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1 Introduction

Probit and Tobit are some of the most popular nonlinear models in applied economics. When a

covariate is endogenous, IV-Probit and IV-Tobit models can be used for instrumental variable (IV)

estimation of the coefficients (Smith and Blundell, 1986, Rivers and Vuong, 1988).1

A covariate can be endogenous for two reasons. First, the covariate can be correlated with

the individual’s unobserved characteristics (unobserved heterogeneity). Second, mismeasurement

of the covariate also results in endogeneity (Errors-in-Variables, EiV). We will refer to these two

types of endogeneity as the structural endogeneity and the EiV. In many empirical settings both

sources of endogeneity need to be addressed simultaneously.

The goal of this paper is to characterize the partial effects in these classic models allowing for

both types of endogeneity, and to emphasize the importance of distinguishing between the two

types. We provide the expressions for the partial effects and average partial effects that correctly

account for the two kinds of endogeneity. Although the two sources of endogeneity cannot be

precisely distinguished using the observed data, we use the constraints of the model to obtain

bounds on the amounts of endogeneity that can be attributed to each source. This allows us to

characterize sharp bounds on the true partial and average partial effects, allowing for both types of

endogeneity. We also provide simple estimators of these bounds and corresponding valid confidence

intervals that are easy to calculate.

The primary objects of interest of this paper are the partial effects of the covariates, rather

than the regression coefficients (the coefficients on the covariates). Denote by X∗
i the covariate of

interest, and by Xi its mismeasured observed version. Estimation of the coefficients on X∗
i and

other covariates is a simpler task than estimation of the partial effects of X∗
i . In particular, in the

IV-Probit, IV-Tobit, and related models, to identify and estimate these coefficients it is sufficient to

simply consider Xi as the endogenous regressor of interest without needing to distinguish between

the types of endogeneity.2

In nonlinear models, the need to differentiate between the two kinds of endogeneity arises be-

cause structural endogeneity and EiV play different roles. In particular, partial effects of covariates

are averaged with respect to the distribution of the individual unobserved heterogeneity. On the

other hand, one aims to remove the impact of the measurement errors, since they are not properties

of individuals but a deficiency in the measurement process. The textbook treatment of the problem

often focuses only on the first type of endogeneity, treating endogeneity as purely structural. When

X∗
i is mismeasured, the partial effect of X∗

i in nonlinear models differs from the effect of Xi one

would calculate using the standard formulas that assume the endogeneity is purely structural.

To identify the partial effects of X∗
i and other covariates one needs to identify the distribution

of the true unobserved heterogeneity not contaminated by the measurement error. It turns out that

1For example, in Stata, these estimators are ivprobit and ivtobit.
2In particular, Smith and Blundell (1986) and Rivers and Vuong (1988) simply consider Xi as endogenous. Sim-

ilarly, in a recent paper, Chesher, Kim, and Rosen (2023) provide a sharp identified set for the coefficients on the
covariates in a Tobit model with endogeneity under weak assumptions. The approaches of these papers implicitly
allow for mismeasured covariates, as long as the focus is only on the regression coefficients.
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this distribution is only partially identified. Thus, even though the IV-Probit and IV-Tobit methods

consistently estimate the coefficients on all regressors regardless of the sources of endogeneity, the

effects of the covariates on the outcomes are only partially identified. The width of the identified

set depends on how hard it is to disentangle structural endogeneity and EiV for the data at hand.

Importantly, we find that naively ignoring the distinction between the two types of endogeneity

can result in both under- and over-estimation of the magnitude of the partial effects by these IV

estimators.3

IV-Probit and IV-Tobit can be interpreted as control variable estimators. Partial effects in gen-

eral control variable models were considered by Blundell and Powell (2003), Chesher (2003), Imbens

and Newey (2009), and Wooldridge (2005, 2015), among others. These control variable methods

focus on structural endogeneity exclusively but do not consider EiV. The problems of estimation

with structural endogeneity or measurement errors are studied by two large but (mostly) distinct

literatures in econometrics, see, e.g., Matzkin (2013) and Schennach (2020) for reviews. In non-

linear models, accounting for both types of endogeneity is challenging, see, e.g., Schennach (2022).

Exceptions include Adusumilli and Otsu (2018); Song, Schennach, and White (2015); Schennach,

White, and Chalak (2012); Hahn and Ridder (2017). These papers obtain point identification

results when the distribution of the measurement error is either known or can be recovered from

repeated measurements using the lemma of Kotlarski (1967). Such datasets, however, are relatively

rare.

The advantage of gaussian nonlinear models is their simplicity and transparency, which makes

them a convenient starting point in an empirical analysis. Our approach in particular provides the

researchers with a simple way to gauge the importance of properly accounting for the two types

of endogeneity, which is essential given the ubiquity of both in economic applications. In addition,

for the settings where relaxing gaussianity is important, we develop an extension of our approach

that allows both the first stage unobservables and the measurement errors to be non-gaussian.

The rest of the paper is organized as follows. The analysis of partial effects in the Probit and

Tobit models is virtually identical, thus we first focus on Tobit in Sections 2-3. Section 4 then

considers the Probit model. Section 5 provides some Monte Carlo simulation results. Section 6

presents an empirical illustration. Section 7.1 extends the analysis to cover the average partial

effects and other counterfactuals. Section 7.2 relaxes gaussianity assumptions.

2 The Model

The Tobit model is often used for estimation of economic models with a “corner solution,” i.e.,

models where the outcome variable Yi is forced to be non-negative. The examples of such dependent

variables Yi include the amounts of charitable contributions, hours worked, or monthly consumption

of cigarettes.

3Wooldridge (2010), page 586, alludes to the potential importance of the sources of endogeneity for the partial
effects in IV-Probit, but does not elaborate.
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First, consider the standard Tobit model with exogenous covariates and without EiV:

Yi = m
(
θ01X

∗
i + θ′02Wi + U∗

i

)
, where m (s) = max(s, 0), (1)

the individual unobserved heterogeneity U∗
i has a normal distributionN

(
0, σ2

U∗
)
and is independent

from the covariates X∗
i and Wi. We use the asterisk to denote variables that will be affected by

the EiV, as we explain in detail below.

We collect the covariates in a vector H∗
i = (X∗

i ,W
′
i )

′, so (1) can be written as

Yi = m
(
θ′0H

∗
i + U∗

i

)
, H∗

i =
(
X∗

i ,W
′
i

)′
, θ0 =

(
θ01, θ

′
02

)′
.

We denote the standard normal cumulative distribution and density functions by Φ and ϕ.4

In the Tobit model, one is usually interested in the partial effects (marginal effects) of covariates

H∗
i on E (Yi|H∗

i ) and P (Yi > 0|H∗
i ). For concreteness we consider partial effects of the continuously

distributed covariates.

The partial effect of the jth covariate on the mean E (Yi|H∗
i = h) at a given h is

PETob
j (h) =

∂

∂hj

∫
m
(
θ′0h+ u

)
fU∗ (u) du = Φ

(
θ′0h

σU∗

)
θ0j . (2)

The partial effect of the jth covariate on the probability P (Yi > 0|H∗
i = h) is

PEPr
j (h) =

∂

∂hj

∫
1
{
θ′0h+ u > 0

}
fU∗ (u) du = ϕ

(
θ′0h

σU∗

)
θ0j
σU∗

. (3)

These formulas for the PEj are standard, see, e.g., Wooldridge (2010), for detailed calculations.

Most often one considers the partial effects at the means of the covariates h = E [H∗
i ].

When X∗
i is correlated with U∗

i and we observe data (Yi, X
∗
i ,Wi, Zi), the IV-Tobit model can

be estimated using instrumental variables Zi, as proposed by Smith and Blundell (1986), Newey

(1987), and Rivers and Vuong (1988). Assume that

Yi = m
(
θ01X

∗
i + θ′02Wi + U∗

i

)
, m (s) = max(s, 0), (4)

X∗
i = π′

01Zi + π′
02Wi + V ∗

i , π′
01 ̸= 0, (5)

where V ∗
i is a normal random variable, possibly correlated with U∗

i ,(
U∗
i

V ∗
i

)
∼ N

((
0

0

)
,

(
σ2
U∗ σU∗V ∗

σU∗V ∗ σ2
V ∗

))
, (6)

and (U∗
i , V

∗
i ) is independent from (Zi,Wi). In this model X∗

i is continuously distributed.

The IV-Tobit model in (4)-(6) can be estimated using a random sample of (Yi, X
∗
i ,Wi, Zi) in two

4Most of the analysis in Sections 2 and 3 equally applies to the Probit model. For simplicity of exposition, we
focus on the Tobit model for the moment, and then discuss Probit in Section 4.
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steps, see, e.g., Wooldridge (2010). First, one estimates V ∗
i in equation (5) by the residuals V̂ ∗

i in

the regression of X∗
i on (Wi, Zi). Note that we can write U∗

i = e∗i +θV ∗V ∗
i , where θV ∗ ≡ σV ∗U∗/σ2

V ∗ ,

and e∗i is independent of Zi, Wi, and V ∗
i (and hence of X∗

i ). Then, one estimates the standard

Tobit model

Yi = m
(
θ01X

∗
i + θ′02Wi + θV ∗V ∗

i + e∗i
)
,

where V ∗
i are replaced by their estimates V̂ ∗

i . (Alternatively, the two steps can be combined and all

of the parameters can be estimated simultaneously by the Maximum Likelihood Estimator.) The

reason this approach works is that equation (5) creates a control variable V ∗
i , and the inclusion of

V ∗
i in the above equation makes X∗

i exogenous.

To estimate the partial effects, one would plug the estimates θ̂ and σ̂2
U∗ into equations (2)-(3)

in place of θ0 and σ2
U∗ .

So far we were assuming that the data has no measurement errors. We now allow X∗
i to be

mismeasured, i.e., that instead of X∗
i we observe its noisy measurement Xi:

Xi = X∗
i + εi, εi ∼ N

(
0, σ2

ε

)
. (7)

We assume that εi ⊥ (U∗
i , V

∗
i ,Wi, Zi), i.e., the measurement error is classical.

Note that the researcher’s object of interest has not changed: the goal is to estimate the

partial effects defined in equations (2)-(3). The structural endogeneity and measurement errors

are difficulties that an estimation procedure needs to overcome. In particular, note that we are

interested in estimation of the effect of X∗
i and not in the effect of the error-laden Xi.

5

3 Analysis of the Model

First, we use the model in equations (4)-(7) to obtain the model in terms of the observable Xi.

Since X∗
i = Xi − εi, we can rewrite (4) as

Yi = m
(
θ01X

∗
i + θ′02Wi + U∗

i

)
= m

(
θ01Xi + θ′02Wi − θ01εi + U∗

i

)
= m

(
θ01Xi + θ′02Wi + Ui

)
,

where Ui ≡ U∗
i − θ01εi. Let Vi ≡ V ∗

i + εi. The model in equations (4)-(7) can be written as

Yi = m
(
θ01Xi + θ′02Wi + Ui

)
, (8)

Xi = π′
01Zi + π′

02Wi + Vi, (9)(
Ui

Vi

)
∼ N

((
0

0

)
,

(
σ2
U σUV

σUV σ2
V

))
. (10)

5This is similar to the linear regression settings, where one would be interested in the effect of X∗
i on Yi. The

slope coefficient in the OLS regression of Yi on Xi is not the object of interest because it is subject to the attenuation
bias due to the EiV (and also possibly due to the endogeneity of X∗

i ).
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The definitions of Ui and Vi imply that

σ2
U = σ2

U∗ + θ201σ
2
ε, σ2

V = σ2
V ∗ + σ2

ε, σUV = σU∗V ∗ − θ01σ
2
ε. (11)

Note that variables Xi, Ui, Vi are the analogs of the true variables X∗
i , U

∗
i , V

∗
i that arise due

to the measurement errors εi. In the absence of measurement errors, i.e., when εi = 0, we have

Xi = X∗
i , Ui = U∗

i , Vi = V ∗
i .

The model in equations (8)-(10) can be estimated by MLE or using the control variable two-step

approach described earlier. Specifically, both approaches will consistently estimate parameters θ0

and the covariance matrix of the unobservables in equation (10), i.e., σ2
U , σUV , and σ2

V . Note that

because the model is nonlinear, the marginal effects defined in equations (2)-(3) depend not only

on θ0 but also on σ2
U∗ . Thus, even though the available data (Yi, Xi,Wi, Zi) allows immediately

estimating θ0, we cannot obtain the marginal effects because we do not know σ2
U∗ . Naively using an

estimate of σ2
U in place of σ2

U∗ would lead to a biased estimate of the partial effects, since σ2
U ≥ σ2

U∗ ,

as implied by equation (11).

The problem with identifying σ2
U∗ is that the data only allows identification of the 3 parameters

σ2
U , σUV , and σ2

V . However, the distribution of the true (U∗
i , V

∗
i , εi) is governed by 4 parameters:

σ2
U∗ , σU∗V ∗ , σ2

V ∗ , and σ2
ε. Thus, one cannot uniquely determine these 4 parameters from the 3

equations (11). In other words, models with different values of σ2
ε are observationally equivalent:

they correspond to identical distributions of the observables (Yi, Xi,Wi, Zi) even though they imply

different values of true σ2
U∗ . Thus, one cannot uniquely determine (i.e., point-identify) σ2

U∗ from the

data (Yi, Xi,Wi, Zi). Correspondingly, one cannot point-identify the partial effects, which depend

on σ2
U∗ .

Equations (11) provide restrictions on σ2
U∗ , which we will use to provide bounds on the possible

values of true σ2
U∗ , and hence on the values of the partial effects.

Bounds on σ2
U∗ From equations (11) the upper bound on σ2

U∗ is σ2
U∗ ≤ σ2

U . We now obtain the

lower bound on σ2
U∗ . In particular, we look to find the smallest σ2

U∗ that satisfies equations (11),

Cauchy-Schwarz inequality σ2
U∗V ∗ ≤ σ2

U∗σ2
V ∗ , and the non-negativity constraints σ2

U∗ ≥ 0, σ2
V ∗ ≥ 0,

and σ2
ε ≥ 0. Let ρUV = corr (Ui, Vi).

Proposition 1 Suppose |ρUV | < 1 in model (8)-(10). Then the sharp identified set for σ2
U∗ is

given by

σ2
U∗ ∈

[
σ2
U∗ , σ2

U

]
,

where

σ2
U∗ ≡ max

{ (
θ01σUV + σ2

U

)2
σ2
V θ

2
01 + 2σUV θ01 + σ2

U

, σ2
U − θ201σ

2
V

}
. (12)

Proposition 1 provides the bounds in terms of the quantities that can be estimated using the

data (Yi, Xi,Wi, Zi). Condition |ρUV | < 1 guarantees that the denominator in the fraction above

is positive. The proof of Proposition 1 also provides bounds on σU∗V ∗ and σ2
ε.
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Correct Partial Effects We now use the bounds on σ2
U∗ from Proposition 1 to obtain the

bounds on the partial effects, in terms of the parameters that can be recovered from data.

For a given σ2
U∗ , the partial effects for the jth covariate are defined as in equations (2)-(3),

PETob
j

(
h, σ2

U∗
)
= Φ

(
θ′0h

σU∗

)
θ0j and PEPr

j

(
h, σ2

U∗
)
= ϕ

(
θ′0h

σU∗

)
θ0j
σU∗

. (13)

The lower and upper bounds for partial effects for the jth covariate, PEj (h), are computed as

min
σ2
U∗∈[σ2

U∗ ,σ
2
U ]

PEj

(
h, σ2

U∗
)

and max
σ2
U∗∈[σ2

U∗ ,σ
2
U ]

PEj

(
h, σ2

U∗
)
. (14)

Function PETob
j

(
h, σ2

U∗
)
in (13) is a monotone function of σ2

U∗ , so the minimum and maximum

in equation (14) are achieved on the boundaries of interval
[
σ2
U∗ , σ2

U

]
.

Function PEPr
j

(
h, σ2

U∗
)
in equation (13) is not monotone in σ2

U∗ , but the bounds in equation

(14) for PEPr
j (h) can also be simplified. The minimum and maximum over σ2

U∗ ∈
[
σ2
U∗ , σ2

U

]
can

be attained only at σ2
U∗ = σ2

U∗ , at σ2
U∗ = σ2

U , and, when
(
θ′0h
)2 ∈

[
σ2
U∗ , σ2

U

]
, at σ2

U∗ =
(
θ′0h
)2
.

Thus, one only needs to evaluate PEPr
j

(
h, σ2

U∗
)
at these 2 or 3 points to calculate the minimum

and maximum in equation (14).

Since σU ≥ σU∗ , naively using σU instead of σU∗ when calculating PETob
j (h), would lead to

attenuation bias when θ′0h > 0, but would bias PETob
j (h) away from zero when θ′0h < 0, i.e., the

EiV would make naive PETob
j

(
h, σ2

U

)
over-estimate the partial effects PETob

j (h) in the latter case.

Likewise, for the probability, naively using PEPr
j

(
h, σ2

U

)
can both under- and over-estimate the

true partial effect PEPr
j (h).

Estimation Using the standard two-step or MLE approaches described in Section 2, one obtains

the estimates of θ0, σ
2
U , σ

2
V , and σUV (and of their variance-covariance matrix for inference). Then,

from equation (12) one obtains the estimate of σ2
U∗ .

For a given value of σ2
U∗ , the estimated partial effects would be

P̂E
Tob

j

(
h, σ2

U∗
)
= Φ

(
θ̂
′
h

σU∗

)
θ̂j and P̂E

Pr

j

(
h, σ2

U∗
)
= ϕ

(
θ̂
′
h

σU∗

)
θ̂j
σU∗

. (15)

Then, the estimated bounds on PEj (h) are

min
v∈[σ̂2

U∗ ,σ̂
2
U ]

P̂Ej (h, v) and max
v∈[σ̂2

U∗ ,σ̂
2
U ]

P̂Ej (h, v) , (16)

where the minimum and maximum are easily computed using univariate numerical optimization.

For the partial effects in equation (15), these extrema can also be computed as described under

equation (14).

For example, one often considers the partial effects at the mean values of covariates taking

h = (X,W
′
)′, where X and W are the sample averages. Note that E [Xi] = E [X∗

i ].
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Inference To provide a simple method for inference about the partial effects, we adopt a Bonfer-

roni approach (e.g., McCloskey, 2017). This approach allows us to avoid computational challenges

that often arise in the context of subvector inference in partially identified models. The construction

of a 1− α confidence interval for a partial effect PEj(h) proceeds in two steps:

1. Pick α1 ∈ (0, α) and construct CI
σ2
U∗

1−α1
, a 1 − α1 confidence interval for σ2

U∗ , based on the

bounds provided in Proposition 1.

2. Construct a 1 − α confidence interval for PEj(h) as the union CI
PEj(h)
1−α =⋃

σ2
U∗∈CI

σ2
U∗

1−α1

CI
PEj(h)

1−(α−α1)

(
σ2
U∗
)
, where CI

PEj(h)

1−(α−α1)

(
σ2
U∗
)
is a standard 1− (α−α1) confidence

interval for PEj(h) based on P̂Ej

(
h, σ2

U∗
)
in equation (15) for a given σ2

U∗ .

We now provide the implementation details for each step.

Step 1. The confidence interval for σ2
U∗ is constructed based on the bounds given in Proposition 1.

As the upper bound, we take σ̂2
U + z1−α1/2 × sσ̂2

U
, where sσ̂2

U
is the standard error of σ̂2

U , and

z1−α1/2 is the 1 − α1/2 quantile of the standard normal distribution. The lower bound is based

on σ̂2
U∗ = max{ξ̂1, ξ̂2}, where ξ̂1 and ξ̂2 are the plug-in estimators of the two terms on the right

hand side of equation (12). Note that ξ̂1 and ξ̂2 are (generally) jointly asymptotically normal and

their asymptotic variance-covariance matrix can be computed using the delta method. Then, as

the lower bound of CI
σ2
U∗

1−α1
, we take max{ξ̂1 − c1−α1/2 × sξ̂1

, ξ̂2 − c1−α1/2 × sξ̂2
}. Here sξ̂1

and sξ̂2
are the standard errors of ξ̂1 and ξ̂2, and c1−α1/2 is the 1 − α1/2 quantile of max{η1, η2}, where
(η1, η2) are jointly normal with unit variances and correlation ρ̂ξ̂1,ξ̂2

, and ρ̂ξ̂1,ξ̂2
is an estimator of

the correlation between ξ̂1 and ξ̂2 (e.g., see Romano and Wolf, 2005). By a standard argument, the

confidence interval for σ2
U∗ given by

CI
σ2
U∗

1−α1
=
[
max

{
ξ̂1 − c1−α1/2 × sξ̂1

, ξ̂2 − c1−α1/2 × sξ̂2

}
, σ̂2

U + z1−α1/2 × sσ̂2
U

]
has asymptotic coverage at least 1 − α1 for the true σ2

U∗ . In the numerical illustrations we take

α1 = α/10.

Step 2. First, the standard CI
PEj(h)

1−(α−α1)

(
σ2
U∗
)
is
[
l
PEj(h)

1−(α−α1)

(
σ2
U∗
)
, u

PEj(h)

1−(α−α1)

(
σ2
U∗
)]

constructed by

adding and subtracting z1−(α−α1)/2×s
P̂Ej(h,σ2

U∗ )
from P̂Ej(h, σ

2
U∗). The standard error s

P̂Ej(h,σ2
U∗ )

of P̂Ej(h, σ
2
U∗) can be computed using the delta method. Then we can construct CI

PEj(h)
1−α as

CI
PEj(h)
1−α =

 min

σ2
U∗∈CI

σ2
U∗

1−α1

l
PEj(h)

1−(α−α1)

(
σ2
U∗
)
, max

σ2
U∗∈CI

σ2
U∗

1−α1

u
PEj(h)

1−(α−α1)

(
σ2
U∗
) ,

where the minimum and maximum are easily calculated using univariate numerical optimization

over σ2
U∗ . By the standard Bonferroni argument, the confidence interval CI

PEj(h)
1−α has asymptotic

coverage of at least 1− α for the true partial effect PEj(h).
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The constructed confidence interval is asymptotically valid as long as (i) the first step confidence

interval CI
σ2
U∗

1−α1
covers the true σ2

U∗ with probability at least 1 − α1 asymptotically, and (ii) the

delta method applies to P̂Ej(h, σ
2
U∗) for the true σ2

U∗ . Both conditions are satisfied provided that

the true σ2
U∗ is bounded away from zero. Note that in this case CI

σ2
U∗

1−α1
is valid even if θ01σUV +σ2

U

is equal to (or local to) zero, which implies that CI
PEj(h)
1−α is also valid.

4 Probit

IV-Probit is the same as IV-Tobit except m (s) = 1 {s > 0} in equation (4). Since Probit is a binary

outcome model, in equation (10) one needs to impose a scale normalization, for example, ∥θ0∥ = 1.

For Probit, we are interested in the partial effects of covariates on the probability of Yi = 1, which

are given by PEPr
j (h) in equation (3). Similarly to the IV-Tobit model, the IV-Probit model can

be estimated by MLE or by the two-step approach identical to the one described in Section 2,

except the second step uses the standard Probit estimator in place of the Tobit estimator. Then

the bounds on PEPr
j (h) are estimated as in equation (16). Confidence intervals for PEPr

j (h) can

be computed exactly as described above.

5 Numerical Illustration

We simulate a Tobit model with endogenous and mismeasured X∗
i , as in equations (4)-(7), with

Wi = 1, Zi ∼ N (0, 1), (θ01, θ02, σV ∗ , σU∗ , σε, π01, π02) = (2, 1, 1, 1, 1, 1, 0), and n = 1000. Figure 1

plots the results for the Partial Effects (PEs) of X∗
i at the population mean values of the covariates.

We consider a range of designs corresponding to the true values of ρU∗V ∗ ∈ [−0.95, 0.95] on

the horizontal axis. For each ρU∗V ∗ , the figure shows the true PE (“true”), the true (population)

bounds for the PE obtained using Proposition 1 (“true bounds”), as well as the medians over the

Monte Carlo replications of the estimated lower and upper bounds on the PE (“LB” and “UB”)

and the corresponding 95% confidence intervals (“CI”) based on the two-step IV-Tobit estimator.

The true bounds for the PE are calculated using the point identified parameters θ0, σ
2
U , σUV , and

σ2
V , see equations (8)-(10). For comparison, we also include the results for the PE calculated using

the standard naive IV-Tobit estimator (“naive”) and the corresponding confidence intervals (“CI

naive”). The “naive” estimators of the partial effects are P̂E
Tob

1

(
h, σ̂2

U

)
and P̂E

Pr

1

(
h, σ̂2

U

)
, i.e.,

they replace σ2
U∗ with σ̂2

U in equation (15).

Figure 1 (a) shows the bounds on PETob
h1

(h), while Figure 1 (b) considers PEPr
1 (h). As ex-

pected, the true PE is between the lower and upper bounds for all values of ρU∗V ∗ . By construction,

the “naive” IV-Tobit estimator of PETob
1 (h) coincides with one of the bounds. In both panels, the

“naive” estimates are below the true values for every ρU∗V ∗ , and the “naive” IV-Tobit confidence

intervals do not include the true PE. In this design, the identified set and the confidence intervals

for the true partial effects are much wider than those of the “naive” estimator. The relative width of
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Figure 1: Simulation results for partial effects on: (a) expectations, PETob
h1

(h), and (b) probability,

PEPr
1 (h). Values of ρU∗V ∗ are on the horizontal axis.

the identified set and the confidence intervals depends on the specific parameter values. In contrast

to these simulations, in the example of the next section, the identified set is very narrow and the

confidence intervals for the partial effects have width similar to those of the naive estimator.

To gain some intuition about the shape of the bounds in Figure 1, notice that when θ01 > 0,

measurement error in X∗
i introduces a negative correlation between Xi and Ui. Thus, observing

ρUV > 0 is only consistent with ρU∗V ∗ > 0, but not with ρU∗V ∗ ≤ 0, i.e., implies positive correlation

due to the structural endogeneity. On the other hand, observing ρUV < 0 can be explained both

by the effect of EiV combined with ρU∗V ∗ ≷ 0, and by ρU∗V ∗ < 0 without any EiV. Thus, when

ρUV < 0 it is harder to disentangle structural endogeneity and EiV. As a consequence, the true and

the estimated correct bounds on the PEs in Figure 1 are wider for the negative values of ρU∗V ∗ .

6 Empirical Illustration

We illustrate the proposed methods in the estimation of the Tobit and Probit models for women’s

labor force participation. We use the classic data set from Mroz (1987) who estimates Tobit and

related models to explain married women’s hours of work. The data contains 753 women, 428 of

which report working non-zero hours. For Tobit, the dependent variable is the number of hours

worked (hours), and for Probit, the dependent variable is working at some point during the year

(1{hours > 0}). In both models, the covariates are age, education, experience, experience squared,

nonwife income in thousands (nwifeinc), number of children less than six years of age, number

of children between 6 and 18 inclusive, and an intercept. Husband’s years of schooling, huseduc,

10



are used as an instrument for nwifeinc. This specification is used in, e.g., Wooldridge (2010).

Nonwife income could be correlated with the unobserved characteristics (structural endogeneity),

and income variables are also known to be frequently mismeasured.

Tobit IV-Tobit CI for IV-Tobit [LB, UB] CI

nwifeinc -5.33 -19.0 [ -39.6, 1.68 ] [ -19.1, -19.0 ] [ -41.6, 2.44 ]
educ 48.7 70.3 [ 29.0, 112 ] [ 70.3, 70.8 ] [ 26.9, 117 ]
exper 79.5 74.9 [ 51.6, 98.2 ] [ 74.9, 75.4 ] [ 50.3, 102 ]
exper2 -1.13 -1.14 [ -1.82, -0.468 ] [ -1.15, -1.14 ] [ -1.89, -0.444 ]
age -32.9 -28.2 [ -39.3, -17.2 ] [ -28.4, -28.2 ] [ -40.6, -16.8 ]

Table 1: Tobit. Partial Effects on Expectation.

Tobit IV-Tobit CI for IV-Tobit [LB, UB] CI

nwifeinc -0.303 -1.06 [ -2.16, 0.043 ] [ -1.10, -1.06 ] [ -2.65, 0.157 ]
educ 2.77 3.92 [ 1.75, 6.10 ] [ 3.92, 4.08 ] [ 1.33, 7.48 ]
exper 4.52 4.18 [ 2.77, 5.59 ] [ 4.18, 4.34 ] [ 2.51, 6.51 ]
exper2 -0.064 -0.064 [ -0.102, -0.026 ] [ -0.066, -0.064 ] [ -0.121, -0.022 ]
age -1.87 -1.58 [ -2.26, -0.890 ] [ -1.64, -1.58 ] [ -2.60, -0.834 ]

Table 2: Tobit. Partial Effects on Probability. All numbers are multiplied by 100.

Probit IV-Probit CI for IV-Probit [LB, UB] CI

nwifeinc -0.470 -1.39 [ -2.67, -0.104 ] [ -1.49, -1.39 ] [ -3.29, 0.079 ]
educ 5.11 6.41 [ 3.96, 8.86 ] [ 6.41, 6.87 ] [ 2.98, 10.8 ]
exper 4.82 4.38 [ 2.68, 6.08 ] [ 4.38, 4.70 ] [ 2.49, 6.82 ]
exper2 -0.074 -0.073 [ -0.118, -0.028 ] [ -0.079, -0.073 ] [ -0.137, -0.024 ]
age -2.06 -1.69 [ -2.58, -0.804 ] [ -1.81, -1.69 ] [ -2.87, -0.784 ]

Table 3: Probit. Partial Effects on Probability. All numbers are multiplied by 100.

Tables 1-2 contain the results on partial effects for Tobit. Table 1 contains the results on partial

effects on expectation, PETob, while Table 2 contains partial effects on probability, PEPr. All

partial effects are evaluated at the mean values of covariates. In both tables, the first column

(“Tobit”) provides the partial effects for different covariates in the standard Tobit MLE where all

covariates are assumed to be exogenous. The remaining columns are based on the two-step IV-Tobit

estimator, where huseduc is used to instrument for the endogenous nwifeinc. The second column

(“IV-Tobit”) contains the naive estimators of the partial effects, followed by the 95% confidence

intervals (column “CI for IV-Tobit”). Column “[LB, UB]” provides the proposed estimated bounds

for the partial effects that account for both types of endogeneity. The last column contains the

corresponding confidence intervals for the partial effects.
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In both Tables 1 and 2, we observe that the confidence intervals for the correct partial effects at

the mean are only slightly wider than the naive ones of IV-Tobit. In particular, using the correct

inference approach does not change any of the conclusions about the effects of the variables being

statistically significant.

Table 3 contains the corresponding results for Probit. Again, the confidence intervals for the

correct partial effects are not much wider than the naive ones. Unlike the Tobit case, not all

conclusions about the statistical significance of the partial effects are preserved, as the partial

effect of nonwife income becomes statistically insignificant. Hence, if we base our analysis only on

the binary outcome model, properly accounting for the roles of measurement error and structural

endogeneity can reverse the conclusion that the partial effect of nonwife income is statistically

significantly different from zero.

7 Extensions

7.1 Average Partial Effects and Other Counterfactuals

In addition to the partial effects at a given h, researchers are often interested in the Average Partial

Effects

APETob
j ≡ E

[
PETob

j (H∗
i )
]
and APEPr

j ≡ E
[
PEPr

j (H∗
i )
]
, (17)

which are the partial effects PEj (h) averaged with respect to the distribution of H∗
i = (X∗

i ,W
′
i )

′.

Define

APETob
j

(
σ2
U∗
)
≡ E

[
PETob

j

(
H∗

i , σ
2
U∗
)]

and APEPr
j

(
σ2
U∗
)
≡ E

[
PEPr

j

(
H∗

i , σ
2
U∗
)]

.

Note that the distribution of X∗
i is not directly observable due to the EiV. Averaging PEj (h)

with respect to the distribution of the observed Hi = (Xi,W
′
i )

′ would result in biased estimators

of the APEs. To account for this, in the Appendix we show that these APEs can be calculated as

APETob
j

(
σ2
U∗
)

= E

Φ
θ01π

′
01Zi + (θ01π02 + θ02)

′Wi√
2σ2

U∗ − σ2
U + θ201σ

2
V

 θ0j , (18)

APEPr
j

(
σ2
U∗
)

= E

ϕ
θ01π

′
01Zi + (θ01π02 + θ02)

′Wi√
2σ2

U∗ − σ2
U + θ201σ

2
V

 θ0j√
2σ2

U∗ − σ2
U + θ201σ

2
V

. (19)
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Hence, for any given value of σ2
U∗ , these APEs can be estimated by

ÂPE
Tob

j

(
σ2
U∗
)

=
1

n

n∑
i=1

Φ

 θ̂1π̂
′
1Zi +

(
θ̂1π̂2 + θ̂2

)′
Wi√

2σ2
U∗ − σ̂2

U + θ̂
2

1σ̂
2
V

 θ̂j ,

ÂPE
Pr

j

(
σ2
U∗
)

=
1

n

n∑
i=1

ϕ

 θ̂1π̂
′
1Zi +

(
θ̂1π̂2 + θ̂2

)′
Wi√

2σ2
U∗ − σ̂2

U + θ̂
2

1σ̂
2
V

 θ̂j√
2σ2

U∗ − σ̂2
U + θ̂

2

1σ̂
2
V

.

Finally, the estimated bounds on the APEs are obtained by finding the minimum and maximum

over σ2
U∗ ∈

[
σ̂2
U∗ , σ̂2

U

]
. These can be easily computed numerically, since ÂPEj (v) are smooth

functions of a scalar argument v. Our two-step approach to inference also applies to the APEs

with a minimal modification. The only difference is that in Step 2 the construction of the standard

error s
ÂPEj

(
σ2
U∗
)
as usual needs to account for the sampling variability in both the parameter

estimators and the data entering the expressions for the APEs directly.

It is also straightforward to apply our analysis to other counterfactuals, including partial effects

and APEs of discrete covariates, as well as to the ordered Probit and two-sided Tobit models.

Proposition 1 and the bounds on σ2
U∗ remain the same, and hence the estimation and inference

procedures remain unchanged, except for different formulas in equations (13)-(16) corresponding

to the counterfactuals of interest.

7.2 Relaxing Distributional Assumptions

We have considered the classic IV-Tobit and IV-Probit settings, which require V ∗
i and εi to be

Gaussian in order for Vi and Ui to be Gaussian, as in Smith and Blundell (1986), Rivers and Vuong

(1988), and Wooldridge (2010). However, at least in the model without EiV, the control variable

approach does not require V ∗
i to be Gaussian. Likewise, we would like to relax the assumption

of Gaussianity on εi. In this section we propose an approach that weakens the distributional

assumptions, while still providing a simple method for computing the identified set for the partial

effects of interest. We focus on the IV-Tobit settings.

We model the joint distribution of U∗
i and V ∗

i as a mixture of J bivariate normals. Specifically,

the joint p.d.f. of U∗ and V ∗ takes the form

fU∗V ∗(u, v) =
J∑

j=1

pV ∗,jϕ(u, v;µU∗V ∗,j ,ΣU∗V ∗,j),

where pV ∗,j > 0 are the mixing weights, and

µU∗V ∗,j =

(
0

µV ∗,j

)
, ΣU∗V ∗,j =

(
σ2
U∗ σU∗V ∗,j

σU∗V ∗,j σ2
V ∗,j

)
,
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and ϕ(·, ·;µ,Σ) stands for the p.d.f. of a bivariate normal with mean µ and variance-covariance

matrix Σ. Notice that in this parameterization the marginal distribution of U∗
i is N(0, σ2

U∗) as in

the standard Tobit model, whereas the marginal distribution of V ∗
i is flexibly modelled as a mixture

of J normals. Since σU∗V ∗,j can vary over j, this model also allows rich patterns of dependency

between U∗
i and V ∗

i . Similarly, we model the distribution of εi by a mixture of L normals:

fε(ε) =

L∑
ℓ=1

pε,ℓϕ(ε;µε,ℓ, σ
2
ε,ℓ),

where pε,ℓ > 0 are the mixing weights, and ϕ(·;µ, σ2) stands for the p.d.f. of aN
(
µ, σ2

)
distribution,

and we denote the corresponding c.d.f. by Φ(·;µ, σ2).

Since εi is independent from (U∗
i , V

∗
i ), the joint distribution of (Ui, Vi) = (U∗

i − θ01εi, V
∗
i + εi)

is a mixture of J × L bivariate normals, and its p.d.f. is given by

fUV (u, v) =
J∑

j=1

L∑
ℓ=1

pV ∗,jpε,ℓϕ(u, v;µUV,jℓ,ΣUV,jℓ), where

µUV,jℓ =

(
µU,ℓ

µV,jℓ

)
=

(
−θ01µε,ℓ

µV ∗,j + µε,ℓ

)
, ΣUV,jℓ =

(
σ2
U,jℓ σUV,jℓ

σUV,jℓ σ2
V,jℓ

)
,

σ2
U,jℓ = σ2

U∗ + θ201σ
2
ε,ℓ, σ2

V,jℓ = σ2
V ∗,j + σ2

ε,ℓ, σUV,jℓ = σU∗V ∗,j − θ01σ
2
ε,ℓ. (20)

We impose standard constraints
∑J

j=1 pV ∗,j = 1 and
∑L

ℓ=1 pε,ℓ = 1. In addition, we need location

normalizations on the distributions of V ∗
i and εi. We follow the standard approach and assume

that E [V ∗
i ] = 0 and E [εi] = 0, which are imposed by the restrictions

∑J
j=1 pV ∗,jµV ∗,j = 0 and∑L

ℓ=1 pε,ℓµε,ℓ = 0. Alternatively, it is possible to normalize the medians instead of the means.

For example, the restriction
∑L

ℓ=1 pε,ℓΦ(0;µε,ℓ, σ
2
ε,ℓ) = 1/2 imposes normalization median (εi) = 0,

which in particular allows εi to be a non-classical measurement error.6

This model naturally generalizes the classic Gaussian model considered in the previous sections.

Taking J = 1 restricts V ∗
i to be Gaussian. Taking L = 1 corresponds to εi being Gaussian.

Thus, we consider the IV-Mixed-Tobit model that consists of equations (8)-(9) and replaces

equation (10) with the assumption that

fUV (u, v) =

K∑
k=1

pkϕ(u, v;µUV,k,ΣUV,k), µUV,k =

(
µU,k

µV,k

)
, ΣUV,k =

(
σ2
U,k σUV,k

σUV,k σ2
V,k

)
, (21)

where
∑K

k=1 pkµUV,k = (0, 0)′ and
∑K

k=1 pk = 1.

First, we discuss identification of the parameters of the above IV-Mixed-Tobit model. As in

Section 3, π0 is immediately identified by the first stage regression ofXi on Zi andWi. Identification

of the remaining parameters is less straightforward and is established by the following proposition.

6It is also possible to impose a normalization on the modes of the distributions of εi and/or V ∗
i , although this is

less convenient computationally.
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This identification result appears to be new.

Proposition 2 Suppose π01 ̸= 0 and E[(Z ′
i,W

′
i )

′(Z ′
i,W

′
i )] has full rank. Then parameters θ0, π0,

and
{
pk, µUV,k,ΣUV,k

}K
k=1

are identified (up to relabelling of the mixture components indexed by k).

Proposition 2 establishes identification of parameters θ0, π0,
{
pk, µUV,k,ΣUV,k

}K
k=1

. These pa-

rameters can be estimated by the MLE. From a practical perspective, we do not recommend models

with large K, because Gaussian mixture models are known to be highly flexible even with relatively

small K.

Our goal is to provide bounds on the partial effects. To do this, as in Section 3, the key is to

construct the identified set for σ2
U∗ . Notice that, for every k, ΣUV,k is equal to ΣUV,jℓ for some

j and ℓ satisfying the restrictions given by equation (20). Since these restrictions have the same

structure as the ones in equation (11), we can apply the result of Proposition 1 with a given ΣUV,k

to construct an identified set for σ2
U∗ given by

Ik =
[
σ2
U∗,k, σ

2
U,k

]
,

where σ2
U∗,k is computed as in equation (12) with σ2

U,k, σ
2
V,k and σUV,k in place of σ2

U , σ
2
V , and σUV ,

respectively. Hence, we can construct an identified set for σ2
U∗ by intersecting Ik for k ∈ {1, . . . ,K},

i.e., the bounds for σ2
U∗ can be constructed as

σ2
U∗ ∈ I ≡

⋂
k

Ik =

[
max
k

σ2
U∗,k,min

k
σ2
U,k

]
. (22)

Proposition 3 The identified set for σ2
U∗ given by equation (22) is sharp.

Once the identified set for σ2
U∗ is constructed, the rest of the analysis follows as in the Gaussian

model in Sections 2-3. In particular, sharp bounds for the partial effects are constructed as in

equation (14) with I as the identified set for σ2
U∗ . That is, the lower and upper bounds for partial

effects for the jth covariate, PEj (h), are given by

min
σ2
U∗∈I

PEj

(
h, σ2

U∗
)

and max
σ2
U∗∈I

PEj

(
h, σ2

U∗
)
.

Note that set I is a closed interval, as in the original IV-Tobit model. Thus, the discussion

concerning the implementation of the identified sets for the partial effects that follows equation (14)

also applies to the IV-Mixed-Tobit model of this section.

8 Conclusion

Both structural endogeneity and mismeasurement of covariates are pervasive in economic data.

Estimating partial effects and other counterfactuals using such data is an important practical
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problem. This paper addresses the problem in the classic Probit and Tobit models. The relative

simplicity of these nonlinear models allows for transparent analysis and practical solutions. The

paper provides simple estimators and confidence intervals that are easy to implement. The paper

also shows how the proposed solutions can be extended to settings with non-Gaussian unobservables.
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A Appendix

A.1 Proof of Proposition 1

Note that σ2
U∗V ∗ ≤ σ2

U∗σ2
V ∗ combined with equation (11) implies

0 ≤ σ2
U∗σ2

V ∗ − σ2
U∗V ∗ =

(
σ2
U − θ201σ

2
ε

) (
σ2
V − σ2

ε

)
−
(
σUV + θ01σ

2
ε

)2
= σ2

Uσ
2
V − σ2

UV − σ2
ε

(
σ2
V θ

2
01 + 2σUV θ01 + σ2

U

)
, and hence

0 ≤ σ2
ε ≤

σ2
Uσ

2
V − σ2

UV

σ2
V θ

2
01 + 2σUV θ01 + σ2

U

. (A.1)

Since |ρUV | < 1, the denominator in this fraction is positive. Since σ2
ε ≤ σ2

V , let

σ2
ε ≡ min

{
σ2
Uσ

2
V − σ2

UV

σ2
V θ

2
01 + 2σUV θ01 + σ2

U

, σ2
V

}
.

Then

σ2
U∗ ≤ σ2

U∗ ≤ σ2
U , σ2

U∗ ≡ max
{
σ2
U − θ201σ

2
ε, 0
}
. (A.2)
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Note that

σ2
U − θ201

σ2
Uσ

2
V − σ2

UV

σ2
V θ

2
01 + 2σUV θ01 + σ2

U

=
σ4
U + 2σ2

UσUV θ01 + θ201σ
2
UV

σ2
V θ

2
01 + 2σUV θ01 + σ2

U

=

(
θ01σUV + σ2

U

)2
σ2
V θ

2
01 + 2σUV θ01 + σ2

U

.

Thus, σ2
U∗ in equation (A.2) can be equivalently written as

σ2
U∗ ≡ max

{ (
θ01σUV + σ2

U

)2
σ2
V θ

2
01 + 2σUV θ01 + σ2

U

, σ2
U − θ201σ

2
V

}
,

where the fraction is always non-negative, ensuring that σ2
U∗ ≥ 0. Similarly, equation (11) implies

that σU∗V ∗ is bounded between σUV and σUV + θ01σ
2
ε.

Notice that, by construction,
[
σ2
U∗ , σ2

U

]
is a valid identified set, i.e., the requirement σ2

U∗ ∈[
σ2
U∗ , σ2

U

]
is necessary: any σ2

U∗ /∈
[
σ2
U∗ , σ2

U

]
would violate at least one of the necessary primitive

requirements considered above.

Next we show that the constructed identified set for σ2
U∗ is sharp, i.e., for any σ2

U∗ ∈ [σ2
U∗ , σ2

U ]

there exist compatible σ2
V ∗ ≥ 0, σ2

ε ≥ 0 and σU∗V ∗ satisfying σ2
U∗V ∗ ≤ σ2

U∗σ2
V ∗ consistent with the

distribution of the observables, i.e., such that equation (11) holds. First, notice that if θ01 = 0,

σ2
U∗ = σ2

U , so the identified set for σ2
U∗ is a singleton and, hence, it is sharp. Suppose that θ01 ̸= 0.

Consider any σ2
U∗ ∈ [σ2

U∗ , σ2
U ]. Solving for σ2

ε, σ
2
V ∗ and σU∗V ∗ from equation (11) gives

σ2
ε = (σ2

U − σ2
U∗)/θ201, σ2

V ∗ = σ2
V − (σ2

U − σ2
U∗)/θ201, σU∗V ∗ = σUV + (σ2

U − σ2
U∗)/θ01. (A.3)

Together, these define a (valid) data-generating process (4)-(7) that is observationally equivalent

to the data-generating process in equations (8)-(10). Thus, the identified set [σ2
U∗ , σ2

U ] is sharp. ■

A.2 Derivation of equations (18) and (19)

APETob
j

(
σ2
U∗
)
= E

[
Φ

(
θ′0H

∗
i

σU∗

)
θ0j

]
= E

[
Φ

(
θ01X

∗
i + θ′02Wi

σU∗

)]
θ0j

= E

[
Φ

(
θ01π

′
01Zi + (θ01π02 + θ02)

′Wi

σU∗
+

θ01V
∗
i

σU∗

)]
θ0j = E

Φ
θ01π

′
01Zi + (θ01π02 + θ02)

′Wi

σU∗

√
1 + θ201σ

2
V ∗/σ2

U∗

 θ0j

= E

Φ
θ01π

′
01Zi + (θ01π02 + θ02)

′Wi√
2σ2

U∗ − σ2
U + θ201σ

2
V

 θ0j ,

where the penultimate equality comes from taking expectation with respect to V ∗
i , and the last

equality follows from equation (11). ■

Derivation of equation (19) is similar:
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APEPr
j

(
σ2
U∗
)
= E

[
ϕ

(
θ′0H

∗
i

σU∗

)
θ0j
σU∗

]
= E

[
ϕ

(
θ01π

′
01Zi + (θ01π02 + θ02)

′Wi

σU∗
+

θ01V
∗
i

σU∗

)]
θ0j
σU∗

=
1√

1 + θ201σ
2
V ∗/σ2

U∗

E

ϕ
θ01π

′
01Zi + (θ01π02 + θ02)

′Wi

σU∗

√
1 + θ201σ

2
V ∗/σ2

U∗

 θ0j
σU∗

= E

ϕ
θ01π

′
01Zi + (θ01π02 + θ02)

′Wi√
2σ2

U∗ − σ2
U + θ201σ

2
V

 θ0j√
2σ2

U∗ − σ2
U + θ201σ

2
V

. ■

A.3 Proof of Proposition 2

First, parameters π0 are immediately identified from the first stage regression.

Let Qi ≡ π′
01Zi + π′

02Wi, so Xi = Qi + Vi. Since π0 is identified, Qi is effectively observed.

First, notice that the p.d.f. of the joint distribution of Y ∗
i and Xi given Qi and Wi is given by

fY ∗X|QW (y, x|q, w) = fY ∗V |QW (y, x− q|q, w)

= fUV

(
y −

(
θ01 (q + v) + θ′02w

)
, v|q, w

)
|v=x−q

= fUV

(
y −

(
θ01x+ θ′02w

)
, x− q

)
=

K∑
k=1

pkϕ(y −
(
θ01x+ θ′02w

)
, x− q;µUV,k,ΣUV,k).

Then,

fY X|QW (y, x|q, w) =

{
fY ∗X|QW (y, x|q, w) if y > 0;∫ 0

−∞ fY ∗X|QW (t, x|q, w) dt if y = 0.

Consider the part of function fY X|QW (y, x|q, w) for y > 0. Since all the involved variables are

observed, this function is identified nonparametrically for all y > 0 and x, q, w (in the support of

the respective random variables). Since function fY ∗X|QW (y, x|q, w) is entire (for any fixed x, q, w),

identification of fY X|QW (y, x|q, w) for y > 0 implies that fY ∗X|QW (y, x|q, w) is identified for all y

and x, q, w.

Thus, identification of the model using the data on (Yi, Xi, Zi,Wi) is equivalent to identification

of the model using the data on (Y ∗
i , Xi, Zi,Wi). Then, θ0 is identified by the linear IV regression

argument. Hence, Ui = Y ∗
i − θ01Xi − θ′02Wi and Vi = Xi − Qi are effectively observed, and

their joint density fUV (u, v) (without any truncation) is identified, which in turn implies that{
pk, µUV,k,ΣUV,k

}K
k=1

are identified. ■
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A.4 Proof of Proposition 3

First, notice that I is a valid identified set, i.e., σ2
U∗ ∈ I is a necessary requirement. Indeed, in the

proof of Proposition 1, we demonstrated that σ2
U∗ ∈ Ik is a necessary requirement (notice that the

same argument applies because ΣUV,k is equal to ΣUV,jℓ for some j and ℓ satisfying the requirements

in equation (20)). Since this has to hold for all k ∈ {1, . . . ,K}, σ2
U∗ ∈

⋂
k Ik = I is also a necessary

requirement.

Next, we demonstrate that I is sharp. As in the proof of Proposition 1, if θ01 = 0, the identified

set is a singleton, and the statement is trivial. Below, we consider θ01 ̸= 0.

Let
{
pV ∗,j0, µU∗V ∗,j0,ΣU∗V ∗,j0

}J
j=1

and
{
pε,ℓ0, µε,ℓ0, σ

2
ε,ℓ0

}L

ℓ=1
denote the true values of the

(structural) parameters that map into the joint distribution of (Ui, Vi) according to equation (20).

To demonstrate that I is sharp, we will show that for any σ2
U∗ ∈ I, there exist a compatible set of

parameters
{
pV ∗,j , µU∗V ∗,j ,ΣU∗V ∗,j

}J
j=1

and
{
pε,ℓ, µε,ℓ, σ

2
ε,ℓ

}L

ℓ=1
mapping into the same distribution

of (Ui, Vi) as the true parameters and hence producing the same distributions of observables.

In, particular we will start with showing that for any σ2
U∗ ∈ I there exist compatible σ2

V ∗,j ≥ 0,

σ2
ε,ℓ ≥ 0, and σU∗V ∗,j satisfying σ2

U∗V ∗,j ≤ σ2
U∗σ2

V ∗,j mapping into the same collection of ΣUV,jℓ for

j ∈ {1, . . . , J} and ℓ ∈ {1, . . . , L}.
Take any σ2

U∗ ∈ I. First, notice that, for any (j, ℓ), there exists k(j, ℓ) such that Σk(j,ℓ) = ΣUV,jℓ

satisfying the requirements in equation (20). Since σ2
U∗ ∈ Ik(j,ℓ), there exist unique σ2

V ∗,jℓ, σ
2
ε,jℓ,

and σU∗V ∗,jℓ consistent with ΣUV,jℓ = Σk(j,ℓ) (as demonstrated in the proof of Proposition 1). This

triplet is computed using equation (A.3) for any (j, ℓ).

Next, we need to show that these triplets are also internally consistent along the j and ℓ

dimensions, i.e., that σ2
V ∗,jℓ = σ2

V ∗,jℓ′ = σ2
V ∗,j and σU∗V ∗,jℓ = σU∗V ∗,jℓ′ = σU∗V ∗,j for any ℓ, ℓ′ ∈

{1, . . . , L}, and, similarly, σ2
ε,jℓ = σ2

ε,j′ℓ = σ2
ε,ℓ for any j, j′ ∈ {1, . . . , J}. Notice that according to

equation (20), we also have(
σ2
U,jℓ σUV,jℓ

σUV,jℓ σ2
V,jℓ

)
=

(
σ2
U∗0 + θ201σ

2
ε,ℓ0 σU∗V ∗,j0 − θ01σ

2
ε,ℓ0

σU∗V ∗,j0 − θ01σ
2
ε,ℓ0 σ2

V ∗,j0 + σ2
ε,ℓ0

)
.

Using the relationship above and the expressions for σ2
V ∗,jℓ and σU∗V ∗,jℓ obtained in the proof of

Proposition 1, for any ℓ we have

σ2
V ∗,jℓ = σ2

V,jℓ − (σ2
U,jℓ − σ2

U∗)/θ201 = σ2
V ∗,j0 − (σ2

U∗0 − σ2
U∗)/θ201 = σ2

V ∗,j ,

σU∗V ∗,jℓ = σUV,jℓ + (σ2
U,jℓ − σ2

U∗)/θ01 = σU∗V ∗,j0 + (σ2
U∗0 − σ2

U∗)/θ01 = σU∗V ∗,j ,

where the last equalities in both lines provide consistent definitions of σ2
V ∗,j and σU∗V ∗,j , which do

not depend on ℓ. Similarly, for any j, we have

σ2
ε,jℓ = (σ2

U,jℓ − σ2
U∗)/θ201 = σ2

ε,ℓ0 + (σ2
U∗0 − σ2

U∗)/θ201 = σ2
ε,ℓ,

where the last equality defines σ2
ε,ℓ, which does not depend on j.
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Finally, notice that, by construction,
{
pV ∗,j0, µU∗V ∗,j0,ΣU∗V ∗,j

}J
j=1

and{
pε,ℓ0, µε,ℓ0, σ

2
ε,ℓ

}L

ℓ=1
map into the same joint distribution of (Ui, Vi) as the true parameters{

pV ∗,j0, µU∗V ∗,j0,ΣU∗V ∗,j0

}J
j=1

and
{
pε,ℓ0, µε,ℓ0, σ

2
ε,ℓ0

}L

ℓ=1
. Since we picked an arbitrary σ2

U∗ ∈ I,
this completes the proof that I is sharp. ■
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