labor market, account for most of the gender wage gap; (4) selection sorting

on unobservables explains up to 39% of the gender wage gap at the top of the distribution, which can

be taken as evidence of glass ceiling; and (5) changes in the structure of the wage equation and com-

position of the characteristics account for most of the differences in the wage distribution between the

two halves of the sample period within each gender.

We compare and contrast these findings with previous results from the literature that studied similar

issues. These results were obtained from different data and/or using different methodology. Blundell,

Gosling, Ichimura, and Meghir (2007) applied a bound approach that does not require of exclusion

restrictions to study the evolution of wage inequality using the FES data for the period 1978–2000. They
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FIGURE 9. Estimates and 95% confidence bands for the quantiles of observed wages

and decomposition between first and second half of the sample period for women in

specification 2
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assumed positive sorting for men and women in some of their estimates to make the bounds more

informative. Interestingly, they mentioned the possibility that the assumption is violated for married

women due to assortative matching in the marriage market.23 They also found evidence against the

validity of out-of-work benefit income as a valid excluded covariate for men. AB17 using the same data

from the FES, also found positive sorting for men, stronger for single than for married men, but they

employed an alternative methodology that combines quantile regression for the marginal distributions

with a parametric model for the copula. Contrary to our findings, they also found positive selection

for women, which is statistically significant only for married women. Mulligan and Rubinstein (2008)

estimated a HSM using data from the US-CPS for the periods 1975-1979 and 1995-1999. They found

that the selection sorting for women shifted from negative to positive between the two periods. We also

find for the UK that the sorting for most women has a positive trend over time, but remains negative

even in 2013 for most of the distribution. Maasoumi and Wang (2019) applied the methodology of

AB17 to data from the US-CPS for the period 1976–2014. They also found negative sorting for women

at the beginning of the sample period that became positive during the 90s, and positive sorting for

men throughout the entire period. Bertrand (2017) pointed out multiple possible explanations for the

glass ceiling based on the field of education, psychological attributes or preferences for job flexibility

that are compatible with our finding on the importance of sorting on unobservables at the top of the

distribution. None of the previous papers distinguished between the selection sorting and selection

structure effects.

One limitation of our dataset is that it does not contain a direct measure of work experience. As a

final robustness check, we find that the results are not sensitive to the exclusion of college graduates

from the sample by redoing the analysis excluding all the individuals who cease school after age 18.

This is a relevant exclusion because work experience is a more relevant determinant of wage for highly

educated workers.24

5. CONCLUSION

We develop a distribution regression model with sample selection that accommodates rich patterns

of heterogeneity in the effects of covariates on outcomes and selection. The model is semi-parametric

in nature, as it has function-valued parameters, and is able to considerably generalize the classical

selection model of Heckman (1974). Furthermore, the model accounts for richer covariate effects than

the previous semi-parametric generalizations which allowed only the location effects for covariates.

We propose to estimate the model by a process of bivariate probit regressions, indexed by threshold-

dependent parameters. We show that the resulting estimators of the function-valued parameters are

approximately Gaussian and concentrate in a 1/
p

n neigborhood of the true values. We present an

23In results not reported, we find that the negative sorting for married women is robust to the definition of the out-of-work

benefit income variable. Thus, we find similar estimates using the income of a tax unit if all the individuals within the tax unit

were out of work as the excluded covariate, as in Blundell, Gosling, Ichimura, and Meghir (2007).
24These results are available from the authors upon request.
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extensive wage decomposition analysis for the U.K. using new data, generating both new findings and

demonstrating the power of the method. Our identification approach is especially designed for the

sample selection problem but can be applied to other settings. In work in progress, we show how the

selection exclusion can be used to identify causal effects in treatment effects models with endogeneity

in the presence of an instrumental variable that can be binary.
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APPENDIX A. PROOFS OF RESULTS IN SECTION 2

A.1. Proof of Lemma 2.1. Let φ2(·, ·;ρ) be the joint probability density function (PDF) of a standard

bivariate normal random variable with parameter ρ. The representation (2.6) exists and is unique by

the following properties of the standard bivariate normal distribution:

(1) ρ 7→ Φ2(·, ·;ρ) is continuously differentiable and ∂Φ2(·, ·;ρ)/∂ρ = φ2(·, ·;ρ) > 0 (Sibuya, 1959;

Sungur, 1990);

(2) limρ↗1Φ2(x, y ;ρ) = min[Φ(x),Φ(y)];

(3) limρ↘−1Φ2(x, y ;ρ) = max[Φ(x)+Φ(y)−1,0];

together with the Frechet-Hoeffding bounds

max[Φ(µ(y))+Φ(ν(d))−1,0]⩽ FY ∗,D∗(y,d)⩽min[Φ(µ(y)),Φ(ν(d))].

□

A.2. Full Statment and Proof of Theorem 2.1. Let

FY ,D|Z (y,1 | z) := P(D = 0 | Z = z)+P(Y ⩽ y,D = 1 | Z = z).

The full statement of the theorem is:

(1) If FY ,D|Z (y,1 | z) = 1, z ∈ {0,1}, then,

ρ(y) = 1, µ(y) ∈ [Φ−1(P(D = 1 | Z = 1)),+∞).

(2) If FY ,D|Z (y,1 | z) = P(D = 0 | Z = z), z ∈ {0,1}, then,

ρ(y) =−1, µ(y) ∈ (−∞,Φ−1 (P(D = 0 | Z = 1))].
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(3) If FY ,D|Z (y,1 | 1)−P(D = 0 | Z = 1) = FY ,D|Z (y,1 | 0)−P(D = 0 | Z = 0) > 0, then,

ρ(y) = 1, µ(y) =Φ−1 (
FY ,D|Z (y,1 | 1)−P(D = 0 | Z = 1)

)
.

(4) If FY ,D|Z (y,1 | 1) < 1 and FY ,D|Z (y,1 | 0) = 1, then,

ρ(y) = 1, µ(y) =Φ−1 (
FY ,D|Z (y,1 | 1)−P(D = 0 | Z = 1)

)
.

(5) If FY ,D|Z (y,1 | 1) > P(D = 0 | Z = 1) and FY ,D|Z (y,1 | 0) = P(D = 0 | Z = 0), then,

ρ(y) =−1, µ(y) =Φ−1 (
FY ,D|Z (y,1 | 1)

)
.

(6) If FY ,D|Z (y,1 | 1) = FY ,D|Z (y,1 | 0) < 1, then,

ρ(y) =−1, µ(y) =Φ−1
(
FY ,D|Z (y,1 | 1)

)
.

(7) Otherwise, µ(y) and ρ(y) are point identified as the solution in (µ,ρ) to (2.9). This solution

exists and is unique.

Proof. The identification of ν(z) follows from equalizing the marginals of FY ∗,D∗|Z with respect to

D∗ and the conditional LGR at D∗ = 0. Since ν(z) is identified, we shall use

Φ(ν(z)) = P(D = 1 | Z = z) and Φ̄(ν(z)) = P(D = 0 | Z = z), z ∈ {0,1},

to lighten the notation. We also recall the Frechet-Hoeffding bounds in our setting, as they will be

extensively used in the proof:

max[Φ(µ(y))− Φ̄(ν(z)),0]⩽Φ2(µ(y),ν(z);ρ(y))⩽min[Φ(µ(y)),Φ(ν(z))], z ∈ {0,1}, (FHB)

where the upper bound is only attained at ρ(y) = 1 and the lower bound at ρ(y) =−1.

Cases (1)–(2). We consider first the partially identified cases. In case (1),

Φ2(µ(y),ν(z);ρ(y)) = FY ,D|Z (y,1 | z)− Φ̄(ν(z)) =Φ(ν(z)), z ∈ {0,1},

implies that ρ(y) = 1 by the upper FHB. The identified set for µ(y) is obtained from

Φ(µ(y))⩾max[Φ(ν(0)),Φ(ν(1))] =Φ(ν(1))

by the upper FHB and Assumption 1(2). In case (2),

Φ2(µ(y),ν(z);ρ(y)) = FY ,D|Z (y,1 | z)− Φ̄(ν(z)) = 0, z ∈ {0,1},

implies that ρ(y) =−1 by the lower FHB. The identified set for µ(y) is obtained from

Φ(µ(y))⩽min[Φ̄(ν(0)),Φ̄(ν(1))] = Φ̄(ν(1))

by the lower FHB and Assumption 1(2).

In the rest of the proof we can assume that the conditions that define cases (1)–(2) do not hold.
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Cases (3)–(4). These boundary cases correspond to ρ(y) = 1. They are identifiable because ρ(y) = 1 if

and only if FY ,D|Z (y,1 | 1)− Φ̄(ν(1)) = FY ,D|Z (y,1 | 0)− Φ̄(ν(0)) or FY ,D|Z (y,1 | 0) = 1. The only if part

follows from the upper FHB and Assumption 1(2). Indeed, there are 2 cases depending on the values

of Φ(ν(0)) and Φ(µ(y)). If Φ(µ(y)) < Φ(ν(0)), then min[Φ(ν(z)),Φ(µ(y))] = Φ(µ(y)) for z ∈ {0,1} so that

FY ,D|Z (y,1 | 1)− Φ̄(ν(1)) = FY ,D|Z (y,1 | 0)− Φ̄(ν(0)). If Φ(ν(0))⩽Φ(µ(y)), then Φ2(µ(y),ν(0);1) =Φ(ν(0))

so that FY ,D|Z (y,1 | 0) = 1. For the case FY ,D|Z (y,1 | 1)− Φ̄(ν(1)) = FY ,D|Z (y,1 | 0)− Φ̄(ν(0)), the if part

follows because ν 7→ Φ2(·,ν;ρ) is strictly monotonic when ρ ∈ (−1,1) and ν(1) > ν(0) by Assumption

1(2) so thatΦ2(µ(y),ν(0);ρ(y)) ̸=Φ2(µ(y),ν(1);ρ(y)). This shows that ρ(y) ̸∈ (−1,1). Moreover, this case

is ruled out when ρ(y) = −1 by the lower FHB, FY ,D|Z (y,1 | 1) > Φ̄(ν(1)), and Assumption 1(2).25 The

case FY ,D|Z (y,1 | 0) = 1 implies that Φ2(µ(y),ν(0);ρ(y)) =Φ(ν(0)), which is only possible when ρ(y) = 1

by the upper FHB.

Now, we can analyze the identification ofµ(y) using the upper FHB. Case (3) corresponds to FY ,D|Z (y,1 |
z)− Φ̄(ν(z)) = Φ(µ(y)), z ∈ {0,1}, which identify µ(y). Case (4) corresponds to FY ,D|Z (y,1 | 0) = 1 and

FY ,D|Z (y,1 | 1)− Φ̄(ν(1)) =Φ(µ(y)). The second equation identifies µ(y).

Cases (5)–(6). These boundary cases correspond to ρ(y) =−1. They are identifiable because ρ(y) =−1

if and only if FY ,D|Z (y,1 | 0) = FY ,D|Z (y,1 | 1) or FY ,D|Z (y,1 | 0) = Φ̄(ν(0)). Symmetrically to ρ(y) = 1, the

only if part follows from the lower FHB and Assumption 1(2), whereas the if part for the case FY ,D|Z (y,1 |
0) = FY ,D|Z (y,1 | 1) follows from the upper FHB, strict monotonic of ν 7→ Φ2(·,ν;ρ) when ρ ∈ (−1,1),

and Assumption 1(2).26 The if part for FY ,D|Z (y,1 | 0) = Φ̄(ν(0)) follows because this case implies that

Φ2(µ(y),ν(0);ρ(y)) = 0, which is only possible when ρ(y) =−1 by the lower FHB.

Now, we can analyze the identification ofµ(y) using the lower FHB. Case (5) corresponds to FY ,D|Z (y,1 |
1) =Φ(µ(y)), which identifies µ(y). Case (6) corresponds to FY ,D|z (y,1 | z) =Φ(µ(y)), z ∈ {0,1}. Both of

these equations have the same solution that identifies µ(y).

Case (7). Finally, consider now the non-boundary case where ρ(y) ∈ (−1,1). The parameters µ(y) and

ρ(y) are identified as the solution in (µ,ρ) to (2.9). This nonlinear system of 2 equations has unique

solution under Assumption 1(2). This result follows from Theorem 4 of Gale and Nikaido (1965), af-

ter showing that the Jacobian of the system (2.9) is a P-matrix when ρ(y) ∈ (−1,1), which is what we

demonstrate in the remainder of the proof.

Let ∂µΦ2(µ,ν;ρ) = ∂Φ2(µ,ν;ρ)/∂µ and ∂ρΦ2(µ,ν;ρ) = ∂Φ2(µ,ν;ρ)/∂ρ. The Jacobian matrix of the

system,

J (µ(y),ρ(y)) =
(
∂µΦ2(µ(y),ν(1);ρ(y)) ∂ρΦ2(µ(y),ν(1);ρ(y))

∂µΦ2(µ(y),ν(0);ρ(y)) ∂ρΦ2(µ(y),ν(0);ρ(y))

)
,

25Note that in case (4), FY ,D|Z (y,1 | 1)−Φ̄(ν(1)) = max[Φ(µ(y))−Φ̄(ν(1)),0]⩾max[Φ(µ(y))−Φ̄(ν(0)),0] =Φ(ν(0)) > 0 when

ρ(y) =−1.
26Indeed, this result follows from a similar argument to the case FY ,D|Z (y,1 | 1)− Φ̄(ν(1)) = FY ,D|Z (y,1 | 0)− Φ̄(ν(0)) using

thatΦ2(µ(y),ν(z);ρ(y))+ Φ̄(ν(0)) =Φ2(−µ(y),ν(z);−ρ(y)).
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is a P-matrix for all µ(y) ∈R and ρ(y) ∈ (−1,1) because by the properties of the bivariate normal CDF:

∂µΦ2(µ(y),ν(1);ρ(y)) =Φ
(
ν(1)−ρ(y)µ(y)√

1−ρ(y)2

)
φ(µ(y)) > 0,

∂ρΦ2(µ(y),ν(0);ρ(y)) =φ2(µ(y),ν(0);ρ(y)) > 0,

and

det(J (µ(y),ρ(y))) =φ(µ(y))2 [
Φ

(
ν̃(1, y)

)
φ

(
ν̃(0, y)

)−Φ(
ν̃(0, y)

)
φ

(
ν̃(1, y)

)]> 0,

where ν̃(0, y) = [ν(0)−ρ(y)µ(y)]/
√

1−ρ(y)2 and ν̃(1, y) = [ν(1)−ρ(y)µ(y)]/
√

1−ρ(y)2. In the last result

we use that, by the properties of the normal distribution,

φ2(µ,ν;ρ) =φ
(
[ν−ρµ]/

√
1−ρ2

)
φ(µ)

and the inverse Mills ratio ν 7→λ(ν) :=φ(ν)/Φ(ν) is strictly decreasing in R, so that

Φ
(
ν̃(1, y)

)
φ

(
ν̃(0, y)

)−Φ(
ν̃(0, y)

)
φ

(
ν̃(1, y)

)> 0,

since ν̃(0, y) < ν̃(1, y). □

A.3. Proof of Theorem 2.2. Let D∗ = V − ν(Z ) and V | Z ∼ N (0,1) such that p(z) = FD∗|Z (0 | z) =
Φ(ν(z)).27 Note thatΦ−1(FY ∗(y)) =µ(y),Φ−1(FD∗|Z (0 | z)) = ν(z), and

Φ2(µ(y),ν(z); ρ̃(y,ν(z) | z)) = FY ∗,V |Z (y,ν(z) | z) = P(Y ∗⩽ y,V ⩽ ν(z) | Z = z)

= P(Y ∗⩽ y,D∗⩽ 0 | Z = z) = FY ∗,D∗|Z (y,0 | z) =Φ2(µ(y),ν(z);ρ(y | z)),

by definition of the LGR, such that ρ̃(y,ν(z) | z) = ρ(y | z) The result holds because ρ̃(y,ν(z) | z) = ρ(y) if

ρ(y | z) = ρ(y) and ρ(y | z) = ρ̃(y) if ρ̃(y,ν(z) | z) = ρ̃(y). □

A.4. Proof of Equivalence (2.10). Assume joint independence, (Y ∗,V ) ⊥⊥ Z . Then, ρ̃(y, v) = ρ̃(y) for all

v ∈ V0, where V0 is an open interval containing the support of ν(Z ), implies the single index property

because

P(Y ∗⩽ y |V = v) = (∂/∂v)FY ∗,V (y, v)

(∂/∂v)FV (v)
= (∂/∂v)Φ2(µ(y), v ; ρ̃(y))

(∂/∂v)Φ(v)
=Φ(

a(y)+b(y)v
)

,

for a(y) = µ(y)/
√

1− ρ̃(y)2 and b(y) = −ρ̃(y)/
√

1− ρ̃(y)2. Conversely, assuming that the index restric-

tion holds for all v ∈ V0, the partial differential equation

(∂/∂v)FY ∗,V (y, v) =Φ(
a(y)+b(y)v

)
(∂/∂v)Φ(v)

has a solution at the LGR, FY ∗,V (y, v) = Φ2
(
µ(y), v ; ρ̃(y)

)
, for all v ∈ V0, where µ(y) = a(y)/

√
1+b(y)2

and ρ̃(y) =−b(y)/
√

1+b(y)2. In both cases we use that V ∼ N (0,1).

27Note that any definition of D∗ that yields the same probability of D = 1 conditional on Z is observationally equivalent.

In particular, we can choose without loss of generality D∗ with continuous CDF.
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ABSTRACT. The supplementary material includes seven appendices. Appendices A–C contain deferred

discussions of Sections 2–4. They include properties of the LGR, comparison with AB17, identification

approaches with rich instruments, bound analysis with an example, models with homogeneous parame-

ters and an example of sign reversal in the selection effects. Appendices D and E contain the asymptotic

theory for the estimation and inference methods, and the corresponding proofs. Appendix F reports the

results of a Monte Carlo simulation calibrated to the empirical application. Appendix G shows additional

results of the empirical application. They include descriptive statistics and background on the U.K. la-

bor market, a model of offered and reservation wages, estimates of the coefficients of the employment

(selection) equation, estimates and 95% confidence intervals for the coefficients of the wage equation, es-

timates and 95% confidence intervals for the sorting equation not reported in the main text, estimates and

95% confidence intervals for the decomposition of the employment rate, estimates and 95% confidence

bands for the components of the wage decomposition of observed wages in the specification 4, estimates

and 95% confidence bands for the offered and observed wages and their decompositions for the specifica-

tions 1–3, and estimates and 95% confidence bands for the wage decomposition between first and second

half of the sample period for men and women in specification 2.
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APPENDIX A. DEFERRED DISCUSSIONS OF SECTION 2

A.1. Discussion of the LGR and Local Correlation. In the LGR, the marginal CDFs of Y ∗ and D∗ are

represented by local Gaussian links

FY ∗(y) =Φ(µ(y)), FD∗(d) =Φ(ν(d)),

and the copula of Y ∗ and D∗ is represented by a local Gaussian copula

CY ∗,D∗(u, v) =Φ2(Φ−1(u),Φ−1(v);ρ(yu ,dv )),

∀(u, v) ∈ [0,1]2 : ∃yu ∈R : FY ∗(yu) = u, ∃dv ∈R : FD∗(dv ) = v.
(A.14)

Kolev, Anjos, and Mendes (2006) developed a closely related result to (A.14) for the copula. They

established that the copula of any bivariate distribution can be represented by the bivariate Gaussian

copula with a local correlation parameter. Like the copula, the LGR is convenient because it separates

µ(y) and ν(d) as two parameters determining the marginals of Y ∗ and D∗ from ρ(y,d) as a parameter

determining the dependence between Y ∗ and D∗. Unlike the copula, the arguments of the LGR are the

same as the arguments of the joint CDF and the domain of the LGR is therefore R2.

Here we present additional discussion of the local correlation ρ(y,d).1 In general, the sign of ρ(y,d)

determines the sign of the local dependence between Y ∗ and D∗ at (y,d) as measured by the covariance

between 1{Y ∗⩽ y} and 1{D∗⩽ d}.

Lemma A.1 (Correlation interpretation for ρ(y,d)). For (Y ∗,D∗) having LGR with local correlation pa-

rameter ρ(y,d), the map ρ(y,d) 7→ Cov(1{Y ∗⩽ y},1{D∗⩽ d}), mapping [−1,1] to the real line, is a strictly

increasing (hence bijective) function. Moreover, Cov(1{Y ∗ ⩽ y},1{D∗ ⩽ d}) and ρ(y,d) have the same

sign (positive, negative, or 0).

It follows that ρ(y,d) is positive (resp. negative) everywhere if and only if Y ∗ and D∗ are positively

(resp. negatively) quadrant dependent in the sense defined by (Lehmann, 1966). The local dependence

measure Cov(1{Y ∗ ⩽ y},1{D∗ ⩽ d}) is called Laplace covariance kernel by Dette, Hallin, Kley, and Vol-

gushev (2015).

When ρ(y,d) = ρ(y) we can further characterize the local dependence in terms of the normal scores

Y s :=Φ−1 (FY ∗(Y ∗)) and D s :=Φ−1 (FD∗(D∗)). Let FY s ,D s (y,d) =Φ2(µs(y),νs(d);ρs(y,d)) be the LGR of

the distribution of (Y s ,D s).

Lemma A.2 (Other Properties of ρ(y,d)). If ρ(y,d) = ρ(y) and d 7→ FD∗(d) is continuous on R,

ρs(y) =−Cov(1{Y s ⩽µs(y)},D s)

φ(µs(y))
,

where Cov(Y s ,D s) = E[ρs(Y s)], provided that Cov(Y s ,D s) exists, where µs(y) = sup{y∗ ∈ R : FY ∗(y∗)⩽

Φ(y)}, and ρs(y) = ρ(y∗) for y∗ such that FY ∗(y∗) =Φ(µs(y)).

1The parameter ρ(y,d) is the tetrachoric correlation coefficient between {Y ∗⩽ y} and {D∗⩽ d} (Pearson, 1900).
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Note that for the points y in the support of Y s , ρs(y) =−Cov(1{Y s ⩽ y},D s)/φ(y). Lemma A.2 there-

fore characterizes ρs(y), and therefore also ρ(y), as a measure of local dependence between Y s and D s .

It also shows that the covariance between these normal scores, a measure of global dependence, can be

expressed as the average of the local dependence parameter. The case considered with ρ(y,d) = ρ(y)

and continuous D∗ is relevant for the discussion of the sample selection problem in Section 2.3.

A.2. Comparison with AB17. We compare our identification conditions with AB17. We start by restat-

ing AB17 assumptions in terms of the LGR of the joint distribution of (Y ∗,V ). In addition to Assumption

1(1)–(3), AB17 assumed that (i) (Y ∗,V ) are jointly independent of Z , (ii) v 7→ ρ̃(y, v) is real analytic on

the unit interval, (iii) the support of p(Z ) contains an open interval, and (iv) y 7→ FY ∗(y) is continuous

and strictly increasing.2 Assumption 1 neither implies nor is implied by conditions (i)–(iv). Thus, condi-

tion (iii) requires Z to have continuous variation and is therefore more restrictive than our assumption

that Z can be binary. Unlike (iv), we do not require the CDF of Y ∗ to be continuous. Our identification

result applies to discrete and mixed outcomes. However, under condition (i), Theorem 2.2 shows that

selection exclusion requires that v 7→ ρ̃(y, v) is constant, which is stronger than (ii). In other words, we

impose stronger restrictions in the dependence between the latent outcome and unobserved selection

ranking, but require less variation in the excluded covariate Z and outcome Y ∗.

More specifically, let p(z) = P(D = 1 | Z = z) and V = FD∗|Z (D∗ | Z ) such that V | Z ∼U (0,1).3 AB17

assumed that (i) (Y ∗,V ) are jointly independent of Z , (ii) v 7→ CY ∗,V (·, v) is real analytic on the unit

interval, where CY ∗,V is the copula of (Y ∗,V ), and (iii) the support of p(Z ) contains an open interval.

We now show that our selection sorting exclusion neither implies nor is implied by conditions (i) and

(ii). Selection sorting exclusion implies that for any u ∈ [0,1] that satisfies FY ∗(yu) = u for some yu ,

CY ∗,V |Z (u, p(z) | z) =CY ∗,D∗|Z (u, p(z) | z) =Φ2(Φ−1(u),Φ−1(p(z));ρ(yu ,0)) =CY ∗,V (u, p(z)),

since p(z) = FD∗|Z (0 | z). This implication is weaker than condition (i) but it suffices for the identifica-

tion argument in AB17. However, it only guarantees that v 7→CY ∗,V (·, v) is real analytic on the support

of p(Z ).4 Therefore, we conclude that selection exclusion implies conditions (i) and (ii) only if the sup-

port of p(Z ) is the unit interval. To verify that the converse is also not true, note that the LGR of (Y ∗,V )

conditional on Z under condition (i) is

FY ∗,V |Z (y, v | z) =Φ2(µ̃(y), ν̃(v); ρ̃(y, v)).

This, together with µ̃(y) =µ(y) and ν̃(p(z)) = ν(z), imply that

FY ∗,D∗|Z (y,0 | z) =Φ2(µ̃(y), ν̃(p(z)); ρ̃(y, p(z))) =Φ2(µ(y),ν(z); ρ̃(y, p(z))),

2Heckman and Singer (1984) also exploited a real analyticity assumption to solve a censoring problem in duration analysis.
3We assume that D∗ is absolutely continuous with strictly increasing distribution. This assumption is without loss of

generality because the distribution of D∗ is only identified at D∗ = 0.
4Note that v 7→Φ2(·,Φ−1(v);ρ(·,0)) is a real analytic function.
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which satisfies the selection exclusion only if ρ̃(y, v) = ρ̃(y) for all v in the support of p(Z ), i.e. the local

dependence between Y ∗ and V does not vary with the value of V in this region. We finally note that

condition (i) together with ρ̃(y, v) = ρ̃(y) for all v in the unit interval imply condition (ii) because

CY ∗,V (·, v) =Φ2(·,Φ−1(v); ρ̃(·))

is a real analytic function with respect to v in the unit interval. Alternatively, condition (ii) is equivalent

to v 7→ ρ̃(·, v) being real analytic, which is weaker than ρ̃(y, v) = ρ̃(y).

A.3. Further Identification Results with Richer Instruments. Suppose that (Y ∗,V ) are jointly inde-

pendent of Z :

(Y ∗,V ) ⊥⊥ Z . (A.15)

This assumption implies that the sorting mechanism depends only on the instrumental values through

the propensity score

P(Y ∗⩽ y,D∗⩽ 0 | Z = z) = Φ2(µ(y),ν(z);ρ(y,ν(z))

= P(Y ∗⩽ y,D∗⩽ 0 | ν(Z ) = ν(z)), z ∈Z , (A.16)

where ν(z) is the transformed propensity scoreΦ−1(p(z)), and Z is the support of Z .

Using (A.16), the system of equations for the identification analysis can be written as:

R(y, v) := P(Y ∗⩽ y,D∗⩽ 0 | ν(Z ) = v) =Φ2(µ(y), v ;ρ(y, v)) v ∈ V , (A.17)

where V is the support of ν(Z ). Intuitively, if the propensity scores have enough variation, the equa-

tions above should contain identifying information. Still, considerable care is required to turn this

information into point identification and estimability.

Real Analyticity Approach. This approach imposes real-analyticity assumptions on v 7→ ρ(y, v) over R,

but avoids making parametric assumptions. Specifically, analyticity means that over each open neigh-

borhood the mapping can be represented by a convergent Taylor expansion around a point in that

neighborhood (Krantz and Parks, 2002, Def. 1.1.5). For example, a continuously infinite-differentiable

function with derivatives bounded by a common constant has this property. The key property of real

analytical functions is the continuation: knowing a function over an open region, implies we know the

function over entire R (Krantz and Parks, 2002, Cor. 1.2.6). Thus, intuitively, such assumption rules out

"wilder" forms of ρ(y, v) that cause identification failure and attain the agnostic Balke-Pearl bounds.5

Lemma A.3 (Identification Under Real Analyticity). Fix a value of y in what follows. Suppose that v 7→
ρ(y, v) is real analytic on R, mapping into [−1,+1]. Also assume that v 7→ ρ(y, v) can be continuously

5The Balke-Pearl bounds are attained by having ρ(y, v) vary between +1 or -1 over each small neigborhood of a given point

v0, to trace the smallest root and the maximal root as bounds for µ(y), then taking the smallest upper bound and taking the

largest lower bound across instrumental values v . Such oscillatory (and unreasonable) behavior of the sorting function ρ can

be ruled out by a variety of means, which underlie but don’t exhaust all of the point identification results in this paper.
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extended to R, and the propensity score variable p(Z ) is continuous on an open subinterval of (0,1).

Then the pair (µ(y),ρ(y, v)) are identified: µ(y) is identified at infinity as

µ(y) = lim
v→∞Φ

−1(R(y, v))

and ρ(v) is identified as the unique solution to R(y, v) =Φ2(µ(y), v,ρ(y, v)) for any v ∈ V .

The lemma above extends the argument in AB17 to the present LGR-based approach. The drawback

of the analyticity approach is its restrictive nature; for example, functions generated from finite spline

sieves are not real analytical. Moreover, identification does not immediately translate into estimability

due to the ill-conditioned nature of the analytical continuation, especially at "infinity" – see Trefethen

(2020) for further discussion. Imposing parametric functional forms on v 7→ ρ(y, v) provides neces-

sary regularization, as used, for example, in AB17 for estimation purposes.6 But once we make the

parametric assumptions, we can also get identification and estimability without requiring continuous

instruments and without relying on the identification at infinity arguments.

Semi-Parametric Approach. We assume that ρ(y, v) = ρ(y, v ;θ0(y)) for θ0(y) ∈Θ⊂ Rd , where ρ(y, v ;θ)

is a known function up to the parameter θ and Θ is a compact region with non-empty open interior in

Rd ; and that the true value of ρ(y, v) is induced by some value θ0(y) in the interior ofΘ. Let

Ly (m, v ;θ) :=Φ2(m, v ;ρ(y, v ;θ)).

Moreover, we assume that θ 7→ ρ(y, v ;θ) is continuously differentiable at each v and y of interest. Define

the map

(m,θ) 7→ Ly (m,θ) := {
Ly (m, v ;θ), v ∈ V

}
,

where V is the support of ν(Z ), which we assume is a finite set. Define the Jacobian of this map as

JLy (m,θ). The first row of JLy (m,θ) is {(∂/∂m)Ly (m,θ)}′ and the (k + 1)-st row is {(∂/∂θk )Ly (m,θ)}′,
k = 1, . . . ,d , where θk is the kth component of θ.

We have the system of equations

R(y, v) = Ly (m, v ;θ), v ∈ V . (A.18)

We shall apply univalence results to deduce global and local identifiability.

To proceed, we assume that v 7→ ρ(y, v ;θ) is non-redundantly parameterized, namely, each set of

values of this function over the set V can only correspond to one value of θ. Define M as a compact

interval in R containing µ(y) in its interior.

Lemma A.4 (Identification with Discrete Instruments). Given the set-up in this subsection, assume that

V , the support of ν(Z ), is a finite set with cardinality |V | at least d + 1. Then the system of equations

(A.18) has the unique local solution at (m,θ) = (µ(y),θ0(y)) if the Jacobian JLy (µ(y),θ0(y)) has rank

d +1. Moreover, if Θ is rectangular and JLy (m,θ) is full rank and RJL(m,θ) is a P-matrix over M ×Θ,

for some (d +1)×|V | matrix R, then (µ(y),θ0(y)) are globally identified. More generally if Θ is a convex

6See Trefethen (2020) for making this point explicit through the use of polynomials.
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polyhedron or a set with C 1 boundary, with non-empty interior, and if the generalized P-matrix or pos-

itive quasi-definite matrix conditions of Mas-Colell (1979) in Theorem 1 and Theorem 2 are satisfied for

the projection matrix RJLy (m,θ) for some (d+1)×|V | matrix R, then (µ(y),θ0(y)) are globally identified.

Unlike Lemma A.3, Lemma A.4 requires only that the instrument and the induced propensity score

take on d +1 values, because it does not rely on extrapolation or identification at infinity (the paramet-

ric function needs to be only defined over V ). The conditions for identification above for d = 1 have

particularly interpretable form, leading to Theorem 2.1 in the main text.

Intuition. A simple geometrical insight that helps interpret the local identification conditions is that in

order for µ(y) to be a non-unique root locally, we need to be able to move the path of roots for m, mt ,

along a time axis with constant non-zero velocity c ̸= 0, that is ṁt = c, starting from m0 = µ(y). Since

we can rescale time, without loss of generality, set |c| = 1. Then, this move is feasible if we can find a

corresponding move θ̇t = δt that can implement mt = m0 + ct as a root, starting at θ0. In summary,

a path of local alternative solutions can be potentially generated by solving the following differential

equation system: for all t ∈ (0,ϵ)

mt (y) = m0 + ct , θt = θ0 +
∫ t

0
δsd s

such that

c = ṁt (y) = (∂/∂θ′t )Ly (mt , v ;θt )

(∂/∂mt )Ly (mt , v ;θt )
δt , ∀v ∈ V ,

and subject to the boundary conditions ρ(y, v ;θt ) ∈ [−1,1]. If this path exists, then we have non-

identification of µ(y). Otherwise, we have local identification of µ(y).

Since ϵ > 0 is arbitrary and the problem is smooth, it suffices to check local identification by just

examining the failure of local identification at the origin t = 0. If the instrument is not rich enough,

namely, the cardinality of V is smaller than d+1, a local path direction δ0 always exists. More generally,

δ0 exists if the matrix M with rows

(∂/∂θ′t )Ly (mt , v ;θt )

(∂/∂mt )Ly (mt , v ;θt )

∣∣∣∣
t=0

, v ∈ V ,

linearly spans the vector c1, where 1 is a vector of ones. If the spanning condition does not hold, δ0

does not exist, leading to local identification. For example, if d = 1, and the matrix M has two scalar

entries M1 ̸= M2 in its rows, then solving M1δ0 = c, M2δ0 = c for the same δ0 is impossible, yielding

local identification. This case corresponds to Theorem 2.1. This view of local identification is equiva-

lent to local identification based on the Jacobian JLy (µ(y),θ0) having full rank, but it is perhaps more

illuminating.
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A.4. Relaxing Selection Sorting Exclusion. We next consider replacing the selection sorting exclusion

with weaker conditions. While the key motivating semi-parametric example (1.3) easily meets the ex-

clusion restriction, we analyze how deviations from such structures can impact the identification re-

sults. This also helps us connect the results to the Balke-Pearl bounds that only rely on the outcome

exclusion. We provide additional theoretical discussions for motivating this investigation in Section 2.3

Assumption 2 (Relaxed Selection Restrictions). Suppose Assumption 1 (1)-(3) hold, namely non-degeneracy,

relevance, and outcome exclusion, and in addition either:

(5) r-Relaxed Selection Exclusion: |ρ(y | 0)−ρ(y | 1)|⩽ r for some 0 < r ⩽ 2; or

(6) Positive Selection: ρ(y | z)⩾ 0 for each z ∈ {0,1}.

The first condition allows the strength of selection to respond to Z , but in a limited fashion governed

by the parameter r . As r varies from 0 to 2, we can trace a nested sequence of identification regions,

starting with a point and ending with the Balke-Pearl bounds resulting from outcome exclusion.

The second condition restricts the sign of the implied correlation to be positive (the sign in this

condition can be reversed by changing the sign of outcome). This also leads to tighter bounds relative

to the case with just outcome exclusion. It is useful to note that the implied correlation is positive,

ρ(y) > 0, if and only if 1(Y ∗ > y) and 1(D∗ > 0) are positively correlated for all y . In the context of labor

supply, this condition means that there is positive sorting into employment throughout the offered

wage distribution. Therefore, the positivity condition has a rather natural interpretation in terms of

intrinsic economic quantities.

With this relaxed condition, we work with the two equations:

P(Y ⩽ y,D = 1 | Z = z) =Φ2(µ,Φ−1 (P(D = 1 | Z = z)) ;ρz ), z ∈ {0,1}, (A.19)

that share one unknown µ, and each has its own unknown ρz . The following statement is straightfor-

ward, but we record it formally nonetheless. In the statement we let the parameter (µ,ρ0,ρ1) range over

the parameter set R× [−1,1]× [−1,1].

Theorem A.1 (Identification under Assumption 2). Let Sz = {(µz ,ρz )} denote all solutions to equation

(A.19) for z = 0 and z = 1. Each Sz is not empty, and, restricted to the non-degenerate case ρ2
z < 1, is a one-

dimensional manifold. Under outcome exclusion, the identification region for (µ(y),ρ(y | 0),ρ(y | 1)) is

R0 = {(µ,ρ0,ρ1) : (µ,ρz ) ∈ Sz , for each z ∈ {0,1}}. Under outcome exclusion and the relaxed selection, the

identification region is R0(r ) = R0 ∩ {(µ,ρ0,ρ1) : |ρ0 −ρ1| ⩽ r }. Under outcome exclusion and positive

selection, the region is R+
0 = R0 ∩ {(µ,ρ0,ρ1) : min(ρ0,ρ1) ⩾ 0}. The identification regions for µ(y) are

given by applying the projection operator π1 taken with respect to the first coordinate: this gives regions

π1R0, π1R1(r ), and π1R+
0 , respectively.

We observe that that the identification region π1R0 is (equivalent to) the Balke-Pearl bound. The

regions R1(r ) and R+
0 tighten the bounds: by construction, these sets are weakly smaller than R0, and
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the example below demonstrates they can be much smaller. In fact, R1(r ) converges to a singleton as

r ↘ 0. We can also intersect the two sets if both forms of relaxation are assumed to hold.
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FIGURE 1. Illustration of identification analysis via exclusion restrictions.

Notes. The curves represent solutions in (µ,ρ) to Φ2(0, z;0.5) =Φ2(µ, z;ρ) for z ∈ {0,1}. The point identifi-

cation µ(0) = 0 occurs at the intersection of the curves. The left panel also demonstrates the construction

of identified sets for µ(0) when the selection exclusion is removed ( [BPl ,BPu ]) or replaced by positive

sorting ( [BPl ,BP+]). The right panel demonstrates the construction of identified sets when the selection

takes the relaxed form of Assumption 2(5).

A.5. The role of selection exclusions and their relaxed forms in identification. We illustrate the role

of exclusion restrictions or their relaxed versions, we consider a simple example.7 Assume that Y ∗ is

binary with Y ∗ = 1{U > 0}, D = 1{V ⩽ Z }, (U ,V ) are standard bivariate normal with parameter ρ = 0.5,

P(D = 1 | Z = z) = Φ(z) and P(Z = 1) = 1/2. The distribution of Y ∗ is fully characterized by FY ∗(0) =
P(Y ∗ = 0) or equivalently by µ(0) =Φ−1 (FY ∗(0)). In what follows, none of the bounds to be constructed

make use of the parametric distribution of Y ∗ and D , other than to compute P(Y ∗⩽ 0,D = 1 | Z = z).

Figure 1 plots the solutions in (µ,ρ) to (2.9) at y = 0 for each value of z without imposing any ex-

clusion restriction, together with bounds for µ(0) after sequentially imposing exclusion restrictions. In

the right panel, the solid and dashed curves are the solutions in (µ,ρ) to Φ2(0, z;0.5) = Φ2(µ, z;ρ) for

7This example is inspired by an example graciously provided to us by one of the referees.
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z ∈ {0,1}, respectively. The horizontal lines indicate the construction of bounds on µ(0) by projection.

Without imposing any exclusion restriction the identified set is [Ml , Mu] = [−.25, .61]. This set is ob-

tained as the mean of the maximum/minimum of the curves (Manski, 1990). When we impose the

outcome exclusion we obtain the identified set π1R0 = [BPl ,BPu] = [−.08, .32]. This set is obtained as

the minimum/maximum of the maximum/minimum of the curves (Balke and Pearl, 1994). When we

impose both outcome and exclusion restrictions, we obtain π1R1(0) = {µ(0)} = {0} as the identified set;

that is, we point-identify the parameter value µ(0). Graphically, we obtain this set by intersecting the

two curves and projecting the intersection point on the vertical axis.

In the left panel, we also show how the positive selection restriction in Assumption 2(6) helps tighten

the bound. Indeed, the resulting identified setπ1R+
0 is [BPl ,BP+] = [−.08, .14], which is tighter than the

Balke-Pearl set π1R0. Finally, the right panel shows bounds imposing the relaxed selection restriction

in Assumption 2(5) for r ∈ {0, .05, .10, .20}. The resulting identified sets are π1R1(0) = {0}, π1R1(.05) =
[−.02, .02], π1R1(.10) = [−.03, .04], and π1R1(.20) = [−.06, .08]. The set π1R0 can be obtained by setting r

sufficiently large (in particular, r = 1.13 is sufficient).

A.6. Proof of Lemma A.1. We have that

Cov(1{Y ∗⩽ y},1{D∗⩽ d}) =Φ2(µ(y),ν(d);ρ(y,d))−Φ(µ(y))Φ(ν(d))

=Φ2(µ(y),ν(d);ρ(y,d))−Φ2(µ(y),ν(d);0),

and ρ 7→Φ2(·, ·;ρ) is strictly increasing. The conclusion about signs follows. □

A.7. Proof of Lemma A.2. We start by characterizing the marginal and joint CDFs of Y s =Φ−1 (FY ∗(Y ∗))

and D s =Φ−1 (FD∗(D∗)). Since d 7→ FD∗(d) is continuous, FD∗(D∗) ∼U (0,1) by the probability integral

transform. Hence,

FD s (d) = P(FD∗(D∗)⩽Φ(d)) =Φ(d).

Let Y s = {y ∈R :Φ(y) = FY ∗(y∗) for some y∗ ∈R} be the support of Y s . For any y ∈Y s ,

FY s (y) = P(Φ−1 (
FY ∗(Y ∗)

)
⩽Φ−1 (

FY ∗(y∗)
)
) = FY ∗(y∗) =Φ(y).

The CDF extends to all y ∈R by

FY s (y) = FY s (µs(y)) =Φ(µs(y)), µs(y) = sup{y∗ ∈R : FY ∗(y∗)⩽Φ(y)}.

Hence, the LGR of the distribution of (Y s ,D s) is

FY s ,D s (y,d) =Φ2(µs(y),d ;ρs(y,d)),

where ρs(y,d) = ρs(µs(y),d) because FY s ,D s (y,d) = FY s ,D s (µs(y),d).

Next, we show that for any integrable random variable X and random variable Z ,

Cov(1{Z ⩽ z}, X ) =−
∫ ∞

−∞
[FX ,Z (x, z)−FX (x)FZ (z)]dx (A.20)
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and

Cov(Z , X ) =−
∫ ∞

−∞
Cov(1{Z ⩽ z}, X )dz. (A.21)

Given (A.20), (A.21) follows from Höffding (1940) and Lehmann (1966). To show (A.20), let (X1, Z1) and

(X2, Z2) be two independent copies of (X , Z ). Then,

Cov(1{Z ⩽ z}, X ) = 1

2
E[(1{Z1⩽ z}−1{Z2⩽ z})(X1 −X2)].

The result follows from X1 −X2 =
∫ ∞
−∞[1{X2⩽ x}−1{X1⩽ x}]dx and interchanging the expectation and

integral.

Finally, the results follow from applying (A.20) and (A.21) to X = D s and Z = Y s , together with

ρs(y,d) = ρs(y) because ρ(y,d) = ρ(y) by assumption and

Φ2(µs(y),d ;ρs(y,d)) = FY s ,D s (y,d) = FY s ,D s (µs(y),d) = FY ∗,D∗(y∗,d∗)

=Φ2(µ(y∗),ν(d∗);ρ(y∗,d∗)) =Φ2(µs(y),d ;ρ(y∗,d∗)),

where y∗ and d∗ are the solution to FY ∗(y∗) =Φ(µs(y)) and FD∗(d∗) =Φ(d). Indeed, by (A.20),

Cov(1{Y s ⩽ y},D s) =−
∫ ∞

−∞
[Φ2(µs(y),d ;ρs(µs(y)))−Φ2(µs(y),d ;0)]dd

=−
∫ ∞

−∞

∫ ρs (µs (y))

0
φ2(µs(y),d ;r )dr dd =−ρs(µs(y))φ(µs(y)),

byΦ2(µs(y),d ;0) =Φ(µs(y))Φ(d), φ2(·, ·;r ) = ∂Φ2(·, ·;r )/∂r (Sibuya, 1959; Sungur, 1990), and∫ ∞

−∞
φ2(µs(y),d ;r )dd =φ(µs(y))

after interchanging the order of the integrals. Then, by (A.21),

Cov(Y s ,D s) =
∫ ∞

−∞
ρs(µs(y))φ(µs(y))dy =

∫ ∞

−∞
ρs(y)dFY s (y) = E[ρs(Y s)].

□

A.8. Proof of Lemma A.3. The result is immediate from y 7→ R(y, v) being real analytical on R, which

pins down its value on the entire R via analytical continuation (Krantz and Parks, 2002, cor. 1.2.6),

including the limit value which exists by assumption. This gives the identification of µ(y) and the iden-

tification of ρ(y, v) follows using the same argument as in the proof of Lemma 2.1. □

A.9. Proof of Lemma A.4. The local identification result is an immediate consequence of Rothenm-

berg (Rothenberg, 1971), and the global result follows from Mas-Colell (1979), Theorem 1 or Theorem

2. □

A.10. Proof of Theorem A.1. The sets S0 and S1 are not empty by Lemma 2.1 applied to the conditional

CDFs FY ∗,D∗|Z (y,0 | z), z ∈ {0,1}. They are one-dimensional manifolds by the implicit function theorem,

because (µ,ρ) 7→Φ2(µ,Φ−1 (P(D = 1 | Z = z)) ;ρ)−P(Y ⩽ y,D = 1 | Z = z) is continuously differentiable

and surjective for z ∈ {0,1}. The rest of the claims follow by definition. □
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APPENDIX B. DEFERRED DISCUSSIONS OF SECTION 3

Remark B.1 (Homogeneous parameters). One important case arises when some of the components

of β(y) do not vary with y . This case is related with homogeneity on quantile effects with respect to

the covariates and quantile index. Assume that y 7→ Φ(−x ′β(y)) is one-to-one with inverse (quantile)

function u 7→ QY ∗(u | x) . Then, Φ(−x ′β(y)) = Φ(−x ′
1β1(y)− x ′

2β2) for all y ∈ R if and only if ∂QỸ ∗(u |
x)/∂x2 =β2 for all u ∈ [0,1], where QỸ ∗(u | x) is the u-quantile of Ỹ ∗ =−X ′

1β1(Y ) conditional on X = x.

The only if part follows from P(Ỹ ∗⩽ ỹ | X = x) =Φ(ỹ−x ′
2β2) asΦ(−X ′

1β1(Y )−X ′
2β2) | X ∼U (0,1), so that

QỸ ∗(u | x) = Φ−1(u)+ x ′
2β2. The if part follows from QỸ ∗(u | x) = x ′

2β2 +Φ−1(u), so that P(Y ⩽ y | X =
x) = P(Ỹ ∗ ⩽ −X ′

1β1(y) | X = x) =Φ(−x ′
1β1(y)− x ′

2β2). For example, when X1 only includes a constant,

then the DR model corresponds to the transformation model −β1(Y ) = X ′
2β2 +Φ−1(U ), U | X ∼U (0,1),

where the covariates X2 have homogeneous effects on the quantiles of −β1(Y ). The HSM is a special

case of the transformation model with y 7→ −β1(y) being linear. □

APPENDIX C. DEFERRED DISCUSSIONS OF SECTIONS 4

Example C.1 (Sign Reversal in Selection Effects). The sign of the selection effects might be different in

the presence of covariates if the parameter variation changes the composition of the selected popula-

tion. Consider the following simple example with only one covariate based on the wage application.

Let the covariate be an indicator for high skills. Assume that high-skilled workers are relatively more

likely to participate than low-skilled workers, there is no selection sorting on unobservables, which cor-

responds to ρ(x ′δ(y)) = 0 in the model, and the distribution of offered wages for high-skilled workers

first-order stochastically dominates the same distribution for low-skilled workers. In this case increas-

ing the probability of participation for high-skilled workers, which corresponds to increasing the com-

ponent of π associated with the high-skill indicator in the model, both increases the overall probability

of participation and shifts the distribution of observed wages to the right (increases quantiles), despite

the lack of selection sorting. Intuitively, the distribution of observed wages is a mixture of the distri-

bution of wages for employed high-skilled and low-skilled workers, and we are increasing the relative

proportion of employed high-skilled workers. The opposite holds if the distribution of offered wages

for high-skilled workers is first-order stochastically dominated by the same distribution for low-skilled

workers. □

APPENDIX D. ASYMPTOTIC THEORY

We derive asymptotic theory for the estimators of the model parameters and functionals of interest.

D.1. Limit distributions. We first introduce some notation that is useful to state the assumptions that

we make to derive the limit distribution of the estimators. Let S̃1 := ∂πL1(π) and S̃2y := ∂θy L2(θy ,π) be

the scores of the first and second steps in Algorithm 3.1 evaluated at the true parameter values, and
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H1 := E[∂ππ′L1(π)] and H2y := E
[
∂θyθy L2(θy ,π)

]
be the corresponding expected Hessians. Let

Σθyθỹ := H−1
2y

{
nE

[
S̃2y S̃′

2ỹ

]
− J21y H−1

1 J ′21ỹ

}
H−1

2ỹ , (D.22)

where J21y := E
[
∂θyπ′L2(θy ,π)

]
, dπ := dimπ, and dθ := dimθy .

Assumption 3 (DR Estimator with Sample Selection). (1) Random sampling: {(D∗
i ,Y ∗

i , Zi )}n
i=1 is a se-

quence of independent and identically distributed copies of (D∗,Y ∗, Z ). We observe D = 1(D∗ > 0) and

Y = Y ∗ if D = 1. (2) Model: the distribution of (D∗,Y ∗) conditional on Z follows the DR model (3.11). (3)

The support of Z , Z , is a compact set. (4) The set Y is either finite or a bounded interval. In the second

case, the density function of Y conditional on X and D = 1, fY |X ,D (y | x,1), exists, is uniformly bounded

above, and is uniformly continuous in (y, x) on Y ×X1, where X1 is the support of X conditional on

D = 1. (5) Identification and non-degeneracy: the equations E[∂πL1(π̃)] = 0 and E[∂θy L2(θ̃y , π̃)] = 0 posses

a unique solution at (π̃, θ̃y ) = (π,θy ) that lies in the interior of a compact setΠ×Θ⊂Rdπ+dθ for all y ∈Y ;

and the matrices H1, H2y and Σθyθy are nonsingular for each y ∈Y .

Part (1) is a standard condition about the sampling and selection process, which is designed for cross

sectional data. Part (2) imposes the semi-parametric DR model on the LGR of the conditional distri-

bution of (D∗,Y ∗) at d = 0. Part (3) imposes some compactness conditions, which can be generalized

at the cost of more complicated proofs. Part (4) covers continuous, discrete and mixed continuous-

discrete outcomes. Part (5) imposes directly identification and that the variance-covariance matrix of

the first-step estimator and the covariance function of the second-step estimator are well-behaved.

Note that H1, H2y and J21y are finite by Part (3). More primitive conditions for part (5) can be found in

the conditional maximum likelihood literature, e.g., Newey and McFadden (1986).

The main result of this section is a functional central limit theorem for θ̂y . Let ℓ∞(Y ) be the set of

bounded functions on Y , and⇝ denote weak convergence (in distribution).

Theorem D.1 (FCLT for θ̂y ). Under Assumption 3,

p
n(π̂−π) =−H−1

1 S̃1 +oP (1)⇝ Zπ ∼N (0,−H−1
1 ), in Rdπ

and
p

n(θ̂y −θy ) =−H−1
2y

p
n

(
S̃2y − J21y H−1

1 S̃1
)+oP (1)⇝ Zθy in ℓ∞(Y )dθ ,

where y 7→ Zθy is a zero-mean Gaussian process with uniformly continuous sample paths and covariance

function Σθyθỹ , y, ỹ ∈Y , defined in (D.22).

Remark D.1 (Comparison with Chernozhukov, Fernández-Val, and Melly (2013)). The asymptotic dis-

tribution in Theorem D.1 for θ̂(y) does not follow from the theory of Chernozhukov, Fernández-Val,

and Melly (2013) for DR-estimators without sample selection. This theory does not cover two-step M-

estimators with an objective function that is not concave. We rely on compactness of the parameter

space instead of concavity. □
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The first order term in the limit of
p

n(θ̂y −θy ) is the sample average of the influence function of θ̂y .

We construct an estimator of the covariance function Σθyθỹ based on this function. Thus, we form

Σ̂θyθỹ = n−2
n∑

i=1
ψ̂i (θ̂y , π̂)ψ̂i (θ̂ỹ , π̂)′. (D.23)

Here, ψ̂i is an estimator of the influence function of θ̂y ,

ψ̂i (t ,c) =−Ĥ2y (t ,c)−1 (
S2yi (t ,c)− Ĵ21y (t ,c)Ĥ1(c)−1S1i (c)

)
, (D.24)

where S1i (c) and S2i y (t ,c) are the individual scores of the first and second steps of Algorithm 3.1,

S1i (c) := ∂c L1i (c), L1i (c) := Di logΦ(Z ′
i c)+ (1−Di ) logΦ(−Z ′

i c),

S2yi (t ,c) := ∂t L2yi (t ,c), t = (b,d)

L2yi (t ,c) := Di
[
Iyi logΦ2

(−X ′
i b, Z ′

i c;−ρ(x ′d)
)+ (1− Iyi ) logΦ2

(
X ′

i b, Z ′
i c;ρ(x ′d)

)]
,

and

Ĥ1(c) := ∂cc ′L1(c), Ĥ2y (t ,c) := ∂t t ′L2(t ,c), Ĵ21y (t ,c) := ∂tc ′L2(t ,c),

are estimators of H1, H2y , and J21y when evaluated at c = π̂ and t = θ̂y .

We now establish a functional central limit theorem for the estimators of functionals of the model

parameters. This result is based on expressing the functional as a suitable operator of the model pa-

rameters and using the functional delta method (van der Vaart and Wellner, 1996, Chapter 3.9). To

present the result in a concise manner, we consider a generic functional

u 7→∆u =ϕu(π,θ·,FZ ),

where u ∈ U , a totally bounded metric space, and ϕu is an operator that maps D∆ to the set ℓ∞(U ),

where ∆· takes values. Here D∆ denotes the space for the parameter tuple (π,θ·,FZ ); this space is not

stated here explicitly, but is restricted by the regularity conditions of the previous section. Here we iden-

tify FZ with an integral operator f 7→ ∫
f (z)dFZ (z) taking values in ℓ∞(F ) that acts on a Donsker set

of bounded measurable functions F , which includes indicators of rectangular sets; see Chernozhukov,

Fernández-Val, and Melly (2013) and examples below. The parameter space D∆ is a subset of a normed

space D :=Rdπ ×ℓ∞(Y )dθ ×ℓ∞(F ). In this notation, the plug-in estimator of the functional ∆u is

∆̂u =ϕu(π̂, θ̂y , F̂Z ),

where π̂ and θ̂y are the estimators of the parameters defined in Algorithm 3.1 and F̂Z is the empirical

distribution of Z .

We provide some examples. The distribution of the latent outcome is given by:

FY ∗(y) =ϕy (π,θy ,FZ ) =
∫
Φ(−x ′βy )dFZ (z),
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F contains {Φ(− ·′ βy ) : y ∈ Y } as well as the indicators of all rectangles in R
dz , R := R∪ {−∞,+∞},

dz = dim Z , and U =Y . The quantile function of the latent outcome is

QY ∗(τ) =ϕτ(π,θy ,FZ ) = QτRFY ∗ ,

F is the same as for the distribution of the latent outcome, U is a closed subset of (0,1) including the

quantile indexes of interest, R is the non-decreasing rearrangement operator, and Qτ is the left-inverse

(quantile) operator. The distribution of the observed outcome is given by:

FY (y | D = 1) =ϕy (π,θy ,FZ ) =
∫
Φ2

(−x ′β(y), z ′π;−ρ(x ′δ(y))
)

dFZ (z)∫
Φ(z ′π)dFZ (z)

,

F contains {Φ2
(−·′β(y), ·′π;−ρ(·′δ(y))

)
: y ∈ Y } as well as the indicators of all rectangles in R

dz , and

U =Y .

The following result is a corollary of Theorem D.1 by the functional delta method. Let UC (Y ,ξ) be

the set of functions on Y that are uniformly continuous with respect to ξ, a standard metric on R,

and UC (F ,λ) be the set of functionals on F that are uniformly continuous with respect to λ, where

λ( f , f̃ ) = [P( f − f̃ )2]1/2 for any f , f̃ ∈F .

Corollary D.1 (FCLT for ∆̂u). Suppose that Assumption 3 holds, and (p, ty ,F ) 7→ϕ·(p, ty ,F ), fromD∆ ⊂D
to ℓ∞(U ) is Hadamard differentiable at (π,θy ,FZ ), tangentially to Rdπ ×UC (Y ,ξ)dθ ×UC (F ,λ) with

derivative (p, ty ,F ) 7→ϕ′·(p, ty ,F ) that is defined and continuous on Rdπ ×ℓ∞(Y )dθ ×ℓ∞(F ). Then,
p

n(∆̂u −∆u)⇝ Z∆u :=ϕ′
u(Zπ, Zθy , ZF ) in ℓ∞(U ),

where Zπ and Zθy are the random limits in Theorem D.1, ZF is a tight FZ -Brownian bridge, and u 7→ Z∆u

is a tight zero-mean Gaussian process.

Remark D.2 (Hadamard Differentiable Functionals). The distributions of the latent and observed out-

come together with counterfactual distributions constructed thereof are examples of Hadamard differ-

entiable functions. In the case of the latent outcome, the result follows from the Hadamard differentia-

bility of the counterfactual operator in Chernozhukov, Fernández-Val, and Melly (2013). In the case of

the observed outcome, the result follows from the differentiability of the counterfactual operator and

the composition rule for Hadamard derivatives applied to the ratio of two functions. Quantile (left-

inverse) functionals of these distributions are Hadamard differentiable under additional conditions

that guarantee that the quantile operator is Hadamard differentiable. These include that the outcome

variable be continuous with density bounded above and away from zero (Chernozhukov, Fernández-

Val, and Galichon, 2010). Then the Hadamard differentiability of the quantile function follows from the

composition rule for Hadamard derivatives. □

Remark D.3 (Inference on Quantile Functions). There are two alternatives to construct confidence

bands for quantile functions. The first approach is the standard method based on characterizing the

limit distribution of the estimator of the quantile function using the delta method, which relies on the

Hadamard differentiability of the inverse operator. As we mention in Remark D.2, this differentiability
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requires additional conditions including that the outcome variable be continuous. The second ap-

proach applies to any type of outcome variable. It is based on the generic method of Chernozhukov,

Fernández-Val, Melly, and Wüthrich (2016) that inverts confidence bands for distribution functions

into confidence bands for quantile function. This method does not rely on the delta method and is

therefore more robust to modeling assumptions and widely applicable. It has the shortcoming, how-

ever, that the bands might not be centered at the point estimate of the quantile function. We apply the

second method to obtain most of the results in the empirical application. □

D.2. Multiplier Bootstrap. We make the following assumption about the bootstrap multipliers of Al-

gorithm 3.2:

Assumption 4 (Multiplier Bootstrap). The multipliers (ω1, ...,ωn) are i.i.d. draws from a random vari-

able ω∼N (0,1), and are independent of {(D∗
i ,Y ∗

i , Zi )}n
i=1 for all n.

Let

θ̂b
y = θ̂y +n−1

n∑
i=1

ωi ψ̂i (θ̂y , π̂)

be the multiplier bootstrap version of θ̂y . We establish a functional central limit theorem for the boot-

strap for θ̂y . Here we use⇝P to denote bootstrap consistency, i.e. weak convergence conditional on

the data in probability, which is formally defined in Appendix E.1.

Theorem D.2 (Bootstrap FCLT for θ̂y ). Under the conditions of Theorem D.1 and Assumption 4,

p
n(θ̂b

y − θ̂y )⇝P Zθy in ℓ∞(Y )dθ ,

where y 7→ Zθy is the same Gaussian process as in Theorem D.1.

The following result is a corollary of Theorem D.2 by the functional delta method for the bootstrap

(van der Vaart and Wellner, 1996, Chapter 3.9). Let ∆̂b
u = ϕu(π̂b , θ̂b

y , F̂ b
Z ), be the multiplier bootstrap

version of ∆̂u where

π̂b = π̂−n−1
n∑

i=1
ωi Ĥ1(π̂)−1S1i (π̂),

and F̂ b
Z is the weighted empirical distribution of Z that uses (1+ω1, . . . ,1+ωn) as sampling weights.

Corollary D.2 (Bootstrap FCLT for ∆̂u). Suppose that the conditions of Corollary D.1 and Assumption 4

hold. Then,
p

n(∆̂b
u − ∆̂u)⇝P Z∆u in ℓ∞(U ),

where Z∆u is the same process as in Corollary D.1.
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APPENDIX E. PROOFS OF SECTION D

E.1. Notation. We adopt the standard notation in the empirical process literature, e.g. van der Vaart

and Wellner (1996),

En[ f ] = En[ f (A)] = n−1
n∑

i=1
f (Ai ),

and

Gn[ f ] =Gn[ f (A)] = n−1/2
n∑

i=1
( f (Ai )−E[ f (A)]).

When the function f̂ is estimated, the notation should interpreted as:

Gn[ f̂ ] =Gn[ f ] | f = f̂ and E[ f̂ ] = E[ f ] | f = f̂ .

We also follow the notation and definitions in van der Vaart and Wellner (1996) of bootstrap consis-

tency. Let Dn denote the data vector and En be the vector of bootstrap weights. Consider the random

element Z b
n = Zn(Dn ,En) in a normed space Z. We say that the bootstrap law of Z b

n consistently esti-

mates the law of some tight random element Z and write Z b
n ⇝P Z in Z if

suph∈BL1(Z)

∣∣Ebh
(
Z b

n

)−Eh(Z )
∣∣→P∗ 0, (E.25)

where BL1(Z) denotes the space of functions with Lipschitz norm at most 1, Eb denotes the conditional

expectation with respect to En given the data Dn , and →P∗ denotes convergence in (outer) probability.

We use the Z -process framework described in Appendix E.1 of Chernozhukov, Fernández-Val, and

Melly (2013). To set-up the problem in terms of this framework, we need to introduce some notation.

Let W := (Z ,D,Y D) denote all the observed variables and ξy := (π′,θ′y )′ be a vector with the model

parameters of the first and second steps. Let

ϕy,ξ(W ) :=
[

S1,ξ(W )

S2y,ξ(W )

]
=

[ ∂ℓ1,ξ(W )
∂π

∂ℓ2y,ξ(W )
∂θy

]

where

ℓ1,ξ(W ) := D logΦ(Z ′π)+ (1−D) logΦ(−Z ′π),

ℓ2y,ξ(W ) := D[Iy logΦ2
(−X ′β(y), Z ′π;−ρ(X ′δ(y))

)+ (1− Iy ) logΦ2
(
X ′β(y), Z ′π;ρ(X ′δ(y))

)
],

be the scores of the first and second steps; and

J (y) = E

[
∂ϕy,ξ(W )

∂ξ′

]
=

[
H1 0

J21y H2y

]
(E.26)

be the expected Hessian evaluated at the true value of ξy . We provide more explicit expressions for the

score and expected Hessian in Appendix E.5. Note that

J−1(y) =
[

H−1
1 0

−H−1
1 J21y H−1

2y H−1
2y

]
(E.27)
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by the inverse of the partitioned inverse formula, and

E[ϕy,ξ(W )ϕỹ ,ξ(W )′] =
[

E[S1,ξ(W )S1,ξ(W )′] 0

0 E[S2y,ξ(W )S2ỹ ,ξ(W )′]

]
(E.28)

because E[S1,ξ(W )S2y,ξ(W )′] = 0 for all y ∈Y .

E.2. Auxiliary Results. We start by providing sufficient conditions that are useful to verify Condition

Z in Chernozhukov, Fernández-Val, and Melly (2013). They are an alternative to Lemma E.1 of Cher-

nozhukov, Fernández-Val, and Melly (2013), where we replace the requirement that the function ξ 7→
Ψ(ξ, y) := E[ϕy,ξ(W )] is the gradient of a convex function by compactness of the parameter space for ξy

and an identification condition.8

Lemma E.1 (Simple sufficient condition for Z). Suppose that Ξ is a compact subset of Rdξ , and Y is a

compact interval in R. Let I be an open set containing Y . Suppose that (a) Ψ : Ξ×I 7→ Rdξ is con-

tinuous, and ξ 7→Ψ(ξ, y) possesses a unique zero at ξy that is in the interior of Ξ for each y ∈ Y , (b) for

each y ∈ Y , Ψ(ξy , y) = 0, (c) ∂
∂(ξ′,y)Ψ(ξ, y) exists at (ξy , y) and is continuous at (ξy , y) for each y ∈ Y ,

and Ψ̇ξy ,y := ∂
∂ξ′Ψ(ξ, y)|ξy obeys infy∈Y inf∥h∥=1 ∥Ψ̇ξy ,y h∥ > c0 > 0. Then Condition Z of Chernozhukov,

Fernández-Val, and Melly (2013) holds and y 7→ ξy is continuously differentiable.

Proof of Lemma E.1. We restate the statement of Condition Z of Chernozhukov, Fernández-Val, and

Melly (2013) with our notation for the reader’s reference.

CONDITION Z. Let Y be a compact set of some metric space, and Ξ be an arbitrary subset of Rdξ .

Assume (i) for each y ∈ Y , Ψ(·, y) : Ξ 7→ Rdξ possesses a unique zero at ξy , and, for some δ > 0, N :=
∪y∈Y Bδ(ξy ) is a compact subset of Rdξ contained in Ξ, (ii) the inverse of Ψ(·, y) defined as Ψ−1(x, y) :=
{ξ ∈ Ξ : Ψ(ξ, y) = x} is continuous at x = 0 uniformly in y ∈ Y with respect to the Hausdorff distance,

(iii) there exists Ψ̇ξy ,y such that limt↘0 supy∈Y ,∥h∥=1 |t−1[Ψ(ξy + th, y)−Ψ(ξy , y)]− Ψ̇ξy ,y h| = 0, where

infy∈Y inf∥h∥=1 ∥Ψ̇ξy ,y h∥ > 0, and (iv) the maps y 7→ ξy and y 7→ Ψ̇ξy ,y are continuous.

The first part of Z(i) follows immediately from condition (a). The verifications of the second part of

Z(i), Z(iii) and Z(iv) are omitted because they follow by the same argument as in the proof of Lemma

E.1 of Chernozhukov, Fernández-Val, and Melly (2013).

To show Condition Z(ii), we need to verify that for any xt → 0 such that xt ∈Ψ(Ξ, y), we have that

dH (Ψ−1(xt , y),Ψ−1(0, y)) → 0, where dH is the Hausdorff distance, uniformly in y ∈Y . Suppose by con-

tradiction that this is not true, then there is (xt , yt ) with xt → 0 and yt ∈Y such that dH (Ψ−1(xt , yt ),Ψ−1(0, yt )) ̸→
0. By compactness of Y , we can select a further subsequence (xk , yk ) such that yk → y , where y ∈ Y .

We have thatΨ−1(0, y) = ξy is continuous in y ∈Y , so we must have

dH (Ψ−1(xk , yk ),Ψ−1(0, y)) ̸→ 0.

8We adapt the notation of Chernozhukov, Fernández-Val, and Melly (2013) to our problem by using y , Y , ξy , dξ and Ξ in

place of u, U , θ0(u), p, andΘ.
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Hence, by compactness ofΞ, there is a further subsequence ul ∈Ψ−1(xl , yl ) with ul → u inΞ, such that

u ̸=Ψ−1(0, y) = ξy , and such that xl =Ψ(ul , yl ) → 0. But, by continuity Ψ(ul , yl ) →Ψ(u, y) ̸= 0 since

u ̸=Ψ−1(0, y), yielding a contradiction. □

E.3. Proof of Theorem D.1. We only consider the case where Y is a compact interval of R. The case

where Y is a finite set is simpler. The proof follows the same steps as the proof of Theorem 5.2 of

Chernozhukov, Fernández-Val, and Melly (2013) for the DR-estimator without sample selection using

Lemma E.1 in place of Lemma E.1 of Chernozhukov, Fernández-Val, and Melly (2013). Let Ψ(ξ, y) =
P [ϕy,ξ] and Ψ̂(ξ, y) = Pn[ϕy,ξ], where Pn is the empirical measure and P is the corresponding proba-

bility measure. From the first order conditions, the two-step estimator obeys ξ̂y =φ(Ψ̂(·, y),0) for each

y ∈ Y , where φ is the Z -map defined in Appendix E.1 of Chernozhukov, Fernández-Val, and Melly

(2013). The random vector ξ̂y is the estimator of ξy = φ(Ψ(·, y),0) in the notation of this framework.

Then, by step 1 below,
p

n(Ψ̂−Ψ)⇝ ZΨ in ℓ∞(Y ×Rdξ)dξ , ZΨ(y,ξ) =Gϕy,ξ,

where dξ := dimξy , G is a P-Brownian bridge, and ZΨ has continuous paths a.s. Step 2 verifies the

conditions of Lemma E.1 for Ψ̇(ξy , y) = J (y), the Hessian matrix defined in (E.26), which also implies

that y 7→ ξy is continuously differentiable in the interval Y . Then, by Lemma E.2 of Chernozhukov,

Fernández-Val, and Melly (2013), the map φ is Hadamard differentiable with derivative map (ψ,0) 7→
−J−1ψ at (Ψ,0). Therefore, we can conclude by the functional delta method that

p
n(ξ̂y −ξy )⇝ Zξy :=−J−1(y)ZΨ(y,ξy ) in ℓ∞(Y )dξ , (E.29)

where y 7→ Zξy has continuous paths a.s.

Step 1 (Donskerness). We verify that G = {ϕy,ξ(W ) : (y,ξ) ∈ Y × Rdξ} is P-Donsker with a square-

integrable envelope. By inspection of the expression of ϕy,ξ(W ) = [S1,ξ(W )′,S2y,ξ(W )′]′ in Appendix

E.5, ϕy,ξ(W ) is a Lipschitz transformation of VC functions with Lipschitz coefficient bounded by c∥Z∥
for some constant c and envelope function c∥Z∥, which is square-integrable. Hence G is P-Donsker by

Example 19.9 in van der Vaart (1998).

Step 2 (Verification of the Conditions of Lemma E.1). Conditions (a) and (b) are immediate by Assump-

tion 3. To verify (c), note that for (ξ̃, ỹ) in the neighborhood of (ξy , y),

∂Ψ(ξ̃, ỹ)

∂(ξ̃′, ỹ)
= [J (ξ̃, ỹ),R(ξ̃, ỹ)],

where

R(ξ̃, ỹ) =−E


0

fY |Z ,D (ỹ | Z ,1)Φπ(Z )Φπ̃(Z )

[
G2,ξ̃(Z )

G3,ξ̃(Z )

]
⊗X

 ,

for ξ̃= (π̃′, β̃′, ρ̃′)′, and

J (ξ̃, ỹ) =
[

J11(ξ̃, ỹ) J12(ξ̃, ỹ)

J21(ξ̃, ỹ) J22(ξ̃, ỹ)

]
,
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for

J11(ξ̃, ỹ) = E
[
{g1(Z ′π̃)(D −Φπ̃(Z ))−G1(Z ′π̃)φ(Z ′π̃)}Z Z ′] ,

with g1(u) = dG1(u)/du; J12(ξ̃, ỹ) = 0;

J21(ξ̃, ỹ) = E

{
[Φπ(Z )Φν

2,ξ̃
(Z )−φ(Z ′π)Φ2,ξỹ (Z )]

[
G2,ξ̃(Z )

G3,ξ̃(Z )

]
⊗X Z ′

}

+E

(Φπ(Z )Φ2,ξ̃(Z )−Φπ̃(Z )Φ2,ξỹ (Z ))

 Gν
2,ξ̃

(Z )

ρ′(X ′δ̃)Gν
3,ξ̃

(Z )

⊗X Z ′
 ,

with Gν
j ,ξ̃

(Z ) :=Gν
j

(−X ′β̃, Z ′π̃;−ρ(X ′δ̃)
)

and Gν
j (µ,ν;ρ) = ∂G j (µ,ν;ρ)/∂ν for j ∈ {2,3}; and

J22(ξ̃, ỹ) =−E

Φπ(Z )

 Φ
µ

2,ξ̃
(Z )G2,ξ̃(Z ) Φ

ρ

2,ξ̃
(Z )G2,ξ̃(Z )

Φ
µ

2,ξ̃
(Z )ρ′(X ′δ̃)G3,ξ̃(Z ) Φ

ρ

2,ξ̃
(Z )ρ′(X ′δ̃)G3,ξ̃(Z )

⊗X X ′


+E

(Φπ(Z )Φ2,ξ̃(Z )−Φπ̃(Z )Φ2,ξỹ
(Z ))

 G
µ

2,ξ̃
(Z ) G

ρ

2,ξ̃
(Z )

ρ′(X ′δ̃)G
µ

3,ξ̃
(Z ) ρ′(X ′δ̃)2G

ρ

3,ξ̃
(Z )+ρ′′(X ′δ̃)G3,ξ̃(Z )

⊗X X ′
 ,

with Ga
j ,ξ̃

(Z ) := Ga
j

(−X ′β̃, Z ′π̃;−ρ(X ′δ̃)
)

and Ga
j (µ,ν;ρ) = ∂G j (µ,ν;ρ)/∂a for j ∈ {2,3} and a ∈ {µ,ρ}. In

the previous expressions we use some notation defined in Appendix E.5.

Both (ξ̃, ỹ) 7→ R(ξ̃, ỹ) and (ξ̃, ỹ) 7→ J (ξ̃, ỹ) are continuous at (ξy , y) for each y ∈ Y . The computation

above as well as the verification of the continuity follow from using the expressions of ϕy,ξ in Appen-

dix E.5, the dominated convergence theorem, and the following ingredients: (i) a.s. continuity of the

map (ξ̃, ỹ) 7→ ∂ϕỹ ,ξ̃(W )/∂ξ̃′, (ii) domination of ∥∂ϕy,ξ(W )/∂ξ′∥ by a square-integrable function ∥c Z∥ for

some constant c, (iii) a.s. continuity and uniform boundedness of the conditional density function

y 7→ fY |X ,D (y | X ,1) by Assumption 3, and (iv) G1(Z ′π̃), G2,ξ̃(Z ) and G3,ξ̃(Z ) being bounded uniformly

on ξ̃ ∈Rdξ , a.s. By assumption, J (y) = J (ξy , y) is positive-definite uniformly in y ∈Y .

The expressions of the limit processes given in the theorem follow by partitioning Zξy = (Z ′
π, Z ′

θy
)′

and using the expressions of J−1(y) and E[ϕy,ξ(W )ϕỹ ,ξ(W )′] given in (E.27) and (E.28). □

E.4. Proof of Theorem D.2. Let ξ̂b
y := (π̂b′

, θ̂b′
y )′. By definition of the multiplier bootstrap draw of the

estimator p
n(ξ̂b

y − ξ̂y ) =Gnω
bϕy,ξ̂ =Gnω

bϕy,ξ+ ry ,

where ωb ∼ N (0,1) independently of the data and ry :=Gnω
b(ϕy,ξ̂−ϕy,ξ). Then the result follows from

Gnω
bϕy,ξ⇝P Zξy in step 3 and ry⇝P 0 in step 4.

Step 3. Recall thatϕy,ξ is P-Donsker by step 1 of the proof of Theorem D.1. Then, by Eωb = 0, E(ωb)2 = 1

and the Conditional Multiplier Functional Central Limit Theorem (van der Vaart and Wellner, 1996,

Theorem 2.9.6),

Gnω
bϕy,ξ⇝P Zξy ,

where Zξy is the same limit process as in (E.29).
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Step 4. Note that ry ⇝ 0 because ϕy,ξ is P-Donsker and
p

n(ξ̂y − ξy ) = OP(1) uniformly in y ∈ Y by

Theorem D.1. To show that ry ⇝P 0, we use that this statement means that for any ϵ > 0, Eb1(∥ry∥2 >
ϵ) = oP(1) uniformly in y ∈Y . Then, the result follows by the Markov inequality and

EEb1(∥ry∥2 > ϵ) = P(∥ry∥2 > ϵ) = o(1),

uniformly in y ∈Y , where the latter holds by the Law of Iterated Expectations and ry⇝ 0.

□

E.5. Expressions of the Score and Expected Hessian.

E.6. Score. Let Φπ(Z ) :=Φ(Z ′π) and Φ2,ξy (Z ) :=Φ2
(−X ′β(y), Z ′π;−ρ(X ′δ(y))

)
. Note that by the prop-

erties of the standard bivariate normal distributionΦ2
(
X ′β(y), Z ′π;ρ(X ′δ(y))

)=Φπ(Z )−Φ2,ξy (Z ). Then,

straighforward calculations yield

S1,ξ(W ) = ∂ℓ1,ξ(W )

∂π
=G1(Z ′π)[D −Φπ(Z )]Z ,

where G1(u) =φ(u)/[Φ(u)Φ(−u)], and

S2y,ξ(W ) = ∂ℓ2y,ξ(W )

∂θy
= D(Φ2,ξy (Z )−Φπ(Z )Iy )

[
G2,ξy (Z )

ρ′(X ′δ(y))G3,ξy (Z )

]
⊗X ,

where

G2,ξy (Z ) :=G2
(−X ′β(y), Z ′π;−ρ(X ′δ(y))

)
,G3,ξy (Z ) :=G3

(−X ′β(y), Z ′π;−ρ(X ′δ(y))
)

with

G2(µ,ν;ρ) = Φ
µ
2 (µ,ν;ρ)

Φ2(µ,ν;ρ)[Φ(ν)−Φ2(µ,ν;ρ)]
, G3(µ,ν;ρ) = Φ

ρ
2 (µ,ν;ρ)

Φ2(µ,ν;ρ)[Φ(ν)−Φ2(µ,ν;ρ)]
,

for

Φ
µ
2 (µ,ν;ρ) = ∂Φ2(µ,ν;ρ)

∂µ
=Φ

(
ν−ρµ√

1−ρ2

)
φ(µ), (E.30)

and

Φ
ρ
2 (µ,ν;ρ) = ∂Φ2(µ,ν;ρ)

∂ρ
=φ2(µ,ν;ρ). (E.31)

To show (E.30) and (E.31), start from the factorization

Φ2(µ,ν;ρ) =
∫ µ

−∞
Φ

(
ν−ρv√

1−ρ2

)
φ(v)d v.
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Then, (E.30) follows from taking the partial derivative with respect to µ using the Leibniz integral rule.

Taking the partial derivative with respect to ρ yields

∂Φ2(µ,ν;ρ)

∂ρ
=

∫ µ

−∞
φ

(
ν−ρv√

1−ρ2

)
ρν− v

(1−ρ2)
3
2

φ(v)d v

=
∫ µ

−∞
1p
2π

exp

[
− (ν−ρv)2

2(1−ρ2)

]
1p
2π

exp

[
−v2

2

]
ρν− v

(1−ρ2)
3
2

d v

=
∫ µ

−∞
ρν− v

2π(1−ρ2)
3
2

exp

[
−ν

2 −2ρvν+ v2

2(1−ρ2)

]
d v

= 1

2π
√

1−ρ2
exp

[
−ν

2 −2ρµν+µ2

2(1−ρ2)

]
=φ2(µ,ν;ρ)

E.7. Expected Hessian. Straighforward calculations yield

H1 = E

[
∂ℓ1,ξ(W )

∂π∂π′

]
=−E

[
G1(Z ′π)φ(Z ′π)Z Z ′] , E

[
∂ℓ1,ξ(W )

∂π∂θ′y

]
= 0,

J21y =
∂ℓ2y,ξ(W )

∂θy∂π′ = E

{
[Φπ(Z )Φν2,ξy

(Z )−φ(Z ′π)Φ2,ξy (Z )]

[
G2,ξy (Z )

ρ′(X ′δ(y))G3,ξy (Z )

]
⊗X Z ′

}
,

whereΦν2,ξy
(Z ) =Φν2

(−X ′β(y), Z ′π;−ρ(X ′δ(y))
)

with

Φν2(µ,ν;ρ) = ∂Φ2(µ,ν;ρ)

∂ν
=Φ

(
µ−ρν√

1−ρ2

)
φ(ν),

by a symmetric argument to (E.30), and

H2y =
∂ℓ2y,ξ(W )

∂θy∂θ
′
y

=−E

{
Φπ(Z )

[
Φ
µ

2,ξy
(Z )G2,ξy

(Z ) Φ
ρ

2,ξy
(Z )G2,ξy

(Z )

Φ
µ

2,ξy
(Z )ρ′(X ′δ(y))G3,ξy

(Z ) Φ
ρ

2,ξy
(Z )ρ′(X ′δ(y))G3,ξy

(Z )

]
⊗X X ′

}
,

where

Φ
µ

2,ξy
(Z ) :=Φµ2

(−X ′β(y), Z ′π;−ρ(X ′δ(y))
)

Φ
ρ

2,ξy
(Z ) :=Φρ2

(−X ′β(y), Z ′π;−ρ(X ′δ(y))
)

.

APPENDIX F. MONTE CARLO SIMULATION

We conduct a Monte Carlo simulation calibrated to the empirical application to study the properties

of the estimation and inference methods in small samples. The data generating process is the HSM of

Example 3.1 with the values of the covariates and parameters calibrated to the data for women in the

last ten years of the sample (2004–2013). We do not use the entire dataset to speed up computation.

We generate 500 artificial datasets and estimate the DR-model with the same specifications for the

selection and outcome equations as in the empirical application and specification 1 for the selection

sorting function, i.e. ρ(x ′δ(y)) = ρ(y).
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Figures 2, 3 and 4 report the biases, standard deviations and root mean square errors for the estima-

tors of the coefficients of the college (age when ceasing school 21–22) and marital status indicators in

the outcome equation, and ρ(y) in the selection sorting function, as a function of the quantile indexes

of the values of log real hourly wage in the data used in the calibration.9 Although these coefficients are

constant in the HSM, we do not impose this condition in the estimation. The estimates are obtained

with Algorithm 3.1 replacing Y by a finite grid containing the sample quantiles of log real hourly wage

with indexes {0.10,0.11, . . . ,0.90} in the original subsample of women in the last ten years of the sam-

ple. All the results are in percentage of the true value of the parameter. As predicted by the asymptotic

theory, the biases are all small relative to the standard deviations and root mean squared errors. The

estimation error increases for all the coefficients as we move away from the median towards tail values

of the outcome.
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FIGURE 2. Bias, SD and RMSE for the coefficient of the college indicator in the outcome

equation
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FIGURE 3. Bias, SD and RMSE for the coefficient of the marital status indicator in the

outcome equation

9We find similar results for the other coefficients of the outcome equation. We do not report these reports for the sake of

brevity.
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FIGURE 4. Bias, SD and RMSE for coefficient ρ(y) in the selection sorting equation

Table 1 shows results on the finite sample properties of 95% confidence bands for the coefficients of

the indicators of college and marital status in the outcome equation and ρ(y) of the selection sorting

function. The confidence bands are constructed by Algorithm 3.2 with B = 200 bootstrap repetitions

and the same grid of values Ȳ as for the estimators. We report the average length of the confidence

bands integrated over threshold values, the average value of the estimated critical values, and the em-

pirical coverages of the confidence bands. For comparison, we also report the coverage of pointwise

confidence bands using the normal distribution, i.e. with critical value equal to 1.96. The last row com-

putes the ratio of the standard error averaged across simulations to the simulation standard deviation,

integrated over threshold values. We find that the bands have coverages close to the nominal level. As

expected, pointwise bands severely undercover the entire functions. The standard errors based on the

asymptotic distribution provide a fair approximation to the sampling variability of the estimator.

TABLE 1. Properties of 95% Confidence Bands

College Married ρ(y)

Average Length 0.38 0.16 0.35

Average Critical Value 2.91 2.89 2.88

Coverage uniform band (%) 96 98 96

Coverage pointwise band (%) 68 64 67

Average SE/SD 1.04 1.05 1.07
Notes: Nominal level of critical values is 95%. 500 simulations with

200 bootstrap draws.

APPENDIX G. WAGE DECOMPOSITIONS IN THE UK: ADDITIONAL RESULTS

G.1. Descriptive statistics and background on U.K. labor market. Table 2 reports means and stan-

dard deviations of all the variables used in the analysis. We report these statistics for the entire sample,

and by employment status and gender. The overall employment rate is 74%. Women are 17% less likely
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FIGURE 5. Trends in U.K. labor market 1978-2013 by gender: left panel reports the av-

erage of the log wage rate, the middle panel reports the 90-10 percentile spread of the

log wage rate, and the right panel reports the employment rate

to be employed than men, and the unconditional gender wage gap is 33%. Overall, women and men

are similar in terms of covariates. Both working men and women are relatively more highly educated,

younger, and more likely to be married than their non-working counterparts. Having young children

and high out-of-work benefits is negatively associated with employment for women but not for men.

Figure 5 provides some background on the U.K. labor market using our data. The left panel shows

that over 36 years the average wages of working men and women have continuously grown and the

unconditional gender wage gap has progressively narrowed from 46% to 24%. The middle panel indi-

cates that the growth of average wage has come together with an increase in wage inequality for both

working men and women until 2000. The positive trend in wage inequality has continued for men after

2000, but not for women. The right panel shows opposite trends in the employment rate for men and

women, where the gender employment gap has steadily and sharply reduced from 34% to 8%.

G.2. Additional Empirical Results. This section includes the following empirical results omitted from

the main text:

• Table 3: estimates and standard errors of the coefficients of the employment equation.

• Table 4: estimates and 95% confidence intervals for components of employment rate decom-

position between women and men.

• Figures 6–13: estimates and 95% confidence bands of the coefficients of education and marital

status indicators in the wage equation for men and women in all the specifications.10

• Figures 14 and 15: estimates and 95% confidence bands of the coefficients of fertility in the

wage equation for men and women in specification 4.

• Figures 16-18: estimates and 95% confidence bands of the sorting equation.

10The dashed lines report estimates of β/σ in the outcome equation of the HSM.



DR WITH SELECTION 25

TABLE 2. Summary Statistics

Full Male Female

All Employed All Employed All Employed

Log Hourly Wage 2.38 2.54 2.21

(0.54) (0.51) (0.52)

Employed 0.74 0.83 0.66

(0.44) (0.38) (0.47)

Ceased School at

⩽ 15 0.33 0.30 0.33 0.31 0.33 0.29

(0.47) (0.46) (0.47) (0.46) (0.47) (0.45)

16 0.31 0.30 0.32 0.32 0.30 0.29

(0.46) (0.46) (0.47) (0.47) (0.46) (0.45)

17-18 0.18 0.19 0.16 0.17 0.20 0.22

(0.38) (0.39) (0.37) (0.37) (0.40) (0.41)

19-20 0.04 0.05 0.04 0.04 0.04 0.05

(0.20) (0.21) (0.20) (0.20) (0.21) (0.22)

21-22 0.09 0.11 0.09 0.10 0.09 0.12

(0.29) (0.31) (0.29) (0.30) (0.29) (0.32)

⩾23 0.05 0.05 0.06 0.06 0.04 0.04

(0.21) (0.22) (0.23) (0.24) (0.19) (0.20)

Age 40.13 39.84 40.22 39.76 40.06 39.92

(10.43) (10.10) (10.40) (10.11) (10.45) (10.08)

Married 0.76 0.79 0.78 0.81 0.75 0.76

(0.43) (0.41) (0.42) (0.39) (0.43) (0.43)

Number of children with age

0–1 0.06 0.05 0.06 0.06 0.06 0.03

(0.24) (0.22) (0.24) (0.25) (0.24) (0.18)

2 0.05 0.04 0.05 0.05 0.05 0.03

(0.23) (0.21) (0.23) (0.23) (0.23) (0.18)

3–4 0.10 0.09 0.10 0.10 0.11 0.07

(0.32) (0.29) (0.31) (0.32) (0.32) (0.27)

5–10 0.32 0.29 0.30 0.30 0.33 0.28

(0.64) (0.61) (0.62) (0.62) (0.65) (0.59)

11–16 0.30 0.30 0.28 0.29 0.32 0.32

(0.63) (0.62) (0.61) (0.61) (0.64) (0.63)

17–18 0.03 0.04 0.03 0.03 0.04 0.04

(0.19) (0.19) (0.18) (0.18) (0.19) (0.20)

Benefit Income 5.44 5.50 5.25 5.29 5.60 5.73

(0.74) (0.78) (0.70) (0.72) (0.73) (0.78)

Observations 258,900 190,765 119,396 98,764 139,504 92,001

Notes: all the entries are means with standard deviations in parentheses.

Source: FES/EFS/LCFS Data.
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TABLE 3. Estimates of Coefficients of the Employment Equation

Variable Male Female Variable Male Female

educ16 0.25 0.06 numch34 -0.18 -0.63

(0.01) (0.01) (0.02) (0.01)

educ1718 0.46 0.20 numch510 -0.18 -0.33

(0.02) (0.01) (0.01) (0.01)

educ1920 0.42 0.16 numch1116 -0.16 -0.15

(0.03) (0.02) (0.01) (0.01)

educ2122 0.74 0.28 numch1718 -0.02 -0.11

(0.02) (0.02) (0.03) (0.02)

educ23 0.51 0.15 benefit -0.35 -0.42

(0.02) (0.02) (0.01) (0.01)

couple -4.02 -8.14 benefit×couple 0.87 1.40

(0.09) (0.08) (0.02) (0.02)

numch1 -0.16 -0.90 constant 2.50 2.75

(0.02) (0.02) (0.08) (0.07)

numch2 -0.18 -0.77

(0.02) (0.02)
Notes: standard errors in parentheses. The specification includes a

quartic polynomial in age, region indicators and survey year indica-

tors.

• Figure 19: estimates and 95% confidence bands for the quantiles of the observed and latent

wages in specification 4.

• Figure 21-20: estimates and 95% confidence bands for the decomposition of offered wages be-

tween women and men for specifications 1–3.

• Figure 23: estimates and 95% confidence bands for decomposition between men and women

with aggregated selection effects.

• Figure 24: estimates and 95% confidence bands for the quantiles of observed wages and de-

composition between men and women in specifications 1–3.

• Figures 25–28: estimates and 95% confidence bands for components of wage decomposition

between women and men.

• Figures 29 and 30: estimates and 95% confidence bands for components of wage decomposi-

tion between first and second half of sample period for men and women in specification 2.
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TABLE 4. Employment rate decomposition between men and women

Employment (%)
Structure (π)

Male Female

Composition (FZ )

Male
83 59

(82, 83) (59, 59)

Female
83 66

(83, 83) (66, 66)

95% bootstrap confidence intervals in parentheses
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FIGURE 6. Estimates and 95% confidence bands for coefficients of education and mar-

ital status in the outcome equation: specification 1 for men
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FIGURE 7. Estimates and 95% confidence bands for coefficients of education and mar-

ital status in the outcome equation: specification 1 for women
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FIGURE 8. Estimates and 95% confidence bands for coefficients of education and mar-

ital status in the outcome equation: specification 2 for men
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FIGURE 9. Estimates and 95% confidence bands for coefficients of education and mar-

ital status in the outcome equation: specification 2 for women
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FIGURE 10. Estimates and 95% confidence bands for coefficients of education and

marital status in the outcome equation: specification 3 for men
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FIGURE 11. Estimates and 95% confidence bands for coefficients of education and

marital status in the outcome equation: specification 3 for women
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FIGURE 12. Estimates and 95% confidence bands for coefficients of education and

marital status in the outcome equation: specification 4 for men
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FIGURE 13. Estimates and 95% confidence bands for coefficients of education and

marital status in the outcome equation: specification 4 for women
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FIGURE 14. Estimates and 95% confidence bands for coefficients of fertility in the out-

come equation: specification 4 for men
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FIGURE 15. Estimates and 95% confidence bands for coefficients of fertility in the out-

come equation: specification 4 for women
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specification 4
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FIGURE 17. Estimates and 95% confidence bands for coefficients of the selection sort-

ing function: specification 3
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FIGURE 18. Estimates and 95% confidence bands for coefficients of the selection sort-

ing function: specification 4
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FIGURE 19. Estimates and 95% confidence bands for the quantiles of observed and

offered (latent) wages: specification 4
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FIGURE 20. Estimates and 95% confidence bands for the quantiles of observed and

offered (latent) wages and decomposition of offered wages between women and men:

specification 1



42 CHERNOZHUKOV, FERNÁNDEZ-VAL AND LUO

0.0 0.2 0.4 0.6 0.8 1.0

1.
5

2.
0

2.
5

3.
0

3.
5

QF in Full and Observed Populations, Male

 
Quantile Index

Lo
g 

of
 h

ou
rl

y 
w

ag
e

Latent
Observed

0.0 0.2 0.4 0.6 0.8 1.0

1.
5

2.
0

2.
5

3.
0

3.
5

QF in Full and Observed populations, Female

 
Quantile Index

Lo
g 

of
 h

ou
rl

y 
w

ag
e

Latent
Observed

0.2 0.4 0.6 0.8

−
50

0
50

10
0

Percentage decomposition

Quantile Index

%
 o

f D
ec

om
po

si
tio

n

β
Fx

FIGURE 21. Estimates and 95% confidence bands for the quantiles of observed and

offered (latent) wages and decomposition of offered wages between women and men:

specification 2
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FIGURE 22. Estimates and 95% confidence bands for the quantiles of observed and

offered (latent) wages and decomposition of offered wages between women and men:

specification 3
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FIGURE 23. Estimates and 95% confidence bands for the quantiles of observed wages

and decomposition between men and women with aggregated selection effect: (up-

per left) specification 1, (upper right) specification 2, (bottom left) specification 3, and

(bottom right) specification 4
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FIGURE 24. Estimates and 95% confidence bands for the quantiles of observed wages

and decomposition between men and women: (left) specification 1, (middle) specifi-

cation 2, and (right) specification 3



DR WITH SELECTION 45

0.0 0.2 0.4 0.6 0.8 1.0

1.
5

2.
0

2.
5

3.
0

3.
5

Selection Sorting

 
Quantile

Lo
g 

of
 h

ou
rly

 w
ag

e

female
ρ = male

0.0 0.2 0.4 0.6 0.8 1.0

1.
5

2.
0

2.
5

3.
0

3.
5

Selection Structure

 
Quantile

Lo
g 

of
 h

ou
rly

 w
ag

e

ρ = male
ρ,π = male

0.0 0.2 0.4 0.6 0.8 1.0

1.
5

2.
0

2.
5

3.
0

3.
5

Wage Structure

 
Quantile

Lo
g 

of
 h

ou
rly

 w
ag

e

ρ,π = male
ρ,π,β = male

0.0 0.2 0.4 0.6 0.8 1.0

1.
5

2.
0

2.
5

3.
0

3.
5

Composition

 
Quantile

Lo
g 

of
 h

ou
rly

 w
ag

e

ρ,π,β = male
male

FIGURE 25. Estimates and 95% confidence bands for components of wage decompo-

sition between women and men in specification 1
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FIGURE 26. Estimates and 95% confidence bands for components of wage decompo-

sition between women and men in specification 2
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FIGURE 27. Estimates and 95% confidence bands for components of wage decompo-

sition between women and men in specification 3
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FIGURE 28. Estimates and 95% confidence bands for components of wage decompo-

sition between women and men in specification 4
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FIGURE 29. Estimates and 95% confidence bands for components of wage decompo-

sition between first and second half of sample period for men in specification 2
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FIGURE 30. Estimates and 95% confidence bands for components of wage decompo-

sition between first and second half of sample period for women in specification 2
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