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Abstract

We investigate the consequences of discreteness in the assignment variable in

regression-discontinuity designs for cases where the outcome variable is itself discrete.

When the assignment variable is discrete, standard confidence intervals do not have

the nominal level of coverage, but confidence intervals with the correct coverage rate

can be constructed conditional on an assumed upper bound for the second derivative

of the expectation of the outcome conditional on the assignment variable. We propose

a novel method for estimating this bound on the second derivative in cases where the

outcome variable is generated by a binary outcome threshold-crossing model. The

method leverages prior results that show that key primitives that determine the sec-

ond derivative are semiparametrically identified conditional on mild shape restrictions

motivated by theory and a known distribution of unobserved heterogeneity. Apply-

ing our method to examine the effect of the Social Security claiming age eligibility

threshold of 62 on claims in the United States, we find that the size of the spike in

claims at the age of eligibility is sensitive to assumptions regarding the distribution

of unobserved reservation utilities.
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1 Introduction

Regression discontinuity designs are a popular tool for causal inference. A subset of these

designs exploits rules that assign units to treatment and control groups based on a dis-

crete, ordered random variable, such as age in years. The object of interest in these cases

is often a discrete outcome such as survival, or take-up of some intervention which is avail-

able to individuals just above the threshold for assignment to treatment, but not to their

counterparts in the control group who have values of the assignment variable that are just

below the same threshold value. The causal effect of the rule under investigation is then

estimated as the difference in the average outcome between the treated units just above,

and the control units just below, the threshold for treatment. Papers that include both

of these types of discreteness include, but are not limited to: Card et al. (2008) and Card

et al. (2009), who estimate the impact of Medicare on health care utilization and outcomes;

Almond et al. (2010), who estimate the impact of birthweight-based cutoffs for medical in-

terventions on the one-year mortality of infants; and Shigeoka (2014), who estimates the

impact of changes in patient cost-sharing on health care utilization and outcomes among

the elderly in Japan at age 70.

Recent methods for controlling the Type I error rate in these designs via “bias-aware”

inference rely on researchers using a priori knowledge to specify bounds on features of the

data-generating process (Armstrong and Kolesár, 2018, Kolesár and Rothe, 2018, Imbens

and Wager, 2019, Noack and Rothe, 2021). This leaves room for guidance based on an

explicit model of the data-generating process and any bounds that it implies.

In this paper, we exploit the fact that if the outcome of interest Y is generated by a

binary outcome threshold-crossing model Y = 1[g(R) ≤ η], where R is a running variable

used to assign units to treatment and η is unobserved heterogeneity, then under the as-

sumptions that (i) the distribution of η is known, and g(·) is (ii) monotone increasing and

(iii) concave in the assignment variable, we can semiparametrically identify the curvature

of the conditional expectation of the binary outcome Y given the assignment variable R
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from the data. This allows researchers to use information from within the same data set

to generate “Honest” confidence intervals, which have at least the nominal Type I error

rate, for a regression-discontinuity design with a discrete running variable. This provides a

link between the literature on the non- and semiparametric identification of discrete choice

models of binary response (Matzkin, 1991, 1992, Heckman et al., 2010) and the literature

on inference in regression discontinuity designs with discrete running variables (Lee and

Card, 2008, Kolesár and Rothe, 2018, Imbens and Wager, 2019, Noack and Rothe, 2021).

We first provide a direct link between a process that generates binary outcomes and

the smoothness tuning parameter introduced to the literature by Kolesár and Rothe (2018)

that must be chosen by the researcher. Part of this linkage is facilitated by proving a new

result linking the scale of random variables with log-concave PDFs to the first derivative

of their PDFs. In our Appendix, an empirical example demonstrates how researchers

can examine the sensitivity of regression-discontinuity results with a discrete outcome to

different assumed distributions for unobserved heterogeneity across individuals.

The confidence intervals that we construct and their properties originate in Kolesár and

Rothe (2018), who introduce Bounded Second Derivative (BSD) confidence intervals for

regression-discontinuity designs with discrete running variables. They show these confi-

dence intervals have the correct size conditional on researchers assuming some value for K,

the uniform bound on the second derivative of a function m(·) that is equal to the condi-

tional expectation function at the discrete points of support of the running variable with

probability one.1 Armstrong and Kolesár (2018) moreover show that any “data-driven”

method for constructing confidence intervals necessarily implicitly assumes some value for

K even if one isn’t explicitly chosen. In discrete outcome models, the distribution of unob-

served heterogeneity and the functional forms present in the process that generates the out-

comes are jointly necessary and sufficient to determine the second derivative of m(·). Hence

the results in this paper, which show that choosing K in the context of threshold-crossing
1It is a separate question as to whether a continuous function m(·) that is only observed at non-randomly

spaced discrete points {Rmin, ...Rmax} can be identified. For the purpose of this paper, we also adopt this
framework, and leave this question to future research.
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binary outcome models is equivalent to choosing some set of distributional assumptions for

the unobserved η and functional-form assumptions on g(·), which can be interpreted as the

observable systematic component of a utility or production function. While economic the-

ory is typically silent on the distribution of unobservables, it does provide some guidance

on the shape of g(·) if it can be interpreted as a utility function or production function. A

general review of the econometrics of shape restrictions motivated by economic theory can

be found in Chetverikov et al. (2018).

We apply our method to estimating the spike in the take-up of Social Security benefits

in the United States at age 62. We find that several choices of the tuning parameter

required for constructing the confidence intervals in Kolesár and Rothe (2018) can be

motivated under different identifying assumptions, producing wide variation in the set of

possible confidence intervals for the discontinuous increase in claims. Proceeding in this way

allows researchers to analyse the sensitivity of their results to economically interpretable

assumptions.

The advantages of our approach are the following: first, the shape restrictions we use

can be motivated from theory and/or institutional detail; second, these shape restrictions

are in principle testable (though we do not recommend carrying out formal tests before

implementing them, since this introduces pre-testing bias); third, our approach allows the

researcher to examine the robustness of their conclusions to different distributional as-

sumptions; fourth, the resulting confidence intervals are less conservative than the ones

constructed using the R package RDHonest’s default method (described in Armstrong and

Kolesár (2020)), as evidenced by the simulation results. These tighter confidence intervals

produced by our approach are a natural consequence of the use of stronger assumptions.

They are more conservative, by contrast, than the method for bounding the second deriva-

tive recommended by Imbens and Wager (2019), but our simulations suggest that their

method can produce unreliable inferences when the function that generates the discrete

outcome is not concave. An open question which we leave for future research is whether a

subset of the optimality class of confidence intervals identified by Armstrong and Kolesár
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(2018) is optimal under our additional assumptions.

Our method illustrates another benefit of combining methods typically used in struc-

tural estimation with quasi-experimental evidence. The literature has already noted the

benefits of using quasi-experiments to identify the parameters of structural models (Hast-

ings, 2004, Petrin and Train, 2010, Kleven and Waseem, 2013, Andrews et al., 2020) and

of using models of discrete choice to assess the external validity of and generalize from

quasi-experiments (Todd and Wolpin, 2006, Kaboski and Townsend, 2011, Manoli and

Weber, 2016, Todd and Wolpin, 2023). To our knowledge, ours is the first paper to pro-

pose that a semiparametric model of discrete choice be used to aid statistical inference

in a quasi-experimental setting rather than external validity. The explicit reliance of the

construction of Honest confidence intervals on a tuning parameter that depends on the un-

derlying data-generating process is the feature of the method we consider that makes this

possible. Armstrong and Kolesár (2018) show that “data-driven” methods for constructing

valid inference in regression-discontinuity designs implicitly restrict the value of this tuning

parameter (the maximum of the second derivative of the underlying conditional expecta-

tion function), so assuming this parameter exists is less restrictive than it might otherwise

appear.

A recent strand of the literature takes a different approach to ours and applies random-

ization inference to the regression-discontinuity design (Cattaneo et al., 2015, 2017). That

approach assumes that there is a neighbourhood around the cutoff in which the running

variable is as good as randomly assigned, and hence the unobservables are locally constant

in that neighbourhood, which, like the assumptions invoked in this paper, is significantly

stronger than the usual regression discontinuity assumption of continuity of the unobserv-

ables in the running variable at the cutoff. Whether that approach is preferred to our

own depends on the empirical context; the uniformity property of the confidence intervals

constructed using our assumptions is suitable for when there are many observations at each

discrete point of support, whereas the randomization approach is better suited to when few

observations are available near the cutoff. Bias-aware inference can also deal with cases
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where the randomization mechanism is implausible, such as regression-discontinuity designs

that use age as a discrete running variable (since individuals do not appear at ages above or

below the cutoff due to any plausible randomization procedure, but due to the passage of

time and survival to subsequent ages). Our paper also invokes a version of local exogeneity

in order to justify estimation of the primitives of the bound on the second derivative, and

shows that additional assumptions often used in the literature on discrete choice have im-

plications that can be used to estimate that upper bound. Two advantages of this approach

are that it allows the estimated effect and the bound on the second derivative to both be

expressed in terms of these underlying primitives, and that it allows for sensitivity analyses

based on different distributional assumptions for the unobserved heterogeneity term.

The rest of this paper is organized as follows. Section 2 introduces our setup and

notation. Section 3 reviews current recommendations for choosing the bound on the sec-

ond derivative a priori. Section 4 presents our results for some well-known distributions

and the implicit bounds on the second derivative of the conditional expectation function

necessary to yield tests with the nominal size under different assumptions regarding the

data-generating process, as well as conditions under which this second derivative can be

nonparametrically and semi-parametrically identified. It also contains a general result

which proves the existence of a general relationship between log-concave random variables’

maximal first derivative and their variance. Section 5 describes our proposed estimation

procedure. Section 6 presents simulation results that examine the performance of Honest

confidence intervals using our semiparametric method and the closest alternative methods

when different combinations of our key assumptions of monotonicity and concavity are

either true or false of the underlying DGP. Section 7 concludes.
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2 Setup and Notation

2.1 Sharp Regression Discontinuity Designs

Let Yi(j) ∈ {0, 1} be the ith unit’s potential binary outcome in a random sample of n units,

with j = 1 for the treated outcome Yi(1) and j = 0 for the untreated outcome Yi(0). Let

Ri ∈ R := {Rk : k ∈ Z, Rk < Rk+1} be the value of the discrete ordered running variable

for that unit, and treatment status Di ∈ {0, 1} be assigned if Ri ≥ R0 for some R0. In most

applications, R0 is normalized to R0 = 0, implying that Di = 1[Ri ≥ 0]. The treatment

effect of interest is

τ = E[Yi(1)− Yi(0)|Ri = 0], (1)

the average effect of treatment on the treated (ATT) at the point Ri = R0 = 0, the cutoff

value, which is not identified from the data alone as we do not observe untreated outcomes

for treated units (equivalently in this setup, Ri ≥ 0). Throughout this paper, we will

assume that the following identifying assumption holds:

Assumption A1. lim
r→0−

E[Yi|Ri = r] = E[Yi(0)|Ri = 0]

This assumption is equivalent to assuming that unobservable differences between treated

and untreated states trend smoothly at R = 0. It can be shown that, under the above

assumption (Lee and Lemieux, 2010),

τ = E[Yi(1)− Yi(0)|Ri = 0] = lim
r→0+

E[Yi|Ri = r]− lim
r→0−

E[Yi|Ri = r], (2)

which follows from the treated state tending to 0 from above and Assumption A1. In

a regression equation, if we write the potential outcomes conditional on R as Yi(0, R) =

f(R) + ui and Yi(1, R) = β + g(R) + ui, where ui is unobserved by the econometrician, we

can estimate

Yi = Yi(1)Di + Yi(0)(1−Di) = f(R)(1−Di) + βDi + g(R)Di + ui, (3)

7



in which, under Assumption A1,

β = lim
r→0+

E[Yi|Ri = r]− lim
r→0−

E[Yi|Ri = r] = E[Yi(1)− Yi(0)|Ri = 0], (4)

so that any consistent estimator of the average difference in levels between the treated

and untreated states at R = 0, β, will also be a consistent estimator of τ = E[Yi(1) −

Yi(0)|Ri = 0].2 If instead assignment to treatment status is not certain, but probabilistic,

so that some units with Ri < 0 are treated or some units with Ri ≥ 0 are not treated,

then the design is a “fuzzy” design and the causal effect estimated is interpretable as a

local average treatment effect (LATE) as in the case of instrumental variables (Hahn et al.,

2001). While we do not deal with the fuzzy design in this paper for the sake of clarity,

the extension of our method to the fuzzy case is straightforward given the method for

constructing Honest confidence sets in the fuzzy design proposed by Noack and Rothe

(2021).

2.2 Honest Confidence Intervals

Throughout this paper, the assumed goal is to construct confidence intervals that have the

following property: given functions m(·) that belong to the set M, a significance level α,

coverage probability Pm (which depends on m(·)), and the object of interest defined above

τ ,

lim inf
N→∞

inf
m∈M

Pm(τ ∈ C1−α) ≥ 1− α, (5)

which, following Li (1989), Kolesár and Rothe (2018) and Noack and Rothe (2021), is what

we will mean by the statement “C1−α is honest with respect to M”. The above definition

makes clear that Honesty of the confidence intervals we focus on in this paper relates to their

asymptotic uniform coverage probability. Honesty is desirable as a property of confidence
2For comprehensive overviews of the regression discontinuity literature, see Lee and Lemieux (2010),

Cattaneo et al. (2019) or Cattaneo and Titiunik (2022).
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intervals since every Honest confidence interval has the nominal rate of pointwise asymptotic

coverage 1 − α if m(·) ∈ M. Kolesár and Rothe (2018) show that there are at least two

different ways to specify the class M to construct honest CIs with respect to M: Kolesár

and Rothe (2018) define it as either the set of functions m(·) such that m(·) = E[Y |R] at

the discrete points of support of R with probability one and there is an upper bound on the

bias of the local linear estimator τ̂LL of τ , or the set of functions such that m(·) = E[Y |R]

at the discrete points of support of R and is twice continuously differentiable with a global

upper bound K on its second derivative m′′(·). In the rest of this paper, we focus on the

latter type of assumption, which produces “Bounded Second Derivative” (BSD) CIs.

2.3 Bounded Second Derivative (BSD) Confidence Intervals

Throughout the remainder of this paper, we will make the following assumption:

Assumption A2. There exists a function m(·) : R →R that is twice continuously differ-

entiable either side of R = 0, and potentially discontinuous at R = 0, such that at each

point of support R ∈ Z, m(R) = E[Y |R] with probability one.

This assumption is necessary since the conditional expectation function E[Y |R] is only

defined for the discrete points of support for the running variable R. Since m(·) is equal

to E[Y |R] at these discrete points of support, it is relevant to any bias that arises from

misspecification error in the estimation of τ . If m(·) is linear, then a local linear estimator

of the difference between the treated and untreated groups at the cutoff R = 0 does not

suffer from misspecification error. Since it is twice continuously differentiable, its second

derivative exists (unlike that of E[Y |R]) and can be bounded. We are then in a position to

define the class of functions m(·) that will allow us, conditional on a bound on the second

derivative of these functions, to construct honest confidence intervals. Without additional

assumptions, since m(·) is only observed at the discrete points of support of the running

variable R, we cannot identify m(·) or its derivatives.3 In Section 4, we show that if the
3This important caveat applies to the entire existing literature on CIs in RDDs with discrete running
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outcome Y is a binary variable generated by a threshold-crossing model, then identification

results already exist for identifying an upper bound for the second derivative of m(·),

conditional on assuming a known parametric distribution for the unobserved component

of the utility function, η, when the outcome Y is generated by a threshold-crossing model

Y = 1[g(R) ≤ η].4

Assumption A3. (Kolesár and Rothe, 2018) There exists some K > 0 and some q ≥ h >

0 such that m(·) belongs to the set M(K) = {m : |m′(a) −m′(b)| ≤ K|a − b|for all a, b ∈

[−q, 0)and all a, b ∈ [0, q]}.

We can note that this condition applies equally to the left- and right-derivatives of m(.)

from either side of the normalized cutoff value R = 0. Kolesár and Rothe (2018) prove that

if the function m(·) defined above is in the class M(K) for the correct assumed value of

K or larger, then confidence intervals constructed on that basis (for which they provide a

method of doing so) are honest with respect to M(K). Note also that m(·) belongs to the

Hölder class within a bounded range of the support of the running variable, so that the

second derivative need not be bounded on the entire real line. This will be useful later on

when we restrict m(·) to be a composition of a CDF and a monotone, concave function,

since the set of such functions with bounded second derivatives on a subset of the real line

is larger than the set of functions that are monotone, concave, and have bounded second

derivatives for all real inputs.5

variables. Our analysis proceeds within the technical framework offered in this literature and leaves filling
this caveat for future research.

4Chernozhukov et al. (2023) provide finite-sample guarantees for debiased machine-learning methods
that assume that the conditional expectation function of interest is linear and mean square continuous
in the parameter space. These conditions appear to be stronger than the ones that we require for the
population function m(·) that generates the conditional expectation function at the points of support of
R.

5Kolesár and Rothe (2018) also consider, in addition to Bounded Second Derivative (BSD) confidence
intervals, Bounded Misspecification Error (BME) confidence intervals that pre-specify a maximum devia-
tion of the estimated CEF from the true CEF. We do not examine this alternative in this paper as few
econometric models imply a bound on the difference between the true and estimated CEFs, while com-
monly used discrete choice models do imply an upper bound for the second derivative of the CEF provided
that the second derivative of the index function is bounded (cf. Section 4, below).
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2.4 Local Linear Regression

A common method for estimating τ via a regression-discontinuity design is to approximate

the conditional expectation function either side of the cutoff value R = 0 via a local linear

regression (Fan and Gijbels, 2018). Suppose, given data on the outcome Yi and running

variable Ri, we use a bandwidth h > 0 to choose observations “close” to the cutoff, so that

Ri ∈ [−h, h] for all i included in the sample, and let Nh denote the sample size for the

observations included when the bandwidth is h. Then the local linear estimator τ̂LL is just

the coefficient on the indicator 1[Ri ≥ 0] in an OLS regression using the Nh observations

that lie in the interval −h ≤ Ri ≤ h that includes 1[Ri ≥ 0], Ri and 1[Ri ≥ 0] × Ri as

regressors, viz.:

Yi(1)Di+Yi(0)(1−Di) = Yi = β0+β1Ri+β21[Ri ≥ 0]+β3Ri×1[Ri ≥ 0]+ui, K

(
Ri

h

)
< 1,

so that β̂2 = τ̂LL. If Yi ∈ {0, 1}, then local linear estimation is equivalent to estimating a

linear probability model over the range of R chosen by the bandwidth and kernel function,

so that E[u|R] = Pr(Y = 1|R)− (β0+β1Ri+β21[Ri ≥ 0]+β3Ri×1[Ri ≥ 0]). Throughout

the rest of this paper we use the Uniform kernel K(·) = | · |, so choosing a bandwidth h

amounts to choosing a range of observations with Ri ∈ [−h, h].

Kolesár and Rothe (2018) show that the local linear estimator τ̂LL is biased for τ ,

with the bias bounded from above by (with w(Ri) defined in Kolesár and Rothe (2018) as

w(Ri) =
e′1ŴMi

Nh
, Mi = m(Ri) = (1[Ri ≥ 0], 1[Ri ≥ 0] × Ri, 1, Ri)

′, Ŵ = 1
Nh

Nh∑
i=1

MiM
′
i , and

e1 = (1, 0, ..., 0)′), ∣∣∣τ̂LL − τ
∣∣∣ ≤ −K

∑n
i=1w(Ri)R

2
i sgn(Ri)

2
, (6)

which holds with probability 1, regardless of the sample size. Since all other components

of the above expression are data, specifying some value for the tuning parameter K >

0 is sufficient to construct honest confidence intervals with respect to the class M(K).

Bounding the finite-sample bias a priori and constructing Honest confidence intervals based
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on that bound produces valid inference when the running variable is discrete, while Eicker-

Huber-White standard errors do not, for the following reason: (6) holds regardless of

whether R is discrete or continuous, since it is derived conditional on particular realizations

of the running variable {R1, ..., RNh
} for a given bandwidth h. By contrast, EHW standard

errors rely on an asymptotic justification that the bias in the local polynomial estimator

converges in probability to zero as the number of observations goes to infinity; this argument

does not hold in the case of a discrete running variable, as there are no observations in

between the points R0 = 0 and R−1, the last point of support to the left of the cutoff,

regardless of the sample size. By avoiding these asymptotic arguments, confidence intervals

constructed using the bound on the bias of the estimator in (6) provide at least the nominal

rate of coverage regardless of the bandwidth or sample size, conditional on K being chosen

so as to be larger than the second derivative of the unknown function m(·).6

In Section 4, we show that the terms that need to be bounded a priori by the researcher

can be written in terms of population parameters that are interpretable and can in principle

be identified from the data under some common assumptions made in the literature on

discrete choice models. Before doing so, we review prior recommendations for choosing the

uniform bound on the second derivative of m(·).
6An alternative approach to discreteness in the running variable is discussed in Dong (2015), where

the realizations of the running variable are rounded versions of the true, continuous running variable.
Letting △R represent the “size” of the gaps between the realizations of the running variable, Dong (2015)
recommends a procedure for estimating △R under the assumption that the rounding errors are Uniformly
distributed on [0, 1], thereby obtaining bias-aware confidence intervals by directly estimating the bias that
is due to measurement error in the running variable. The Honest confidence intervals explored here are
valid more generally regardless of the source of the discreteness in the running variable (see main text and
Kolesár and Rothe (2018)). A related situation arises when the running variable is continuous but there is
nonrandom “heaping” of observations at discrete points of support in the running variable (Barreca et al.,
2016). We view this as complementary to the setting we consider, as nonrandom selection into particular
points of support of a discrete running variable comes with its own inferential problems (as laid out in
Barreca et al. (2016)), but we do not pursue the interaction of these two approaches in this paper.
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3 Existing Proposals for Uniform Bounds on the Second

Derivative

This section reviews the current guidance on selecting the tuning parameters that are

necessary for bias-aware inference. These tuning parameters often take the form of a

“smoothness condition” such as a bound on the second derivative of an unknown function,

which is the focus of this paper. They may also directly set an upper limit for the extent of

the bias of the local linear estimator, as is done in Kolesár and Rothe (2018) via “Bounded

Misspecification Error” (BME) Honest confidence intervals. In both cases, it is not possible

without further assumptions to choose these upper bounds based on the data, as the data

only speak to the minimum variability of the outcome of interest, not the maximum (as it

could always be the case that the latter is not attained in the sample).

Kolesár and Rothe (2018), who introduce Bounded Second Derivative (BSD) confidence

intervals, themselves make the following two recommendations. First, they write, “One can

show by simple algebra that if [m(·) ∈ M(K)], then it differs by at most K× (x∗∗−x∗)2/8

from a straight line between [m(x∗∗) and m(x∗)].” An advantage of this heuristic is that

there are many data-generating processes that can be consistent with it. A disadvantage

is that it can be relatively difficult to infer which features of data-generating processes are

being ruled out by this restriction, and hence whether those are reasonable restrictions in

the context at hand.

Kolesár and Rothe (2018) go on to apply this heuristic in an empirical setting. In their

empirical application (a reexamination of Oreopoulos (2006)), the outcome of interest is

the natural logarithm of annual earnings (in constant 1998 pounds sterling). To motivate

different choices of the uniform bound K, they write: “Given that a typical increase in

log earnings per extra year in age is about 0.02, we consider K = 0.04 and K = 0.02

to be reasonable choices, with the other values corresponding to a very optimistic and a

very conservative view, respectively”. One problem with this criterion is that it does not

distinguish between changes in log earnings per year over a given worker’s life cycle, and
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differences in log earnings between cohorts born a year apart. It is the latter that is relevant

for the treatment effect of interest in Oreopoulos (2006), since the comparison being made

in that study is between different cohorts that are observationally similar except in the

number of years of compulsory schooling they face. A second potential problem is that

choosing K = 0.04 as a reasonable bound on the second derivative when the first derivative

is on average 0.02 places implicit shape restrictions on the data generating process, as noted

above, which can be nontrivial to reverse-engineer from the heuristic they recommend. As

a result, it is unclear what restrictions there may be on e.g. capital-labor complementarity,

the evolution of the labor share of output, or technical progress that make this a reasonable

choice for a given observed trend in annual earnings.

Noack and Rothe (2021) add their own suggestions for choosing smoothness parameters

and review a number of other suggestions in the literature. One approach they recommend

is visual inspection of the data combined with estimating functions of different curvature

to examine the plausibility of those functions as data-generating processes. The key as-

sumptions we use in our method of monotonicity and weak concavity of an index function

(defined below) share the advantage of this approach in that their plausibility can be as-

sessed by inspection. Two rules of thumb are mentioned and assessed in their Monte Carlo

simulations: the first, due to Armstrong and Kolesár (2020), is based on estimating the

maximal second derivative of a fourth-order polynominal fitted to the data. Noack and

Rothe (2021) find that the Armstrong-Kolesar approach leads to extremely conservative

confidence intervals in the case of a binary outcome variable, such as a first-stage treatment

status indicator (a finding echoed in the simulation study in this paper). The other, due to

Imbens and Wager (2019), is to multiply the second derivative estimated of a quadratic fit

to the data by a “suitably large” constant, such as 2. This is found to be less conservative

in the settings they consider. Neither of these rules of thumb make use of subject matter

knowledge or economic theory to derive their heuristic estimates of the uniform bound

on the second derivative. In our Monte Carlo simulations and empirical application, we

compare the confidence intervals that result from using these rules of thumb with our own
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method.

4 Binary Outcome Threshold-Crossing Models with

Bounded Second Derivatives

We propose an approach that allows researchers to use the sample data to bound the second

derivative of the function m(·) in absolute value. This approach relies on assumptions that

are common in the literature on discrete choice modeling and economic theory.

Discrete-choice models have an important advantage when the goal is to identify a

uniform bound on the second derivative of m(·): it can be semiparametrically identified

from the data even when the running variable R is not conditionally independent of the

unobservables (Matzkin, 1991). This is not true for generic functions of R with bounded

second derivatives. In regression-discontinuity designs, researchers typically leave the rela-

tionship between the running variable R and unobservables u unrestricted except for the

identifying assumption that E[u|R] is continuous at the cutoff point R = R0. In discrete-

outcome settings, the assumption that the outcome is generated by an additively separable

threshold-crossing model allows us to identify the derivatives of m(·) without assuming

that R is exogenous, as long as we are prepared to adopt a distributional assumption for

the unobserved latent “reservation utility” (a type of assumption that is common in the

discrete-choice literature) and shape restrictions on utility functions that can be motivated

by economic theory or institutional detail.

Assumption A4. The binary outcome potential outcome Yi(j) ∈ {0, 1} for j ∈ {0, 1}

is generated by the threshold-crossing rule Yi(j) = 1[ηij ≤ gj(Ri)], where gj(·) is twice

differentiable and ηij is unobservable and iid across individuals.

The above assumption implies that, if we let Fηj denote the CDF of ηj, Pr(Yi(j) =

1|Ri) = Fηj(gj(Ri)).

Assumption A5. Let η1 be the iid unobservable reservation utility in the treated state
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(D = 1) and η0 iid unobservable reservation utility in the untreated state (D = 0). Let

Fη1 , Fη0denote the CDFs of these random variables. Then Fη1 = Fη0 = Fη within the

neighborhood of R = 0, [−q, q] in which m(R) has its second derivative bounded from above

in absolute value by K. This CDF Fη has a density fη, which has a first derivative f ′
η

defined everywhere in [−q, q].

In the rest of this paper, while we do not make the same assumption for the index

functions (i.e. we let g1(·) ̸= g0(·)), we suppress the potential outcomes notation for

compactness and write Yi = 1[ηi ≤ g(Ri)]. An upper bound on |g(·)|, for example, can

be understood in what follows to mean an upper bound on max
j∈{0,1}

|gj(·)|. Note that the

foregoing assumption does not imply that Yi(1) = Yi(0) or E[Yi(1)] = E[Yi(0)], since g1

and g0 can still differ. We do not observe g0 when R ≥ 0, or g1 when R < 0, so a

common distribution of the unobserved reservation utilities in the treated and untreated

states does not imply that we can identify E[Yi(1)− Yi(0)|Di = 1], the effect of treatment

on the treated, from comparing treated with untreated units, since the difference between

treated and untreated units in the data is E[Yi(1)|Di = 1]−E[Yi(0)|Di = 1] = Fη(g1(Di =

1))− Fη(g0(Di = 1)), and the term Fη(g0(Di = 1)) is not observed in the data.

Assumption A6. η is independent of R.

The plausibility of this assumption, on its own, will vary from context to context. If

it is violated, then a control function approach can be employed, with a suitable choice of

instrumental variable Z, with the control function denoted ξ(Z) so that η is independent

of R conditional on ξ(Z).

Assumption A7. There exists a function m(Ri) ≡ Fη(g(Ri)), with Fη and g(·) defined as

above, which is twice differentiable.

Hence, by g(·) ≡ Dig1(·) + (1 − Di)g0(·) being twice differentiable (except at R = 0,

where it may be discontinuous) and the composition of functions being twice differentiable,

Fη(g)
′ and Fη(g)

′′ exist. This assumption refines the earlier assumption that there exists
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some such function equal to E[Yi|Ri] at the points of support of R with probability one

which is twice differentiable; here the more specific function given is clearly equal to E[Yi|Ri]

at integer values of R given the binary threshold-crossing process that defines Y . Similarly,

we can write the average effect of treatment on the treated at the point R = 0 as E[Yi(1)−

Yi(0)|Di = 1] = Fη(g1(0)) − Fη(g0(0)), where Fη(g0(0)) is not observed (since g0(·) is

only observed for R < 0). The local linear regression-discontinuity estimator estimates

τ̂LL = Fη(g1(0))− F̂η(g0(0)), where F̂η(g0(0)) is predicted by the local linear fit. Since Fη is

in general a nonlinear function in most discrete-outcome settings, a linear approximation

to it is unlikely to be exact; two jointly sufficient conditions for this (see below) occur in

the special case where η has the Uniform distribution and g(·) is itself linear.

We can now state the requirement from Assumptions (A2) and (A3) that the second

derivative of m(·), which is equal to E[Y |R] at all of the discrete points of support of R,

be bounded in absolute value in terms of the functions Fη and g(·):

∣∣∣fη(g(R))g′′(R) + f ′
η(g(R))[g′(R)]2

∣∣∣ < K, some K > 0, (7)

where fη and f ′
η denote the pdf of η and its first derivative. Since the distribution of η is

assumed to be known, whether the uniform bound can be identified from the data, if it

exists, depends on the identifiability of g(·). Note that K = 0 only in the special cases

where either fη(g(R))g′′(R) = −f ′
η(g(R))[g′(R)]2 or η ∼ Uniform(ω1, ω2) and g(·) is linear.

Common choices for the distribution of η in the discrete choice literature, conditional

on location and scale normalizations, have analytic bounds on their probability distribution

function fη and its first derivative f ′
η.7 Suppose that η has the Logistic distribution. Its

CDF is then

Fη(η) =
1

1 + exp(−η−µ
sη

)
, (8)

7An alternative approach to the one we pursue here is to use Probit and Logit estimation in conjunction
with a regression-discontinuity design, derived by Xu (2017). The result in Armstrong and Kolesár (2018)
that necessitates an assumption regarding bounds on the second derivative of the conditional expectation
function (CEF) implies that the confidence intervals derived in Xu (2017) are conservative relative to the
local linear estimator if the assumption that the second derivative of the CEF is no more than K is true.
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from which it is clear that, given that the PDF and its first derivative appear in the

expression for m′′(R), the scale of the distribution plays a key role in the second derivative

of m(·). In fact this generalizes to all log-concave distributions, a family which includes

the Logistic and Normal distributions as well as other commonly used distributions such

as the F -distribution. The following Proposition formalizes this result.

Proposition 1. If X and Z are log-concave random variables, with Z = αX, and |α| > 1,

then the maximum of the first derivative of fZ(.) is smaller than the maximum of the first

derivative of fX(.).

Proof. See Appendix. ■

The location parameter µ and scale parameter s cannot be identified from the data

separately from the index function g(·) (Train, 2009), so in practice the location-scale

normalization µ = 0, s = 1 is imposed in estimation, yielding

Fη(η) =
1

1 + exp(−η)
, (9)

Since this normalization is different for different choices for the distribution of η, care must

be taken when comparing estimates of g′(·) and g′′(·) that are obtained using different

distributional assumptions for η, as their scale will be different. In the case where η has the

normalized Logistic distribution, it can be shown (see Appendix) that the second derivative

of m(·) is at most

|m′′(R)| ≤

∣∣∣∣∣14g′′(R) +
1

6
√
3
[g′(R)]2

∣∣∣∣∣, (10)

Suppose instead η is Normally distributed. For the same non-identification reasons as

with the Logistic distribution, it is common in the literature to normalize the location and

scale of η so that it has the Standard Normal distribution, in which case

m(R) = Φ(g(R)), (11)
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where Φ(·) denotes the CDF of a Standard Normal random variable. In this case it can be

shown that (see Appendix)

|m′′(R)| ≤

∣∣∣∣∣ 1√
2π

g′′(R) +
1√
2πe

[g′(R)]2

∣∣∣∣∣, (12)

Note that
√
2πe√
2π

=
√
e ≈ 1.649 and 6

√
3

4
≈ 2.598 > 1.649, so that the assumption of Normally

distributed η places slightly less weight on the second derivative of g(·) than the assumption

that η has the Logistic distribution. If g(·) is a linear function, then since the coefficients

from a linear index Logit model are
√
1.6 times larger than those from a Probit model with

a linear index estimated on the same data (due to the difference in scale normalizations

Train (2009)), the ratio of upper bounds on the second derivative is 1.6
6
√
3

/
1√
2πe

≈ 0.64,

so that the assumption that η has the Logistic distribution when g(·) is linear results in

a tighter upper bound for the second derivative of m′′(·) and hence narrower confidence

intervals than the assumption that η has the Standard Normal distribution. This is a

direct consequence of the fact that the maximal first derivative of the Standard Normal

pdf is 1√
2πe

≈ 0.24 whereas the maximal first derivative of the Logistic pdf with location

parameter µ = 0 and scale parameter sη = 1 is 1
6
√
3
≈ 0.096, which in turn is consistent

with Proposition 1 (above) that this maximum is decreasing in the scale of the distribution

for log-concave random variables.

The remaining inputs into the uniform bound on the second derivative of m(.) are the

upper bounds on the first and second derivative of the index function g(·). We leverage

prior results from the literature on semiparametric identification in discrete choice models

using shape restrictions to motivate data driven choices for these bounds. In particular,

Matzkin (1991) shows that the following assumptions are jointly sufficient to identify g(·)

from the observed data.

Assumption A8. The distribution of η is known up to some finite-dimensional parameter

vector.
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Assumption A9. g(.) is monotone in R.8

Assumption A10. g(·) is weakly concave in R.

Proposition 2. If the foregoing three assumptions are all met, then g(·) is identified

up to a location and scale normalization.

Proof. See Matzkin (1991). ■

A further result in Matzkin (1992) shows that it is in principle possible to achieve

fully nonparametric and distribution-free identification of g(.) and Fη, but only under the

additional, highly restrictive assumption that g(·) is homogeneous of degree one. The as-

sumption of homogeneity of degree one may be implausible in many contexts of interest.

For example, if R is age in years and Y is a binary indicator for retirement status, this as-

sumption implies that the difference in the marginal value of leisure for the same individual

at any two adjacent ages is the same regardless of whether we are comparing e.g. age 60

vs. 61 or age 69 vs. 70 (net of any discontinuities or kinks generated by policy rules sur-

rounding retirement and/or retirement benefits). As a consequence, we restrict attention

in the rest of the paper to identifying g(·) conditional on assuming that η is drawn from a

known probability distribution.

5 Estimation

This section describes the empirical implementation of the theoretical results above. To

avoid additional parametric assumptions, we can estimate a piecewise linear spline with
8Two other recent approaches to regression discontinuity designs that exploit monotonicity can be found

in Kwon and Kwon (2020) and Babii and Kumar (2021). Kwon and Kwon (2020) construct confidence
intervals that have the nominal rate of coverage when the true conditional expectation function is monotone
and Lipschitz continuous. This is similar to the bias-aware approach in this paper, as the researcher has
to specify the Lipschitz constant, which then bounds the first derivative of the CEF in absolute value if
it is differentiable. Babii and Kumar (2021) proceed from previous work in the statistics literature on
isotonic regression estimators and assume that the population conditional expectation function is Hölder
continuous with known Hölder constant. Neither paper explicitly considers the case where the outcome
variable is discrete, as their methods apply equally to continuous and discrete outcome variables; this
paper’s contribution is to exploit the fact that common assumptions made in discrete-choice models and
economic theory can be used to motivate the shape restrictions and distributional choices that allow an
upper bound for the second derivative of the function that generates the conditional expectation function.
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J+1 intercepts and J+1 slope parameters δj, where J is the number of knots in the spline

and δj is the estimated slope on the spline connecting knots j and j + 1. This is done by

maximizing the likelihood

L =
N∏
i=1

Fη(
J∑

j=1

(αj + δjR))Yi(1− Fη(
J∑

j=1

(αj + δjR))Yi))1−Yi

where Fη corresponds to the CDF of the assumed distribution for η (in our simula-

tions and empirical application (in the Appendix), either the Logistic or Normal CDF,

as these are the two most popular choices in the discrete choice literature). It is then

straightforward to estimate, under the same assumptions as above, the maximal slope as

max
k=1,...,J+1

∣∣∣ k∑
j=1

δj
∣∣∣and maximal second derivative as either equal to the maximal slope (as

in the conservative approach) or the maximal difference in subsequent slope estimates,

maxj=2,...,J+1 δ
j − δj−1. An alternative approach to estimation which we do not pursue in

this paper is given by Matzkin (1991); details regarding the computation of this estimator

can be found in Matzkin (1999). Her estimator incorporates the monotonicity and con-

cavity restrictions on the index function g(R); this estimator is likely to be more efficient

than using splines that do not incorporate the identifying assumptions directly, but since

the objective of our estimation is to recover an upper bound, rather than a least upper

bound, the main benefit to using this alternative estimator would be to make the resulting

Bounded Second Derivative confidence intervals less conservative than the ones that we

estimate (cf. Section 6, below).

Using a piecewise linear spline to approximate the underlying monotone and concave

function g(·) leaves open the question of the optimal number of knots in the spline. We leave

this to the discretion of the researcher, as these will vary from context to context. In this

paper, we undersmooth so as to err on the side of overestimating the second derivative of the

underlying function m(·), since Bounded Second Derivative confidence intervals are Honest

with respect to the Hölder class of functions that have second derivative no larger than the

assumed value K. Hence overestimating the upper bound on the second derivative K is
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less costly than underestimating it, since any upper bound will guarantee at least nominal

coverage of the resulting BSD confidence intervals (though overestimating K by a large

enough amount is likely to result in conservative confidence intervals, as will be evident in

the simulation results below).

Our estimation strategy can be summarized via the following steps:

1. Check whether monotonicity and concavity of the index function g(·) are plausi-

ble according to theory or the institutional setting; if so, then the first and second

derivatives of g(·) can be semiparametrically identified from the data conditional on

a distributional assumption for η by the results in Matzkin (1991). In practice, we

use piecewise linear splines to approximate g(·).

2. Estimate Bounded Second Derivative confidence intervals for the treatment effect of

interest τ using the implied uniform bound K on the second derivative of m(·) and

local linear regression, which can be implemented using standard software. Optimal

bandwidths are automatically calculated in the RDHonest package in R conditional

on the assumed value, K, of the uniform bound on the second derivative of m(·), in

line with the formulae in Kolesár and Rothe (2018).

6 Simulation Evidence

In this section, we compare the results from using the identifying assumptions from the

previous section to semiparametrically identify the second derivative of the conditional

expectation function E[Y |R] from the data to the “automatic” selection procedure used in

Kolesár and Rothe (2018), as well as the rule of thumb recommended in Imbens and Wager

(2019). We vary two dimensions of the estimation: whether the distribution of η has (i)

the Logistic distribution, or (ii) the Normal distribution, and whether the index function

g(.) is one of

1. Partially linear, monotone and concave with g(R) = 0.25R × 1[R < 0] + (log(1 +

0.25R) + 0.05)× 1[R ≥ 0], (ii)
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2. Monotone and partially linear but not concave, with g(R) = (exp(0.25R)−1)×1[R <

0] + (0.05 + 0.25R)× 1[R ≥ 0],

3. Concave, with bounded first and second derivatives, but not monotone, with g(R) =

−R2

32
× 1[R ∈ [−4, 4]] + 0.05× 1[R ≥ 0] + 0.25R× 1[R < −4]− 0.25R× 1[R > 4],

4. Neither monotone nor concave with bounded first and second derivatives, with g(R) =

sin(0.25R) + 0.05× 1[R ≥ 0].

This provides eight different scenarios in which the second derivative of Fη(g(R)) is bounded

in absolute value, but the assumptions for semiparametric identification of the derivatives

of Fη(g(.)) are satisfied to different extents. In each simulation, the running variable, R, is

drawn from a discrete Uniform distribution with points of support {−5,−4, ..., 0, 1, ..., 5},

with the cutoff value R0 = 0. We use 1000 replications per scenario, with N = 1100

in each case (giving approximately 100 observations per point of support of the running

variable). Outcomes of interest are the average estimated upper bound on the second

derivative K, Type I error rate, and the average confidence interval estimated across the

1000 replications. The simulation scenarios are designed so that for each of the cases where

the first and second derivatives of g(.) are bounded in absolute value, these bounds are

|g′(R)| ≤ 1
4

and |g′′(R)| ≤ 1
16

. When η has the Logistic distribution, the analytical upper

bound for the second derivative of Fη(g(.)) in each case is 1
4
× 1

16
+ 1

6
√
3
× 1

16
≈ 0.022; when

η has the Standard Normal distribution, the upper bound is 1√
2π

× 1
16
+ 1√

2πe
× 1

16
≈ 0.040.

These values for the upper bound on the second derivative of the CEF are within the range

of values considered in previous studies of Bounded Second Derivative confidence intervals

(cf. Kolesár and Rothe (2018), who use 0.02 as their preferred upper bound, and 0.04 as

a conservative upper bound, in one of their empirical applications, or Noack and Rothe

(2021)).

The design of the DGPs for the simulations also allows us to control the size of the true

effect τ . In each case, we have g0(0) = 0 and g1(0) = 0.05, so that τ = Fη(0.05) − Fη(0).

When η ∼ Logistic(0, 1), τ = 0.0125, and when η ∼ Normal(0, 1), τ = 0.0199.
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We compare three approaches to bounding the second derivative from above: (i) the

semiparametric approach proposed in this paper, (ii) the RDHonest package’s default,

proposed in Armstrong and Kolesár (2020), and (iii) the approach proposed by Imbens and

Wager (2019), which involves multiplying the coefficient on the quadratic term following

estimation of a local or global polynomial by a “suitably large constant” - we use local

quadratic regressions, and multiply the maximum of the two quadratic terms by 2.

Table 1 displays the results of the Monte Carlo experiments. It appears that the semi-

parametric approach to estimating an upper bound on the second derivative of m(·) is

less conservative than the Armstrong-Kolesar approach that is built into the RDHonest

R package, and more conservative than the Imbens-Wager approach when the estimated

second derivative from local quadratic regressions is multiplied by 2. The latter approach

does not have the nominal rate of coverage in all of the scenarios considered: when the

index function g(.) is monotone but not concave, and η has the Standard Normal distribu-

tion, the Type I error rate using the Imbens-Wager bound is 0.057. When g(.) is neither

monotone nor concave, the Type I error rate from using the Imbens-Wager approach is

0.047. The approach proposed in this paper appears by contrast to be better protected

from the failure of concavity by its relative conservatism - its Type I error rate does not

exceed 0.039 in any of the simulations. Perhaps surprisingly, it does not appear to necessar-

ily perform best when both monotonicity and concavity are satisfied, despite the necessity

of these assumptions for identification. In the case of a non-monotone concave g(.), our

method appears to be much more conservative than in other scenarios. In every scenario,

estimation that assumes that unobserved heterogeneity is Logistic is more conservative

than estimation that assumes that it is Normally distributed. This differs from the case

where g′′ = 0, where estimation assuming Normally distributed unobserved heterogeneity η

is more conservative. This shows that whether g′′ is assumed to be zero or not can matter

a great deal for how the choice of the distribution of η affects the construction of Bounded

Second Derivative confidence intervals.

Overall, it appears that overestimating the maximal bound on the second derivative K
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is less costly than underestimating it. While the actual second derivative of Fη(g(R)) in

any particular sample need not attain this maximum, and so underestimating K need not

result in worse-than-nominal coverage (as in the case of the Imbens-Wager bound when

η is Normally distributed and g(·) is both monotone and concave), the conditions under

which it does so are not easy to anticipate (cf. the Imbens-Wager bound with Normal η

and monotone, but not concave g(·)). By contrast, the combination of undersmoothing the

spline that approximates g(·) and sampling variability produces “enough of an overestimate”

of K to produce greater-than-nominal coverage of τ without the extreme conservatism of

the default Armstrong-Kolesar selection method for K built into the RDHonest R package.

The general pattern seen in the Monte Carlo simulations also holds in an empirical

application that we consider (see Appendix): our method is less conservative than the

default Armstrong-Kolesar bound, but more conservative than the Imbens-Wager bound.

Point estimates in the application differ depending on whether the Logistic or Normal bound

is employed. This follows from point estimates differing depending on the bandwidth and

the direct relationship between the optimal bandwidth and the Uniform bound on the

second derivative that is chosen.
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7 Conclusion

This paper has provided the first analysis of Honest inference for regression-discontinuity

designs where both the assignment variable and the outcome of interest is discrete. Re-

searchers who use “Bounded Second Derivative” Honest confidence intervals often have

little guidance for how to choose the a priori uniform bound on the second derivative of

an unknown function that these confidence intervals require. We proposed a procedure for

identifying this second derivative based on the literature on the identification of discrete-

choice models. A key advantage of using this procedure is that it allows the researcher

to be transparent and precise about the assumptions necessary for identifying this second

derivative from the same data that is used to estimate the treatment effect of interest.

The most common alternative when constructing Honest confidence intervals is to rely on

prior evidence from the literature, which may not be available in novel applications. Eco-

nomic theory also typically does not make predictions about the variability of outcomes of

interest.

Our simulation results provide evidence that when the necessary assumptions are satis-

fied, the second derivative of the conditional expectation function can be semiparametrically

identified and used to construct confidence intervals that are Honest with respect to the set

of possible functions that all have a second derivative that is no larger than the maximum

inferred from the data. Our empirical application in the Appendix shows that estimating

this second derivative under different assumptions can produce confidence intervals that

differ in their substantive implications. A natural extension of our procedure for “sharp” re-

gression discontinuity designs is to derive companion results for “fuzzy” designs (as studied

in Noack and Rothe (2021)). We leave this extension to future research.
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