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Abstract

Many studies in economics use instruments or treatments which combine a set
of exogenous shocks with other predetermined variables by a known formula.
Examples include shift-share instruments and measures of social or spatial
spillovers. We review recent econometric tools for this setting, which lever-
age the assignment process of the exogenous shocks and the structure of the
formula for identification. We compare this design-based approach with con-
ventional estimation strategies based on conditional unconfoundedness, and
contrast it with alternative strategies that leverage a model for unobservables.
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1 Introduction

Many studies in economics use instruments or treatments that combine a set of observed shocks
with other predetermined variables via a known formula. A leading example is shift-share in-
struments, which sum or average a common set of shocks—varying at a different “level” than
observations—with weights (“shares”) reflecting heterogenous shock exposure.1 Other examples
include treatments capturing the transmission of shocks along social or geographic networks, and
variables based on complex formulas for policy eligibility.2

A recent econometric literature shows how causal effects or structural coefficients in linear
models can be estimated in such settings when the shocks in the formula are exogenous with a known
“design.” Exogeneity here means that the shocks are conditionally independent of the outcome
error, allowing all other components of the formula to be endogenous. A known design means some
specification of the assignment process from which the vector of observed shocks is drawn, which
formalizes the notion of the shocks being “as-good-as-randomly assigned.” Borusyak et al. (2022a,
henceforth BHJ) first develop this approach to shift-share identification and consistency, while Adão
et al. (2019) study inference in this setting. Borusyak and Hull (2022, henceforth BH) extend the
approach to general formula instruments.

BHJ and BH first show that exogeneity of the shocks by itself is not enough to avoid omitted
variable bias (OVB). This is easily seen with shift-share instruments: suppose the shocks are
drawn completely at random (with, say, a positive expectation) but observations vary in the sum
of exposure shares to all shocks. The instrument will then be positively correlated with the sum of
shares, and potentially also correlated with the errors. Randomizing the shocks does not imply an
as-good-as-random instrument when shock exposure is not randomly assigned.

BHJ and BH then show how leveraging the formula allows one to avoid OVB when the shock
design is known. In the previous example, the shift-share formula along with the random assignment
of the shocks imply that all systematic variation in the instrument is captured by the sum of
shares. Therefore, controlling for this sum eliminates OVB. Identification in the general case, for
arbitrary formulas and designs, follows from simple adjustments based on the expected instrument:
the average value of the formula across counterfactual sets of shocks, drawn from the specified
assignment process. Specifically, OVB is avoided by either adding the expected instrument as
a control or by using a recentered instrument which subtracts the expected instrument from the
original formula. Controlling for or recentering by the expected instrument is generally necessary
for identification with formula instruments, absent auxiliary assumptions on the exogeneity of shock
exposure.

1Shift-share (or “Bartik”) instruments were originally developed by Bartik (1991) and Blanchard and Katz (1992)
to estimate labor demand elasticities. More recent applications study topics in trade (e.g. Autor et al. (2013);
Hummels et al. (2014)), immigration (e.g. Card (2009); Peri et al. (2016)), finance (e.g. Greenstone et al. (2014); Xu
(2022)), public economics (e.g. Saiz (2010); Diamond (2016)), and macroeconomics (e.g. Oberfield and Raval (2021);
Nakamura and Steinsson 2014; Jaravel (2019)).

2Settings with such treatments and instruments include Miguel and Kremer (2004), who study spillovers from
deworming shocks across students; Donaldson and Hornbeck (2016), who study market access effects from new
railroad construction; and Currie and Gruber (1996), who study the effects of Medicaid eligibility.
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How can the shock assignment process be specified in practice? This requirement is trivial when
the shocks are generated from a true experiment, as shock counterfactuals then follow from the
randomization protocol.3 In observational data, it is useful to distinguish two cases. With shift-
share instruments, only the conditional mean of the shocks needs to be specified. BHJ note that this
task, while nontrivial, is no harder than the usual one of selecting controls in a shock-level analysis.
In the general case, shock design can follow from the exchangeability of shocks conditional on
observables, such that appropriate permutations of shocks can serve as valid shock counterfactuals.
Exchangeability of the running variable around a policy threshold, as in the local randomization
approach to regression discontinuity designs (e.g. Lee (2008)), scientific knowledge (e.g. geological
models when using earthquakes as shocks), and other forms of institutional knowledge can also
serve as sources of shock design.4

We next review results on the consistency of IV estimators based on (recentered) formula
instruments, and on inference using them. BHJ and BH show that shift-share IV estimators
converge to the true parameter given a large number of exogenous shocks with sufficiently dispersed
exposure across observations. With shift-share instruments, valid asymptotic inference can be
conducted under similar assumptions based on the results of Adão et al. (2019) or via an equivalent
shock-level IV regression proposed by BHJ. In settings with a nonlinear formula or few shocks,
randomization inference can be a natural (finite-sample) alternative.

Our review focuses on the special case of a constant-effect causal or structural model, with a
single treatment in a cross-section of observations and a known shock design. We discuss, however,
various extensions of the design-based approach: to settings with heterogeneous treatment effects,
multiple treatments and instruments, shock designs with estimated parameters, and panel data.
We also review the results of Borusyak and Hull (2021a) on the most efficient formula instrument
constructions for a given treatment variable.

Lastly, we compare design-based identification with two alternative strategies that do not lever-
age the structure of the formula for identification. First, we draw a connection to conventional
identification methods based on a conditional unconfoundedness assumption. Most closely related
is the E-estimator of Robins et al. (1992), which uses as an instrument the difference between a
treatment and an estimate of its expectation conditional on the covariates. The formula instru-
ment setting is more general, involving instruments constructed from a common set of exogenous
shocks that may vary at a different “level” than the observations. Unlike conventional settings, the
potentially confounding relationship between the instrument and shock exposure cannot be learned
from the data (since only one set of shocks is observed). Instead, OVB can be purged by specifying
or estimating the assignment process for shocks and using the formula.5 Second, we contrast the

3Note, however, that even in randomized experiments the assumption of exogenous shocks is not trivial: it requires
the included treatment variable to capture all mechanisms through which the common shocks affect observations (an
implicit exclusion restriction).

4See Athey and Imbens (2018) and De Chaisemartin and Behaghel (2018) for design-based approaches to other
settings with observational data. Such strategies build on a long tradition in the analysis of randomized experiments,
going back to Neyman (1923).

5For the case of discrete network treatments and discrete shocks, Aronow and Samii (2017) develop a reweighting
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design-based approach to formula instruments with strategies that do not directly use the formula
but instead model the unobservables (via, e.g., a parallel trends assumption) as in the Goldsmith-
Pinkham et al. (2020) approach to shift-share instruments. Such approaches may be especially
useful when there are too few shocks or when it is difficult to credibly specify the shock design.
We note, however, that the underlying assumptions can be inappropriate when observations are
exposed to common unobserved shocks in the same way as they are exposed to the observed shocks
in the formula instrument.

The rest of this paper is structured as follows. The next section outlines the basic setting and
assumptions. Section 3 reviews results on identification, both in general and in special cases such as
shift-share instruments. Section 4 reviews results on consistency and inference. Section 5 discusses
extensions of the main results. Section 6 contrasts the design-based approach with alternative
methods. Section 7 concludes with open questions in this recent literature.

2 Setting

Consider a simple causal model for an outcome yi and treatment xi across units i = 1, . . . , N :

yi = βxi + εi. (1)

Here β is the parameter of interest (i.e. the treatment effect) and εi is the unobserved error (i.e.
unit i’s potential outcome when xi is set to zero).6 To estimate β, we suppose a researcher has
constructed a candidate “formula” instrument

zi = fi(s, g), (2)

for a set of known functions f1(·), . . . , fN (·), a vector of observed shocks g ∈ RK , and some observed
data s. The shocks are assumed to be exogenous conditional on s and possibly some other observed
q; formally, with ε = (εi)Ni=1 and w = (s, q), we have:

Assumption 1. (Shock Exogeneity) ε ⊥ g | w

Exogeneity, here formalized by the conditional independence of ε and g given w, can be under-
stood as combining two distinct assumptions: as-good-as-random shock assignment and exclusion
of the shocks from the causal model. Specifically, Assumption 1 is satisfied in a four-stage data-
generating process where first w is determined, second g and ε are drawn independently (but
possibly in a way that depends on w), third x is determined in an unspecified way, and fourth y is
determined by equation (1). We discuss the mapping of this Assumption 1 onto several empirical
contexts in Section 3.2; below we discuss a weaker mean-independence condition which suffices in
some important settings.

procedure based on similar principles.
6We discuss extensions to heterogeneous effects and multiple treatments in Section 5.
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Three examples of candidate instrument constructions illustrate the generality of this setup. In
the first example of linear shift-share IV, the instrument is a simple average (or sum) of the shocks
gk with weights sik reflecting heterogeneous shock exposure:

Example 1. (Linear Shift-Share) s is an N ×K matrix of sik ≥ 0 and zi =
∑K
k=1 sikgk.

For instance, supply shocks in China gk across industries k could be combined with industry
employment shares sik across U.S. commuting zones i to study local employment outcomes, as
in Autor et al. (2013). A key feature of such zi is the linearity of fi(s, g) in g; as we discuss
below, this simplifies identification, consistency, and inference. This instrument construction is
also “anonymous,” in that fi(s, g) = f(si, g) for a common f(·) across i and si = (sik)Kk=1.7 Often
(though not always)

∑
k sik = 1, in which case zi is a convex average of the shocks.

Our second example relaxes linearity of fi(s, g) while maintaining the anonymous construction:

Example 2. (Nonlinear Shift-Share) zi = f(si, g) for nonlinear f(·) and vectors si.

Here a concrete setting comes from Boustan et al. (2013), who instrument changes in the income
Gini coefficient of municipalities i with a predicted change in the area’s Gini coefficient f(si, g)
based on national shocks gk to the average income of worker groups (defined by percentiles of
initial income) k with baseline regional shares of these groups sik. Another popular construction in
this class, seen for instance in Berman et al. (2015), comes from taking the natural log of a linear
shift-share variable: i.e., zi = log (

∑
k sikgk).

Our third example of network spillovers illustrates the generality of the setting by relaxing both
linearity and anonymity:

Example 3. (Network Spillovers) K = N , s = (sik)Ni,k=1 is an adjacency matrix, and zi = fi(s, g).

In Carvalho et al. (2021), for instance, a natural disaster generates shocks gk to firms k which
propagate across the firm-to-firm supplier network. Here fi(s, g) returns the network distance
between i and the nearest shocked firm, which depends on the full adjacency matrix s. Of course,
there are also network spillover applications which satisfy linearity and anonymity. For example,
in Miguel and Kremer (2004), health shocks from a randomized deworming intervention propagate
across a network of students captured by s. Here fi(s, g) = s′ig simply counts the number of
dewormed neighbors of student i, showing this example of network spillovers can also be viewed as
a linear shift-share variable with varying sum of exposure shares

∑
k sik.

BH discuss other examples of formula instruments, including market access instruments used
to study the effects of transportation upgrades (as in Donaldson and Hornbeck (2016)) and policy
eligibility instruments used to study the effects of complex eligibility changes (as in Currie and
Gruber (1996)). The class of formula instruments is quite broad, containing any zi which can be
computed from a set of observed shocks g and other observed data s.

7This notion of anonymity aligns with one used in social choice theory: i.e. a permutation of the rows of the input
s results in a corresponding permutation of the rows of the output z.
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Remark 1. The setup allows xi = zi, in which case β captures the reduced-form effect of the formula
instrument itself. The exclusion restriction in this case requires the formula fi(·) to be correct, in
the sense of capturing all channels by which the shocks g affect the outcome yi. In the more general
IV case, Assumption 1 allows the consideration of any formula fi(·) as long as xi captures all shock
effects. While strong, this exclusion restriction is standard and makes the parameter β well-defined.

Remark 2. Formula instruments are often derived from the structure of xi by removing or replacing
some endogenous components. For example, canonical shift-share instruments were derived in
settings where xi =

∑
k sikx̃ik for observation-specific shocks x̃ik (e.g. local industry growth rates)

which were replaced with national averages when constructing zi.8 Similarly, in the Boustan et
al. (2013) example, zi replaces the local income shocks at national income percentiles with the
corresponding national changes in their predictions of local Gini coefficients. We return to this
relationship between xi and zi when discussing instrument relevance in Section 4.1 and asymptotic
efficiency in Section 5.

Remark 3. The setup does not assume the (yi, xi) are independently and identically distributed
(iid), as when sampled from some population, or make other assumptions which restrict the depen-
dence of εi across units. This permits the units to have common exposure to shocks (both observed
and unobserved). This approach is consistent with the design-based tradition of conditioning on
the set of potential outcomes, though we do not require such conditioning. It further allows the N
units to represent a population—for example, all regions of a country (Abadie et al. 2020)—where
random sampling assumptions are inappropriate.

In addition to shock exogeneity, we assume knowledge about the shock “assignment pro-
cess”—i.e., restrictions on the distribution of g given w. The most demanding version of such
design knowledge is complete specification of this distribution:

Assumption 2. (Known Design) The distribution of g given w, denoted G(g | w), is known.

In true randomized experiments (e.g. Miguel and Kremer (2004)), this assumption holds trivially as
G(g | w) is given by the experimental protocol. For instance, the gk may be independent Bernoulli
random variables with known strata-specific means, with strata indicators included in q.

Outside of true experiments, Assumption 2 may be satisfied by appropriate exchangeability
assumptions which specify the permutations of shocks that were as likely to have occurred. For
example, assuming the gk are iid across k conditional on s implies permutations of g are equally
likely to arise. Hence G(g | w) is known to be uniform over permutations Π(g) = {π(g) | π ∈ ΠK},
with ΠK denoting the set of permutation operators π(·) on vectors of length K, and with q = Π(g).
Similar design knowledge follows under weaker shock exchangeability conditions, such as when the
gk are iid within, but not across, a set of known clusters and q contains the class of within-cluster
permutations.9 Exchangeability could also be assumed local to some policy threshold, as in the

8Section 4.1 of BHJ discusses some subtleties with such constructed shocks. It shows, in particular, that leave-out
constructions of the national averages can be necessary for consistent estimation under some conditions.

9BH, for example, illustrate recentered IV in a setting where the shocks are the indicators for whether planned
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local randomization view of regression discontinuity (Lee 2008; Cattaneo et al. 2015). Scientific or
other institutional knowledge (e.g. geological models when using earthquakes as shocks) may also
yield specifications of G(g | w), as we discuss more below.

An important relaxation of Assumptions 1 and 2 follows when fi(s, g) is linear in the shocks, as
in Example 1. Specifically, they can be jointly weakened to a restriction on the conditional mean
of the shocks:

Assumption 3. (Conditionally Linear Shock Means) There exists unknown θ such that E [gk | ε, w] =
q′kθ for known q = (qk)Kk=1 included in w and for all k.

This restriction can be seen to combine a shock mean-independence condition, of E [gk | ε, w] =
E [gk | w], with a linearity restriction of E [gk | w] = q′kθ. The former condition weakens Assumption
1 to allow higher moments of the shocks to depend on the unobserved ε while the latter restriction
weakens Assumption 2 with only a partial parameterization of G(g | w). Below we discuss and
illustrate the usefulness of Assumption 3 in the linear shift-share setting, while also showing how
it can be used with linear approximations of nonlinear shift-share instruments. In Section 5, we
discuss other incomplete specifications for G(g | w), which may be applied to an even broader set
of settings.

3 Identification

3.1 Expected and Recentered Instruments

We first consider IV identification of β: i.e., whether the parameter can be learned from the natural
first-stage and reduced-form moments.10 Formally, we consider the key orthogonality condition
E
[

1
N

∑
i ziεi

]
= 0. Identification follows under this condition as β = E

[
1
N

∑
i ziyi

]
/E
[

1
N

∑
i zixi

]
so long as E

[
1
N

∑
i zixi

]
6= 0: a relevance condition we return to below.

A key insight of BH is that shock exogeneity is not, by itself, enough for formula instrument
orthogonality. To see this, define µi(w) ≡ E [f(si, g) | w] as the expectation of the candidate
instrument of unit i across the distribution of shocks while conditioning on the predetermined data
in s and q. BH call this object, which we write as µi for brevity, the expected instrument. They
show that under Assumption 1:

E
[

1
N

∑
i

ziεi

]
= E

[
1
N

∑
i

µiεi

]
. (3)

intercity railway lines have opened before a certain date; the treatment is regional market access created by those lines.
The timing of line opening is assumed random within groups of planned lines with similar characteristics—specifically,
the number of regions a line connects. Thus, BH construct expected market access by permuting the opening dates
between planned lines that connect the same number of regions.

10Identification in this setting is less straightforwardly defined than it would be under the usual assumption of iid
data (see Remark 3). Following Goldsmith-Pinkham and Imbens (2013), we approach the problem in two steps: first
whether certain moment conditions hold (in this section) and then whether the moments can be asymptotically learned
from the data (in our consistency results in Section 4.1). Appropriately for non-iid data, we consider full-sample
moments like E

[
1
N

∑
i
ziεi

]
which generalize moments like E [ziεi] studied in iid data.
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In other words, shock exogeneity does not make the cross-sectional covariance between zi and εi zero,
unless the expected instrument is itself orthogonal to εi.11 Adjusting for µi—the key confounder
in this setting—is therefore necessary for IV identification, absent additional restrictions on the
exogeneity of shock exposure.

Two simple adjustments for µi follow: recentering and controlling. Note first that equation (3)
immediately implies that the recentered instrument z̃i = zi − µi satisfies orthogonality:

E
[

1
N

∑
i

z̃iεi

]
= 0. (4)

Thus, as long as it also satisfies relevance, E
[

1
N

∑
i z̃ixi

]
6= 0, using z̃i as an instrument identifies

β. This follows because E [z̃i | w] = 0 by construction. Hence z̃i cannot be correlated with any
function of w which, through its unrestricted dependence with ε, could violate orthogonality.

The second adjustment is perhaps more familiar: controlling for the confounder µi—or, more
generally, for a vector of functions ri ≡ ri(w) that linearly span µi—in an IV regression that
uses the unadjusted zi as the instrument. This approach works because controlling for such a ri
implicitly recenters zi by residualizing it on µi.12 Formally, by the Frisch-Waugh-Lovell theorem,
the controlled IV regression is equivalent to an uncontrolled IV regression of y⊥i on x⊥i where
⊥ denotes the residuals from an in-sample projection on ri. The orthogonality condition of this
regression,

E
[

1
N

∑
i

ziε
⊥
i

]
= 0, (5)

holds because E
[

1
N

∑
i z̃iε

⊥
i

]
= 0 by analogy to equation (3) and because E

[
1
N

∑
i (zi − z̃i) ε⊥i

]
= 0

by the orthogonality between fitted values and residuals of the in-sample projection.13

Under Assumption 2, the recentering and controlling procedures are both straightforward to
implement because µi is easily computed. In some cases the expectation E [zi | w] can be computed
analytically or (as we show in the next section) is known to be linear in some observed ri. Otherwise,
µi can be approximated by a simple simulation procedure:

1. For simulations j = 1, . . . , J , redraw counterfactual shocks g(j) fromG(· | w) (e.g. by following
the RCT protocol or taking appropriate permutations of observed shocks);

2. Compute z(j)
i = fi(s, g(j));

3. For each observation, take the average across simulations: µi ≈ 1
J

∑J
j=1 z

(j)
i .

11The proof follows by repeated use of the law of iterated expectations: for any i, E [ziεi] = E [E [fi(g, w)εi | w]] =
E [µiE [εi | w]] = E [µiεi], using Assumption 1 in the second equality. When zi is linear in the shocks, as with linear
shift-share instruments, the same result holds under Assumption 3.

12The ri controls further remove variation from εi, which may improve efficiency in large samples.
13Similarly, if the recentered instrument is used, any set of functions of w can be controlled for, whether or not

this set includes µi. For this reason, BH argue recentering is the key step for identification while controlling for ri is
a convenient implementation.
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For identification, it is enough to approximate µi by any number of simulations J so long as draws
are independent of g and ε conditionally on w: E

[
1
N

∑
i(zi − 1

J

∑
j fi(si, g(j)))εi

]
= 0 by the law of

iterated expectations, since E [zi | w, ε] = E
[
fi(si, g(j)) | w, ε

]
.14

Remark 4. Equation (3) shows that recentering (or controlling) for µi is not only sufficient but
also necessary under Assumption 1, since this assumption does not restrict how εi covaries with µi.
Moreover, absent Assumption 2, µi is not known. Thus, the high-level assumption of E

[
1
N

∑
i µiεi

]
=

0 is difficult to assess or test, even if some proxies of εi are observed.

Remark 5. BH note that multiple candidates for µi, arising from different specifications of G(g | w),
can be included as controls with zi used as the instrument. Only one candidate needs be correctly
specified for identification. A corollary is that controlling for candidate expected instruments can
serve as a useful robustness check for specifications with other controls: if Assumption 1 holds and
there is no need to recenter because the included controls address any endogeneity from µi, then
controlling for any misspecified expected instrument cannot cause orthogonality to fail.

3.2 Linear Shift-Share IV

The general identification results are usefully illustrated in the case of linear shift-share instruments,
with zi =

∑
k sikgk. We consider three cases of increasing complexity.

Case 1: Complete shares, no controls We first suppose the exposure shares are “com-
plete,” in the sense that

∑
k sik = 1 for all i, and that Assumption 3 holds with no additional

controls such that qk = 1 and E [gk] = θ for all k. The latter condition requires each shock gk to
have the same mean µ, regardless of the realizations of the unobservables ε and exposure shares s.

In this case, instrument orthogonality holds without any recentering as long as the estimat-
ing equation includes an intercept. This follows because the expected instrument is constant,
µi =

∑
k sikE [gk | w] = θ

∑
k sik = θ, and is thus absorbed by the intercept. The weaker mean-

independent restriction of Assumption 3 is furthermore enough because of the linear construction
of zi. Intuitively, when all the shocks are exogenous and have the same expectation, there is no
reason for a weighted average of those shocks zi to be systematically higher or lower for units with
any particular shares si and thus with higher or lower εi.

For further intuition, it is instructive to rewrite the (ri-controlled) orthogonality condition at
the shock “level,” following BHJ:

0 = E
[

1
N

∑
i

ziε
⊥
i

]
= E

[
1
N

∑
i

∑
k

sikgkε
⊥
i

]
= E

[∑
k

skgkε̄
⊥
k

]
, (6)

where sk = 1
N

∑
i sik and ε̄⊥k =

∑
i
sikε

⊥
i∑

i
sik

with ε⊥i again denoting the residualized error. This

shows that the orthogonality of zi and ε⊥i is equivalent to a weighted “shock-level” orthogonality
14BH further show that the number of simulations is not important for consistency of the estimator. The proof of

their Proposition 1 shows the number of simulations generally affects the estimator’s efficiency, however.
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condition, which considers the relationship between gk and unobserved ε̄⊥k . The sk weights capture
the “importance” of each shock, in terms of its average exposure sik, while ε̄⊥k are exposure-weighted
averages of ε⊥i . Since

∑
k skε̄

⊥
k = 1

N

∑
i

∑
k sikε

⊥
i = 1

N

∑
i ε
⊥
i = 0, with ri including a constant,

equation (6) shows that instrument orthogonality holds when the weighted covariance of gk and ε̄⊥k
is zero.

As a concrete example, consider the setting of Aghion et al. (2022, henceforth AABJ) who study
the impact of lowering the cost of automation technologies on labor demand in France in the 2000s.
Here yi is the change in employment of firm i, xi is the change in the firm’s stock of automation
technologies, and zi =

∑
k sikgk is the predicted change in the cost of importing these technologies.

This prediction is based on shocks gk to the supply of imported technologies across source countries
and technology categories, such that k indexes country-technology pairs (e.g., robots from Italy).
Exposure shares sik are computed as the proportion of imports from cell k in firm i’s total imports
of automation technologies in a previous period (which sum to one).

In this example, Assumption 3 requires cell-level supply shocks to have the same expectation
regardless of all firm-level unobservables. The representation (6) provides further intuition: the
shift-share instrument would violate orthogonality if the country-technology pairs that have preex-
isting relationships with French firms with growing employment (for reasons other than automation)
receive systematically different supply shocks. For instance, orthogonality fails if better managed
French firms (with better employment trends) established ties with Chinese suppliers in the 1990s
in anticipation of the growing supply from China in the 2000s. We next relax the assumption of
equal expected shocks to accommodate situations like this.

Case 2: Complete shares with controls We now show how the shift-share case extends
with general shock-level controls qk in Assumption 3. In the AABJ application, for example, it ap-
pears important to allow for productivity shocks that differ systematically across supplier countries
(e.g., China experiences positive productivity shocks in the 2000s) and for firms connected to cer-
tain countries to have systematically different unobservables. Similarly, one may allow productivity
shocks to vary across technology categories (e.g., robots experience faster productivity growth than
textile machines), with firms connected to those technologies being systematically different. The
shock-level controls qk here could then include supplier country and technology fixed effects.

With shock-level controls, the expected instrument is linear in exposure-weighted averages of
these controls:

µi =
∑
k

sikq
′
kθ = Q′iθ, Qi =

∑
k

sikqk. (7)

Hence, we can view zi as combining systematic (and potentially confounding) variation in µi = Q′iθ

with idiosyncratic variation from certain shocks drawn above or below their expectation by chance:

zi = Q′iθ +
∑
k

sik
(
gk − q′kθ

)
. (8)

Including Qi in the control vector ri removes the systematic variation, making instrument orthog-
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onality hold. In the AABJ example this would mean controlling for the total exposure share of a
firm to each supplying country, as well as the total exposure share to each technology.

An alternative approach in this case would be to first residualize the gk shocks on the qk controls,
then use a modified shift-share instrument

∑
k sik(gk − q′kθ̂), possibly with no additional controls.

This can be viewed as a recentering approach, although with an estimated parameter µ̂ affecting
shock expectations (we allow for shock assignment process specified with parameters in Section 5).
In the AABJ case this can be implemented by residualizing cell-level supply shocks on country and
technology fixed effects and constructing the shift-share instruments from the estimated residuals.

Case 3: Incomplete shares In certain shift-share applications, the exposure shares are
“incomplete” in that they do not sum to one: i.e. Si =

∑
k sik varies across observations i. This

is the case in the influential “China shock” study of Autor et al. (2013, henceforth ADH) where
i denotes commuting zones and k indexes manufacturing industries. ADH estimate the response
of labor market outcomes (e.g. manufacturing employment) across commuting zones to exposure
to industry-specific supply shocks in China. Here gk captures the supply shock in China, while
the shares sik are lagged industry employment shares in each commuting zone. The shares are
measured relative to total employment (i.e., both in manufacturing and in other sectors) and so
(unlike in AABJ) add up to the lagged total manufacturing share of region i: Si < 1.

Even when Assumption 3 holds with no controls (qk = 1), the incompleteness of shares can make
instrument orthogonality fail. Intuitively, zi leverages variation in Si which may be correlated with
the error term even when shocks are fully random. More formally, we again consider the expected
instrument:

µi =
∑
k

sikE [gk] = θ
∑
k

sik = θSi

Instrument orthogonality generally fails when θ 6= 0 and when Si is cross-sectionally correlated with
εi. For example, in the ADH setting, industry-level China shocks gk are positive in expectation
such that zi is systematically higher in regions where manufacturing as a whole is a bigger share of
the local economy. Because manufacturing employment is on a downward trend for reasons other
than trade with China (e.g., structural transformation), this can be a source of negative bias.15

Controlling for the sum of shares Si isolates the idiosyncratic variation in zi which yields instru-
ment orthogonality.16 Constructing the shift-share instrument from de-meaned shocks is again an
alternative recentering solution. The more general case with incomplete shares and other controls
qk follows similarly. Here µi = Q′iθ for Qi =

∑
k sikqk, but this µi is not an exposure-weighted

average of qk since the weights do not add up to one. Still, as before, including Qi in ri would
15In practice, ADH include a control which is highly correlated with Si: total manufacturing from a later period.

BHJ show their estimates of manufacturing employment effects are similar when controlling for Si itself.
16As BHJ note, another way to arrive at this solution is to imagine a “missing” shock g0 = 0 with exposure share

si0 = 1 − Si: e.g., the non-manufacturing sector in ADH which is not subject to the China shock. With this shock
added, there are no incomplete shares. However, E [g0] = 0 while E [gk] = µ for k 6= 0. Thus, unless µ = 0 (e.g., the
expected supply shock in China in each manufacturing industry is zero), the indicator 1 [k > 0] should be included
in qk, and correspondingly the exposure-weighted exposure to it, which equals Si, should be controlled for.
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isolate the idiosyncratic variation in the instrument.17

3.3 Linear vs. Nonlinear Formulas

We now contrast identification with linear and nonlinear formula instruments, using the nonlinear
shift-share example of zi = f(si, g) for concreteness. As with the linear case, a common motivation
for such instruments is that the endogenous treatment of interest can be written as xi = f(si, x̃i)
for some (potentially unobserved) x̃i = (x̃ik)Kk=1. An intuitive instrument in this case replaces the
x̃ik with an exogenous shifter gk. Concrete examples of such cases include the predicted change in
a regional Gini coefficient in Boustan et al. (2013), the predicted share of migrants in Basso and
Peri (2015), and the predicted foreign demand instrument of Berman et al. (2015).

Nonlinearity of f(·) complicates the structure of the expected instrument relative to the linear
case. Even with complete shares and fully random shocks (i.e., iid gk conditionally on w)—a
case where µi is constant for linear shift-share instruments—a nonlinear shift-share instrument
generally has a µi which depends on si in complex ways. Outside this case, µi further depends on
the heteroskedasticity and mutual dependence between the shocks—making the mean-independence
condition (3) inadequate.

BH make these points concrete by considering an instrument which could be called a “shift-share
in logs” (see, e.g., Berman et al. (2015), Berthou et al. (2019), and Costa et al. (2019)).18 Suppose
xi = log (Xi1/Xi0) measures the growth rate of a regional variable which can be represented as
a sum of local industry components, Xit =

∑
k X̃ikt for t ∈ {0, 1}. Then xi can be rewritten

as a nonlinear function of initial shares sik = X̃ik0
Xi0

and regional growth rates x̃ik = X̃ik1
X̃ik0

, as
xi = log (

∑
k sikx̃ik). Suppose the x̃ik are endogenous but we observe an industry characteristic

Gkt with plausibly exogenous growth rates gk = Gk1
Gk0

that predict the x̃ik. A natural nonlinear
shift-share instrument is then zi = log(

∑
k sikgk).

The log transformation makes µi heterogeneous across regions, even with fully random gk and
complete shares. In particular, by Jensen’s inequality, E [log (

∑
k sikgk) | s] is systematically lower

for regions where
∑
k sikgk has a higher variance. Thus, regions with more concentrated industries

(where sik is more skewed across k) will tend to have higher variance of
∑
k sikgk and lower µi

and zi. Such regions may also have systematically different unobservables εi. For example, a more
concentrated local economy may benefit from returns to scale leading to higher regional economic
growth, which would generate a downward bias in an IV estimator taking growth as outcome.

One solution to this problem, following the general approach in Section 3.1, is to compute µi
from a specification of shock counterfactuals and either recenter by or control for it. An alternative

17For example, ADH study two periods (the 1990s and 2000s) with systematically higher shocks to manufacturing
industries systematically higher in the 2000s. With period fixed effects in qi, the corresponding Qi includes the total
manufacturing share interacted with period fixed effects. BHJ show that adding this control is empirically relevant in
the ADH context. The intuition is that regions with a higher total manufacturing share always have systematically
higher zi, but especially in the 2000s. If manufacturing-heavy regions face stronger declines in employment in the
2000s for reasons other than trade with China (again, perhaps because of structural change), the shift-share IV
estimator is biased even if period dummies and Si are separately controlled for.

18See Appendix D.4 of their working paper, Borusyak and Hull (2021b).

11



solution is to take a first-order approximation of f(·) around some fixed vector of shocks to return
to the linear case. For example, taking a log-linear approximation around gk = 1 in the preceding
example gives z̆i =

∑
k sikloggk, with sik = ∂f(si,1)

∂ log gk
. This is a linear shift-share instrument, with

logged shocks and exposure shares which need not sum to one. As an approximation to zi, the linear
instrument might predict xi less well and thus be less efficient. However, unlike zi, the validity
of z̆i depends only on correct specification of E [log gk | ε, w] (i.e. Assumption 3), making it more
robust.

3.4 Non-Anonymous Constructions

We now consider a case where the formula used to build the instrument is non-anonymous: zi =
fi(s, g), i.e. where the exposure of unit i to the shocks cannot be naturally summarized by some
observation-specific vector si.19 For example, one may study the propagation of shocks across a
network where the units i represent nodes and g captures shocks that are as-good-as-randomly
assigned to nodes.

In such cases, avoiding bias may seem particularly challenging. Consider for example the setting
of Carvalho et al. (2021), who study the effects of network distance between a focal firm i and
the nearest firm located in the geographic area of the 2011 Tohoku earthquake. Exposure to the
earthquake shock is given by the entire firm-to-firm supplier network, with network distance yielding
a complex non-anonymous construction.

In this setting, it is not clear how to pick the right set of controls to span µi without leveraging
the formula and some knowledge of the shock assignment process. However, the general simulation
procedure from Section 3 yields µi given specification of shock counterfactuals: for example, by
drawing on geological models of earthquake probabilities across regions to redraw earthquake real-
izations. This example demonstrate how the recentering logic and the specification of counterfactual
shocks help address the specific challenges with non-anonymous (and non-linear) constructions.

4 Consistency and Inference

4.1 Consistency with Many Shocks

We next consider consistency of IV estimators which recenter by or control for µi. Even if the
orthogonality condition (4) holds and z̃i is relevant, additional conditions are generally required
for consistent estimation because of the potentially complex dependencies in the data. Indeed, z̃i
captures common exposure of the observations to the shocks in g and may thus be correlated across i
in non-standard ways. Similarly, the εi may exhibit non-standard dependencies from their common
dependence on unobserved shocks. Consistency may nevertheless follow so long as g includes a large
number of sufficiently-independent shocks regardless of the dependence structure of unobservables.

19Note that it is technically always possible to write zi = fi(s, g) anonymously, for example as zi = f̃(ai, g) where
ai includes copies of s and an observation indicator such that f̃(·) returns fi(s, g). Such constructions are unnatural
in most settings with non-anonymous constructions, however.
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Formally, we consider the recentered IV estimator

β̂ =
∑
i yiz̃i∑
i xiz̃i

= β +
∑
i εiz̃i∑
i xiz̃i

. (9)

Here we assume that yi and xi (and correspondingly εi) have been residualized on some regression
controls ri ≡ ri(w), dropping the previous⊥ notation. This definition of β̂ therefore nests estimators
which control for functions of w that span µi (making recentering unnecessary) or include any
predetermined controls after recentering zi.

BHJ and BH study the convergence of β̂ along a sequence of distributions PN for the complete
data

{
(yi, xi, zi)Ni=1, s, g, q

}
where the number of shocks KN = dim(g) can vary with the number of

observations N . In particular, they consider consistency: β̂ p−→ β as N →∞. Here we suppress the
N subscript for brevity.

As with the identification discussion in Section 3.2, it is instructive to first study consistency
in the special case of shift-share instruments. Consider:

Assumption 4. (a) Many uncorrelated shocks: E
[∑K

k=1 s
2
k

]
→ 0 for sk = 1

N

∑
i sik measuring the

average exposure to shock gk, and Cov [gk, gk′ | ε, w] = 0 for all k 6= k′;
(b) First-stage: 1

N

∑
i xiz̃i

p→ π 6= 0;
(c) Regularity: Var [gk | ε, w] ≤ Bg and E

[
ε̄2
k | w

]
≤ Bε uniformly, for ε̄k = 1

N

∑
sikεi/sk.20

Proposition 1. In the shift-share case where z̃i =
∑K
k=1 sikg̃k with sik ≥ 0 and g̃k = gk − q′kθ,

Assumptions 3 and 4 imply β̂ p→ β.

Proof. Follows from Proposition 3 of BHJ applied to the demeaned shocks g̃.

Assumption 4(a) ensures that the law of large numbers applies to 1
N

∑
i εiz̃i regardless of the

mutual correlations of εi. It requires that the number of shocks grows with the sample size (since∑K
k=1 s

2
k ≥ 1/K), that shocks are mutually uncorrelated, and average exposure to them is dispersed

in the sense of the Herfindahl index converging to zero.21 Just like in conventional regressions,
mutual uncorrelatedness of the shocks can easily be relaxed, e.g. by having many uncorrelated
clusters of shocks or other forms of weak dependence between them, with the Herfindahl condition
appropriately strengthened (see Assumptions 5 and 6 in BHJ). In a panel context the large number
of shocks can arise either from many shocks in each cross-section or from a long time series, a point
we return to in Section 5.

Assumption 4(b) requires the first-stage covariance 1
N

∑
i z̃ixi to converge to some non-zero

constant. BHJ provide low-level conditions sufficient for this using a model that often underlies
the usage of shift-share instruments in the first place (and which holds trivially in reduced-form
studies where xi = zi). Specifically, they assume that the treatment can naturally be decomposed

20Without loss of generality, sk > 0 for every k since, if sik = 0 for all i, shock gk can be dropped.
21The literal interpretation of

∑
k
s2

k as a Herfindahl index and the result of
∑K

k=1 s
2
k > 1/K both technically

require complete shares,
∑

k
sik = 1, which implies

∑
k
sk = 1. However, in typical incomplete share cases where∑

k
sk is between zero and one and bounded away from zero, the same intuition applies.
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into k-specific components each strongly affected by the respective shock: xi =
∑
k sikx̃ik with

x̃ik = πikgk + uik, πik ≥ π̄ > 0 and E [g | w, ε, u] = E [g | w] for u = (uik)i,k. With this model and
additional regularity conditions, Assumption 4(b) follows if E

[
1
N

∑
i

(∑
k s

2
ik

)]
is bounded from

below. This last condition requires an average observation to be effectively exposed to only a
small number of shocks, in the sense of a non-vanishing Herfindahl index of exposure shares, such
that the law of large numbers does not apply to individual z̃i and the variance of the instrument
does not converge to zero. It is instructive to compare this condition with Assumption 4(a) which
requires the average exposure to be dispersed. Both conditions can hold when most observations
are exposed to a small set of shocks, but different ones for different observations.

Propositions 1–6 in BH generalize Proposition 1 and the sufficient conditions for a non-vanishing
first stage to nonlinear and non-anonymous formula instruments. While the assumptions become
more technically restrictive, the main intuition extends: dispersed average exposure to sufficiently
independent shocks makes 1

N

∑
i εiz̃i converge to zero regardless of the mutual correlation in the

errors, while concentrated individual shock exposure is key to the first-stage. We reproduce one of
the sets of sufficient conditions for convergence of 1

N

∑
i z̃iεi, applicable to continuous shocks:

Assumption 5. (a) Many independent shocks: the components of g are jointly independent con-
ditionally on w, and

∑
k E

[(
∂f̄(g,w)
∂gk

)2]
→ 0 for f̄(g, w) = 1

N

∑
i (fi(s, g)− µi(w));

(b) Each fi(s, g) is weakly monotone in g;
(c) Each gk has a Gaussian distribution;
(d) Regularity: E

[
ε2
i | w

]
≤ Uε uniformly; E

[∣∣∣∂f̄(g,w)
∂gk

∣∣∣ | w] <∞ for all k; Var [gk | w] ∈ [Lσ, Uσ]
for fixed constants 0 < Lσ < Uσ <∞.22

Proposition 2. Assumptions 1 and 5 imply Var
[

1
N

∑
i z̃iεi

]
→ 0.

Proof. Follows from Propositions 1 and 4(a) of BH.

BH also establish a similar result for Bernoulli-distributed shocks, where ∂f̄(g,w)
∂gk

is replaced by
discrete derivatives, as well as analogous low-level conditions for convergence of the first stage.

4.2 Asymptotic Inference with Shift-Share Variables

We now consider statistical inference on β. Inference is challenging in this setting, even with
a large number of shocks, again because the observations of zi (εi) are jointly exposed to the
observed (unobserved) shocks and may therefore exhibit complex mutual correlations. Adão et
al. (2019, henceforth AKM) illustrate this problem in the linear shift-share setting, via a Monte
Carlo simulation based on the specifications in Autor et al. (2013). They show that conventional
heteroskedasticity-robust and state-clustered standard errors, with nominal 5% significance level,
lead to rejections of the true null of β = 0 in around half of their placebo samples with randomly
generated shocks.

22All of these conditions should apply almost surely with respect to w.
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To address this issue, AKM derive new design-based central limit theorems and variance es-
timators for β̂ in the linear shift-share context, which are asymptotically valid regardless of the
correlation structure of the errors—what BHJ label “exposure-robust.” The variance estimators
can be motivated by first writing

√
N(β̂ − β) =

1√
N

∑
i εiz̃i

1
N

∑
i xiz̃i

=
(

1√
N

∑
i

εiz̃i

)
π−1(1 + op(1)), (10)

using Assumption 4(b). For simplicity, suppose Assumption 3 holds with θ = 0, such that
E [gk | ε, w] = 0 and z̃i = zi. Then:

Var
[
β̂
]
≈ 1
π2 Var

[
1
N

∑
i

εizi

]

= 1
π2 Var

[
1
N

∑
k

gk

(∑
i

sikεi

)]

= 1
π2

∑
k

E

g2
k

(
1
N

∑
i

sikεi

)2
 (11)

using Assumption 4(a) in the final line. This suggests a feasible estimator of 1
π̂2
∑
k g

2
k

(
1
N

∑
i sikε̂i

)2

where π̂ = 1
N

∑
i z̃ixi and ε̂i = yi − β̂xi. AKM prove the validity of similar variance estimators in

the general case of θ 6= 0 and when Assumption 4(a) is weakened to allow for clustered shocks.23

BHJ propose a convenient way to obtain exposure-robust standard errors based on this asymp-
totic approximation, which come from standard formulas applied to an equivalent IV regression
estimated at the “level” of the shocks. To see this result, it is first useful to note (following
Proposition 1 in BHJ) that β̂ equals the second-stage coefficient from a sk-weighted shock-level IV
regression, which uses the shocks gk as the instrument to estimate

ȳk = βx̄k + ε̄k. (12)

This result follows from the definition of zi:

β̂ =
∑
i

1
N (
∑
k sikgk) yi∑

i
1
N (
∑
k sikgk)xi

=
∑
k gk

(
1
N

∑
i sikyi

)
∑
k gk

(
1
N

∑
i sikxi

) =
∑
k skgkȳk∑
k skgkx̄k

. (13)

Moreover, if Qi =
∑
k sikqk has been included in the controls ri, the same coefficient is obtained

23AKM also consider other extensions, including to settings with heterogeneous treatment effects and to confidence
intervals which impose a null hypothesis on β.
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from a richer shock-level IV second-stage:24

ȳk = βx̄k + q′kδ + ε̄k. (14)

Under regularity conditions (see BHJ, Proposition 5), the conventional heteroskedasticity-robust
standard error for β̂ in (14) yields asymptotically valid confidence intervals for β.25 While this
derivation follows under the assumption of conditionally uncorrelated shocks (Assumption 4(a)),
BHJ note the same shock-level regression can be used to conduct asymptotically valid inference
when shocks are clustered, again using conventional clustered standard errors. Indeed, one conve-
nient feature of their approach is the flexibility of accommodating other relaxations of Assumption
4(a), such as serial correlation (with conventional heteroskedastic-and-autocorrelation-consistent
standard errors) or two-way clustering.

Remark 6. A key assumption underlying the validity of the BHJ approach to exposure-robust
inference is that only two types of controls are included in ri. First, all sources of shock-level
confounding have to be captured by controls with a shift-share structure (i.e. Qi). Second, all
other controls should not be asymptotically correlated with the instrument; these controls may
however increase the asymptotic efficiency of the estimator. BHJ show that the standard errors
are asymptotically conservative under a much weaker assumption, which allows for controls in ri
of the form

∑
k sikpk + ui, where pk are unobserved shock-level confounders and ui is noise. AKM

provide an alternative variance estimator which is asymptotically exact in the case of controls with
an “approximate” shift-share structure. Asymptotically exact shift-share inference with general
control vectors (which are necessary for identification and do not have this form) remains an open
problem.

Remark 7. The asymptotic inference results of AKM and BHJ are also useful to conduct regression-
based tests of shock orthogonality, and for verifying the strength of the instrument. Falsification
tests can be conducted by regressing any proxy for the unobserved error (such as a pre-trend
in the outcome) on the shift-share instrument while controlling for Qi. For asymptotically valid
placebo checks, the coefficient on the instrument can be computed by the shock-level regression
(14) with exposure-robust standard errors. Similarly, a valid first-stage F-statistic can be computed
by translating the regression of xi on zi and Qi to the shock level.26

24Note that (12) does not include the intercept, which is unusual, but (14) shows that including it does not change
the estimate so long as the shares are complete or the sum of shares is controlled for.

25While BHJ only consider the case where Qi has been initially controlled for, equation (14) produces valid
estimates (and, we conjecture, standard errors) regardless of this, consistent with the recentering logic. Indeed, by
the Frisch-Waugh-Lovell theorem, β̂ from (14) can be obtained by first residualizing the shocks on qk (with weights
sk), constructing the shift-share instrument from the residualized shocks, and controlling for any predetermined ri

which may or may not include Qi.
26Note that reduced-form regressions on zi are still IV regressions at the shock level, which instrument z̄k with gk

controlling for qk. The ssaggregate Stata and R packages automate the translation of linear shift-share regressions to
the shock level.
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4.3 Randomization Inference

The asymptotic results of AKM and BHJ are specific to linear shift-share variables with a large
number of shocks. We now discuss an alternative randomization inference (RI) approach, which BH
propose for other formula instruments or settings with only a small number of shocks. This approach
may be natural when Assumption 2 is made, because specified shock counterfactuals immediately
yield confidence intervals that are exact in finite samples of observations and shocks—albeit only
under the constant-effect model (1).27

Formally, BH propose to construct confidence intervals for β using the covariance between z̃i

and the residual as a randomization test statistic:

T = 1
N

∑
i

(fi(s, g)− µi) (yi − bxi) , (15)

where b is a candidate parameter value. Under the null hypothesis of β = b and Assumption 1,
yi − bxi = εi, and the distribution of T conditional on ε and w is implied by the shock assignment
process G(g | w). One may simulate this distribution under Assumption 2, by redrawing the g
shocks and recomputing T . The null is rejected if the original value of T is far in the tails of the
simulated distribution. The confidence interval for β is then obtained by inversion of such tests,
i.e. by collecting all b that are not rejected. These intervals have correct size, both conditionally
on (ε, w) and unconditionally.

While any statistic T (g, y − bx, w) can in principle be used in a similar procedure, the choice
of (15) is motivated by its close connection to the IV estimator β̂. Specifically, Borusyak and Hull
(2021b) show that β̂ is the Hodges-Lehman estimator corresponding to T (Hodges and Lehmann
1963; Rosenbaum 2002) and provide guarantees for the consistency of the randomization tests when
β̂ is consistent.

Remark 8. RI-based confidence intervals can be useful even when few shocks are observed in the
data, making the asymptotic approach inapplicable even with linear formulas. Consider for example
the single earthquake studied by Carvalho et al. (2021). Even without spillovers, it is not possible
to consistently estimate the effect of earthquakes if only one region is shocked. Yet randomization
inference remains informative in this case, as it can produce confidence intervals of finite length.
For example, if the true effect is zero, it is unlikely that unobserved shocks hit exactly the same
region where the earthquake randomly happened and the randomization test could reject β = 0.

Remark 9. As with asymptotic shift-share inference, RI-based confidence intervals can be used
to test Assumptions 1 and 2. A test of Assumption 1 is obtained by checking that the sample
covariance between z̃i and a proxy for εi is close to zero (or, more precisely, is not in the tail
of the distribution of this covariance across counterfactual shocks). Similarly, to test the correct
specification of the shock assignment process (Assumption 2) and the expected instrument implied

27RI methods are typically used to test the “sharp null” of zero treatment effects for all observations; valid inference
under weaker nulls of (say) no average effect is a more challenging problem in general. See, e.g., Chung and Romano
(2013) for an approach motivated by this challenge.
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by it, one can check that z̃i is not correlated with any prespecified functions of w. While the
assumption of constant effects required for the validity of RI-based confidence intervals can be
restrictive in practice, it is not a problem for falsification tests where the true effect should be zero
for all i.28

5 Extensions

Identification with heterogeneous effects Borusyak and Hull (2021b, Appendix C.1) show
that classic results on linear IV identification in the presence of heterogeneous treatment effects (e.g.,
Imbens and Angrist 1994) extend to formula instruments, provided µi is recentered by or controlled
for. Specifically, they show that when an exclusion restriction holds but the outcome model features
nonlinear and heterogeneous effects of the treatment (as opposed to the linear specification in (1)),
the recentered IV estimand is a weighted average of the effects of xi on yi. The weights are convex
under a generalization of the usual first-stage monotonicity condition, which, unlike in Imbens and
Angrist (1994), allows the regression of xi on z̃i to not be causal. This extension to a non-causal
first stage is especially important for formula instruments, since fi(s, g) need not correspond to a
real economic object. For example, a linear shift-share instrument may use exposure shares sik that
do not perfectly capture the way shocks gk propagate to observations. Nevertheless, as discussed
in BHJ, a causally interpretable IV estimand is guaranteed as long as xi is correctly specified, the
sik are non-negative, the shocks are weakly positively correlated, and the true effects of shocks on
each treatment are monotone.29

Multiple treatments and instruments The identification results of Section 3 extend imme-
diately to cases with multiple formula instruments f`i(s, g), ` = 1, . . . , L, for either a single treat-
ment xi or multiple treatments xpi, p = 1, . . . , P ≤ L. As long as the each expected instrument
E [f`i(s, g) | w] is adjusted for via recentering or controlling, the corresponding orthogonality con-
ditions hold—such that (β1, . . . , βP ) is identified under a standard rank condition.

The case of multiple treatments is particularly useful in network settings where it allows includ-
ing a node’s own shock along with a treatment capturing network spillovers; e.g, student i’s own
deworming status and the number of her neighbors who have been dewormed, in the Miguel and
Kremer (2004) setting. Notably, the same set of exogenous shocks allows for identification of the
effects of both treatments, via different exposure mappings.30

28Testing the first-stage relationship between xi and z̃i is similarly straightforward, though as noted by Imbens
and Rosenbaum (2005) there is no weak instrument problem for RI-based confidence intervals.

29Appendix C.1 of Borusyak and Hull (2021b) further shows that in the reduced-form case with linear effect
heterogeneity, i.e. yi = βizi + εi, recentered IV identifies E

[
1
N

∑
i
ωiβi

]
where the weights ωi are proportional to

Var [zi | w]. This conditional variance can be simulated in exactly the same manner as µi, allowing researchers to
study the implied weights of their estimand in this case. When Var [zi | w] is bounded away from zero, a recentered
IV estimand which inversely weights by it identifies the unweighted average causal effect E

[
1
N

∑
i
βi

]
.

30Constant effects play a bigger role with multiple treatments, however. See Bhuller and Sigstad (2023) and
Goldsmith-Pinkham et al. (2022) for discussions in the context of IV and reduced-form regressions.
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The case of multiple instruments is also relevant when the researcher has access to multiple sets
of exogenous shocks. BHJ illustrate this scenario in the ADH China shock setting. While ADH use
average Chinese import growth across eight non-U.S. countries, in principle the industry shocks
from each individual country may each be considered as-good-as-randomly assigned, leading to
multiple shift-share instruments for the regional exposure to import competition from China and
thus overidentification of the parameter of interest. BHJ show how to extend the shock-level
representation of the shift-share IV estimator when the exposure shares used to construct the
instruments are the same but the shocks differ. This allows them to obtain not only identification
but also asymptotic exposure-robust inference.

Other necessary controls The framework so far may seem to be unable to accommodate certain
controls that may be deemed necessary for identification. Specifically, the identification results in
Section (3.1) only allow for controls ri which are functions of w. The purpose of these controls
for identification is to absorb confounding variation in µi; beyond that, they only play a role in
estimation efficiency. In the linear shift-share case of zi =

∑
k sikgk, for example, this means all

necessary controls must have a shift-share structure of the form
∑
k sikqk.

One could imagine, however, other necessary controls which remove confounding variation in
εi. Such controls can be accommodated by augmenting the causal model (1) to have εi = λci + ηi

for an observed ci (which is not assumed conditionally independent of g) and an error ηi defined to
be orthogonal to ci (without loss of generality, since λ is not interpreted causally). Then

yi = βxi + λci + ηi (16)

and the identification question shifts to the orthogonality of zi and ηi. Modifying Assumption
(1) to the conditional independence of η = (ηi)Ni=1 and g given w (and thus allowing violations of
g ⊥ ε | w via c) and maintaining Assumption (2) and appropriate instrument relevance, we obtain
identification in a recentered IV regression of yi on xi which instruments by z̃i and controls for ci,
because orthogonality conditions E

[
1
N

∑
i z̃iηi

]
= E

[
1
N

∑
i ciηi

]
= 0 both hold.31 Alternatively, as

before, µi can be controlled for along with ci with the original zi used as the instrument.32

To make these ideas concrete, consider again the setting of Autor et al. (2013). Imagine that
regions more exposed to supply shocks in China also have higher (lagged) local unemployment
rates, due to some location-specific factors (e.g., local regulations). The local unemployment rate
does not have a shift-share structure, as there is residual variation in unemployment rates across
locations with the same industry composition. However, one can directly control for the (lagged)
local unemployment rate for identification.

31Likewise, Assumption 3 can be modified to specify that conditional mean of gk given η and w is linear in qk.
32Consistency and inference with such “non-design” necessary controls may be more complicated. AKM tackle

inference with necessary controls which have an approximate shift-share structure; other cases remain unresolved.
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Panel data While we have denoted observations by i having cross-sectional data in mind, the
results of Sections 2–4 extend directly to panel data where observations i = (`, t) correspond to
units ` in periods t and shocks can also vary over time. We make two remarks specific to panel
data.

First, including unit fixed effects does not generally remove the need to adjust the formula in-
strument, unless the corresponding expected instrument is time-invariant. Consider the instrument
z`t = f`t (st, gt) with gt ⊥ εt | wt. Then µ`t = E [z`t | wt] is absorbed by the unit fixed effects under
the very restrictive conditions that the f`t(·) mapping, the value of wt, and the shock assignment
process G(gt | wt) are all time-invariant. In linear and nonlinear shift-share settings, for example,
even if exposure shares are measured in a fixed pre-period for the entire panel, the shocks often
vary systematically over time. Footnote 17 above illustrates this issue in the ADH setting where
industry-level China shocks are higher in the 2000s than in the 1990s, making µ`t time-varying.

Second, an advantage of panel data is that the number of cross-sectional shocks (and observa-
tions) needs not be large; instead, a long time series of shocks gt with weak serial dependence may
also suffice for consistency of β̂. BHJ formalize this insight for linear shift-share settings. Nunn and
Qian (2014) is an empirical example of constructing shift-share instruments from purely time-series
exogenous shocks (specifically, in total U.S. foreign aid arising from wheat production in the U.S.)
with no cross-sectional variation.

Estimated shock assignment processes Assumption 2 requires complete knowledge of the
shock assignment process, conditionally on w. Appendix C.5 of Borusyak and Hull (2021b) shows
that this assumption can be relaxed with the assignment process specified up to a vector of pa-
rameters, G(g | w; θ). If these parameters can be consistently estimated by θ̂ from shock-level
data (e.g., by maximum likelihood) and some regularity conditions hold, adjusting the instrument
by the estimated µ̂i =

∫
fi(s, g)dG(g | w; θ̂) leads to consistent estimation of β. This generalizes

Assumption 3 (which allowed the conditional shock mean to be parameterized) to nonlinear for-
mula instruments. This approach is especially attractive when the shocks are binary (and mutually
independent conditionally on w), as a model the conditional mean, e.g. via logit or probit, yields
the entire conditional distribution.

Most efficient recentered instruments The results of Sections 2–4 take the instrument con-
struction fi(·) as given, but different constructions are likely to yield estimates with different levels
of precision in large samples. Borusyak and Hull (2021a) study the question of optimal instrument
construction (under constant effects), building on Chamberlain (1987, 1992). In a class of regular
recentered IV estimators, the asymptotically most efficient one can be described in a three step
process: the best prediction of x from (g, w) is constructed, recentered using the shock assignment
process, and then adjusted for “heteroskedasticity” (formally, for E [εε′ | w] which also depends
on E [ε | w]). The prediction and recentering steps can be seen to justify the empirical practice,
noted in Remark 2, of forming instruments from the structure of xi by removing or replacing some
endogenous components. The heteroskedasticity adjustment step is infeasible in non-iid data but
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it is often ignored in practice even in settings where it would be feasible (see, e.g., Coussens and
Spiess (2021)).

6 Comparisons with Alternative Approaches

The design-based approach leverages knowledge of the formula construction fi(·) to correct for po-
tential confounding. A natural question is whether identification is possible without such knowledge,
potentially under alternative assumptions. We answer this question by comparing the design-based
approach to two alternative strategies for identification in linear models: those based on conven-
tional assumptions of conditional treatment unconfoundedness, and those based on alternative
restrictions on outcome unobservables (such as parallel trend assumptions).

For both comparisons we use the fact that, under Assumption 1, equation (1) can be written
as a partially linear model in the spirit of Robinson (1988). Specifically, with hi(w) = E [εi | w],

yi = βxi + hi(w) + ηi, E [ηi | g, w] = 0. (17)

One approach to identification in partially linear models, advanced by Robins et al. (1992) and in
line with a long literature on propensity score methods, adjusts xi for its association with potential
confounders in w before estimating β. A different approach, considered by Goldsmith-Pinkham
et al. (2020) for linear shift-share instruments, restricts the form of hi(w) in order to directly
estimate (17). This section connects the design-based approach to formula instruments to the first
strategy—showing that explicit use of the formula is essential in this case—before contrasting it
with the alternative restrictions implied by the second strategy.

6.1 Conventional Unconfoundedness

Partially linear models are typically considered in iid data where xi = gi is assumed to be uncon-
founded given observation-specific wi. That is, with h(wi) = E [εi | wi],

yi = βxi + h(wi) + ηi, E [ηi | xi, wi] = 0. (18)

Based on a suggestion by Newey (1990), Robins et al. (1992) consider estimation of β when a
researcher has “sharper” information on the relationship between the observed xi and wi than on
the form of unobservables as captured by hi(w). This motivates their “E-estimator”:

β̂E =
∑
i yi (xi − E [xi | wi])∑
i xi (xi − E [xi | wi])

. (19)

The recentered IV estimator of BH can be seen to generalize the E-estimator to the setting where
xi = fi(s, g) is constructed by a formula from common shocks. The E [xi | wi] term becomes µi in
this case. A further generalization is obtained by letting z̃i = fi(s, g)−µi instrument for a different
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treatment xi, now with µi = E [zi | wi].33

A central difference in the setting of BHJ and BH, where the treatment or instrument is con-
structed from common shocks, is that estimation of µi = E [fi(s, g) | w] via some first-stage pro-
cedure is not possible without using the formula. In the conventional setting Robins et al. (1992)
study, E [xi | wi] may be learned non-parametrically from the conditional distribution of observation-
specific shocks gi given the confounders wi. But when all observations i are exposed to the same
vector of shocks g, and only one realization of this vector is observed, such non-parametric es-
timation is impossible.34 This problem is distinct from challenges related to high-dimensional
confounding, which can be solved by modern machine learning methods (e.g. Chernozhukov et
al. (2018)).35

Leveraging the knowledge contained in the formula, however, allows the researcher to circumvent
the common shocks issue. This is achieved in two steps: by first specifying or estimating the
assignment process for shocks, similar to the design-based approach of Robins et al. (1992), and
then “translating” it to the level at which observations and treatment are observed. The shock-level
equivalence results of BHJ make this translation especially clear in the linear shift-share case.

6.2 Outcome Model Restrictions

An alternative approach to estimating β in the partially linear model (17) restricts the unobserved
outcome error εi, without restricting the assignment process of conditionally unconfounded shocks.
Specifically, one posits a model for hi(w) and jointly estimates it along with β. Specification of the
shock design plays no role in this strategy. In fact, the strategy is coherent when the shocks are
considered non-random, in which case Assumptions 1 and 2 hold trivially. More generally, consider
a linear outcome model replacing Assumptions 1 and 2 (or 3):

Assumption 6. (Outcome Model) There exists unknown γ such that E [εi | g, w] = q′iγ for observed
qi included in w and for all i.

Assumption 6 requires a weaker version of Assumption 1, E [εi | g, w] = E [εi | w], which is trivially
satisfied when the shocks are non-random. Linearity of hi(w) = E [εi | w] in a vector of observation-
level controls qi is assumed here only for ease of discussion; alternative restrictions can suffice.

A concrete example of Assumption 6, in the linear shift-share setting, comes from Goldsmith-
Pinkham et al. (2020). Conditioning on the shocks g, they assume ε is mean-independent of the

33When zi is binary, µi can be seen to generalize the propensity score of Rosenbaum and Rubin (1983) to the
formula instrument setting. Propensity scores are typically defined in settings with randomly sampled data and a
conditionally unconfounded treatment, and used in weighting or matching estimators rather than with regression.
Appendix C.1 of Borusyak and Hull (2021b) shows how such estimators can be adapted to the more general setting
of formula instruments.

34Indeed, in conventional settings there are many observations with similar wi but different values of xi, such that
E [xi | wi] can be learned. In contrast, for the linear shift-share instruments there is no cross-sectional variation in∑

k
sikgk conditionally on si, while variation across possible realizations of g vectors is not observed.

35Consider, for instance, a shift-share instrument zi where E [gk | s] = 0 for all but a small set of k ∈ K. The
expected instrument µ(si) is then sparse in si, suggesting one might estimate it via LASSO methods. However, this
intuition is misleading: the observed zi are based on a single draw of each gk which may be far from zero even for
k ∈ K giving no hope to identify K or µ(·) even as N →∞.
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shares s after partialling out a vector of controls. This makes zi =
∑
k sikgk a valid instrument for xi.

Justification for the key mean-independence assumption is similar to that underlying conventional
“parallel trends” restrictions in difference-in-differences estimation and related strategies for causal
inference in panel data. Indeed, shift-share regressions are often specified in first-differences, in
which case E [εi | s] = 0 amounts to an assumption that observations with different exposure shares
would have been on similar outcome trends if not for a change in xi. Assumption 6 relaxes this
condition by allowing for time-varying controls qi and stochastic shocks.

Assumption 6 is very powerful; this can be seen from the fact that it justifies the orthogonal-
ity of any formula instrument fi(s, g) when including the same set of controls qi. Indeed, in the
Goldsmith-Pinkham et al. (2020) case, any function of si (including individual sik) is a valid instru-
ment. In this sense, identification strategies based on such models for εi can be said to not leverage
the specific formula construction. Restrictions on εi may be especially valuable when design-based
estimation is imprecise (e.g. because the shocks are too few or too mutually correlated), if credible
assumptions on their assignment process are lacking, or if the shocks are unobserved.

The cost of this alternative model-based approach is that Assumption 6 can be very restrictive.
In particular, BHJ show that in the shift-share setting the Goldsmith-Pinkham et al. (2020) ap-
proach generally fails when there are any unobserved shocks νk that affect the outcomes through
the same (or correlated) exposure shares; e.g., when

εi =
∑
k

sikνk + ε̃i,

for some idiosyncratic ε̃i.36 Ruling out such νk is implausible in applications where gk are “specific”
shocks that are of interest, while other shocks varying at the same level are likely.37 For instance,
in the ADH China shock setting, Assumption 6 is generally violated if there are any unobserved in-
dustry shocks affecting the outcome of interest—such as those arising from automation or changing
tastes.38

Models for εi can more generally be unsatisfying for the same reason that motivates Robins et
al. (1992): one may have limited information about the “right” form of hi(w), particularly since εi is
unobserved. It may be unclear, for example, whether linearity of the unobservables more plausibly
holds when the outcome is specified in levels vs. in logs (while both generally cannot hold).39 It
may moreover be challenging to pick the appropriate observation-specific features qi in the kinds of
non-iid settings where formula instruments are deployed, such as with spatial or network data. The
design-based approach helps meet these challenges, as the formula for zi and specification of the

36If E [νk | s] = 0 for all k, Assumption 6 technically holds. But the presence of the νk shocks may still affect the
consistency of the non-recentered shift-share IV estimator; see Appendix A.2 of BHJ.

37Conversely, BHJ argue this problem may be less concerning when the shares are “tailored” to the treatment of
interest such that they are unlikely to mediate other unobserved shocks. One candidate for this is Card (2009), who
uses lagged immigrant enclave shares and builds on an earlier difference-in-difference strategy in Card (1990).

38Correspondingly, Goldsmith-Pinkham et al. (2020) find evidence against their “exogenous shares” assumption in
the ADH setting.

39See Roth and Sant’Anna (2023) for a formalization of the sensitivity of such parallel trend restrictions to the
functional form of the outcome in the canonical difference-in-differences setup.
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distribution of observed shocks guide the choice of controls via µi. Additionally, even if the model
for hi(w) is correct, estimation of the partially linear model can lead to well-known interpretability
issues if there are heterogeneous causal effects (e.g. Borusyak et al. (2022b)).40 In contrast, as
noted in Section 5, the design-based approach guarantees a causally interpretable estimand under
a first-stage monotonicity condition.

7 Conclusion

The design-based approach to formula instruments can be seen to bring new insights to longstand-
ing identification strategies in economics (shift-share IV, in particular) while also pointing a way
forward for novel econometric strategies which leverage more complex instrument constructions.
An ever-increasing richness of data, sophistication of economic models, and creativity in discover-
ing plausibly exogenous shocks are likely to yield many new settings where Assumptions 1–2 or 3
credibly hold. A focus on shock design in such settings can allow researchers to avoid extraneous or
undesirably strong assumptions on how model unobservables relate to predetermined observables,
provided the formula construction is leveraged appropriately for identification and inference.

Several open paths remain in this agenda. First, asymptotic inference results are only available
in some special cases. It would be valuable to develop asymptotically valid inference techniques
outside the linear shift-share case, and for shift-share instruments with unrestricted control vectors,
as well as to extend results on randomization inference with heterogeneous treatment effects (e.g.
Chung and Romano (2013)) to formula instruments. Second, it would be interesting to extend
recent double/debiased machine learning results (e.g. Chernozhukov et al. (2018)) to shift-share
instruments—allowing the vector qk of shock-level confounders to be high-dimensional. Third, it
would be useful to characterize properties of the recentering approach when the shock assignment
process is estimated in a flexible way, e.g. by non-parametric estimation of the distribution of gk | qk
when (gk, qk) are iid. Fourth, the estimand of the recentered IV procedure is not known when the
exclusion restriction is violated. For instance, is recentering guaranteed to reduce bias in some
situations even if the network spillovers embedded in xi are misspecified? Finally, open questions
remain on how recentering can relax the assumptions of more elaborate econometric methods, such
as structural models for differentiated product demand. On these and other issues we expect many
interesting developments in the growing literature on formula instruments.

References
Abadie, Alberto, Susan Athey, Guido W. Imbens, and Jeffrey M. Wooldridge. 2020.

“Sampling-based vs. Design-based Uncertainty in Regression Analysis.” Econometrica 88:265–
296.

Adão, Rodrigo, Michal Kolesár, and Eduardo Morales. 2019. “Shift-Share Designs: Theory
and Inference.” Quarterly Journal of Economics 134:1949–2010.

40One solution to such “negative weight” issues is to expand the partially linear model to allow for interactions
between the treatment and controls; see, e.g., Wooldridge (2021) and Goldsmith-Pinkham et al. (2022).

24



Aghion, Philippe, Celine Antonin, Simon Bunel, and Xavier Jaravel. 2022. “Modern Man-
ufacturing Capital, Labor Demand, and Product Market Dynamics: Evidence from France.”
Working Paper.

Aronow, Peter M., and Cyrus Samii. 2017. “Estimating average causal effects under general
interference, with application to a social network experiment.” Annals of Applied Statistics
11:1912–1947.

Athey, Susan, and GuidoW. Imbens. 2018. “Design-based Analysis in Difference-In-Differences
Settings with Staggered Adoption.” Working Paper.

Autor, David H., David Dorn, and Gordon H. Hanson. 2013. “The China Syndrome: Local
Labor Market Impacts of Import Competition in the United States.” American Economic
Review 103:2121–2168.

Bartik, Timothy J. 1991. Who Benefits from State and Local Economic Development Policies?
W. E. Upjohn Institute for Employment Research.

Basso, Gaetano, and Giovanni Peri. 2015. “The Association between Immigration and Labor
Market Outcomes in the United States.” Working Paper.

Berman, Nicolas, Antoine Berthou, and Jérôme Héricourt. 2015. “Export Dynamics and
Sales at Home.” Journal of International Economics 96:298–310.

Berthou, Antoine, John Jong-hyun Chung, Kalina Manova, and Charlotte Sandoz Dit
Bragard. 2019. “Productivity, (Mis)allocation and Trade.” Working Paper.

Bhuller, Manudeep, and Henrik Sigstad. 2023. “2SLS with Multiple Treatments.” Mimeo.
Blanchard, Olivier Jean, and Lawrence F. Katz. 1992. “Regional Evolutions.” Brookings

Papers on Economic Activity, 1–75.
Borusyak, Kirill, and Peter Hull. 2021a. “Efficient Estimation with Non-Random Exposure to

Exogenous Shocks.” Mimeo.
. 2021b. “Non-Random Exposure to Exogenous Shocks: Theory and Applications.” Mimeo.
. 2022. “Non-Random Exposure to Exogenous Shocks.” Working Paper.

Borusyak, Kirill, Peter Hull, and Xavier Jaravel. 2022a. “Quasi-Experimental Shift-Share
Research Designs.” Review of Economic Studies 89:181–213.

Borusyak, Kirill, Xavier Jaravel, and Jann Spiess. 2022b. “Revisiting Event Study Designs:
Robust and Efficienct Estimation.” Working Paper.

Boustan, Leah, Fernando Ferreira, Hernan Winkler, and Eric M. Zolt. 2013. “The effect
of rising income inequality on taxation and public expenditures: Evidence from U.S. Munici-
palities and school districts, 1970-2000.” Review of Economics and Statistics 95:1291–1302.

Card, David. 1990. “The Impact of the Mariel Boatlift on the Miami Labor Market.” ILR Review
43:245–257.

. 2009. “Immigration and Inequality.” American Economic Review: Papers & Proceedings
99:1–21.

Carvalho, Vasco M., Makoto Nirei, Yukiko U. Saito, and Alireza Tahbaz-Salehi. 2021.
“Supply Chain Disruptions: Evidence from the Great East Japan Earthquake.” Quarterly Jour-
nal of Economics 136:1255–1321.

Cattaneo, Matias D., Brigham R. Frandsen, and Rocío Titiunik. 2015. “Randomization
Inference in the Regression Discontinuity Design: An Application to Party Advantages in the
U.S. Senate.” Journal of Causal Inference 3:1–24.

Chamberlain, Gary. 1987. “Asymptotic efficiency in estimation with conditional moment restric-
tions.” Journal of Econometrics 34:305–334.
. 1992. “Efficiency Bounds for Semiparametric Regression.” Econometrica 60:567–596.

25



Chernozhukov, Victor, Denis Chetverikov,Mert Demirer, Esther Duflo, Christian Hansen,
Whitney Newey, and James Robins. 2018. “Double/debiased machine learning for treat-
ment and structural parameters.” Econometrics Journal 21:C1–C68.

Chung, Eunyi, and Joseph P. Romano. 2013. “Exact and asymptotically robust permutation
tests.” Annals of Statistics 41:484–507.

Costa, Rui, Swati Dhingra, and Stephen Machin. 2019. “Trade and Worker Deskilling.”
Working Paper.

Coussens, Stephen, and Jann Spiess. 2021. “Improving Inference from Simple Instruments
Through Compliance Estimation.” Mimeo.

Currie, Janet, and JonathanGruber. 1996. “Health Insurance Eligibility, Utilization of Medical
Care, and Child Health.” The Quarterly Journal of Economics 111:431–466.

De Chaisemartin, Clément, and Luc Behaghel. 2018. “Estimating the Effect of Treatments
Allocated by Randomized Waiting Lists.” Working Paper.

Diamond, Rebecca. 2016. “The Determinants andWelfare Implications of USWorkers ’ Diverging
Location Choices by Skill: 1980 – 2000.” American Economic Review 106:479–524.

Donaldson, Dave, and Richard Hornbeck. 2016. “Railroads and American Economic Growth:
A "Market Access" Approach.” Quarterly Journal of Economics 131:799–858.

Goldsmith-Pinkham, Paul, Peter Hull, and Michal Kolesár. 2022. “Contamination Bias in
Linear Regressions.” Working Paper.

Goldsmith-Pinkham, Paul, and Guido Imbens. 2013. “Social Networks and the Identification
of Peer Effects.” Journal of Business and Economic Statistics 31:253–264.

Goldsmith-Pinkham, Paul, Isaac Sorkin, and Henry Swift. 2020. “Bartik Instruments :
What, When, Why, and How.” American Economic Review 110:2586–2624.

Greenstone, Michael, Alexandre Mas, and Hoai-Luu Nguyen. 2014. “Do Credit Market
Shocks Affect the Real Economy? Quasi-Experimental Evidence from the Great Recession and
’Normal’ Economic Times.” NBER Working Paper 20704.

Hodges, J.L. Jr., and Erich L Lehmann. 1963. “Estimates of Location Based on Rank Tests.”
The Annals of Mathematical Statistics 34:598–611.

Hummels, David, Rasmus Jorgensen, Jakob Munch, and Chong Xiang. 2014. “The Wage
Effects of Offshoring: Evidence From Danish Matched Worker-Firm Data.” American Economic
Review 104:1597–1629.

Imbens, Guido W., and Joshua D. Angrist. 1994. “Identification and Estimation of Local
Average Treatment Effects.” Econometrica 62:467.

Imbens, Guido W., and Paul R. Rosenbaum. 2005. “Robust, accurate confidence intervals
with a weak instrument: quarter of birth and education.” Journal of the Royal Statistical
Society: Series A (Statistics in Society) 168 (January): 109–126.

Jaravel, Xavier. 2019. “The unequal gains from product innovations: Evidence from the us retail
sector.” The Quarterly Journal of Economics 134:715–783.

Lee, David S. 2008. “Randomized experiments from non-random selection in U.S. House elections.”
Journal of Econometrics 142:675–697.

Miguel, Edward, and Michael Kremer. 2004. “Worms: Identifying impacts on education and
health in the presence of treatment externalities.” Econometrica 72:159–217.

Nakamura, Emi, and Jón Steinsson. 2014. “Fiscal Stimulus in a Monetary Union: Evidence
from US Regions.” American Economic Review 104:753–792.

Newey, Whitney K. 1990. “Efficient Instrumental Variables Estimation of Nonlinear Models.”
Econometrica 58:809–837.

Neyman, Jerzy. 1923. “On the application of probability theory to agricultural experiments.
Essay on principles.” Ann. Agricultural Sciences, 1–51.

26



Nunn, Nathan, and Nancy Qian. 2014. “US Food Aid and Civil Conflict.” American Economic
Review 104:1630–1666.

Oberfield, Ezra, and Devesh Raval. 2021. “Micro data and macro technology.” Econometrica
89:703–732.

Peri, Giovanni, Kevin Shih, and Chad Sparber. 2016. “STEM workers, H-1B Visas, and
productivity in US cities.” Journal of Labor Economics 49:277–307.

Robins, James M, Steven D Mark, and Whitney K Newey. 1992. “Estimating Exposure
Effects by Modelling the Expectation of Exposure Conditional on Confounders.” Biometrics
48:479–495.

Robinson, P.M. 1988. “Root-N-Consistent Semiparametric Regression.” Econometrica 56:931–
954.

Rosenbaum, Paul R, and Donald B Rubin. 1983. “The Central Role of the Propensity Score
in Observational Studies for Causal Effects Paul R. Rosenbaum, Donald B. Rubin.” 70:41–55.

Rosenbaum, Paul R. 2002. “Covariance adjustment in randomized experiments and observational
studies.” Statistical Science 17:286–327.

Roth, Jonathan, and Pedro H.C. Sant’Anna. 2023. “When Is Parallel Trends Sensitive to
Functional Form?” Econometrica 91.

Saiz, Albert. 2010. “The Geographic Determinants of Housing Supply.” The Quarterly Journal of
Economics 125:1253–1296.

Wooldridge, Jeffrey M. 2021. “Two-Way Fixed Effects, the Two-Way Mundlak Regression, and
Event Study Estimators.” Working Paper.

Xu, Chenzi. 2022. “Reshaping Global Trade: The Immediate and Long-Run Effects of Bank
Failures.” Quarterly Journal of Economics 137:2107–2161.

27


	CEMMAP COVER.pdf
	BHJ2_review.pdf
	1 Introduction
	2 Setting
	3 Identification
	3.1 Expected and Recentered Instruments
	3.2 Linear Shift-Share IV
	3.3 Linear vs. Nonlinear Formulas
	3.4 Non-Anonymous Constructions

	4 Consistency and Inference
	4.1 Consistency with Many Shocks
	4.2 Asymptotic Inference with Shift-Share Variables
	4.3 Randomization Inference 

	5 Extensions
	6 Comparisons with Alternative Approaches 
	6.1 Conventional Unconfoundedness
	6.2 Outcome Model Restrictions

	7 Conclusion




