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This paper proposes an information-based inference method for partially iden-

tified parameters in incomplete models that is valid both when the model is cor-

rectly specified and when it is misspecified. Key features of the method are: (i) it

is based on minimizing a suitably defined Kullback-Leibler information criterion

that accounts for incompleteness of the model and delivers a non-empty pseudo-

true set; (ii) it is computationally tractable; (iii) its implementation is the same

for both correctly and incorrectly specified models; (iv) it exploits all information

provided by variation in discrete and continuous covariates; (v) it relies on Rao’s

score statistic, which is shown to be asymptotically pivotal.
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1. INTRODUCTION

Over the last twenty years, a rich literature has emerged to provide methods to carry out

inference in partially identified models under the assumption of correct model specification.

In some cases this assumption is plausible, as partial identification often results from reduc-

ing the number of suspect assumptions maintained in counterpart point identified models.
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Yet, even in partially identified models, rarely is inference based on the empirical evidence

alone: researchers routinely impose exogeneity assumptions, behavioral restrictions, distri-

butional and functional form specifications, etc. These conditions are merely approxima-

tions of complex social and economic phenomena, and hence subject to misspecification

error. When a partially identified model is misspecified, at least three problems may occur

(see Molinari, 2020, and references therein): (i) the parameters’ sharp identification region

may be empty or spuriously tight;1 (ii) confidence sets constructed assuming correct model

specification may (severely) undercover; and (iii) their tightness may be misinterpreted as

highly informative data. Each of these problems has a counterpart in point identified mod-

els that, for maximum likelihood, least squares, and GMM estimators, has been addressed

in the econometrics literature since at least White (1982).2 Yet, development of a toolkit

for inference in misspecified partially identified models is just starting.

We contribute to this nascent literature by proposing a novel information theoretic in-

ference method in the spirit of White (1982) that is robust to misspecification, easy to

implement, valid both for correctly and incorrectly specified models, and able to exploit

all information provided by variation in discrete and continuous regressors. The method

applies to a specific but wide class of partially identified models that predict a set of val-

ues for the endogeneous variables (Y ) given the exogenous observed and unobserved ones

(X and U , respectively), and hence yield a set of conditional distributions for Y |X . Many

examples belong to this class, including: games with multiple equilibria; discrete choice

models with either interval data on covariates, counterfactual choice sets, endogeneous ex-

planatory variables, or unobserved heterogeneity in choice sets; dynamic discrete choice

models; network formation models; and auctions and school choice models under weak

assumptions on behavior (see Molinari, 2020, for a review of these models).

The method that we propose is based on adapting the textbook one for (point identified)

models that predict a singleton conditional distribution for Y |X , to models that predict a

1The sharp identification region is the set of parameters that are observationally equivalent, i.e., can generate the
same distribution of observables as the one in the data, for some DGP consistent with the maintained assumptions.

2See, e.g., Gallant and White (1988), Hall and Inoue (2003), Hansen and Lee (2021), and references therein.
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set of distributions for Y |X . Our first step is to characterize the set of model predicted

distributions. To do so, we leverage a result in random set theory due to Artstein (1983) to

ensure that we collect exclusively the distributions consistent with all maintained assump-

tions. This is especially important in the context of misspecification, as using only a subset

of model implications may yield misleading conclusions (Kédagni et al., 2021, Molinari,

2020, Beresteanu et al., 2011). In the second step, we define a never-empty pseudo-true set

for the parameter vector θ characterizing the model. This is the collection of minimizers

of a Kullback-Leibler (KL) information criterion that measures the divergence of the set

of model-predicted distributions from the distribution of the observed data. This pseudo-

true set has a similar information theoretic interpretation as originally proposed by Akaike

(1973) and White (1982). It shrinks to the pseudo-true parameter vector in White (1982)

if the assumptions are augmented so that the model predicts a single distribution. In the

third step, we obtain a profiled likelihood function by projecting, with respect to the KL

divergence measure, the distribution of the observed data on the set of model implied dis-

tributions. We show that this profiling step can be carried out through a computationally

simple convex program, which in our leading examples with discrete outcomes features a

strictly convex objective and linear constraints. As in the textbook case, the pseudo-true set

equals the collection of maximizers of the (profiled) likelihood function.

We next derive a novel score representation for the profiled likelihood function, based

on dθ estimating (score) equations, with dθ the number of model’s parameters. These equa-

tions depend on the conditional distribution of Y |X , which is unknown and needs to be

estimated nonparametrically (the bandwidth/sieves order of this estimator, and a regular-

ization constant for a covariance matrix estimator, are the only tuning parameters we use).

We leverage classic results in the semiparametric inference literature, specifically Newey

(1994), to establish that an orthogonality property holds. Provided the rate of convergence

of the nonparametric estimator is sufficiently fast (op(n−1/4)), this implies that the limit

distribution of the averaged score function is insensitive to estimation of the distribution

of the data. We use this result to construct a Rao’s score statistic with asymptotically piv-

otal limit distribution χ2
dθ

, which we use to test the hypothesis that a candidate parameter
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vector belongs to the pseudo-true set. We invert the test to construct a confidence set and

show that it is robust to misspecification: it covers each element of the pseudo-true set with

asymptotic probability at least equal to the nominal level 1 − α, uniformly over a large

class of DGPs, both when the observed covariates have a discrete distribution with finite

support and when they have a continuous distribution. The confidence set incorporates all

information the covariates provide. The steps required to implement our method are the

same both when the model is correctly specified and when it is misspecified, and resemble

familiar ones based on the score of the likelihood function in point identified models.

Related Literature. The vast literature on inference in partially identified models (recently

surveyed in Canay and Shaikh, 2017, Molinari, 2020) has considered questions related to

misspecification. Early works (Manski, 2003, Ponomareva and Tamer, 2011) show that

identification regions may be empty if the model is misspecified. Kaido and White (2013)

study parametrically-misspecified moment inequality models, and provide a consistent es-

timator for a pseudo-true set and its rate of convergence. Several papers provide tests for

correct specification; e.g., Guggenberger et al. (2008) and Bontemps et al. (2012) for linear

moment (in)equality models, and Romano and Shaikh (2008), Andrews and Guggenberger

(2009), Galichon and Henry (2009), and Andrews and Soares (2010) for general moment

inequality models. Bugni et al. (2015) propose more powerful model specification tests

that resemble the J -test for point identified GMM models. Bugni et al. (2012) show that

with local misspecification, confidence sets constructed under the assumption of correct

specification fail to asymptotically satisfy their nominal coverage requirement.

Only a few papers have put forth tools for construction of confidence sets that are valid

in the presence of misspecification, in the sense of covering each element of a pseudo-true

identified set with an asymptotic probability at least as large as a prespecified nominal level.

Andrews and Kwon (2022) show that model misspecification can lead to spuriously tight

confidence sets while statistical tests (e.g., one proposed by Bugni et al. (2015) and one

that they propose) have low power at detecting misspecification. They propose a notion

of pseudo true set, a specification test, and an inference method for partially identified

models defined by a finite number of unconditional moment inequalities. They obtain a
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confidence set by test inversion that is uniformly valid in the presence of misspecification,

using a test statistic that aggregates violations of the sample moment conditions relaxed

by the minimum amount that guarantees that at least one parameter vector in the parameter

space satisfies them. Stoye (2020) focuses on the narrower class of interval identified scalar

parameters, with finite number of moment conditions yielding the upper/lower bound and

asymptotic normality for the estimators of these bounds. He obtains a valid and never-

empty confidence interval that is free of tuning parameters and very simple to compute.

In contrast to these papers, our method is applicable to models for conditional density

functions of outcome variables given discrete and continuous covariates. Allowing for con-

tinuously distributed covariates is important: they are commonplace in practice and may

deliver substantial identifying information. Yet, existing empirical applications with partial

identification rely on discretizing the covariates to obtain unconditional moment inequali-

ties (e.g., Ciliberto and Tamer, 2009, Kline and Tamer, 2016, Dickstein and Morales, 2018).

Doing so may distort the original model, and lead to loss of identifying information. Under

the assumption of correct specification, one may use inference methods designed for con-

ditional moment inequalities (e.g., Andrews and Shi, 2013). Such methods, however, rely

on instrument functions to transform the conditional moments in an uncountable collection

of unconditional ones, making their implementation challenging. We bypass this problem

by evaluating directly the contribution of each observation to the score function. Our pop-

ulation pseudo-true set and our inference method are insensitive to which inequalities one

uses to characterize the sharp collection of model implied distributions for Y |X . This is

in contrast with much of the related literature, where moment selection is often required

either for computational tractability or as part of the inference procedure, but may have

substantial implications on the population region that the researcher targets (Kédagni et al.,

2021) and on the properties of confidence sets (e.g., Andrews and Soares, 2010, Andrews

and Shi, 2013, Bugni et al., 2017, Kaido et al., 2019).

Our method leverages results in random set theory (see Molchanov and Molinari, 2018,

for a review), and contributes to likelihood-based inference approaches in partial identifi-

cation. Among these approaches, Chen et al. (2011) consider correctly specified partially
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identified semiparametric likelihood models and use sieve approximations for the infinite-

dimensional parameters underlying the model. In contrast, we profile out the infinite-

dimensional nuisance parameters through a (finite) convex program.3 Chen et al. (2018)

propose confidence sets for the identified set in correctly specified models, that are con-

tour sets of a likelihood-based criterion function using cutoffs that are computed via Monte

Carlo simulations from the quasi-posterior distribution of the criterion.4 Chen et al. (2021)

show that Chen et al. (2018)’s method delivers valid confidence sets for the pseudo true

set in a class of dynamic models that are globally misspecified when subjective beliefs dif-

fer from the often maintained rational expectations assumption. Kaido and Zhang (2019)

analyze some of the models that we consider, but under the assumption of correct model

specification. They use the least favorable pairs (LFPs) of distributions studied in the robust

statistics literature to build likelihood-ratio tests in incomplete models. Chen and Kaido

(2023) introduce a score function derived from these LFPs, to test the assumption that the

model predicts a unique distribution for Y |X . Their test is based on a Rao’s score statistic

that is distinct from ours both because under their null the model is point identified, and

because they assume correct specification.

Outline. Section 2 introduces the class of models that we study. Section 3 provides the

notion of pseudo-true set and derives the misspecification robut inference method. Section

4 discusses the computational aspects of the method. Section 5 provides Monte Carlo ev-

idence on the size and power of the test. Section 6 provides an empirical illustration that

revisits the analysis in Kline and Tamer (2016). Section 7 concludes. Appendix A provides

proofs of the main results in the paper. The Online Supplement includes Lemmas used in

the main proofs and additional examples.

3Christensen and Connault (2023) provide tools for the related but distinct question of characterizing the sen-
sitivity of counterfactuals to the distributional assumptions imposed on the latent variables of the model. They
allow such distributions to span a nonparametric neighborhood of the parametric specification, and eliminate the
infinite-dimensional nuisance parameter via a convex program of fixed dimension. In contrast, we focus on in-
ference for the parameter vector characterizing the model (from which one can derive –possibly conservative–
inference on counterfactuals), and allow for any type of misspecification.

4As the identified set in Chen et al. (2018) is given by the collection of maximizers of a properly defined
likelihood function, it naturally yields a non-empty pseudo-true identified set under misspecification, which should
be consistently estimated by the confidence sets that they propose.
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2. NOTATION AND MOTIVATING EXAMPLE

Let Y ∈ Y ⊆ RdY , X ∈ X ⊆ RdX and U ∈ U ⊆ RdU denote, respectively, observable

endogenous and exogenous variables, and unobservable variables, with realizations y,x, u.

Let P0 ∈ P(Y × X ) denote the distribution of (Y,X).5 Assume that the conditional law

P0(·|x) is absolutely continuous with respect to a σ-finite measure µ on Y . Let p0,y|x be

the Radon-Nikodym derivative of P0(·|x) with respect to µ, and let p0 ≡ {p0,y|x, x ∈ X}.

Suppose the researcher posits: (i) restrictions on the joint behavior of (Y,X,U), such as,

e.g., equilibrium or optimality conditions, which are expressed through functions known

up to finite dimensional parameter vector; (ii) that the family of distributions for the latent

variables U is known up to finite dimensional parameter vector. Let θ ∈ Θ ⊂ Rdθ denote

the combined parameter vector, and (omitting specific notation for subvectors of θ) {Fθ :

θ ∈Θ} the family of distributions for U . Assume that Fθ is independent of X .6

We consider models with a structure that associates with each element of U × X × Θ

a set of predicted outcomes through a closed valued and measurable correspondence G :

U×X ×Θ 7→ Y .7 This framework nests as a special case the textbook model with singleton

predictions, where Y = g(U |X; θ) a.s. for g : U ×X ×Θ 7→ Y a measurable function. The

next example clarifies notation and is used throughout the paper to illustrate results. More

examples are provided in the Online Appendix8 and in Molinari (2020, Sections 2 and 3).

Example 1 (Static entry game). Consider a two player entry game as in Tamer (2003),

where each player i= 1,2 can choose to enter (Yi = 1) or to stay out of the market (Yi = 0).

Let (X1,X2) and (U1,U2)∼ Fθ denote, respectively, observable and unobservable payoff

shifters. Let player’s payoffs be given by πj = Yj(Xjβj + δjY(3−j) + Uj), j = 1,2, with

δ1 ≤ 0, δ2 ≤ 0 the interaction effects and (β1, β2, δ1, δ2) part of θ. Let each player enter

5For a space S with Borel σ-algebra ΣS , P(S) denotes the set of all Borel probability measures on (S,ΣS).
6This can easily be relaxed if the researcher is willing to specify the conditional distribution of U |X .
7Given a probability space (Ω,F,P) and C the family of closed sets in Rd, a correspondence G : Ω 7→ C

is measurable if, for every compact set K in Rd, G−1(K) = {ω ∈ Ω : G(ω) ∩ K ̸= ∅} ∈ F (Molchanov and
Molinari, 2018, Definition 1.1).

8These are: discrete choice models with unobserved heterogeneity in choice sets (Barseghyan et al., 2021) and
panel dynamic discrete choice models (Heckman, 1978, Honoré and Tamer, 2006).
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u1

u2

G(U |x; θ) = {(0,1)}

G(U |x; θ) = {(1,0)}

G(U |x; θ) = {(1,0), (0,1)}

−x2β2 − δ2

−x1β1 − δ1

−x2β2 − δ2

G(U |x; θ) = {(1,1)}

G(U |x; θ) = {(0,0)}

−x2β2
−x1β1

FIGURE 1.—Stylized depiction of G(·|x;θ) in Example 1 with δ1 < 0, δ2 < 0.

the market if and only if πj ≥ 0. Given θ ∈ Θ and x ∈ X , the model has multiple pure

strategy Nash equilibria (PSNE),9 depicted in Figure 1 as a function of (u1, u2) (Tamer,

2003, Ciliberto and Tamer, 2009). In the notation of this paper, the set of PSNE is the

measurable correspondence G(·|x; θ) (Beresteanu et al., 2011, Proposition 3.1), with:

G(U |x; θ) = {(0,0)} if U ∈ S{(0,0)}|x;θ ≡ {u : uj <−xjβj , j = 1,2}, (2.1)

G(U |x; θ) = {(1,1)} if U ∈ S{(1,1)}|x;θ ≡ {u : uj ≥−xjβj − δj , j = 1,2}, (2.2)

G(U |x; θ) = {(1,0)} if U ∈ S{(1,0)}|x;θ ≡ {u : u1 ≥−x1β1 − δ1, u2 <−x2β2 − δ2)}⋃
{u :−x1β1 ≤ u1 <−x1β1 − δ1, u2 <−x2β2}, (2.3)

G(U |x; θ) = {(0,1)} if U ∈ S{(0,1)}|x;θ ≡ {u : u1 <−x1β1, u2 ≥−x2β2}⋃
{u :−x1β1 ≤ u1 <−x1β1 − δ1, u2 ≥−x2β2 − δ2}, (2.4)

G(U |x; θ) = {(1,0), (0,1)} if

U ∈Mx;θ ≡ {u :−xjβj ≤ uj <−xjβj − δj , j = 1,2}. (2.5)

If one assumes δ1 × δ2 = 0 (a “principal assumption” in the econometrics literature on si-

multaneous equation models with dummy endogeneous variables), the region Mx;θ occurs

with probability zero, and G(U |x; θ) reduces to a measurable function g(U |x; θ). □

9Multiple equilibria occur also, e.g., under different solution concepts (Aradillas-Lopez and Tamer, 2008, Mag-
nolfi and Roncoroni, 2023) and in network formation models (de Paula et al., 2018, Sheng, 2020).
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3. INFORMATION-BASED INFERENCE ROBUST TO MISSPECIFICATION

We characterize the set of model-implied probability density functions for Y |X and use

it to define a model and the notions of its correct specification and misspecification. We

use the Kullback-Leibler (KL) divergence measure of this set of density functions from the

(population) density function of the data to obtain a pseudo-true identified set, a profiled

likelihood function, and a Rao’s score test statistic based on the likelihood’s score function.

3.1. The Set of Model-Implied Density Functions

As argued in Aumann (1965), one can view G(U |x; θ) as the collection of its measurable

selections (Molchanov and Molinari, 2018, Definition 2.1), i.e., all random vectors Ỹ such

that Ỹ ∈G(U |x; θ) a.s. Each selection Ỹ is a model predicted outcome. In order to obtain a

set-valued analog of a likelihood model, one needs to be able to characterize the distribution

of each of these predicted outcomes. To do so in a computationally feasible manner, we

begin with defining the law of G(U |x; θ) induced by the model’s structure:

νθ(A|x)≡
∫
U
1(G(u|x; θ)⊆A)dFθ(u), ∀A ∈ C, (3.1)

with C the collection of closed subsets of Y . The functional in (3.1) is the containment

functional of G(U |x; θ) and it uniquely determines the distribution of G(U |x; θ) when it is

evaluated at all A ∈ C (Molchanov, 2017, p.32).

Given θ ∈Θ, x ∈ X , and νθ(·|x), by Artstein (1983, Theorem 2.1) it is possible to char-

acterize all distributions of measurable selections of G(U |x; θ) as the set

core(νθ(·|x))≡ {Q ∈M(ΣY ,X ) :Q(A|x)≥ νθ(A|x),A⊆ C} , (3.2)

where M(ΣY ,X ) is the collection of laws of random variables supported on Y conditional

on X . The characterization in (3.2) is sharp, in the sense that, up to an ordered coupling

(Molchanov and Molinari, 2018, Chapter 2), given Ỹ ∼Q(·|x),

Ỹ ∈G(U |x; θ) a.s. ⇔ Q(A|x)≥ νθ(A|x), ∀A⊆ C, x− a.s.
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Example 1 (Continued). Let Yx;θ(u) be the unique element of G(u|x; θ) if u /∈Mx;θ and

Yx;θ(u)≡ (0,0) if u ∈Mx;θ.10 Molchanov and Molinari (2018, Example 2.6) show that all

measurable selections of G(·|x; θ) in Example 1 can be represented as

Y (U,R) = Yx;θ(U)1(U /∈Mx;θ) + (R× (0,1) + (1−R)× (1,0))1(U ∈Mx;θ), (3.3)

for a random variable R ∈ {0,1} with any distribution in P({0,1}) and unrestricted depen-

dence on U given X . Each of these distributions is a selection mechanism that assigns to

(1,0) and (0,1) the probability that each is played given X = x and U ∈Mx;θ (e.g., Berry

and Tamer, 2006, Ciliberto and Tamer, 2009). Beresteanu et al. (2011, Lemma 2.1) show

that the distribution of each selection in Eq. (3.3) belongs to core(νθ(·|x)), and that only

those distributions do. The containment functional of G(·|x; θ) equals

νθ({(0,0)}|x) = Fθ(S{(0,0)}|x;θ), for A= {(0,0)},

νθ({(0,1), (1,0)}|x) = 1− Fθ(S{(0,0)}|x;θ)− Fθ(S{(1,1)}|x;θ), for A= {(0,1), (1,0)},

and similarly for all A ⊆ Y = {(0,0), (1,0), (0,1), (1,1)}, where for a given set B ⊂ U ,

Fθ(B) =
∫
U 1(u ∈B)dFθ(u) and the sets S{y}|x;θ, y ∈ Y are defined in Eqs. (2.1)- (2.4). □

Assume that there are σ-finite measures µ on (Y ,ΣY ) and ξ on (X ,ΣX), a product mea-

sure ζ ≡ µ× ξ on (Y×X ,ΣY ×ΣX), and that for all θ ∈Θ, x ∈ X , and Q ∈ core(νθ(·|x)),
Q≪ µ.11 Let the set of conditional densities associated with core(νθ(·|x)) be

qθ,x ≡ {qy|x : qy|x = dQ(·|x)/dµ, Q ∈ core(νθ(·|x))}, (3.4)

qθ ≡
{
qθ,x, x ∈ X

}
. (3.5)

10The assignment for u ∈Mx;θ is arbitrary and done only to obtain a random variable defined for all u ∈ U .
11This requirement is typically unrestrictive (see, e.g., White, 1982, p. 2).
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Example 1 (Continued). Given θ ∈Θ and denoting ∆ the unit simplex in R4, the set of all

model predicted probability mass functions corresponding to selections of G(·|x; θ) is

qθ =
{
qy|x ∈∆ : qy|x((0,0)|x) = Fθ(S{(0,0)}|x;θ); qy|x((1,1)|x) = Fθ(S{(1,1)}|x;θ);

Fθ(S{(1,0)}|x;θ)≤ qy|x((1,0)|x)≤ Fθ(S{(1,0)}|x;θ) + Fθ(Mx;θ), x ∈ X
}
, (3.6)

with S{(0,0)}|x;θ, S{(1,1)}|x;θ, S{(1,0)}|x;θ, Mx;θ defined in Eqs. (2.1), (2.2), (2.3), (2.5). □

3.2. Correct Specification, Misspecification, and Pseudo-True Set

Define a model as the collection of sets qθ across θ ∈Θ: Q≡ {qθ : θ ∈Θ}. We propose

a generalization of the standard definition of correct specification for models with singleton

predictions (e.g., White, 1996, Definition 2.5) to models with set-valued predictions.

DEFINITION 3.1—Correctly Specified Model & Misspecified Model: A model is cor-

rectly specified if p0 ∈ qθ for some qθ ∈Q≡ {qϑ : ϑ ∈Θ}, and misspecified otherwise.

REMARK 3.1: In models that yield a singleton prediction Y = g(U |X; θ) a.s., with

g : U × X × Θ 7→ Y a measurable function, there is a unique implied law for g|X = x:

Qθ(A|x) =
∫
U 1(g(u|x; θ) ∈A)dFθ(u), ∀A ∈ C, with associated conditional density func-

tion qθ,y|x = dQθ(·|x)/dµ (compare with Eqs. (3.1) and (3.4)). The model is defined as the

collection of (singleton) qθ,y|x across θ ∈ Θ and x ∈ X , Q =
{
[qθ,y|x, x ∈ X ] : θ ∈Θ

}
.

The model is correctly specified if p0 = qθ for some qθ ∈Q, and misspecified otherwise.

Given two density functions f and f ′ on a measure space (Ω,F, ζ), we measure their

similarity through the Kullback-Leibler Information Criterion (KLIC)

I(f ||f ′)≡
∫
S
f ln

f

f ′
dζ, (3.7)

where S = {ω ∈ Ω : f(ω)> 0}. In our framework, the model predicts a set of conditional

density functions as in Eq. (3.5). Hence, we extend the definition in Eq. (3.7) to measure

divergence from f of a set of conditional density functions f.
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DEFINITION 3.2—KLIC for set of density functions: Let (Ω,F, ζ) be a measure space.

Let f : Ω 7→ R+ be a measurable function satisfying
∫
fdζ < ∞ and

∫
S f lnfdζ < ∞

where S = {ω ∈ Ω : f(ω) > 0}. Let f denote a set of measurable functions f ′ : Ω 7→ R+

satisfying
∫
S f lnf

′dζ <∞. The Kullback-Leibler divergence measure from f of a set f is

I(f ||f)≡ inf
f ′∈f

I(f ||f ′). (3.8)

It follows from White (1996, Theorem 2.3) that when inff ′∈f
∫
S(f−f ′)dζ ≥ 0, I(f ||f) =

0 if f ∈ f, and I(f ||f)> 0 otherwise.

Our approach is based on measuring divergence between conditional density functions.

Given a joint density function f(y,x), its associated conditional density function f(y|x),
and another conditional density function f ′(y|x), we denote their conditional KLIC by

I(f ||f ′)≡
∫
Y×X

f(y,x) ln
f(y|x)
f ′(y|x)

dζ(y,x), (3.9)

and use Eq. (3.9) in the KL divergence measure in Eq. (3.8).

Similarly to what White (1982) argued for point-identified models, we define the pseudo

true set, denoted Θ∗(p0), as the set of minimizers of the researcher’s ignorance about the

true structure. In our case, however, one is ignorant also about which selection from the

model predicted set is closest to the data. Hence, minimization occurs not only with re-

spect to ϑ ∈Θ, as in the textbook case for models with singleton predictions, but also with

respect to q ∈ qϑ. If the model happens to be correctly specified, Θ∗(p0) equals the sharp

identification region, just like in correctly specified point identified models the pseudo-true

value coincides with the data generating one.12

DEFINITION 3.3: The pseudo-true identified set is given by

Θ∗(p0)≡
{
θ ∈Θ : I(p0||qθ) = inf

ϑ∈Θ
I(p0||qϑ)

}
. (3.10)

12Chen et al. (2011) provide inference methods for the set in Eq. (3.10) under the assumption of correct model
specification. Chen et al. (2018, Remark 3) suggest that their method may remain valid for some misspecified
separable models with discrete covariates.
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To understand the effect of minimizing KLIC with respect to q ∈ qϑ, note that

I(p0||qϑ) = inf
q∈qϑ

∫
Y×X

p0(y,x) ln
p0,y|x(y|x)
qy|x(y|x)

dζ(y,x)

=

∫
X
p0,x(x) inf

qy|x∈qϑ,x

∫
Y
p0,y|x(y|x) ln

p0,y|x(y|x)
qy|x(y|x)

dµ(y)dξ(x), (3.11)

where qϑ and qϑ,x are defined in Eqs. (3.4)-(3.5). Eq. (3.11) does not involve unknown se-

lection mechanisms to formalize all ways in which a measurable selection could be picked

from G(·|x; θ) and all associated likelihood functions be obtained. Rather, the optimization

step in Eq. (3.11) relies on a convex program, with strictly convex objective and convex

constraints (when Y is finite, it is a finite dimensional convex program with linear con-

straints), and delivers the density function in qϑ,x closest to p0 with respect to KLIC:

q∗ϑ,y|x = arg inf
qy|x∈qϑ,x

∫
Y
p0,y|x(y|x) ln

p0,y|x(y|x)
qy|x(y|x)

dµ(y). (3.12)

The solution q∗ϑ,y|x exists under mild conditions and can be calculated analytically or nu-

merically. It can be interpreted as a profiled (quasi)-likelihood where a convex optimiza-

tion program profiles out the selection mechanism, which is left completely unspecified

and may arbitrarily depend on (X,U,ϑ). The support of X is also unrestricted. Related

likelihood-based inference methods, in contrast, rely on an infinite-dimensional parameter

space to represent the selection mechanism that picks measurable selections from G(·|x; θ)
(as in, e.g., Eq. (3.3)) and then profile it out via non-convex optimization programs with

increasing number of (sieve) coefficients (e.g., Chen et al., 2011); or restrict the class of se-

lection mechanisms by assuming that they do not depend on U after conditioning on X and

that X has a discrete distribution (Chen et al., 2018). Doing so may substantially increase

computational burden or narrow the class of models allowed for. For example, in discrete

choice models with unobserved heterogeneity in choice sets (Barseghyan et al., 2021), it

would rule out choice set formation based on sequential search or rational inattention (see

Example C.1 in Appendix C in the Online Supplement for details).
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Putting together Eqs. (3.11) and (3.12) we obtain

I(p0||qϑ) =
∫
Y×X

p0(y,x) ln
p0,y|x(y|x)
q∗ϑ,y|x(y|x)

dζ(y,x).

Hence, the pseudo-true set Θ∗(p0) in Eq. (3.10) is equal to the set of maximizers of

L(ϑ)≡ Ep0

[
ln q∗ϑ,y|x(Y |X)

]
. (3.13)

Example 1 (Continued). Given θ ∈Θ, x ∈ X , and S{(0,0)}|x;θ, S{(1,1)}|x;θ, S{(1,0)}|x;θ, Mx;θ

as in Eqs. (2.1), (2.2), (2.3), (2.5), let

η1(θ;x) = 1− Fθ(S{(0,0)}|x;θ)− Fθ(S{(1,1)}|x;θ), (3.14)

η2(θ;x) = Fθ(S{(1,0)}|x;θ) + Fθ(Mx;θ), (3.15)

η3(θ;x) = Fθ(S{(1,0)}|x;θ). (3.16)

In words, η1(θ;x) is the probability allocated by the model to either (1,0) or (0,1) occur-

ring as outcome of the game; η2(θ;x) [η3(θ;x)] is the upper [lower] bound implied by the

model on the probability that (1,0) is the outcome of the game. Define the parameter sets

Θ1(x, p0)≡
{
θ ∈Θ : η3(θ;x)≤

p0,y|x((1,0)|x)
p0,y|x((1,0)|x)+p0,y|x((0,1)|x)

η1(θ;x)≤ η2(θ;x)
}

(3.17)

Θ2(x, p0)≡
{
θ ∈Θ :

p0,y|x((1,0)|x)
p0,y|x((1,0)|x)+p0,y|x((0,1)|x)

η1(θ;x)> η2(θ;x)
}

(3.18)

Θ3(x, p0)≡
{
θ ∈Θ :

p0,y|x((1,0)|x)
p0,y|x((1,0)|x)+p0,y|x((0,1)|x)

η1(θ;x)< η3(θ;x)
}
. (3.19)

Then the profiled likelihood is given by (see Proposition B.1 in the Online Appendix):

q∗θ,y|x((0,0)|x) = Fθ(S{(0,0)}|x;θ) (3.20)

q∗θ,y|x((1,1)|x) = Fθ(S{(1,1)}|x;θ) (3.21)
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q∗θ,y|x((0,1)|x) =


p0,y|x((0,1)|x)

p0,y|x((1,0)|x)+p0,y|x((0,1)|x)
η1(θ;x) θ ∈Θ1(x, p0)

η1(θ;x)− η2(θ;x) θ ∈Θ2(x, p0)

η1(θ;x)− η3(θ;x) θ ∈Θ3(x, p0)

(3.22)

q∗θ,y|x((1,0)|x) =


p0,y|x((1,0)|x)

p0,y|x((1,0)|x)+p0,y|x((0,1)|x)
η1(θ;x) θ ∈Θ1(x, p0)

η2(θ;x) θ ∈Θ2(x, p0)

η3(θ;x) θ ∈Θ3(x, p0)

. (3.23)

Intuitively, when θ ∈Θ1(x, p0), (1,0) can be assigned a share of η1(θ;x) equal to the share

of p0,y|x({(0,1), (1,0)}|x) that (1,0) has in the data. When θ ∈ Θ2(x, p0), that allocation

yields a probability for (1,0) larger than the model’s upper bound η2(θ;x), and the KL

divergence is minimized setting q∗θ,y|x((1,0)|x) = η2(θ;x). Similarly for θ ∈Θ3(x, p0). □

3.3. The Score Function

Here we characterize the score function associated with the singleton-valued likelihood

function in Eq. (3.13), under the following regularity conditions.

ASSUMPTION 1: (a) Y is a finite set. (b) There is a collection AG ⊂ 2Y such that

AG = supp(G(·|X; θ))≡ {A⊆ Y : Fθ(G(U |X; θ) = A) > 0} for all θ ∈ Θ, P0 − a.s. (c)

νθ(A|X) is continuously differentiable with respect to θ for all A ⊂ Y , P0 − a.s., and

∇θνθ(A|X) is square integrable. (d) Θ∗(p0)⊂ intΘ. (e) There exists a constant c > 0 such

that for all θ ∈Θ and y ∈ Y , q∗θ,y|x(y|x)> c, P0 − a.s.

Part (a) of Assumption 1 restricts attention to models with discrete outcomes. Part (b)

requires the support of G(·|X,θ) not to vary with θ ∈ Θ.13 It rules out that Θ includes

both values of θ at which G(·|X; θ) collapses to a function and values at which it is a non-

singleton correspondence. Whether the latter values of θ are consistent with the DGP can

13Assumption 1-(b) can be weakened to allow AG to depend on X , at the cost of heavier notation as the
parameter space Θ would depend on X as well. The condition is used in Lemma B.2 in the Online Supplement
to show that the Lagrange multiplier vector λ∗ associated with the solution of the convex program in Eq. (3.12)
is unique. Conditions that imply this uniqueness can replace Assumption 1-(b).
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potentially be tested, as shown in Chen and Kaido (2023). Part (c) is easily verified when

Fθ is differentiable in θ. Using the first order condition for the likelihood function, part

(d) implies that at all θ∗ ∈Θ∗(p0) the expected score is zero. Part (e) requires q∗θ,y|x to be

bounded away from zero. All conditions are illustrated below, revisiting Example 1.14

THEOREM 3.1: Under Assumption 1, (i) L(θ|X) ≡ E[ln q∗θ,y|x(Y |X)|X] is differen-

tiable with respect to θ, P0− a.s.;15 (ii) There exists a function s : Θ×Y ×X ×∆→Rdθ ,

with ∆ the unit-simplex in R|Y|−1, such that E[∥sθ(Y |X;p0,y|x)∥2]<∞, and

∂

∂θ
L(θ|x) = E[sθ(Y |X;p0,y|x)|X = x], (3.24)

E[sθ(Y |X;p0,y|x)] = 0, for all θ ∈Θ∗(p0). (3.25)

The score function depends on p0,y|x. When θ 7→ L(θ|x) is concave, Θ∗(p0) equals the

set of θ ∈ Θ for which Eq. (3.25) holds. When concavity does not hold, this set includes

Θ∗(p0). As one of our goals is to avoid spuriously tight confidence sets, we view the benefit

of an easy-to-implement method to outweigh the cost of a sometimes wider confidence set

which asymptotically uniformly covers the set of θ’s satisfying Eq. (3.25). Our Monte Carlo

results in Section 5 show that for the examples analyzed there our procedure performs well

relative to existing methods. The proof of Theorem 3.1 is in Appendix A. It leverages

results in Gauvin and Janin (1990) to establish differentiability with respect to θ of

L(θ|x) = E[ln q∗θ,y|x(Y |X)|X = x] = sup
qy|x∈qθ,x

∑
y∈Y

p0,y|x(y|x) ln qy|x(y|x), (3.26)

where qθ,x is defined in Eq. (3.4). The proof also uses results in Ponomarev (2022) and Luo

and Wang (2017) that yield that under Assumption 1-(b), the smallest collection of inequal-

ities among the ones in Eq. (3.4) that suffice to sharply characterize qθ,x does not depend on

θ. In Lemma B.2 in the Online Supplement, we show that q∗θ,y|x is insensitive to inclusion

14These conditions are also verified for the examples in Appendix C in the Online Supplement.
15This result uses only parts (a), (b), (c), and (d) of Assumption 1.
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of additional inequalities from Eq. (3.4) in the maximization problem in Eq. (3.26). Hence,

so are the pseudo-true set Θ∗(p), the score function sθ(y|x;p0,y|x), and the inference proce-

dure that we propose. This is in contrast with much of the related literature, where moment

selection is often required for computational tractability or for the inference procedure, but

may have substantial implications both on the population region that the researcher targets

(Kédagni et al., 2021) and on the properties of the inference procedure (e.g., Andrews and

Soares, 2010, Andrews and Shi, 2013, Bugni et al., 2017, Kaido et al., 2019).

REMARK 3.2: While our analysis is designed for the use of sharp identifying restrictions

through Eq. (3.2), our method remains applicable to a subset of such restrictions, provided

the convex program in Eq. (3.26) has a unique solution q∗ with unique Lagrange multiplier

vector λ∗ associated with the constraints (see the proof of Theorem 3.1 part (ii) in Appendix

A). This may be relevant in applications where the number of inequalities characterizing

the sharp set of model restrictions, even conditional on X , is prohibitively large.

Example 1 (Continued). Assumption 1-(a) follows immediately. Part (b) holds provided

δ1, δ2 < ϵ for some ϵ < 0, in which case for all θ ∈ Θ, AG = {{(0,0)},{(0,1)},{(1,0)},
{(1,1)},{(1,0), (0,1)}}.16 Assumption 1-(c) holds as long as the functions Fθ(S{(0,0)}|x;θ),

Fθ(S{(1,1)}|x;θ), Fθ(S{(1,0)}|x;θ) and Fθ(Mx;θ) are differentiable with respect to θ. This can

easily be verified for, e.g., the case where U has a bivariate normal distribution with corre-

lation coefficient that is part of θ.17 Part (e) follows because one can find c > 0 such that

ηj(θ;x) ≥ c, j = 1, . . . ,3 and η1(θ;x)− ηj(θ;x) ≥ c, j = 2,3 for all x ∈ X and θ ∈ Θ. In

Proposition B.1 in the Online Supplement we show that:18

sθ((0,0)|x;p0,y|x) =
∇θFθ(S{(0,0)}|x;θ)

Fθ(S{(0,0)}|x;θ)
(3.27)

16If one allows for δ1 = δ2 = 0, at that value the model is complete and part (b) of Assumption 1 does not hold
because at that value of θ the support of G(·|x, θ) changes to {{(0,0)},{(0,1)},{(1,0)},{(1,1)}}.

17As the entry game is a threshold crossing model, it is common to assume V ar(Uj) = 1 for j = 1,2.
18Recall that the functions η1(θ;x), η2(θ;x), η3(θ;x) are defined in Eqs. (3.14), (3.15), (3.16). Note also that

in this example, the choice probabilities enter sθ(y|x;p0,y|x) only through the parameter sets Θ1(x;p0,y|x),
Θ2(x;p0,y|x), Θ3(x;p0,y|x) defined in Eqs. (3.17), (3.18), (3.19).
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sθ((1,1)|x;p0,y|x) =
∇θFθ(S{(1,1)}|x;θ)

Fθ(S{(1,1)}|x;θ)
. (3.28)

sθ((0,1)|x;p0,y|x) =


∇θη1(θ;x)
η1(θ;x)

θ ∈Θ1(x;p0,y|x)

∇θ[η1(θ;x)−η2(θ;x)]
η1(θ;x)−η2(θ;x)

θ ∈Θ2(x;p0,y|x)

∇θ[η1(θ;x)−η3(θ;x)]
η1(θ;x)−η3(θ;x)

θ ∈Θ3(x;p0,y|x)

(3.29)

sθ((1,0)|x;p0,y|x) =


∇θη1(θ;x)
η1(θ;x)

θ ∈Θ1(x;p0,y|x)

∇θη2(θ;x)
η2(θ;x)

θ ∈Θ2(x;p0,y|x)

∇θη3(θ;x)
η3(θ;x)

θ ∈Θ3(x;p0,y|x)

(3.30)

In Section 4 below we discuss how to accurately and rapidly compute the score numerically

when analytic representations are not available.

3.4. Asymptotic Distribution of the Average Score and Rao’s Test Statistic

Any θ∗ ∈Θ∗(p0) satisfies the population first order condition in Eq. (3.25). Applying the

sample analog principle, we propose to estimate E[sθ∗(Y |X;p0,y|x)] through s̄θ∗(p̂n,y|x)≡
1
n

∑n
i=1 sθ∗(Yi|Xi; p̂n,y|x), where p̂n,y|x denotes a nonparametric estimator of p0,y|x, e.g., a

cell mean estimator when X has a discrete distribution or a sieve estimator when X has

a continuous distribution. Our core result consists of showing that
√
ns̄θ∗(p̂n,y|x) has an

asymptotically normal distribution, which is insensitive to estimation of p0,y|x. We do so

leveraging the literature on semiparametric estimation, in particular Newey (1994, Proposi-

tion 2), to prove that E[sθ∗(Y,X;py|x)] has an orthogonality property with respect to p0,y|x.

In what follows we provide high-level conditions under which our results attain. In

Online Appendix B.2 we verify these conditions for the entry game example, both

with discrete and continuous covariates. To state these conditions, for any θ ∈ Θ, let

mθ(x;py|x) ≡ E[sθ(Y |X;py|x)|X = x]. Let H be a parameter space to which p0,y|x be-

longs, with dim(H) = dY × dX < ∞ if X is finitely supported, and H infinite dimen-

sional otherwise. Let ∥p − p′∥H be a pseudo-metric on H (e.g., the sup-norm ∥p∥H =
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supx∈X supy∈Y |p(y|x)|). For any p ∈H and θ ∈Θ, let

Gn,θ(p) =
1√
n

n∑
i=1

(sθ(Yi|Xi;p)−E[sθ(Yi|Xi;p)]) .

ASSUMPTION 2: For each θ∗ ∈Θ∗(p0), the pathwise derivative

D(θ∗, p0,y|x)[py|x − p0,y|x] = lim
τ→0

E[mθ∗(x, p0,y|x + τ(py|x − p0,y|x))−mθ∗(x, p0,y|x)]

τ

exists in all directions (py|x−p0,y|x) ∈H. For any δn = o(1) and all ∥py|x−p0,y|x∥H ≤ δn,

∥∥E[mθ∗(X;py|x)]−E[mθ∗(X,p0,y|x)]−D(θ∗, p0,y|x)[py|x − p0,y|x]
∥∥≤ c∥py|x − p0,y|x∥2H.

ASSUMPTION 3: (i) The data is a random sample (Yi,Xi)
n
i=1 drawn from P0.

(ii) p̂n,y|x ∈H with probability approaching 1 and ∥p̂n,y|x − p0,y|x∥H = oP (n
−1/4).

(iii) For each θ∗ ∈Θ∗(p0), Gn,θ∗(p0,y|x)
d→N(0,Σθ∗), with Σθ∗ ≡ E[sθ∗(Yi|Xi;p0)sθ∗(Yi|Xi;p0)

⊤]

the population variance-covariance matrix of the score function.

(iv) For each θ∗ ∈Θ∗(p0) and all sequences of positive numbers {δn} with δn = o(1),

sup
∥py|x−p0,y|x∥H≤δn

∥∥∥Gn,θ∗(py|x)−Gn,θ∗(p0,y|x)
∥∥∥= oP (1).

Assumptions 2 and 3, in their use of ∥ · ∥H, refer to the same norm. In Assumption 2,

we follow Chen et al. (2003, Conditions 2.3 and 2.6) and impose a smoothness condition

with respect to py|x on E[sθ∗(Y,X;py|x)]. In contrast, Newey (1994) imposes the stronger

requirement of smoothness of sθ∗(Y,X;py|x) with respect to py|x. Assumption 3 (i) is a

standard random sampling condition (see Epstein et al. (2016) for a discussion of inference

under different assumptions). Assumption 3 (ii) requires that the estimation error of the

nuisance parameter p0,y|x vanishes fast enough. Assumption 3 (iii) follows from the central

limit theorem. Assumption 3 (iv) is a stochastic equicontinuity condition with well known

primitive conditions (van der Vaart and Wellner, 1996). In Propositions B.2-B.3 in the
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Online Supplement, we verify all these assumptions in the two players entry game Example

1, both with discrete and continuous covariates. Under these assumptions, we obtain:

THEOREM 3.2: Suppose Assumptions 1, 2, and 3 hold. Then, for each θ∗ ∈Θ∗(p0),

1√
n

n∑
i=1

sθ∗(Yi|Xi; p̂n,y|x) =
1√
n

n∑
i=1

sθ∗(Yi|Xi;p0,y|x) + op(1)
d→N(0,Σθ∗). (3.31)

Armed with the result in Theorem 3.2, we propose to use a Rao’s score statistic to test at

prespecified asymptotic level α ∈ (0,1) hypotheses of the form

H0 : θ
∗ ∈Θ∗(p0) against HA : θ∗ /∈Θ∗(p0), (3.32)

and to obtain confidence sets by test inversion. The Rao-type test statistic takes the form

Tn(θ
∗)≡

(
1√
n

n∑
i=1

sθ∗(Yi|Xi; p̂n,y|x)
)⊤

Σ̃−1
n,θ∗

( 1√
n

n∑
i=1

sθ∗(Yi|Xi; p̂n,y|x)

)
. (3.33)

Given the score function, the test statistic in Eq. (3.33) is easy to compute even when the

covariates have a continuous distribution. The weight matrix Σ̃n,θ∗ is a consistent estimator

of Σθ∗ when Σθ∗ is not nearly singular, and assures an asymptotically valid test when

Σθ∗ is nearly singular, as shown below. We recommend using the estimator proposed in

Andrews and Barwick (2012, p. 2808), which introduces an adjustment insuring that the

weight matrix is always nonsingular and equivariant to scale changes in the score function:

Σ̃n,θ = Σ̂n,θ +max{ε− det(Ξ̂n,θ),0}Ψ̂n,θ, θ ∈Θ, (3.34)

where Σ̂n,θ = 1
n

∑n
i=1(sθ(Yi|Xi; p̂n,y|x) − s̄θ(p̂n,y|x))(sθ(Yi|Xi; p̂n,y|x) − s̄θ(p̂n,y|x))

⊤ is

the sample analog estimator of Σθ; Ξ̂n,θ = Ψ̂
−1/2
n,θ Σ̂n,θΨ̂

−1/2
n,θ is the correlation matrix asso-

ciated with Σ̂n,θ; Ψ̂n,θ = diag(Σ̂n,θ); and ε > 0 is a regularization constant.
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COROLLARY 3.1: Let Assumptions 1, 2, and 3 hold, minj=1,...,dθ{diag(Σθ∗)}j > 0, and

Σ̂n,θ∗
p→Σθ∗ . (3.35)

Then, under H0 in Eq. (3.32): (a) For any θ∗ ∈ Θ∗(p0) such that Σθ∗ is nonsingu-

lar, Tn(θ∗)
d→ χ2

dθ
; (b) Both for singular and nonsingular Σθ∗ , limsupn→∞P (Tn(θ

∗) >

cdθ,α)≤ α, with cdθ,α the 1− α quantile of the χ2
dθ

distribution.

Corollary 3.1 requires, in Eq. (3.35), that the population covariance matrix can be con-

sistently estimated; this is a standard requirement in the semiparametric literature.19 The

result in Corollary 3.1 is valuable because it implies that no simulations are needed to com-

pute the quantiles of the limiting distribution, and that the critical values used to test the

hypothesis in Eq. (3.32) and to construct the confidence set via test inversion are constant

across candidates θ ∈ Θ. This is in contrast with much of the related literature, where the

asymptotic distribution of the test statistic is nonpivotal and the critical values need to be

recomputed for each θ.20 One can construct a confidence region that covers each point in

Θ∗(p0) with asymptotic probability 1− α as

CSn =
{
θ ∈Θ : Tn(θ)≤ cdθ,α

}
. (3.36)

We next show that CSn is an asymptotically uniformly valid confidence set. We posit

that P0, the distribution of the observed data, belongs to a class of distributions denoted by

P , where the conditional law P (·|x) for each P ∈ P is absolutely continuous with respect

to µ on Y . We let py|x denote the Radon-Nykodim derivative of P (·|x). We write stochastic

order relations that hold uniformly over P ∈ P using the notations oP and OP .

19In contrast with the semiparametric literature, where Eq. (3.35) is typically required to hold for Σ̂
n,θ̂n

, with

θ̂n a consistent estimator of θ∗, in Eq. (3.35) both Σ̂n,θ∗ and Σθ∗ are evaluated at the same θ∗.
20Nonpivotal asymptotic distributions appear, e.g., in Andrews and Kwon (2022), Andrews and Shi (2013),

Andrews and Soares (2010), Kaido et al. (2019) and Bugni et al. (2017). Cox and Shi (2023) propose a test
statistic with asymptotically χ2 distribution, but number of degrees of freedom that depends on θ. On the other
hand, Chen et al. (2018) propose test statistics with asymptotically pivotal (χ2) distribution.
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THEOREM 3.3: For constants c > 0 and all P ∈ P , let Assumptions 1, 2, and 3 hold, with

the following conditions replacing the corresponding ones in the original assumptions:21

1(b)’ AG = supp(G(·|X; θ))≡ {A⊆Y : Fθ(G(U |X; θ) =A)> c} for all θ ∈Θ, P − a.s.

1(d)’ Θ∗(p)⊂ intΘ−c ≡ {θ ∈Θ :Bc(θ)⊂Θ}.

1(e)’ For all θ ∈Θ and y ∈ Y , q∗θ,y|x(y|x)> c, P − a.s.

2’ The constant c is the same for all P ∈ P .

3(ii)’ For all ϵ > 0 there exists N ∈ N, with ϵ and N not dependent on P ∈ P , such that

P (p̂n,y|x ∈H)≥ 1− ϵ, ∀n≥N , and ∥p̂n,y|x − p0,y|x∥H = oP(n
−1/4).

3(iv)’ For all sequences of positive numbers {δn} with δn = o(1),

sup
θ∗∈Θ∗(p0)

sup
∥py|x−p0,y|x∥H≤δn

∥∥∥Gn,θ∗(py|x)−Gn,θ∗(p0,y|x)
∥∥∥= oP(1).

Suppose that for all P ∈ P , minj=1,...,dθ{diag(Σθ∗)}j > 0, and ∥Σ̂n,θ∗ − Σθ∗∥ = oP(1).

Then, for CSn in Eq. (3.36), we have

lim inf
n→∞

inf
P∈P

inf
θ∗∈Θ∗(p)

P (θ∗ ∈CSn)≥ 1− α.

Under the assumptions of Theorem 3.3, Corollary 3.1 also applies uniformly over P ∈ P .

4. COMPUTATION OF THE SCORE FUNCTION

Sometimes it is possible to obtain a closed-form expression for sθ(y|x;p0,y|x) as gradient

of ln q∗θ,y|x with respect to θ, as in Example 1 (p. 17). If q∗θ,y|x does not have a closed form

expression, one needs to compute the score numerically. Here we describe how to do so,

adapting the method in Forneron (2023). We omit the dependence of sθ(y|x) on p0,y|x or

its estimator. We presume that one can compute q∗θ,y|x relatively easily (e.g., using cvxpy).

Consider a smoothed version fτ of f(θ)≡ ln q∗θ,y|x, defined by the convolution:

fτ (θ) =

∫
f(θ+ τz)ϕ(z)dz,

21The constants c may differ across appearances but do not depend on P ; N denotes the natural numbers; and
Bc(θ) denotes a ball of radius c centered at θ.
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where ϕ is a smooth kernel decaying to 0 in the tails, such as the Gaussian density function.

The derivative of fτ exists. If it admits integration by parts, one has:

∂

∂θ
fτ (θ) =

∂

∂θ

∫
f(θ+ τz)ϕ(z)dz

=−1

τ

∫
f(θ+ τz)

∂

∂z
ϕ(z)dz =−1

τ
E

f(θ+ τZ)

∂

∂z
ϕ(Z)

ϕ(Z)

 ,
with the last expectation taken with respect to Z ∼N(0, Id).

One can then approximate the derivative of f by that of fτ . Letting Zr, r = 1, . . . ,R be

i.i.d. draws from N(0, Id), and noting that
∂
∂zϕ(Z)

ϕ(Z) =∇ lnϕ(z) =−z, an unbiased estimator

for ∂
∂θfτ (θ) is

1

τR

R∑
r=1

[f(θ+ τZr)− f(θ)]Zr. (4.1)

Replacing f with fτ introduces a bias proportional to τ , while the variance of [f(θ +

τZr) − f(θ)]Zr/τ grows with 1/τ . In practice one needs to take a stand on this bias-

variance trade off. In research-in-progress we formally analyze how to do so. The Monte

Carlo approximation in Eq. (4.1) inflates the variance as well, by a factor of (1+R−1) as in

the method of simulated moments. This factor can easily be incorporated in the estimator

of the asymptotic variance of the score.

Letting f(θ;Yi,Xi) = ln q∗θ,y|x(Yi,Xi), one can obtain the estimator in Eq. (4.1) for each

value of (Yi,Xi). The average score can then be approximated by

1

nτR

n∑
i=1

R∑
r=1

[f(θ+ τZi,r;Yi,Xi)− f(θ;Yi,Xi)]Zi,r.

5. MONTE CARLO EXPERIMENTS

We carry out Monte Carlo simulations based on Example 1, where we denote by Xj a

2 × 1 vector with first component equal to a constant and second component equal to a
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random variable that is either binary or continuously distributed (and player specific). We

let βj = [βj,1, βj,2]. The researcher specifies a model where player j earns payoff

πj = Yj(βj,1 + βj,2Xj,2 + δjY3−j +Uj), Yj ∈ {0,1}, (5.1)

where U ∼N(0,Γ), with Γ the 2× 2 identity matrix and θ = (δ1, δ2, β1,1, β1,2, β2,1, β2,2).

We consider four data generating processes:

• DGP1: correctly specified model with Xj,2 ∼i.i.d. Bernoulli(0.5).

• DGP2: correctly specified model with Xj,2 ∼i.i.d. N(0,1).

• DGP3: misspecified model with Xj,2 ∼i.i.d. Bernoulli(0.5).

• DGP4: misspecified model with Xj,2 ∼i.i.d. N(0,1).

We take the true value of θ to be θ0 = (−.7,−.7, .5, .5, .5, .5), and generate the data using a

selection mechanism where R in Eq. (3.3) is distributed Bernoulli(0.5), independently of

all other variables. When the model is correctly specified (DGP1 and DGP2),

p0,y|x((0,0)|x) = qθ0,y|x((0,0)|x) = [1−Φ(x1β1)][1−Φ(x2β2)]

p0,y|x((0,1)|x) = qθ0,y|x((0,1)|x) = η1(θ0;x)− qθ0,y|x((1,0)|x)

p0,y|x((1,0)|x) = qθ0,y|x((1,0)|x) = η3(θ0;x) + 0.5(η2(θ0;x)− η3(θ0;x))

p0,y|x((1,1)|x) = qθ0,y|x((1,1)|x) = Φ(x1β1 + δ1)Φ(x2β2 + δ2),

where the functions η1(·;x), η2(·;x), η3(·;x) are defined in Eqs. (3.14), (3.15), (3.16).

In DGP3 and DGP4, player j’s true payoff differs from Eq. (5.1) and is given by

πj = Yj(βj,1 + βj,2Xj,2 + (δj + γX∗)Y3−j +Uj), Yj ∈ {0,1},

where X∗ is a binary variable omitted from the model, which affects the strategic inter-

action effect. Conditional on (X1,2,X2,2) = (x̃1, x̃2), X∗ takes value 1 with probability

Φ( x̃1−µx
σx

+ x̃2−µx
σx

), with µx and σ2x the mean and variance of Xj,2. The value of γ deter-

mines the extent of misspecification. We report results for γ ∈ {−.1,−.2,−.3,−.4,−.5}.
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FIGURE 2.—Top: Correctly Specified (left: Design 1 (binary); right: Design 2 (continuous)),
Bottom: Misspecified (γ =−.5; left: Design 3 (binary); right: Design 4 (continuous)).

Figure 2 shows the projections of Θ∗(p0) onto the space of (δ1, δ2). When the model is

correctly specified (top panels), Θ∗(p0) coincides with the sharp identification region of

θ. With misspecification (γ = −0.5), the optimal value of the KL divergence measure in

Eq. (3.10) is strictly positive (see Table I for the value of I(p0||q∗θ)), indicating that the sharp

identification region is empty. In contrast, the pseudo-true set Θ∗(p0) remains nonempty,

as shown in the bottom panels of Figure 2, and the shape of Θ∗(p0) remains similar both

in the correctly specified and in the misspecified case. Nonetheless, under misspecification

it shifts to the (lower) left and slightly stretches out. This is because when X∗ = 1, the true

DGP allocates a large mass to either (1,0) or (0,1) (whereas with X∗ = 0 that mass is

allocated to (1,1)). This is not captured by the model in Eq. (5.1). A reduction in the values

of (δ1, δ2) (i.e., an increase in absolute value) enlarges the region of multiplicity, thereby

allowing for a larger mass to be allocated to (1,0) and (0,1) than the model in Eq. (5.1)

allows for. As expected, having continuous variation in the covariates substantially reduces

the size of Θ∗(p0), both in the case of correct specification and with misspecification.
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To implement our test, in DGPs 1&3 we estimate p0,y|x using a cell mean estimator.

In DGPs 2&4 we use a sieve Logistic estimator with J -th order (tensor-product) Hermite

polynomials in (x12, x22) as our sieve space and an L2 penalty.22 We compare the per-

formance of our procedure to that of Andrews and Soares (2010) for the case of discrete

covariates (DGPs 1&3), and to that of Andrews and Shi (2013) for continuous covari-

ates (DGPs 2&4).23 We report a power comparison that takes a value θ∗ on the boundary

of Θ∗(p0) and traces rejection probabilities for θ0,h = θ∗ + h× (1,1,0, . . . ,0)′/
√
n, with

h > 0 (hence, we look at drifts of the strategic interaction effects towards (0,0) that keep

the other components fixed) and n= 2,500.

Table I reports the results of this exercise for 5,000 Monte Carlo repetitions. Panel (A)

documents size and power of our test as well as the moment inequalities based tests for the

case that the model is correctly specified. Both our Rao’s score-based test and the tests of

Andrews and Soares (2010) and Andrews and Shi (2013) have correct size, although our

test slightly underrejects. Nonetheless, both with discrete and with continuous X the power

curve of our test quickly dominates that of the moment inequality based tests.

In the misspecified case (Panels (B)-(F)), as expected the tests proposed by Andrews

and Soares’s (2010) and Andrews and Shi’s (2013) are oversized. The extent of the size

distortion grows with the extent to which the model is misspecified. To quantify the latter

across DGPs, we compute the rejection probability of an infeasible Information Matrix test

(White, 1982) that uses knowledge of the fact that the selection mechanism R in Eq. (3.3)

22We compute Σ̃ in Eq. (3.34) setting ε= 0.012 as recommended by Andrews and Barwick (2012).
23We implement the method in Andrews and Soares (2010) using their S3 test statistic, with moment functions

m≤,j(Zi, θ) =

[
1{Yi = (1,0),Xi = xj} − η2(xj ;θ)pxj

η3(xj ;θ)pxj − 1{Yi = (1,0),Xi = xj}

]
, (5.2)

m=,j(Zi, θ) =

[
1{Yi = (0,0),Xi = xj} − [1−Φ(x1β1)][1−Φ(x2β2)]pxj

1{Yi = (1,1),Xi = xj} −Φ(x1β1 + δ1)Φ(x2β2 + δ2)}pxj

]
, (5.3)

m(z, θ) = (m≤,1(z, θ)
′, . . . ,m≤,4(z, θ)

′,m=,1(z, θ)
′, . . . , m=,4(z, θ)

′)′, and with m̄n(θ) =
1
n

∑n
i=1m(Zi, θ) . We treat px as known. This yields a total of 8 inequalities and 8 equalities in the dis-

crete case (where |X | = 4). We implement the method in Andrews and Shi (2013) using their S2 test stastistic
and hyper-cubes as instruments to transform the conditional moment inequalities in unconditional ones. In this
case, the number of inequalities is two times the number of hyper-cubes used, and similarly for the equalities.
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TABLE I

REJECTION PROBABILITIES OF SCORE AND MOMENT INEQUALITY TESTS

Design Specification info. Tests Size Power (values of h/
√
n below)

0.021 0.042 0.063 0.084 0.105 0.126 0.147 0.168 0.189

Panel A: Correctly specified (γ = 0)
Design 1: Discrete X

Score Test 0.024 0.056 0.195 0.492 0.815 0.966 0.996 1.0 1.0 1.0
Moment Ineq. Test 0.051 0.077 0.158 0.314 0.535 0.769 0.918 0.983 0.999 1.0

Design 2: Continuous X
Score Test 0.044 0.078 0.206 0.467 0.758 0.941 0.992 1.0 1.0 1.0
Moment Ineq. Test 0.05 0.081 0.185 0.389 0.688 0.897 0.985 0.999 1.0 1.0

Panel B: Misspecified (γ =−0.1)
Design 3: Discrete X

I(p0||q∗θ) = 0.0002 Score Test 0.036 0.075 0.239 0.554 0.845 0.976 0.998 1.0 1.0 1.0
IM rej.=0.038 Moment Ineq. Test 0.096 0.12 0.196 0.346 0.557 0.771 0.922 0.985 0.999 1.0

Design 4: Continuous X
I(p0||q∗θ) = 0.0002 Score Test 0.057 0.092 0.222 0.465 0.754 0.934 0.991 0.999 1.0 1.0
IM rej.=0.144 Moment Ineq. Test 0.07 0.11 0.221 0.434 0.712 0.905 0.985 0.998 1.0 1.0

Panel C: Misspecified (γ =−0.2)
Design 3: Discrete X

I(p0||q∗θ) = 0.0007 Score Test 0.038 0.079 0.244 0.554 0.848 0.977 0.998 1.0 1.0 1.0
IM rej.= 0.051 Moment Ineq. Test 0.144 0.174 0.261 0.425 0.621 0.812 0.938 0.988 0.999 1.0

Design 4: Continuous X
I(p0||q∗θ) = 0.0008 Score Test 0.05 0.081 0.205 0.437 0.724 0.913 0.988 1.0 1.0 1.0
IM rej.= 0.193 Moment Ineq. Test 0.125 0.179 0.31 0.53 0.771 0.92 0.988 0.999 1.0 1.0

Panel D: Misspecified (γ =−0.3)
Design 3: Discrete X

I(p0||q∗θ) = 0.002 Score Test 0.043 0.084 0.252 0.562 0.851 0.974 0.998 1.0 1.0 1.0
IM rej. = 0.137 Moment Ineq. Test 0.256 0.306 0.421 0.574 0.748 0.89 0.965 0.994 1.0 1.0

Design 4: Continuous X
I(p0||q∗θ) = 0.002 Score Test 0.063 0.096 0.225 0.453 0.719 0.910 0.988 0.999 1.0 1.0
IM rej. = 0.342 Moment Ineq. Test 0.260 0.335 0.486 0.684 0.858 0.953 0.992 1.0 1.0 1.0

Panel E: Misspecified (γ =−0.4)
Design 3: Discrete X

I(p0||q∗θ) = 0.003 Score Test 0.04 0.077 0.228 0.519 0.818 0.965 0.997 1.0 1.0 1.0
IM rej. = 0.448 Moment Ineq. Test 0.424 0.488 0.598 0.744 0.873 0.953 0.987 0.997 1.0 1.0

Design 4: Continuous X
I(p0||q∗θ) = 0.005 Score Test 0.067 0.102 0.223 0.447 0.712 0.9 0.98 0.999 1.0 1.0
IM rej. = 0.634 Moment Ineq. Test 0.465 0.544 0.677 0.826 0.929 0.979 0.997 1.0 1.0 1.0

Panel F: Misspecified (γ =−0.5)
Design 3: Discrete X

I(p0||q∗θ) = 0.004 Score Test 0.042 0.076 0.220 0.501 0.795 0.959 0.996 1.0 1.0 1.0
IM rej. = 0.817 Moment Ineq. Test 0.640 0.693 0.787 0.879 0.945 0.982 0.996 0.999 1.0 1.0

Design 4: Continuous X
I(p0||q∗θ) = 0.005 Score Test 0.060 0.096 0.205 0.416 0.677 0.881 0.974 0.998 1.0 1.0
IM rej. = 0.860 Moment Ineq. Test 0.695 0.756 0.843 0.925 0.972 0.992 0.998 1.0 1.0 1.0

Note: The simulation results are based on random samples of size n= 2,500 and 5,000 Monte Carlo repetitions. Panel A reports results for correctly
specified models. Panels B-F report results for misspecified models with different values of γ. The second column reports the types of covariates (discrete
or continuous) and the degree of misspecification measured by the KL divergence, and the rejection probability of an infeasible Information Matrix test.
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TABLE II

COMPUTATIONAL TIME COMPARISONS (IN SECONDS)

Discrete X Continuous X
Score Test AS10 Score Test AS13

Calculating the Statistic 0.06 0.01 0.10 2.91
Calculating the Critical Value 0.00 1.08 0.00 166.57

is distributed Bernoulli(0.5). Enriched with this information, the model yields a unique

prediction qθ,y|x and a well defined likelihood function, and hence we can obtain the (point

identified) maximum likelihood estimator θ̂MLE that a researcher would obtain if they

knew the selection mechanism. We compute the Hessian and the outer product forms for

the covariance matrix, and evaluate them at θ̂MLE to carry out the Information Matrix test.

We report the rejection probability of this infeasible test in Table I, labeling it “IM rej.” As

can be seen from the table, for levels of γ ∈ {−.1,−.2,−.3} the rejection probability is low,

reaching at most 13.7% with discrete covariates and 34.2% with continuous covariates. For

γ = −.4,−.5 the power is higher, reaching 86% in the continuous covariates case. Even

for γ =−.3, the size of the Andrews and Soares (2010) and Andrews and Shi (2013) tests

is substantially distorted (about 26% against a 5% nominal level). In contrast, our test has

essentially correct size throughout all simulations, and maintains a power curve that is very

similar to the one it displays in the case of correct model specification.

Table II reports average computational time in seconds to calculate test statistics and

critical values in DGPs 1 (discrete covariates) and 3 (continuous covariates) for the 5,000

Monte Carlo replications on Boston University’s computing cluster (with Intel Xeon Gold

6132 Processors and 192GB RAM). In the discrete case our test statistic takes 0.06 seconds

to compute while Andrews and Soares’s (2010) test takes 0.01, but our critical value takes

0 seconds to compute as opposed to their 1.08. For the continuous case, our test statistic is

twenty nine times faster to compute than Andrews and Shi’s (2013), but the most substantial

gain comes from calculation of the critical value: zero seconds for us, against 167 for

Andrews and Shi (2013).
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6. EMPIRICAL ILLUSTRATION

We illustrate the usefulness of our method by applying it to answer the question ad-

dressed in Kline and Tamer (2016, Section 8): “what explains the decision of an airline to

provide service between two airports.” We use their data, but modify their model specifi-

cation to fully exploit the information provided by the continuously distributed covariates

that they discretize as explained below.24

Kline and Tamer (2016) analyze data for the second quarter of the year 2010, document-

ing the entry decisions of two types of airline companies: Low Cost Carriers (LCC) versus

Other Airlines (OA). They define a market as a trip between two airports, irrespective of

intermediate stops. As it is standard in the literature, they record the entry decision Yj,m

of player j ∈ {LCC,OA} in market m as a 1 if a firm of type j serves market m and 0

otherwise. They posit that player j’s decision to serve a market depends not only on their

opponent’s entry decision, but also on observable payoff shifters Xj,m and unobservable

payoff shifters Uj,m. The observable payoff shifters Xj,m include the constant and two con-

tinuously distributed variables, Xsize
m and Xpres

j,m . The first continuously distributed variable

is market size, and it enters the payoff of firms of both types in a given market. This vari-

able measures population size at the two endpoints of the trip and is market-specific. The

second continuously distributed variable is a firm-and-market-specific variable measuring

the market presence of firms of type j in market m (see Kline and Tamer, 2016, p. 356 for

its exact definition). Market presence of the LCC airline, Xpres
LCC,m (respectively, Xpres

OA,m), is

excluded from the payoff of firm OA (respectively, LCC). The unobserved payoff shifters

Uj,m are assumed to have a bivariate normal distribution with E(Uj,m) = 0, V ar(Uj,m) = 1,

and Corr(ULCC,m,UOA,m) = r for each m and j ∈ {LCC,OA}, and to be i.i.d. across m.

The correlation parameter r is part of the vector θ and needs to be estimated.25

Both Kline and Tamer (2016) and we assume that players enter the market if doing so

yields non-negative payoffs. However, we posit different payoff functions. We assume that

24We downloaded the data from https://www.econometricsociety.org/publications/quantitative-economics/
2016/07/01/Bayesian-inference-in-a-class-of-partially-identified-models#supplemental_material.

25We assume that r ∈ [−0.9,0.9]. We ensure that the strategic interaction parameters δLCC and δOA are less
than a constant c < 0 and that qθ∗,y|x > c for another constant c > 0.

https://www.econometricsociety.org/publications/quantitative-economics/2016/07/01/Bayesian-inference-in-a-class-of-partially-identified-models##supplemental_material
https://www.econometricsociety.org/publications/quantitative-economics/2016/07/01/Bayesian-inference-in-a-class-of-partially-identified-models##supplemental_material
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payoffs take the form:

πj,m = Yj,m(β0
j + βsize

j Xsize
m + βpres

j Xpres
j,m + δjY−j,m +Uj,m). (6.1)

In contrast, Kline and Tamer posit

π̃j,m = Yj,m(β̃0
j + β̃size

j 1(Xsize
m ≥Med(Xsize))

+ β̃pres
j 1(Xpres

j,m ≥Med(Xpres
j )) + δ̃jY−j,m +Uj,m). (6.2)

In words, they transform each of market size and of the two market presence variables into

binary variables, based on whether each of these variables realizes above or below their

respective median. Doing so yields a finite number of unconditional moment inequalities,

which they need for their inference procedure. Leveraging our new method, we are able to

avoid discretizing the continuously distributed covariates, thereby exploiting all identifying

power in their variation.

We analyze how the decision of an LCC airline to enter the market is affected by

whether an OA airline is in the market and by the extent of LCC airlines market pres-

ence. To do so, we define the potential entry decision of an LCC player as YLCC(d) =

1(X ′
LCC,mβLCC + δLCCd + ULCC,m ≥ 0), with βLCC = (β0

LCC , β
size
LCC , β

pres
LCC). This is

the entry outcome of an LCC airline when we fix the OA’s entry to take value d ∈
{0,1}. Based on our model, the entry probability of the LCC airline is P (YLCC(d) =

1|XLCC,m) = Φ(X ′
LCC,mβLCC + δLCCd). We obtain a confidence interval for this param-

eter for each of d = 0,1 and for specific values of XLCC,m. We set Xsize
m equal to the

median of its distribution throughout the analysis. We compute the τ -quantile of the dis-

tribution of Xpres
LCC,m for τ ∈ T ≡ {0.125,0.250,0.375,0.5,0.625,0.750,0.875}, and then

evaluate our parameter of interest for Xpres
LCC,m set equal to each of these values. Letting

θ = (β0
LCC , β

size
LCC , β

pres
LCC , δLCC , β

0
OA, β

size
OA , βpres

OA , δOA, r), we report confidence intervals

CIn(x, d) =
[

min
θ: Tn(θ)≤cdθ,α

Φ(x′LCC,mβLCC + δLCCd), max
θ: Tn(θ)≤cdθ,α

Φ(x′LCC,mβLCC + δLCCd)
]
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FIGURE 3.—Confidence Intervals for Φ(x′LCC,mβ∗
LCC + δ∗LCCd) for d= 1 (orange) and d= 0 (blue). Panel

(a): Rao score test-based inference with Xpres
LCC,m set equal to the 0.125,0.250,0.375,0.5,0.625,0.750,0.875

quantiles of its distribution and Xsize
m set equal to its median. Panel (b): Chen et al. (2018) projection-based

inference with Xpres
LCC,m set equal to 0 if Xpres

LCC,m is less than or equal to its median, and equal to 1 otherwise.

for the values of x corresponding to τ ∈ T and for d ∈ {0,1}.26 Under the conditions of

Theorem 3.3, by standard arguments

lim inf
n→∞

inf
P∈P

inf
θ∗∈Θ∗(p)

P (Φ(x′LCC,mβ∗
LCC + δ∗LCCd) ∈CIn)≥ 1− α.

Figure 3-Panel (a) reports our results, displaying on the horizontal axis the value of τ and

on the vertical axis the candidate value for Φ(x′LCC,mβ∗
LCC + δ∗LCCd). The results show

substantial heterogeneity in the treatment effects of interest. Entry probabilities are much

larger when OA opponents are not in the market (blue segments in Figure 3 for d= 0 and

orange segments for d= 1) across all values of τ , with the effect largest for τ ≥ 0.750.

For each fixed value of the entry decision for the OA airlines, as the market presence

of the LCC airlines increases, so does the probability that LCC firms enter a market.

26Similarly to the Monte Carlo experiments, we estimate p0,y|x using a sieve Logistic estimator with J -th order
(tensor-product) Hermite polynomials in (Xsize

m ,Xpres
LCC,m,Xpres

OA,m) as our sieve space.
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However, when OA firms are in the market, the impact of xpresLCC,m on the entry probability

is low (the slope of the relationship between entry probability and value of τ is low) until

market presence reaches its 0.625 quantile (at which point the slope increases rapidly),

suggesting that in order to overcome the presence of OA opponents and enter the market,

LCC firms need large market presence. On the other hand, when OA firms are not in the

market, the impact of xpresLCC,m on the entry probability is large at all values of τ (the slope

is substantial, and it further increases for large values of τ ).

We compare our counterfactual estimates of the entry probability for the LCC airlines to

what one would obtain using the likelihood based inference method proposed by Chen et al.

(2018), which is designed for correctly specified models with discrete covariates. We note

that Chen et al. assume the payoff function in Eq. (6.2), whereas we use the specification

in Eq. (6.1). However, while this implies that the coefficient estimates on Xj,m and Y−j

are not directly comparable to each other, we believe it to be instructive to compare the

counterfactual model-implied entry probabilities.27

Figure 3-Panel (b) reports confidence intervals based on Chen et al. (2018)’s projection

method for d = 0,1 and for Xpres
LCC,m below the median and above the median. The figure

shows that aggregating the value of Xpres
LCC,m at this coarse level hides interesting patterns in

the results. In particular, while it continues to emerge that the presence of OA airlines sub-

stantially decreases the probability of entry for LCC airlines, bundling “above the median”

and “below the median” as single values for the covariates does not allow one to learn the

extent of the nonlinearity in the effect of market presence on the probability of entry. We

note that one could use a finer discretization of (Xpres
LCC,m,Xpres

OA,m) in Eq. (6.2) combined

with Chen et al. (2018)’s method. However, doing so would result in a substantially harder

computational problem, as in Chen et al.’s approach the selection probabilities, which are

allowed to depend on X (but not U ) and have cardinality at least equal to the cardinality

27We use the replication package provided by Chen et al. (2018) at https://www.econometricsociety.org/
publications/econometrica/browse/2018/11/01/monte-carlo-confidence-sets-identified-sets. We adapt the code to
yield a confidence interval on P (YLCC(d) = 1|XLCC,m) through the projection method that they propose. In-
spection of Chen et al. (2018)’s code shows a slight difference in the payoffs that they specify, π̃j,m = Yj,m(β̃0

j +

β̃size
j 1(Xsize

m >Med(Xsize))+ β̃pres
j 1(Xpres

j,m >Med(Xpres
j ))+ δ̃jY−j,m +Uj,m), compared to Eq. (6.2).

We compute the confidence intervals using the payoffs in their code and set 1(Xsize
m >Med(Xsize)) = 0.

https://www.econometricsociety.org/publications/econometrica/browse/2018/11/01/monte-carlo-confidence-sets-identified-sets
https://www.econometricsociety.org/publications/econometrica/browse/2018/11/01/monte-carlo-confidence-sets-identified-sets
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of X , are part of the parameters to be estimated. In contrast, the computational complexity

of our procedure does not change with the cardinality of X . Moreover, Chen et al. (2018)’s

method requires X to have finite support and hence cannot fully exploit the information

provided by continuous variation in X .

7. CONCLUSIONS

This paper is concerned with statistical inference in incomplete models with set val-

ued predictions. Such models are typically partially identified, and can be misspecified.

Misspecification can make the identification region of the model’s parameters spuriously

tight or even empty, raising a challenge for interpreting identification results, and can cause

existing testing procedure to severely overreject. We propose to resolve these problems

through an information-based method. Our method delivers a non-empty pseudo true set

which can be interpreted as the set of minimizers of the researcher’s ignorance about the

true structure, as in White (1982). For any given parameter value, our inference method

solves a convex program to find the density function that is closest to the data generating

process with respect to the Kullback-Leibler information criterion. It then obtains the score

of the likelihood function associated with this density and a Rao score test statistic. We

show that the test statistic has an asymptotically pivotal distribution, is easy to compute,

and does not require moment selection. The associated test has uniformly valid asymptotic

size, is applicable to both correctly specified and misspecified models, and allows for dis-

crete and continuous covariates. Monte Carlo simulations confirm the good computational

and statistical properties of our proposed inference method.

APPENDIX A: PROOFS OF MAIN THEOREMS

Proof of Theorem 3.1. Part (i). As shown in Eq. (3.26), L(θ|x) is the optimal value

function of a convex program. Below, we fix x and drop conditioning from L, p0, q, and νθ

to ease notation. Lemma B.2 in the Online Supplement delivers two key results. First, there

is a collection of events A(∗e) ⊆ 2Y that does not depend on θ ∈Θ, such that

core(νθ(·|x)) =
{
Q ∈M(ΣY ,X ) :Q(A|x)≥ νθ(A|x),A ∈A(∗e)

}
, (A.1)
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where core(νθ(·|x)) is defined in Eq. (3.2), and the cardinality of the collection A(∗e) is

the smallest among any collection of test sets guaranteeing Eq. (A.1). Hence, it suffices to

verify the dominance condition in Eq. (3.2) for all A ∈ A(∗e) rather than for all A ∈ C.28

Second, the problem

L(θ) = max
q∈∆

∑
y∈Y

p0(y) ln q(y)

s.t. νθ(A)≤
∑
y∈A

q(y), A ∈A(∗e),

has a unique solution q∗ with unique Lagrange multiplier vector λ∗ associated with the

constraints. We let J = |A(∗e)| and we denote sets in A(∗e) by Aj , j = 1, . . . , J

Consider V (t) = L(θ + th) for h ∈ Rdθ and t ∈ (−ϵ, ϵ) for some ϵ > 0. Note that q

may be viewed as a vector because Y is finite. Below, we view V (t) as the optimal value

function of the convex program with objective function f(q, t) =
∑

y∈Y p0(y) ln q(y) and

convex (affine) constraints gj(q, t) = νθ+th(Aj)−
∑

y∈Aj
q(y), j = 1, . . . , J . Note that ∆ is

compact and convex. Both f and gj’s are continuous and concave in q. Therefore, for any

sequence {tn} with tn ↓ 0, the maximizer of L(θ+ tnh) exists. Furthermore, since the do-

main of the control variable and parameter ∆× (−ϵ, ϵ) is bounded, the inf-boundedness as-

sumption of Rockafellar (1984) holds. This ensures that the parametric optimization prob-

lem indexed by t is directionally stable in the sense of Gauvin and Janin (1990). Further-

more, their derivatives with respect to t are ft(q, t) = 0 and gj,t(q, t) = ∇θνθ+th(Aj)
⊤h,

and they are continuous in (q, t) by assumption. Let L(q, λ, t) = f(q, t) +
∑J

j λjgj(q, t) be

the Lagrangian. By Gauvin and Janin (1990, Corollary 4.2) and (q∗, λ∗) being unique, V is

differentiable at t= 0 and its derivative is given by

V ′(0) =
d

dt
L(q∗, λ∗, t)|t=0 =

J∑
j

λ∗j∇θνθ(Aj)
⊤h. (A.2)

28Galichon and Henry (2011) call collections of sets with this property core determining. Applying results in
Luo and Wang (2017) and Ponomarev (2022), Lemma B.2 in the Online Supplement shows that A(∗e) is an exact
core determining class, i.e., it has smallest cardinality among core determining classes.
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Since this holds for any h ∈Rdθ , L(θ) is differentiable with

∇θL(θ) =
∑
j

λ∗j∇θνθ(Aj). (A.3)

Part (ii)-Eq.(3.24). In what follows we construct a score function. Let M = |Y|, and order

the elements of Y as y1, y2, . . . , yM . Let J = {j ∈ {1, . . . , J} :
∑

ỹ∈Aj
q∗(ỹ) = νθ(Aj)}

be the set of active constraints, and let J c = {1, . . . , J} \ J collect slack constraints. For

each y ∈ Y , let J (y) = {j ∈ J : y ∈Aj} collect the indices associated with the active con-

straints such that y belongs to Aj . By the Karush-Kuhn-Tucker conditions, differentiating

L with respect to q and evaluating it at q∗ yields

p0(y1)

q∗(y1)
+

∑
j∈J (y1)

λ∗j = 0 (A.4)

...

p0(yM )

q∗(yM )
+

∑
j∈J (yM )

λ∗j = 0. (A.5)

For each y ∈ Y , let eJ (y) ∈ {0,1}J be a vector whose j-th component is 1 if j ∈ J (y) and

0 otherwise. Then, the system of equations (A.4)-(A.5) can be written as

Bλ∗ = r, (A.6)

where B is an M -by-J matrix and r is an M -by-1 vector defined as follows

B =−


e′J (y1)

...

e′J (yM )

 , r =


p0(y1)
q∗(y1)

...
p0(yM )
q∗(yM )

 . (A.7)

By the complementary slackness conditions, λ∗j = 0 for any j ∈ J c. Hence, (A.6) can be

reduced to a system of M equations with S = |J | unknowns. Eliminate the columns of B
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corresponding to j ∈ J c and let B̃ denote the resulting submatrix of B. Similarly, eliminate

the components of λ corresponding to j ∈ J c and let λ̃∗ denote the resulting subvector. Eq.

(A.6) can be rewritten as

B̃λ̃∗ = r, (A.8)

where B̃ is a M × S matrix whose columns are the representers {bAj
, j ∈ J } of the active

constraints. By Lemma B.2 (iv), the vectors {bAj
, j ∈ J } are linearly independent. Hence,

λ̃∗ solves Eq. (A.8) uniquely, and there exists an S-by-M matrix C such that

λ̃∗ =Cr. (A.9)

Let Eθ be a d× S matrix that stacks the column vectors {∇θνθ(Aj), j ∈ J }. Then,

∇θL(θ) =
J∑
j

λ∗j∇θνθ(Aj) =
∑
j∈J

λ∗j∇θνθ(Aj) =Eθλ̃
∗ =EθCr

by (A.3) and (A.9). Recall that r is as defined in (A.7). Hence, ∇θL(θ) can be written as

∇θL(θ) =
M∑

m=1

p0(ym)
[EθC]m
q∗(ym)

, (A.10)

where [·]m selects the m-th column of its argument. Now let sθ(ym) = [EθC]m
q∗(ym) and recall

that so far we dropped conditioning on x and dependence on p0,y|x. Eq. (A.10) therefore

shows that ∇θL(θ|x) = E[sθ(Y |X;p0,y|x))|X = x], and sθ’s square integrability follows

from q∗(y)> 0, ∇θνθ(Aj |X) being square integrable for all j, and Y being a finite set.

Part (ii)-Eq. (3.25). By law of iterated expectations and dominated convergence theorem,

E[sθ(Y |X;p0,y|x)] = E[E[sθ(Y |X;p0,y|x)|X]]

= E
[
∂

∂θ
L(θ|X)

]
=

∂

∂θ
E[L(θ|X)] =

∂

∂θ
L(θ) = 0,
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for any θ ∈Θ∗(p0), where the last equality follows from the first-order condition for maxi-

mizing θ 7→ L(θ) and the fact that Θ∗(p0)⊂ intΘ. Q.E.D.

We next turn to the proof of Theorem 3.2. To establish the result, we first show that the

expected score satisfies an asymptotic orthogonality condition with respect to the nuisance

parameter. This result ensures that the score statistic’s limiting distribution is insensitive

to the nonparametric estimation of the conditional choice probability. Below, let qθ,hx,y|x ∈
qθ,x be indexed by the structural parameter θ and equilibrium selection hx = {hx,u, u ∈ U},

with hx,u ∈ S(x,u; θ) and S(x,u; θ) the set of all conditional densities of Y |X,U such that,

for any (x,u), its conditional support is G(u|x; θ). Let S(θ) = {S(x,u; θ), x ∈ X , u ∈ U}.

LEMMA A.1: Suppose Assumptions 1 and 2 hold. Then,

D(θ∗, p0,y|x)[py|x − p0,y|x] = 0. (A.11)

Proof of Lemma A.1: We rely on an application of Newey (1994, Proposition 2). Let

ρ(x, θ, hx) = EP0 [ln qθ,hx,y|x(Y |X)|X = x]. (A.12)

Let hx(p) = [hx,u(p), u ∈ U ], hx,u(p) ∈ S(x,u; θ), be the selection such that qθ,hx(p),y|x =

q∗θ,y|x when p replaces p0 in Eq. (3.12); this selection exists by Artstein (1983). Solving

the KL projection problem in Eq. (3.11) (with p replacing p0) is equivalent to maximizing

out the equilibrium selection. Therefore, the function valued parameter h(p) ∈ S(θ) solves

h(p) = argmaxh̃∈S(θ)EP0 [ρ(x, θ, h̃)], where the expectation is taken with respect to the

true DGP distribution P0 and the dependence of h(·) on p results from the KL projection

step. Arguing as in Newey (1994), for a path Pτ , denoting h(τ) = h(pτ ), we have that

EP0 [ρ(x, θ, h(τ))] ≤maxh̃∈S(θ)EP0 [ρ(x, θ, h̃)] and hence EP0 [ρ(x, θ, h(τ))] is maximized

at τ = 0. The first order conditions for this maximum are ∂E[ρ(x, θ, h(τ))]/∂τ = 0 for all θ.

Differentiating one more time with respect to θ and using the law of iterated expectations,

0 =
∂2

∂τ∂θ
EP0 [ρ(x, θ

∗, hx(τ))]
∣∣
τ=0

=
∂

∂τ
EP0

[
∂

∂θ
EP0 [ln q

∗
θ,y|x(Y |X)|X = x]

] ∣∣∣∣∣
τ=0
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=
∂

∂τ
EP0

[
EP0 [sθ(Y |X;pτ,y|x)|X = x]

] ∣∣
τ=0

=
∂

∂τ
EP0 [sθ∗(Y |X;pτ,y|x)]

∣∣
τ=0

,

where Eq. (3.24) yields the third equality. Hence, the pathwise derivative is zero. Q.E.D.

Proof of Theorem 3.2. Let us write the left-hand side of (3.31) as

1√
n

n∑
i=1

sθ∗(Yi|Xi; p̂n,y|x) =Gn,θ∗(p̂n,y|x) +
√
nE[sθ∗(Yi|Xi; p̂n,y|x)]

=Gn,θ∗(p0,y|x) + (Gn,θ∗(p̂n,y|x)−Gn,θ∗(p0,y|x)) +
√
nE[sθ∗(Yi|Xi; p̂n,y|x)]. (A.13)

By Assumption 3-(iii), Gn,θ∗(p0,y|x) =
1√
n

∑n
i=1 sθ∗(Yi|Xi;p0,y|x))

d→N(0,Σθ∗). Further-

more, by Assumptions 3 (ii) and 3 (iv), Gn,θ∗(p̂n,y|x)−Gn,θ∗(p0,y|x) = op(1).

Let rn ≡ E[mθ∗(Xi; p̂n,y|x)]−E[mθ∗(Xi;p0,y|x)]−D(θ∗, p0,y|x)[p̂n,y|x − p0,y|x]. Then,

E[sθ∗(Yi|Xi; p̂n,y|x)] = E[E[sθ∗(Yi|Xi; p̂n,y|x)|X = x]]

= E[mθ∗(Xi;p0,y|x)] +E[mθ∗(Xi; p̂n,y|x)−mθ∗(Xi;p0,y|x)]

= E[sθ∗(Yi|Xi;p0,y|x)] +D(θ∗, p0,y|x)[p̂n,y|x − p0,y|x] + rn,

where the first equality follows from the law of iterated expectations, the second equality

follows from the definition of mθ, and the third equality follows from the law of iterated

expectations and the definition of rn. As θ∗ ∈Θ∗(p0), E[sθ∗(Yi|Xi;p0,y|x)] = 0. By Lemma

A.1,
√
nD(θ∗, p0,y|x)[p̂n,y|x − p0,y|x] = 0. Finally, using Assumptions 2 and 3 (ii),

|
√
nrn| ≤

√
n∥rn∥L2

P
≤
√
nc∥p̂n,y|x − p0,y|x∥2H = op(1).

Hence, by the triangle inequality,

|
√
nE[sθ∗(Yi|Xi; p̂n,y|x)]| ≤ |

√
nE[sθ∗(Yi|Xi;p0,y|x)]| + |

√
nrn| = op(1). (A.14)

Combining Eqs. (A.13)-(A.14) yields the result in Eq. (3.31). Q.E.D.
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Proof of Corollary 3.1. For the case that Σθ∗ is nonsingular, standard arguments, As-

sumption 3, and Eq. (3.35) yield Tn(θ
∗)

d→ J, with J∼ χ2
dθ

. For the case that Σθ∗ is singular,

let ζ ∈Rdθ be a random vector such that

ζ = η + ν, with η ⊥⊥ ν, η ∼N(0,Σθ∗) and ν ∼N(0, εΨθ∗),

where Ψθ∗ is the population analog of Ψ̂n,θ∗ (see Eq. (3.34) and subsequent explanation of

notation). Let Σ̃θ∗ = Σθ∗ + εΨθ∗ . It follows from standard arguments that Tn
d→ η⊤Σ̃−1

θ∗ η,

and that ζ⊤Σ̃−1
θ∗ ζ ∼ J. Next, let K = {x ∈Rdθ : x⊤Σ̃−1

θ∗ x≤ cdθ,α}, and note that this set is

convex and symmetric. By Anderson’s Lemma (van der Vaart, 1998, Lemma 8.5),

1− α= P (ζ⊤Σ̃−1
θ∗ ζ ≤ cdθ,α) = P (η + ν ∈K)≤ P (η ∈K) = P (η⊤Σ̃−1

θ∗ η ≤ cdθ,α).

It then follows that limsupn→∞P (Tn(θ
∗)> cdθ,α) = P (η⊤Σ̃−1

θ∗ η > cdθ,α)≤ P (ζ⊤Σ̃−1
θ∗ ζ >

cdθ,α) = α. Q.E.D.

Proof of Theorem 3.3. Let {p0n, θ∗n} ∈ {(p,ϑ∗) : p is the Radon-Nykodim derivative of P ∈
P , ϑ∗ ∈Θ∗(p)} be a sequence such that:

lim inf
n→∞

inf
P∈P

inf
ϑ∗∈Θ∗(p)

P (ϑ∗ ∈CSn) = lim inf
n→∞

Pn(θ
∗
n ∈CSn),

with CSn defined in Eq. (3.36). Let {ln} be a subsequence of {n} such that

lim inf
n→∞

Pn(θ
∗
n ∈CSn) = lim

n→∞
Pln(θ

∗
ln ∈CSln)).

Then there is a further subsequence {an} of {ln} such that

lim
an→∞

Σθ∗an =Σ∗ ∈ S,

where S is the collection of positive semi-definite dθ × dθ matrices. To avoid multiple sub-

scripts, with some abuse of notation we write (Pn, θ
∗
n) to refer to (Pan , θ

∗
an). We establish
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the claim by showing that along the subsequence (Pn, θ
∗
n), the results in Theorem 3.1,

Lemma A.1, and Theorem 3.2 continue to hold.

For Theorem 3.1, note first that the collection of events A(∗e) does not depend on

(Pn, θ
∗
n), as can be seen in the proof of Lemma B.2-(i). Second, parts (ii) and (iii) of

Lemma B.2 continue to hold along the subsequence (Pn, θ
∗
n) under the uniform version

of Assumption 1 stated in Theorem 3.3.

For Lemma A.1, we again note that the result holds uniformly over P , under the uniform

version of Assumptions 1, 2, and 3 (ii) stated in Theorem 3.3.

For Theorem 3.2, under the uniform version of Assumptions 1, 2, and 3 stated in Theo-

rem 3.3, we have that by Assumption 3, Gn,θ∗n(p0n,y|x) =
1√
n

∑n
i=1 sθ∗n(Yi|Xi;p0n,y|x))

d→
N(0,Σ∗), and Gn,θ∗n(p̂n,y|x)−Gn,θ∗n(p0n,y|x) = oPn(1). Arguing as in the proof of Theorem

3.2, Eqs. (A.13)-(A.14) continue to hold along the sequence (Pn, θ
∗
n), and therefore

1√
n

n∑
i=1

sθ∗n(Yi|Xi; p̂n,y|x) =
1√
n

n∑
i=1

sθ∗n(Yi|Xi;p0,y|x) + oP(1)
d→N(0,Σ∗).

The final result follows arguing as in the proof of Corollary 3.1. Q.E.D.
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APPENDIX B: LEMMAS USED IN PROOFS OF MAIN THEOREMS

B.1. Pseudo-True Sets and Score Function

We give three lemmas that we use to show the differentiability of L(θ|x). To ease

notation, we drop conditioning on X . We let C denote the collection of closed subsets

of Y . Molchanov and Molinari (2018, Section 2.2) show that core(νθ(·)) can be ex-

pressed as core(νθ(·)) ≡
{
Q ∈M(ΣY ) : νθ(A)≤Q(A)≤ ν∗θ (A),A⊆ C

}
, with ν∗θ (A) ≡∫

U 1(G(u; θ) ∩ A ̸= ∅)dFθ(u).1 Let A ⊆ 2Y be a collection of events. Among sets in A,

let A= collect all restrictions such that νθ(A) = ν∗θ (A). That is, the sets belonging to A=

imply equality restrictions. We then let A≥ collect the remaining events. Let ∆ denote the
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|Y| − 1 dimensional unit-simplex. Consider the following problem:

P(A) : υ(θ;A)≡max
q∈∆

∑
y∈Y

p0(y) ln q(y) (B.1)

s.t.
∑
y∈A

q(y)≥ νθ(A), A ∈A≥ (B.2)

∑
y∈A

q(y) = νθ(A), A ∈A=, (B.3)

Let A ⊂ Y . As Y is finite, one may represent the probability that any distribution P with

probability mass function p ∈∆ assigns to a set A through a representer a of A, by writing

P (A) = p⊤a,

with a ∈ {0,1}|Y|. For example, take Y = {(0,0), (0,1), (1,0), (1,1)}, A= {(1,0), (1,1)},

and a= (0,0,1,1)⊤. Then, P (A) = p⊤a. Similarly, for some bA ∈ {0,1}|Y|, the constraints

in (B.2)-(B.3) can be written as

q⊤bA ≥ νθ(A), A ∈A≥

q⊤bA = νθ(A), A ∈A=.

For any pair of sets A1,A2 ⊂Y with associated representer vectors a1, a2 ∈ {0,1}|Y|, their

union A1 ∪A2 and intersections A1 ∩A2 are represented by a1 ∨ a2 (componentwise max-

imum) and a1 ∧ a2 (componentwise minimum). For any event A⊆Y with A= ∪k
i=1Ai,

P (A) =
∑

I ̸=∅,I⊆{1,...,k}
(−1)|I|+1P

(⋂
i∈I

Ai

)
.

In terms of corresponding vectors,

p⊤a=
∑

I ̸=∅,I⊆{1,...,k}
(−1)|I|+1p⊤(

∧
i∈I

ai).
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Since this holds for any p in the probability simplex, we must have

a=
∑

I ̸=∅,I⊆{1,...,k}
(−1)|I|+1(

∧
i∈I

ai). (B.4)

This means that the representers of the events A and A1, . . . ,Ak are linearly dependent.

The following lemma shows that the opposite is also true.

LEMMA B.1: Let a0, . . . , ak be the representers of A0, . . . ,Ak. The following statements

are equivalent

1.
{∧

i∈I a
i, I ̸= ∅, I ⊆ {0, . . . , k}

}
are linearly dependent.

2. There exists j ∈ {0, . . . , k} such that Aj =
⋃

i∈{0,...,k}\{j}Ai.

PROOF: We let the elements of Y be ordered as {y1, y2, . . . , y|Y|}. (2. ⇒ 1.) follows

immediately from (B.4). For (1. ⇒ 2.), w.l.o.g. take j = 0 and suppose that C ≡ A0 \
∪k
i=1Ai is nonempty. Let IC ⊂ {1, . . . , |Y|} collect the indices of outcomes belonging to

C . Take yj ∈C ⊂Y . Then, the representer ej of yj is a |Y|-dimensional vector whose j-th

component is 1, and the remaining components are all 0s. Note that yj /∈ ∪k
i=1Ai implies

that the j-th component of
∧

i∈I a
i is 0 for any I ̸= ∅, I ⊆ {1, . . . , k}. Hence, ej cannot

be expressed as a linear combination of
{∧

i∈I a
i, I ̸= ∅, I ⊆ {1, . . . , k}

}
. Since yj ∈ A0,

this in turn means, a0 cannot be expressed as a linear combination of
{∧

i∈I a
i, I ̸= ∅, I ⊆

{1, . . . , k}
}

. Hence,
{
a0,
∧

i∈I a
i, I ̸= ∅, I ⊆ {1, . . . , k}

}
are linearly independent. The case

with ∪k
i=1Ai \A0 ̸= ∅ can be analyzed similarly. Q.E.D.

LEMMA B.2: Let Assumption 1 hold. Then, (i) there exists a collection of subsets of

Y denoted A(∗e) that does not depend on θ ∈ Θ such that core(νθ(·)) = {Q ∈ M(ΣY ) :

Q(A)≥ νθ(A),A ∈A(∗e)}, with core(νθ(·)) defined in Eq. (3.2), and no collection of sets

A∗ of cardinality smaller than A(∗e) suffices to characterize core(νθ(·)); (ii) the optimal

value of P(A(∗e)) is L(θ|x); (iii) the solution q∗ ∈∆ to the problem P(A(∗e)) is unique,

and it also solves problem P(Aall), with Aall = {A :A⊆Y , A closed}; (iv) the associated

Lagrange multiplier vector λ∗ is unique.
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PROOF: Part (i). A family of closed sets A∗ is a core determining class (Galichon

and Henry, 2011) if any probability measure Q defined on Y satisfying the inequalities

Q(A) ≥ νθ(A) for all A ∈ A∗ satisfies the inequalities Q(A) ≥ νθ(A) for all closed sets

A⊆Y . A family of closed sets A is an exact core determining class (Luo and Wang, 2017)

if it has the smallest cardinality among all core determining classes. Using results in Telgen

(1983), Ponomarev (2022, Eqs. (2.3)-(2.4), p.81) shows that when Y is a finite set, the exact

core determining class for G(·; θ) equals

A(∗e) = {A⊆Y : qM (A)< νθ(A)},

where qM (A) = min
q∈∆

{
q⊤bA : q⊤bÃ ≥ νθ(Ã) for all Ã⊆Y , Ã ̸=A

}
By Assumption 1, Y is finite and the (finite) support AG of the correspondence G(·|θ)

is fixed for all θ ∈ Θ, P0-a.s. Due to the finiteness of Y , arguing as in Ponomarev (2022,

Theorem 2.2), one can build a partition of U , denoted Uθ = {u1, . . . , uκ} corresponding to

the set of values of U associated with each realization Ḡk ∈ AG, k = 1, . . . , κ. As AG is

constant across all values of θ ∈Θ, so is the bipartite graph from Uθ to AG, even though Uθ

(and the probability that Fθ assigns to each element of the partition) does change with θ.

Ponomarev (2022, Theorem 2.2) shows that A(∗e) can be characterized using exclusively

the connectedness properties of the subgraphs induced by (A,{u ∈ Uθ : Ḡ(u) ⊆ A}) and

(Ac,{u ∈ Uθ : Ḡ(u) ∪ Ac ̸= ∅}). As the bipartite graph from Uθ to AG is constant across

θ, the connectedness structure of the subgraphs induced by (A,{u ∈ Uθ : Ḡ(u)⊆ A}) and

(Ac,{u ∈ Uθ : Ḡ(u)∪Ac ̸= ∅}) is also constant across θ ∈Θ, and hence so is A(∗e).

Part (ii). By the definition of an exact core determining class, the collection of inequali-

ties in A(∗e) yields the same constraint set as in Eq. (3.26). The solution to P(A(∗e)) exists

by the continuity of the objective function and the compactness of the probability simplex.

Part (iii). As q 7→ E ln q is strictly concave and the domain of q is convex, uniqueness

of q∗ follows. As the collection of inequalities in A(∗e) yields the same constraint set as in

Eq. (3.26), q∗ solves also the original problem in Eq. (3.26).
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Part (iv). The constraint set consists of linear (in)equalities. Hence, the Karush-Kuhn-

Tucker conditions hold at the feasible point q∗ with Lagrange multiplier λ∗. A sufficient

condition for λ∗ to be unique is that the Linear Independence Constraint Qualification

(LICQ) holds. To establish this, we first note that the full set of constraints can be expressed

as (e.g., Molchanov and Molinari, 2018, Section 2.2):

ν∗θ (A)≥ q⊤bA ≥ νθ(A), A⊂Y : 1≤ |A| ≤ ⌈|Y|/2⌉, (B.5)

where | · | denotes the cardinality of the set in its argument, and ⌈·⌉ represents the smallest

integer greater than or equal to its argument. Eq. (B.5) follows because for any set A⊂ Y
and its complement Ac = Y\A, one has bA = 1−bAc and νθ(A) = 1−ν∗θ (A

c). This implies

that the gradient of any pair of inequalities in (B.5) equals a representer bA. Moreover,

either only one of the two inequalities in (B.5) can be an active inequality, or we are in the

presence of an equality restriction. Next, recall that we are further restricting the collection

of sets in (B.5) to be the ones in A(∗e). If the LICQ condition fails, there must exist a

collection of sets Aj ∈ {A⊂A(∗e) : 1≤ |A| ≤ ⌈|Y|/2⌉}, j = 1, . . . , k, such that q⊤bAj
=

νθ(Aj), q⊤bA = νθ(A), and, by Lemma B.1, A= ∪j=1,...,kAj . This in turn implies

νθ(A)≥
∑

I ̸=∅,I⊆{1,...,k}
(−1)|I|+1νθ

(⋂
i∈I

Ai

)
,

and we have that the inequality for the set A is satisfied whenever the inequalities for the

sets Aj , j = 1, . . . , k are satisfied. But this contradicts A(∗e) being an exact core determining

class because such a set A could be removed from it. Q.E.D.

B.2. Derivation of Results and Verification of Conditions for the Entry Game Example 1

B.2.1. Profiled likelihood and score function

PROPOSITION B.1: Under the assumptions laid out in Example 1, (i) the profiled likeli-

hood q∗θ,y|x for y ∈ {(0,0), (0,1), (1,0), (1,1)} is given in equations (3.20)-(3.23). (ii) The

score function is given in equations (3.27)-(3.30).
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PROOF: In this example qy|x((0,1)|x) = η1(θ;x)− qy|x((1,0)|x). We use directly in the

optimization problem the fact that the elements of the vector qy|x(·|x) sum to one. Let z ≡
qy|x((1,0)|x), so that qy|x((0,1)|x) = η1(θ;x)−z and c(θ) = p0,y|x((0,0)|x) lnFθ(S{(0,0)}|x;θ)+

p0,y|x((1,1)|x) lnFθ(S{(1,1)}|x;θ). Rewrite the optimization problem as

V (θ) = sup
z

c(θ) + p0,y|x((1,0)|x) ln z + p0,y|x((0,1)|x) ln(η1(θ;x)− z) (B.6)

s.t. z − η3(θ;x)≥ 0 (B.7)

η2(θ;x)− z ≥ 0, (B.8)

Define the Lagrangian of this problem by

L(z,λ, θ) = c(θ) + p0,y|x((1,0)|x) ln z + p0,y|x((0,1)|x) ln(η1(θ;x)− z)

+ λ1(z − η3(θ;x)) + λ2(η2(θ;x)− z).

Part (i). Since c does not affect the solution, we drop it in the analysis that follows. The

Karush-Kuhn-Tucker (KKT) conditions of the problem under study are

−p0,y|x(1,0|x)1z + p0,y|x(0,1|x) 1
η1(θ;x)−z − λ1 + λ2 = 0 (B.9)

λ1(η3(θ;x)− z) = 0 (B.10)

λ2(z − η2(θ;x)) = 0 (B.11)

λ1, λ2 ≥ 0. (B.12)

Below, we consider three cases.

Case 1: (λ1 = λ2 = 0.) If λ1 = λ2 = 0, solving (B.9) yields

z =
p0,y|x((1,0)|x)

p0,y|x((1,0)|x)+p0,y|x((0,1)|x)
η1(θ;x). (B.13)
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Therefore, the resulting distribution q∗θ,y|x is given by

(q∗θ,y|x((0,0)|x), q
∗
θ,y|x((1,1)|x), q

∗
θ,y|x((0,1)|x), q

∗
θ,y|x((1,0)|x))

⊤ =(
Fθ(S{(0,0)}|x;θ), Fθ(S{(1,1)}|x;θ),

p0,y|x((0,1)|x)
p0,y|x((1,0)|x)+p0,y|x((0,1)|x)

η1(θ;x),
p0,y|x((1,0)|x)

p0,y|x((1,0)|x)+p0,y|x((0,1)|x)
η1(θ;x)

)⊤
For z in (B.13) to be an optimal solution, it needs to satisfy the inequality restrictions in

(B.7)-(B.8), which is true iff θ belongs to Θ1(x).

Case 2: (λ2 > 0.) If λ2 > 0, the complementary slackness condition (B.11) implies z =

η2(θ;x), hence q∗θ,y|x((1,0)|x) equals its upper bound. The minimizing density is then

(q∗θ,y|x((0,0)|x), q
∗
θ,y|x((1,1)|x), q

∗
θ,y|x((0,1)|x), q

∗
θ,y|x((1,0)|x))

⊤

=
(
Fθ(S{(0,0)}|x;θ), Fθ(S{(1,1)}|x;θ), η1(θ;x)− η2(θ;x), η2(θ;x)

)⊤
.

For this to be an optimal solution, one needs to ensure that λ2 > 0. Substituting z = η2(θ;x)

into (B.9) and solving for λ2 yields

λ2 = p0,y|x((1,0)|x) 1
η2(θ;x)

− p0,y|x((0,1)|x) 1
η1(θ;x)−η2(θ;x)

It is then straightforward to show that λ2 > 0 iff θ belongs to Θ2(x).

Case 3: (λ1 > 0.) The result follows using the same argument as in Case 2.

Part (ii). To establish this result, we let θ(t) = θ + th,h ∈ Rd and define Ṽ (t) =

V (θ(t)), L̃(z,λ, t) = L(z,λ, θ(t)). so that the Lagrangian becomes

L̃t(z,λ, θ(t)) = p0,y|x((0,0)|x)
∇θFθ(S{(0,0)}|x;θ)

⊤h

Fθ(S{(0,0)}|x;θ)
+ p0,y|x((1,1)|x)

∇θFθ(S{(1,1)}|x;θ)
⊤h

Fθ(S{(1,1)}|x;θ)

+ p0,y|x((0,1)|x)
∇θη1(θ;x)

⊤h
η1(θ;x)−z + λ1∇θη3(θ;x)

⊤h+ λ2∇θη2(θ;x)
⊤h.
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Therefore, for any sequence {tn} with tn ↓ 0, the maximizer of L(z,λ, θ+ tnh) exists. The

domain of the control variable and parameter [0,1] × (−ϵ, ϵ) is bounded, and hence the

inf-boundedness assumption of Rockafellar (1984) holds. This ensures that the parametric

optimization problem indexed by t is directionally stable in the sense of Gauvin and Janin

(1990). Using the fact that (q∗, λ∗) are unique as shown above, we can apply Gauvin and

Janin (1990, Corollary 4.2) to obtain full differentiability of V . The derivative of Ṽ (t) can

be derived analytically as follows.

Case 1: λ1 = λ2 = 0

Ṽ ′(t) = p0,y|x((0,0)|x)
∇θFθ(S{(0,0)}|x;θ)

⊤h

Fθ(S{(0,0)}|x;θ)
+ p0,y|x((1,1)|x)

∇θFθ(S{(1,1)}|x;θ)
⊤h

Fθ(S{(1,1)}|x;θ)

+
[
p0,y|x((1,0)|x) + p0,y|x((0,1)|x)

]∇θη1(θ;x)
⊤h

η1(θ;x)
.

Case 2: λ1 = 0, λ2 > 0

Ṽ ′(t) = p0,y|x((0,0)|x)
∇θFθ(S{(0,0)}|x;θ)

⊤h

Fθ(S{(0,0)}|x;θ)
+ p0,y|x((1,1)|x)

∇θFθ(S{(1,1)}|x;θ)
⊤h

Fθ(S{(1,1)}|x;θ)

+ p0,y|x((1,0)|x)
∇θη2(θ;x)

⊤h
η2(θ;x)

+ p0,y|x((0,1)|x)
∇θ[η1(θ;x)−η2(θ;x)]

⊤h
η1(θ;x)−η2(θ;x)

.

Case 3: λ1 > 0, λ2 = 0

Ṽ ′(t) = p0,y|x((0,0)|x)
∇θFθ(S{(0,0)}|x;θ)

⊤h

Fθ(S{(0,0)}|x;θ)
+ p0,y|x((1,1)|x)

∇θFθ(S{(1,1)}|x;θ)
⊤h

Fθ(S{(1,1)}|x;θ)

+ p0,y|x((1,0)|x)
∇θη3(θ;x)

⊤h
η3(θ;x)

+ p0,y|x((0,1)|x)
∇θ[η1(θ;x)−η3(θ;x)]

⊤h
η1(θ;x)−η3(θ;x)

.

Comparing the expressions for these three cases with equations (3.27)-(3.30), we obtain
∂
∂θE[ln q

∗
θ,y|x(Y |X)|X = x] = E[sθ(Y |X)|X = x]. Q.E.D.

B.2.2. Verification of Assumptions

Assumptions 2, 3 (iv), and the requirement in Eq. (3.35), are high-level conditions

that need to be verified in each application of our method. Below we do so for the en-
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try game example, under some regularity conditions. We first provide some notation that

will be useful throughout. Let ∥py|x∥H = supy∈Y supx∈X |py|x(y|x)|. We use the functions

η1(θ;x), η2(θ;x), η3(θ;x) defined in Eqs. (3.14)-(3.16). For j = 1,2, we let:

Zj(X;py|x)≡ py|x((1,0)|X)η1(θ;X)

− (py|x((1,0)|X) + py|x((0,1)|X))ηj+1(θ;X), (B.14)

and note that Z1(x;py|x)≤ Z2(x;py|x) because η2(θ;X)≥ η3(θ;X). We use the functions

Z1,Z2 to define indicators Iℓ that re-express the sets Θℓ, ℓ= 1,2,3, in Eqs. (3.17)-(3.19):

I1(x;py|x) = 1
{
py|x((1,0)|x)η1(θ;x)− (py|x((1,0)|x) + py|x((0,1)|x))η2(θ;x)≤ 0

}
× 1
{
py|x((1,0)|x)η1(θ;x)− (py|x((1,0)|x) + py|x((0,1)|x))η3(θ;x)≥ 0

}
= 1
{
Z1(x;py|x)≤ 0}1{Z2(x;py|x)≥ 0} (B.15)

I2(x;py|x) = 1
{
py|x((1,0)|x)η1(θ;x)− (py|x((1,0)|x) + py|x((0,1)|x))η2(θ;x)> 0

}
= 1{Z1(x;py|x)> 0} (B.16)

I3(x;py|x) = 1
{
py|x((1,0)|x)η1(θ;x)− (py|x((1,0)|x) + py|x((0,1)|x))η3(θ;x)< 0

}
= 1{Z2(x;py|x)< 0}. (B.17)

One may rewrite the score functions in Eqs. (3.27)-(3.30) as

sθ((0,0)|x;py|x) =
∇θFθ(S{(0,0)}|x;θ)

Fθ(S{(0,0)}|x;θ)

sθ((0,1)|x;py|x) =
∇θη1(θ;x)
η1(θ;x)

I1(x;py|x) +
∇θ[η1(θ;x)−η2(θ;x)]
η1(θ;x)−η2(θ;x)

I2(x;py|x)

+ ∇θ[η1(θ;x)−η3(θ;x)]
η1(θ;x)−η3(θ;x)

I3(x;py|x)

sθ((1,0)|x;py|x) =
∇θη1(θ;x)
η1(θ;x)

I1(x;py|x) +
∇θη2(θ;x)
η2(θ;x)

I2(x;py|x)

+ ∇θη3(θ;x)
η3(θ;x)

I3(x;py|x)

sθ((1,1)|x;py|x) =
∇θFθ(S{(1,1)}|x;θ)

Fθ(S{(1,1)}|x;θ)
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For any vector a= (a1, . . . , adX ), define the differential operator by

D|a| = ∂|a|

∂x
a1
1 ···∂x

adX
d

,

where |a|=
∑dX

i ai. Then, for a function h :X →R, let

∥h∥∞,α = max
|a|≤[α]

sup
x

|Dah(x)|+ max
|a|=[α]

sup
x ̸=x′

|Dah(x)−Dah(x′)|
∥x−x′∥α−[α] .

Let CαM (X ) be the set of continuous functions h :X →R with ∥h∥∞,α ≤M .

We next provide regularity conditions under which we verify Assumptions 2 and 3 (iv) .

ASSUMPTION B.1: For the entry game model in Example 1,

(i) There exists C > 0 s.t. ∥∇θηj(θ;x)∥ ≤C, j = 1, . . . ,3, for all x ∈ X .

(ii) There exists c > 0 s.t. H= {py|x :X → [0,1]Y : py|x(y|x)≥ c,∀(y,x) ∈ Y ×X}.

(iii) If X has at least one component with continuous distribution, the probability density

function of Zj |Xd, for j = 1,2, is uniformly bounded on the support of Zj |Xd, where

Xd denotes the subvector of X containing discrete covariates with finite support. If

there are no discrete covariates, the restriction is on the unconditional probability

density function of Zj .

ASSUMPTION B.2: a

(a) One of the following conditions hold:

(i) X is a vector of discrete random variables and X ⊂RdX is a finite set.

(ii) X is a vector of continuous random variables and X ⊂RdX is a bounded, con-

vex set with nonempty interior. For some c > 0, M > 0, and α > dX ,

H= {py|x :X → [0,1]|Y| : py|x(y|·) ∈ CαM (X ), y ∈ Y , py|x(y|x)≥ c > 0,

∀(y,x) ∈ Y ×X}
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(iii) X = (X⊤
c ,X⊤

d )⊤ consists of subvectors Xc and Xd, where Xc is continuously

distributed and Xd is discretely distributed. X = Xc ×Xd ⊂ RdX , where Xc ⊂
RdXc is a bounded convex set with nonempty interior, and Xd ⊂RdXd is a finite

set. For some c > 0, M > 0, α > dX , Lipschitz functions ϕk, k = 1, . . . , |Y|, and

some functions ℓc and ℓd,

H= {py|x :X → [0,1]|Y| : py|x(yk|x) = ϕk
(
ℓc(yk|xc), ℓd(yk|xd)

)
, ℓc(yk|·) ∈ CαM (Xc),

−M ≤ ℓd(yk|xd)≤M,∀xd ∈ Xd, k = 1, . . . , dY , py|x(y|x)≥ c > 0,∀(y,x) ∈ Y×X}.

(b) E[∥∇θFθ(S{y}|x;θ)

Fθ(S{y}|x;θ)
∥2]≤C for y = (0,0), (1,1) for some 0<C <∞.

REMARK B.1: Assumption B.1(i) is satisfied, for example, when the vector U has a

multivariate Normal distribution, provided the correlation among any two of its entries is

bounded away from one (in absolute value). In Assumption B.2(a)(iii), we assume that py|x
combines a function of continuous covariates Xc with a function of discrete covariates Xd

using a Lipschitz function, which covers many transformations of interest (see, e.g., van der

Vaart and Wellner, 1996, p. 192). More general transformations can be allowed for, as far

as one may ensure that the metric entropy of H can be controlled properly.

PROPOSITION B.2: Suppose Assumptions 1 and B.1 hold for the entry game model in

Example 1. Then Assumption 2 also holds.

PROOF: Recall that mθ(x;py|x)≡ E[sθ(Y |X;py|x)|X = x] =
∑

y∈Y p0,y|x(y|x)sθ(y,x;py|x).
For py|x, p0,y|x ∈ H, our goal is to bound E[∥mθ(X;py|x) − mθ(X;p0,y|x)∥]. Observe

that the score depends on the underlying conditional probability only through I(x;py|x) =

(I1(x;py|x), I2(x;py|x), I3(x;py|x)). Hence, the difference ∆(x;py|x, p0,y|x)≡ ∥mθ(x;py|x)−
mθ(x;p0,y|x)∥ can only be nonzero if I(x;py|x) ̸= I(x;p0,y|x). The exact values of the dif-

ference is summarized in Table B.I. Below, we consider two subcases (i) X is discrete and

X is finite, and (ii) X contains a continuously distributed variable. The case in which all

components of X are continuously distributed is treated as a special case of the latter.
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TABLE B.I

VALUES OF ∆(x;py|x, p0,y|x) WHEN I(x;py|x) ̸= I(x;p0,y|x)

I(x;py|x) I(x;p0,y|x) ∆(x;py|x, p0,y|x)

(1,0,0) (0,1,0)
∥∥∥p0,y|x((1,0)|x)(∇θη2(θ;x)

η2(θ;x)
− ∇θη1(θ;x)

η1(θ;x)

)
(0,1,0) (1,0,0) + p0,y|x((0,1)|x)

(
∇θη1(θ;x)−∇θη2(θ;x)

η1(θ;x)−η2(θ;x)
− ∇θη1(θ;x)

η1(θ;x)

)∥∥∥
(1,0,0) (0,0,1)

∥∥∥p0,y|x((1,0)|x)(∇θη3(θ;x)
η3(θ;x)

− ∇θη1(θ;x)
η1(θ;x)

)
(0,0,1) (1,0,0) + p0,y|x((0,1)|x)

(
∇θη1(θ;x)−∇θη3(θ;x)

η1(θ;x)−η3(θ;x)
− ∇θη1(θ;x)

η1(θ;x)

)∥∥∥
(0,1,0) (0,0,1)

∥∥∥p0,y|x((1,0)|x)(∇θη2(θ;x)
η2(θ;x)

− ∇θη3(θ;x)
η3(θ;x)

)
(0,0,1) (0,1,0) + p0,y|x((0,1)|x)

(
∇θη1(θ;x)−∇θη2(θ;x)

η1(θ;x)−η2(θ;x)
− ∇θη1(θ;x)−∇θη3(θ;x)

η1(θ;x)−η3(θ;x)

)∥∥∥

(i) Discrete X: Let X be a finite set and let X0 = {x ∈ X : Z1(x;p0,y|x) ̸= 0,Z2(x;p0,y|x) ̸=
0}. Let c ≡minx∈X0 minj=1,2 |Zj(x;p0,y|x)|. Then, by Lemma B.3, ∆(x;py|x, p0,y|x) = 0

for all x ∈ X0 and py|x such that ∥py|x − p0,y|x∥H ≤ δ for all δ ≤ c/4. Hence, they do

not contribute to the L1-norm of ∆(·;py|x, p0,y|x). Now consider x ∈ X c
0 . For example,

suppose that 0 = Z1(x;p0,y|x)< Z2(x;p0,y|x). To make ∆(x;py|x, p0,y|x) nonzero, let py|x
be such that ∥py|x − p0,y|x∥H ≤ δ and Z1(x;py|x) > 0. This leads to I(x, py|x) = (0,1,0)

and I(x, p0,y|x) = (1,0,0). From Table B.I,

∆(x;py|x, p0,y|x) =
∥∥∥p0,y|x((1,0)|X)∇θη2(θ;X)

η2(θ;X) + p0,y|x((0,1)|X)∇θη1(θ;x)−∇θη2(θ;x)
η1(θ;x)−η2(θ;x)

− [p0,y|x((1,0)|X) + p0,y|x((0,1)|X)]∇θη1(θ;X)
η1(θ;X)

∥∥∥. (B.18)

Note that Z1(x;p0,y|x) = 0 is equivalent to

p0,y|x((1,0)|X) = [p0,y|x((1,0)|X) + p0,y|x((0,1)|X)]η2(θ;X)
η1(θ;X) . (B.19)
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Since
p0,y|x((0,1)|X)

p0,y|x((1,0)|X)+p0,y|x((0,1)|X) = 1− p0,y|x((1,0)|X)

p0,y|x((1,0)|X)+p0,y|x((0,1)|X) , we obtain

p0,y|x((0,1)|X) = [p0,y|x((1,0)|X) + p0,y|x((0,1)|X)]η1(θ;X)−η2(θ;X)
η1(θ;X) . (B.20)

Substituting (B.19)-(B.20) into (B.18) yields,

∆(x;py|x, p0,y|x) =

∥∥∥∥∥[p0,y|x((1,0)|X)

+ p0,y|x((0,1)|X)]
(
∇θη2(θ;X)
η1(θ;X) + ∇θη1(θ;x)−∇θη2(θ;x)

η1(θ;x)
− ∇θη1(θ;X)

η1(θ;X)

)∥∥∥∥∥= 0.

A similar argument can be applied to x ∈ X c
0 such that Z1(x;p0,y|x) < Z2(x;p0,y|x) = 0.

Finally, consider x ∈ X c
0 such that Z1(x;p0,y|x) = Z2(x;p0,y|x) = 0. This occurs only

if η2(θ;x) = η3(θ;x). Hence, Z1(x;py|x) = Z2(x;py|x) for any py|x. It then suffices to

consider only one of Zj’s. For example let py|x be such that ∥py|x − p0,y|x∥H ≤ δ and

Z1(x;py|x)> 0. Then, the same analysis as above leads to ∆(x;py|x, p0,y|x) = 0.

Therefore, for all py|x such that ∥py|x − p0,y|x∥H ≤ δ for a sufficiently small δ,

∥∥∥E[mθ(X;p′y|x)−mθ(X;p0,y|x)
]∥∥∥≤ E

[
∥mθ(X;p′y|x)−mθ(X;p0,y|x)∥

]
=
∑
x∈X0

p0,x(x)∆(x;py|x, p0,y|x) +
∑
x∈X c

0

p0,x(x)∆(x;py|x, p0,y|x) = 0

Therefore, the pathwise derivative is 0.

(ii) X contains a continuously distributed variable:

Let Xd be a subvector of X containing discrete covariates. Recall that ∆(x, py|x, p0,y|x) ̸=
0 when I(x;py|x) ̸= I(x;p0,y|x). This occurs when sgn(Zj(x;py|x)) ̸= sgn(Zj(x;p0,y|x)) for

some j. By Eq. (B.14) and supx∈X |ηj(θ;x)| ≤ 1, ∥py|x − p0,y|x∥H ≤ δ implies

sup
x∈X

|Zj(x;py|x)−Zj(x;p0,y|x)| ≤ 3δ, j = 1,2
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Therefore, if sgn(Zj(x;py|x)) ̸= sgn(Zj(x;p0,y|x)) and ∥py|x−p0,y|x∥H ≤ δ, one must have

|Zj(x;p0,y|x)| ≤ 3δ. Hence,

∥∥∥E[mθ(X;py|x)−mθ(X;p0,y|x)
]∥∥∥≤ E

[
∥mθ(X;py|x)−mθ(X;p0,y|x)∥

]
≤ E

[
∆(X;py|x, p0,y|x)(1{−3δ ≤ Z1(X;p0,y|x)≤ 3δ}+ 1{−3δ ≤ Z2(X;p0,y|x)≤ 3δ})

]
≤KδE

[∫
1{−3δ ≤ z1 ≤ 3δ}fZ1|Xd

(z1)dz1 +

∫
1{−3δ ≤ z2 ≤ 3δ}fZ2|Xd

(z2)dz2

]
≤ cδ2

where the third line follows by Lemma B.4 and the law of iterated expectations, the fourth

line uses Assumption B.1 (iii), and 0 < c <∞ is some constant. Therefore, the pathwise

derivative is again zero. Q.E.D.

LEMMA B.3: Let X be a finite set, and let X0 = {x ∈ X : Z1(x;p0,y|x) ̸= 0,Z2(x;p0,y|x) ̸=
0}. Let c ≡ minx∈X0 minj=1,2 |Zj(x;p0,y|x)|. Then, ∆(x;py|x, p0,y|x) = 0 for any x ∈ X0

and py|x such that ∥py|x − p0,y|x∥H ≤ c/4.

PROOF: Take x ∈ X0. Suppose Z1(x;p0,y|x)≥ c > 0 so that I(x;p0,y|x) = (0,1,0). Let

py|x satisfy ∥py|x − p0,y|x∥H ≤ c/4. Then, by (B.14) and |ηj(x; θ)| ≤ 1, and the triangle

inequality, Z1(x;py|x)≥ Z1(x;p0,y|x)− 3
4c≥

1
4c > 0, implying I(x;py|x) = (0,1,0). From

Table B.I, ∆(x;py|x, p0,y|x) = 0. Other cases can be analyzed similarly. Q.E.D.

LEMMA B.4: Suppose Assumptions 1 and B.1 hold for the entry game model in Example

1. For δ > 0, let py|x be such that ∥py|x− p0,y|x∥H ≤ δ. Then, there exists 0<K <∞ such

that for all x ∈ X , ∆(x;py|x, p0,y|x)≤Kδ.

PROOF: From Table B.I, ∆(x;py|x, p0,y|x) = 0 when I(x;py|x) = I(x;p0,y|x). Therefore,

we focus on cases with I(x;py|x) ̸= I(x;p0,y|x) below. Consider the case where I(x;py|x) =

(0,1,0) and I(x;p0,y|x) = (1,0,0). By (B.15)-(B.17), this occurs when

Z1(x;p0,y|x)≤ 0, Z1(x;py|x)> 0. (B.21)
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Furthermore, by (B.14) and supx∈X |ηj(θ;x)| ≤ 1, ∥py|x − p0,y|x∥H ≤ δ implies

sup
x∈X

|Z1(x;py|x)−Z1(x;p0,y|x)| ≤ 3δ. (B.22)

Combining (B.21)-(B.22) yields −3δ ≤ Z1(x;p0,y|x)≤ 0. By (B.14) and ηj(θ;x)≥ c,

(p0,y|x((1,0)|x) + p0,y|x((0,1)|x))
η2(θ;x)
η1(θ;x)

− 3
cδ

≤ p0,y|x((1,0)|x)≤ (p0,y|x((1,0)|x) + p0,y|x((0,1)|x))
η2(θ;x)
η1(θ;x)

(B.23)

Using Assumption B.1 (ii), this may also be written as

η2(θ;x)
η1(θ;x)

− 3
c(p0,y|x((1,0)|X)+p0,y|x((0,1)|X))δ ≤

p0,y|x((1,0)|x)
(p0,y|x((1,0)|X)+p0,y|x((0,1)|X)) ≤

η2(θ;x)
η1(θ;x)

.

Since
p0,y|x((0,1)|x)

(p0,y|x((1,0)|X)+p0,y|x((0,1)|X)) = 1− p0,y|x((1,0)|x)
(p0,y|x((1,0)|X)+p0,y|x((0,1)|X)) , we obtain

1− η2(θ;x)
η1(θ;x)

≤ p0,y|x((0,1)|x)
(p0,y|x((1,0)|X)+p0,y|x((0,1)|X)) ≤ 1− η2(θ;x)

η1(θ;x)
+ 3

c(p0,y|x((1,0)|X)+p0,y|x((0,1)|X))δ.

This may in turn be written as

(p0,y|x((1,0)|x) + p0,y|x((0,1)|x))
η1(θ;x)−η2(θ;x)

η1(θ;x)

≤ p0,y|x((0,1)|x)≤ (p0,y|x((1,0)|x) + p0,y|x((0,1)|x))
η1(θ;x)−η2(θ;x)

η1(θ;x)
+ 3

cδ. (B.24)

By (B.23) and (B.24), let us write

p0,y|x((1,0)|x) = (p0,y|x((1,0)|x) + p0,y|x((0,1)|x))
η2(θ;x)
η1(θ;x)

+ r(1,0)(x) (B.25)

p0,y|x((0,1)|x) = (p0,y|x((1,0)|x) + p0,y|x((0,1)|x))
η1(θ;x)−η2(θ;x)

η1(θ;x)
+ r(0,1)(x), (B.26)
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where r(1,0)(x) ∈ [−3δ/c,0] and r(0,1)(x) ∈ [0,3δ/c] for all x ∈ X . From Table B.I, the

value of ∆(x;py|x, p0,y|x) when I(x;py|x) = (0,1,0) and I(x;p0,y|x) = (1,0,0) is

∆(x;py|x, p0,y|x) =
∥∥∥p0,y|x((1,0)|x)∇θη2(θ;x)

η2(θ;x)
+ p0,y|x((0,1)|x)

∇θη1(θ;x)−∇θη2(θ;x)
η1(θ;x)−η2(θ;x)

− [p0,y|x((1,0)|x) + p0,y|x((0,1)|x)]
∇θη1(θ;x)
η1(θ;x)

∥∥∥. (B.27)

By (B.25)-(B.26), the terms inside the norm in (B.27) can therefore be written as

[p0,y|x((1,0)|x) + p0,y|x((0,1)|x)]

(
∇θη2(θ;x)
η1(θ;x)

+ ∇θη1(θ;x)−∇θη2(θ;x)
η1(θ;x)

− ∇θη1(θ;x)
η1(θ;x)

)

+ ∇θη2(θ;x)
η2(θ;x)

r(1,0)(x) +
∇θη1(θ;x)−∇θη2(θ;x)

η1(θ;x)−η2(θ;x)
r(0,1)(x).

By the triangle inequality, ηj(θ;x)≥ c, and Assumption B.1 (i), we obtain

∆(x;py|x, p0,y|x)≤ ∥∇θη2(θ;x)∥
∣∣∣r(1,0)(x)η2(θ;x)

∣∣∣+ (∥∇θη1(θ;x)∥+ ∥∇θη2(θ;x)∥)
∣∣∣ r(0,1)(x)

η1(θ;x)−η2(θ;x)

∣∣∣
≤ 3C

c2
δ + 6C

c2
δ,

which establishes the claim of the lemma for I(x;py|x) = (0,1,0) and I(x;p0,y|x) =

(1,0,0). The other cases can be analyzed similarly. Q.E.D.

We next establish stochastic equicontinuity for the empirical process

Gn(p) =
1√
n

n∑
i=1

(sθ(Yi|Xi;p)−E[sθ(Yi|Xi;p)]) , p ∈H

In the definition of Gn, the structural parameter θ is fixed. Hence, the function class F =

{f(y,x) : f(y,x) = sθ(y|x;p), p ∈ H} is defined by mixing and matching p with fixed

functions such as ηj(x, θ). For example, we may write sθ((1,0)|x;p) as

sθ((1,0)|x;p0,y|x) =
3∑

j=1

∇θηj(θ;x)
ηj(θ;x)

Ij(x;py|x),
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where Ij(x;py|x), j = 1,2,3, are defined in Eqs. (B.15)-(B.17).

PROPOSITION B.3: Suppose Assumptions 1, B.1, and B.2 hold for the entry game model

in Example 1. Then Assumption 3 (iv) also holds.

PROOF: Let

F(0,0) =
{
f : f(w;p) =

∇θFθ(S{(0,0)}|x;θ)

Fθ(S{(0,0)}|x;θ)

}
,

F(0,1) =
{
f : f(w;p) =

e′l∇θη1(θ;x)
η1(θ;x)

I1(x;p) +
3∑

j=2

e′l(∇θη1(θ;x)−∇θηj(θ;x))
ηj(θ;x)

Ij(x;p),

l = 1, . . . , dθ, , p ∈H
}
,

F(1,0) =
{
f : f(w;p) =

3∑
j=1

e′l∇θηj(θ;x)
ηj(θ;x)

Ij(x;p), l = 1, . . . , dθ, p ∈H
}
,

F(1,1) =
{
f : f(w;p) =

∇θFθ(S{(1,1)}|x;θ)

Fθ(S{(1,1)}|x;θ)

}
where for each l, el denotes the l-th basis vector in Rdθ .

Observe that the score satisfies sθ(·;py|x) ∈ F ≡
∑

ȳ∈Y Fȳ · 1{y = ȳ}. In view of The-

orem 2.10.6 (and Examples 2.10.7 and 2.10.10) in van der Vaart and Wellner (1996), to

verify Assumption 3 (iv) it suffices to show that Fȳ is P -Donsker for each ȳ. The P -

Donskerness of Fȳ for ȳ = (0,0), (1,1) follows immediately from each set being a single-

ton and Assumption B.2 (b). Below, we show F(1,0) is P -Donsker. The analysis for F(0,1)

is similar and is therefore omitted.

Discrete X: First, suppose that X is a vector of discrete random variables and Assumption

B.2(a)(i) holds. For this setting, we show that F(1,0) is a Vapnik-Chervonenkis (VC) class,

which satisfies Pollard’s uniform entropy condition.

Observe that H is finite-dimensional due to Y × X being finite. By Lemma 2.6.15 in

van der Vaart and Wellner (1996), the VC-index of this class is V (H) ≤ dY × dX + 2,

and hence H is a VC-class. The finite set of functions E = {ηj(θ, ·), ∂
∂θk

ηj(θ, ·), j =

1, . . . ,3, k = 1, . . . , dθ} is also a VC-class. Note that F(1,0) collects functions that can be
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expressed as combinations of functions from H and E by multiplication, addition, division,

and composition with an indicator function 1{· > 0}. By Lemma 2.6.18 in van der Vaart

and Wellner (1996), F(1,0) is a VC-class. Assumptions 1 and B.1(i) ensure that there is an

envelope (constant) function F = 3C/c such that |f | ≤ F for all f ∈ F(1,0). By Theorem

2.5.2 in van der Vaart and Wellner (1996), F(1,0) is a P -Donsker class.

Continuous X: Next, suppose that X is a vector of continuous random variables and As-

sumption B.2(a)(ii) holds. We show F(1,0) is P -Donsker by verifying the conditions of The-

orem 3 in Chen et al. (2003). For this, we first show the L2-Hölder continuity of f ∈ F(1,0)

in p. In what follows, let

Ul,j = e′l∇θηj(θ;X)/ηj(θ;X), l = 1, . . . , d, j = 1, . . . ,3.

By the triangle inequality,

sup
∥p−p′∥H≤δ

|f(w;p′)− f(w;p)|2 ≤ sup
∥p−p′∥H≤δ

3∑
j=1

u2l,j |Ij(x;p′)− Ij(x;p)|, (B.28)

where ul,j = e′l∇θηj(θ;x)/ηj(θ;x). Below, we focus on u2l,3|I3(x;p′) − I3(x;p)|, one of

the terms in the sum on the right hand side of (B.28). The two other terms can be analyzed

similarly. For δ sufficiently small,

E
[

sup
∥p−p′∥H≤δ

U2
l,3|I3(X;p′)− I3(X;p)|

]
= E

[
sup

∥p−p′∥H≤δ
U2
l,3|1{Z2(X;p′y|x)< 0} − 1{Z2(X;py|x)< 0}|

]
.

By Eq. (B.14) and supx∈X |ηj(θ;x)| ≤ 1, whenever ∥p′y|x − py|x∥H ≤ δ, we have

sup
x∈X

|Zj(x;p
′
y|x)−Zj(x;py|x)| ≤ 3δ, j = 1,2. (B.29)

We next use the argument in Chen et al. (2003, p. 1600). Combining one side of Eq. (B.29),

with the addition of a non-negative constant, we have Z2(x;py|x) − 3δ ≤ Z2(x;p
′
y|x) ≤
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Z2(x;p
′
y|x) + 3δ, and hence

1{Z2(x;py|x)− 3δ < 0} ≥ 1{Z2(x;p
′
y|x)< 0} ≥ 1{Z2(x;p

′
y|x) + 3δ < 0}. (B.30)

Similarly, Z2(x;p
′
y|x)− 3δ ≤ Z2(x;py|x)≤ Z2(x;py|x) + 3δ implies

1{Z2(x;p
′
y|x)− 3δ < 0} ≥ 1{Z2(x;py|x)< 0} ≥ 1{Z2(x;py|x) + 3δ < 0}. (B.31)

Combining (B.30)-(B.31), for any p′, p with ∥p′ − p∥H ≤ δ,

|1{Z2(x;p
′
y|x)< 0} − 1{Z2(x;py|x)< 0}| ≤ 1{Z2(x;py|x)− 3δ < 0} − 1{Z2(x;py|x) + 3δ < 0}

≤ 1{−3δ < Z2(x;py|x)< 3δ}

where without loss of generality we assumed that 1{Z2(x;py|x)−3δ < 0}−1{Z2(x;py|x)+

3δ < 0}> 1{Z2(x;p
′
y|x)− 3δ < 0}− 1{Z2(x;p

′
y|x)+ 3δ < 0}. By the argument above, the

law of iterated expectations, and Assumptions B.1(i), B.2(a)(ii), and B.2(b),

E
[

sup
∥p−p′∥H≤δ

U2
l,3|1{Z2(X;p′y|x)< 0} − 1{Z2(X;py|x)< 0}|

]
≤ E

[
U2
l,31{−3δ < Z2(X;py|x)< 3δ}

]
≤ C2

c2

∫
1{−3δ < z2 < 3δ}fZ2(z2)dz2 ≤Kδ, (B.32)

for some constant K > 0, where the last inequality follows from Assumption B.1 (iii).

Applying a similar argument to the other two terms in (B.28), one can obtain

E
[

sup
∥p−p′∥H≤δ

|f(W ;p′)− f(W ;p)|2
]1/2

≤K ′δ1/2, (B.33)

for some K ′ > 0. Hence f is L2-Hölder continuous in p with Hölder exponent 1/2.

Recall that X is a bounded convex subset of RdX with nonempty interior. By Theorem

2.7.1 in van der Vaart and Wellner (1996), lnN(ϵ2,CαM (X ),∥ ·∥∞)≤K
(
1
ϵ

)2dX/α
for some
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K > 0. Note that H⊂ (CαM (X ))Y and |Y|= 4. For each y ∈ Y , let {p1(y|·), . . . , pk(y|·)} be

an ϵ2-cover for CαM (X ) with respect to the sup norm. Then, {(pj1((0,0)|·), pj2((0,1)|·), pj3((1,0)|·),
pj4((1,1)|·), jl ∈ {1, . . . , k}, l = 1, . . . ,4} forms an ϵ2-cover for (CαM (X ))Y with respect to

the maximum of the sup norms. Hence,

N(ϵ2,CαM (X )Y ,∥ · ∥∞)≤ e
4K

(
1
ϵ

)2dX/α

, (B.34)

which in turn implies lnN(ϵ2,H,∥ · ∥∞)≤ 4K
(
1
ϵ

)2dX/α
. Since α > dX , we have

∫ ∞

0

√
lnN(ϵ2,H,∥ · ∥H)dϵ <∞. (B.35)

We can now apply Theorem 3 in Chen et al. (2003), which ensures that F(1,0) is P -Donsker.

Mixed X: Finally, suppose that X contains both continuous and discrete variables and

Assumption B.2(a)(iii) holds. Again, we use Theorem 3 in Chen et al. (2003). We can

argue as in the previous case, but (B.32) is modified as follows:

E
[

sup
∥p−p′∥H≤δ

U2
l,3|1{Z2(X;p′y|x)< 0} − 1{Z2(X;py|x)< 0}|

]
≤ E

[
U2
l,31{−3δ < Z2(X;py|x)< 3δ}

]
≤ C2

c2
E
[∫

1{−3δ < z2 < 3δ}fX2|Xd
(z2)dz2

]
≤Kδ, (B.36)

for some constant K > 0, where the last inequality follows from Assumption B.1(iii).

Therefore, (B.33) holds.

It remains to show (B.35). Recall that N(ϵ2,CαM (X ),∥ · ∥∞) ≤ e
K
(
1
ϵ

)2dX/α

for some

K > 0. Furthermore, xd 7→ ℓd(yk|xd) belongs to a finite-dmensional space [−M,M ]Xd

with covering number satisfying N(ϵ2, [−M,M ]Xd ,∥ · ∥∞)≤
(√

2M
ϵ

)2dim(Xd). For each l,

let pc,1(yl|·), · · · , pc,N1(yl|·) be an ϵ2-cover of CαM (Xc). Similarly, let pd,1(yl|·), . . . , pd,N2
(yl|·)

be an ϵ2-cover of [−M,M ]Xd . Then, for any py|x ∈ H and l ∈ {1, . . . ,4}, there exist

k1 ∈ {1, . . . ,N1}, k2 ∈ {1, . . . ,N2}, and (ℓc(yk|·), ℓd(yk|·)) ∈ CαM (Xc)× [−M,M ]Xd such
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that

sup
x=(x′c,x′d)

′∈Xc×Xd

∣∣pyl|x(y|x)− ϕk(pc,k1(yl|xc), pd,k1(yl|xd))
∣∣

= sup
x=(x′c,x′d)

′∈Xc×Xd

∣∣ϕk(pc(yl|xc), pd(yl|xd))− ϕk(pc,k1(yl|xc), pd,k2(yl|xd))
∣∣

≤Cmax{∥pc(yl|·)− pc,k1(yl|·)∥∞,∥pd(yl|·)− pd,k2(yl|·)∥∞} ≤Cϵ2,

for some 0<C <∞ due to the Lipschitz continuity of ϕk. Therefore {(pc,k1(yl|·), pd,k2(yl|·))4l=1,

k1 ∈ {1, . . . ,N1}, k2 ∈ {1, . . . ,N2}, l ∈ {1, . . . ,4}} is an Cϵ2-cover of H. Hence,

N(ϵ2,H,∥ · ∥∞)≤
(
N(ϵ2/C,CαM (X ),∥ · ∥∞)×N(ϵ2/C, [−M,M ]Xd ,∥ · ∥∞)

)4
,

which in turn implies

lnN(ϵ2,H,∥ · ∥∞)≤ 4K
(√

C
ϵ

)2dX/α
+ 8dim(Xd) ln

(√
2M
ϵ

)
≤K ′

(√
C
ϵ

)2dX/α

for some K ′ > 0 for all ϵ small enough. Again, by α > d, we obtain (B.35). This completes

the proof of the proposition. Q.E.D.

We conclude this section by arguing that provided X has at least one component with

continuous distribution, under Assumptions 3 (ii), B.1 (iii), and B.2 (b), the consistency

of the covariance matrix estimator Σ̂n,θ∗ required in Eq. (3.35) holds. This follows from

Eq. (B.33), arguing as in Powell et al. (1989, Theorem 3.4), leveraging Assumption 3 (ii)

and the fact that for ȳ = (0,0), (1,1) the score does not depend on pn,y|x together with

Assumption B.2 (b).

APPENDIX C: ADDITIONAL EXAMPLES

Example C.1 (Discrete choice with unobserved heterogeneity in choice sets). Consider a

discrete choice model, with a finite universe of alternatives J = {1, . . . , J}. Let each alter-

native be characterized by a vector of covariates Xj , which might vary across decision mak-
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ers, and let X = [Xj , j ∈ J ]. Let Uj , j ∈ J , denote an unobserved characteristic of alter-

native j that varies across decision makers. As in the model proposed by Barseghyan et al.

(2021), the decision maker draws a choice set C ⊆ J according to an unknown distribu-

tion, and chooses the alternative Y ∈C that maximizes their utility, denoted π(Xj ; θ) +Uj

for alternative j (for simplicity, assume ties occur with probability zero):2

Y = argmax
j∈C

(π(Xj ; θ) +Uj) .

The researcher observes (Y,X), but not C , and wishes to learn features of θ and the dis-

tribution of (Uj , j ∈ J ). Assume that P(|C| ≥ κ) = 1, for some known κ ≥ 2; in words,

this amounts to requiring that each decision maker draws a choice set of size at least κ, and

that κ is known and larger than one.3 For given θ ∈Θ and x ∈ X , Barseghyan et al. (2021,

Lemma A.1) show that the set of model implied optimal choices is a measurable correspon-

dence (per Definition 1.1 in Molchanov and Molinari, 2018) given by the J − κ+ 1 best

alternatives in J , so that

G(U |x; θ) = ∪K⊆J :|K|=κ

{
argmax

j∈K
(π(xj ; θ) +Uj)

}
.

We depict it in Panel (a) of Figure C.1, for |J |= 3, as a function of (u1 − u3, u2 − u3).

In this example, if Uj , j ∈ J has full support on RJ , Assumption 1(b) is immediately

satisfied with AG = {K ⊂ Y : |K| ≥ J − κ + 1} because each set of alternatives in J
of size J − κ + 1 can realize as the J − κ + 1 best. Assumption 1(c)-(d) can be verified

similarly to how they are verified for Example 1.

It is also instructive to think about whether the introduction of a selection mechanism can

allow for application of the method proposed in Chen et al. (2018) to this example.4 Let

P(Yi = j|Xi; θ,R) denote the model-implied conditional probability that alternative j ∈ J

2As in Barseghyan et al. (2021), we can allow the utility function to be non-separable in (X,U), and we can
allow U to include random coefficients that are decision maker specific and do not vary across alternatives.

3If P(|C|= 1) = 1, the model has no empirical content and nothing can be learned about preferences.
4In the case of the entry game in Example 1, the selection mechanism in Eq. (3.3) can be integrated out against

the distribution of U to obtain a function that plays the role of the nuisance parameter in Chen et al. (2018).
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u1 − u3

u2 − u3

π̄(2, 3;x)

π̄(1, 3;x)

π̄(1, 3;x)

G(u|x; θ) = {2, 3}

G(u|x; θ) = {1, 2}

G(u|x; θ) = {1, 3}

1

(a) Heterogeneous choice sets

u1

u2

−x2γ

−x1γ

−x2γ − β

−x1γ − β

G(u|x; θ) =
{(0, 0)}

G(u|x; θ) =
{(0, 1)}

G(u|x; θ) =
{(0, 0), (1, 1)}

G(u|x; θ) =
{(0, 1), (1, 1)}

G(u|x; θ) =
{(0, 0), (1, 0)}

G(u|x; θ) = {(1, 1)}

G(u|x; θ) = {(1, 0)}

1

(b) Panel dynamic discrete choice

1

FIGURE C.1.—Stylized depictions of G(·|x;θ) in our two examples. Notes: Panel (a) depicts Example C.1,
with J = {1,2,3}, κ= 2, and π̄(j, k;x)≡ π(xk;θ)− π(xj ;θ). Panel (b) depicts Example C.2 with β ≥ 0.

is chosen given Xi and (θ,R), where R(·;Xi,Ui) denotes the conditional probability mass

function of Ci given (Xi,Ui). For all j ∈ J ,

P(Yi = j|Xi; θ,R) =

∫ ∑
K⊆J

1

(
argmax

k∈K
(π(Xk; θ) + uk) = j

)
R(K;Xi, u)dFθ.

To be able to apply Chen et al.’s (2018) method, one needs to further restrict the model

and assume that R does not depend on U , in which case R(·;Xi) can come out of the in-

tegral. Doing so, however, severely restricts the class of models to which the procedure is

applicable, since it requires the distribution of choice sets to be independent of preferences.

Important examples of choice set formation mechanisms that violate this requirement in-

clude sequential search, rational inattention, and elimination by aspects (when the aspect

with respect to which elimination occurs is the unobserved characteristic Uj). □

Example C.2 (Panel dynamic discrete choice). Decision maker i chooses between actions

y = 0 and y = 1 across multiple time periods, according to

Yit = 1{Xitγ + Yit−1β + αi + ϵit ≥ 0}, i= 1, . . . , n, t= 1, . . . , T

with Yit their decision in period t, Xit a vector of observed covariates in period t, αi

an individual-specific unobserved effect that is fixed over time, and ϵit an idiosyncratic
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unobserved effect that varies over time. When β ̸= 0, period t’s choice depends on pre-

vious periods’ choices, introducing state dependence. The researcher observes (Yit,Xit)

for i = 1, . . . , n and t = 1, . . . , T , but does not observe Yi0, so that {Yi1, . . . , YiT} is not

fully determined and the model is incomplete (Heckman, 1978, Honoré and Tamer, 2006).

Nonetheless, for given (Xit, αi, ϵit), t= 1, . . . , T , the model constrains the possible values

that (Yit, t= 1, . . . , T ) can take. For example, with T = 2, one has:

Yi1 =

1{X⊤
i1γ + αi + ϵi1 ≥ 0} if Yi0 = 0,

1{X⊤
i1γ + β + αi + ϵi1 ≥ 0} if Yi0 = 1,

Yi2 = 1{X⊤
i2γ + Yi1β + αi + ϵi2 ≥ 0} if Yi0 = 0 or Yi0 = 1.

Denoting the unobservables as Uit ≡ αi+ ϵit, for given θ = (γ,β) ∈Θ and x ∈ X , Chen

and Kaido (2023) derive the correspondence G(·|x; θ) as the set of values (y1, y2) ∈ {0,1}2

that satisfy the above equations.5 The correspondence is depicted in Panel (b) of Figure C.1

as a function of (u1, u2) for the case that β ≥ 0. Similar examples arise in nonparametric

models of state dependence (e.g., Torgovitsky, 2019). In this example, if the parameter

space for β is a subset of R++, Assumption 1 (b) is satisfied because then for all θ ∈ Θ,

AG = {{(0,0)},{(0,1)},{(1,0)},{(1,1)},{(0,1), (1,1)},{(0,0), (1,1)},{(0,0), (1,0)}}.

Assumption 1 (c),(e) can be verified similarly to how they are verified for Example 1. □
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