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1 Introduction

The recent papers Parente and Smith (2018, 2021) introduce a novel bootstrap method, the kernel
block bootstrap (KBB), for the analysis of time-series data. This article generalizes and extends KBB
to provide a comprehensive treatment of its use for GMM estimation and inference in time-series models
formulated in terms of moment conditions. KBB procedures that employ bootstrap distributions with
generalised empirical likelihood implied probabilities as probability mass points are also considered. The
paper details new KBB estimators and test statistics whose empirical distributions can serve as alter-
native approximations to those offered by standard and other bootstrap methods for GMM estimators
and test statistics.

The particular focus of the paper is generalized method of moments (GMM) proposed in the sem-
inal paper Hansen (1982) which, because of its wide-spread applicability in many and varied contexts,
has become the main workhorse for estimation and inference in the analysis of economic data. As is
widely appreciated, however, for the sample sizes usually available in practice, the standard large sample
distributions of GMM estimators and statistics typically poorly approximate their respective empirical
distributions, a situation worsened in the time-series context due to dependence; see inter alia Burnside
and Eichenbaum (1996), Christiano and den Haan (1996) and Hansen, Heaton and Yaron (1996). The
bootstrap method originally proposed in the landmark paper Efron (1979) offers an alternative approach
to ameliorate this problem and has often been found to be successful in this regard. From a practical
standpoint the bootstrap, being a resampling method, has the benefit of not requiring the application
of complicated formulae. Theoretically, the bootstrap may admit asymptotic refinements if the statistic
of interest is asymptotically pivotal and a smooth function of the data.

This article departs from the dominant paradigm of bootstrap resampling of moving blocks; see, e.g.,
the review paper Kreiss and Paparoditis (2011) and associated discussion and the monographs Shao and
Tu (1995) and Lahiri (2003). We introduce resampling schemes based on the KBB method of Parente
and Smith (2018, 2021), which, rather than work with the observational sample moment indicators or
functions directly, resamples suitable kernel function-based weighted transformations of the sample mo-
ment indicators, an idea borrowed from the (generalised) empirical likelihood ((G)EL) literature, see,
e.g., Kitamura and Stutzer (1997) and Smith (1997, 2011).! Furthermore, we implement KBB by inde-
pendently resampling from bootstrap distributions which employ either the standard empirical measure
or GEL implied probabilities as mass points, the latter thereby potentially exploiting efficient moment

estimation, cf. Brown and Newey (1998) and Smith (2011). The KBB method itself is a generalisation

I'Such transformations in the presence of weakly dependent data induce large sample efficiency for GEL as with randomly
sampled data. The sample mean and, moreover, the standard random sample variance of the transformed sample moment
indicators respectively provide a consistent estimator for the population mean, Smith (2011, Lemma A.1, p.1217), and a
heteroskedastic and autocorrelation (HAC) consistent and automatically positive semidefinite estimator for the variance
of the standardized mean of the original sample moment indicators, Smith (2005, Section 2, pp.161-165, and 2011, Lemma

A.3, p.1219).



of the tapered block bootstrap (TBB), Paparoditis and Politis (2001), but, in contradistinction, allows
kernel functions with unbounded support and includes the incomplete blocks at the beginning and end
of the sample. While both KBB and TBB admit familiar kernels with finite support, e.g., rectangular,
Bartlett and Tukey-Hanning, KBB also allows non-monotonic truncated kernels in the positive quadrant,
e.g., flat-top cosine windows (D’Antona and Ferrero, 2006, p.40), excluded by TBB, cf. Paparoditis and
Politis (2001, Assumption 2, p.1107). For a more detailed comparison, see Parente and Smith (2018,
section 4.1, pp.6-8).2

Bootstrap methods for moment condition models have been developed in numerous contributions;
see inter alia Hahn (1996) and Brown and Newey (1992, 2002) for randomly sampled data and Hall and
Horowitz (1996) and Andrews (2002) for weakly dependent data. Two strands to this literature may be
discerned: first, i.i.d. resampling and, secondly, GEL implied probability resampling. In the former
Hahn (1996), for i.i.d. data, proves the consistency of the 2-step (2S) GMM bootstrap distribution for
the limiting distribution of standard 2SGMM. Camponovo (2016) investigates asymptotic refinements of
an i.i.d. bootstrap for quasi-likelihood ratio type tests of nonlinear restrictions which are applicable in
a GMM framework. Hall and Horowitz (1996), with weakly dependent data, after centering the bootstrap
sample moment indicators at their sample mean, apply the non-overlapping moving blocks bootstrap
(MBB) method of Carlstein (1986) to the 2SGMM estimator, a t-test statistic for a single parametric
restriction and the Hansen (1982) test statistic for over-identifying moment restrictions. Their resultant
bootstrap statistics admit asymptotic refinements after appropriate re-scaling. Andrews (2002) extends
Hall and Horowitz (1996) to standard overlapping MBB (Kiinsch, 1989, and Liu and Singh, 1992), and
the k-step bootstrap (Davidson and Mackinnon, 1999). Both papers, however, require a form of m-
dependence to achieve higher order refinements, an assumption relaxed in Inoue and Shintani (2006)
for the instrumental variable linear model. In the latter literature, Brown and Newey (1992, 2002),
for i.i.d. data, suggests independent resampling from a bootstrap distribution with GEL implied
probabilities replacing the standard empirical measure, hazarding that this bootstrap method might
offer theoretical improvements over standard i.i.d. resampling. More recently, the (G)EL implied
probability bootstrap was extended to the time series context in Allen et al. (2011) and Bravo and
Crudu (2012) using the rectangular kernel-weighted observational sample moment indicators and GEL
implied probabilities as bootstrap distribution mass point probabilities. These papers differ in a number
of respects: first, Allen et al. (2011) studies EL implied probabilities while Bravo and Crudu (2011)
uses GEL implied probabilities, Smith (2011, (3.1), p.1205); secondly, Allen et al. (2011) analyses both
non-overlapping and overlapping MBB whereas Bravo and Crudu (2012) only studies the latter; thirdly,

Allen et al. (2011) investigates first order validity for general GMM estimators whereas Bravo and

2In the case of the sample mean, a particular choice of the kernel with unbounded support yields a bootstrap variance
estimator that is asymptotically equivalent in mean square to the optimal quadratic spectral estimator of the long run
variance, see Parente and Smith (2018, Corollary 3.1, p.6) and fn.4 below; cf. Andrews (1991, Theorem 2, p.829).

[2]



Crudu (2011) only considers the efficient 2SGMM estimator, with both articles addressing the first-
order asymptotic behaviour of their respective bootstrapped over-identifying moment test statistics and
Wald test statistics for parametric restrictions; finally, Bravo and Crudu (2011) proposes bootstrap
Lagrange multiplier and distance statistics for parametric restrictions using null hypothesis rather than
maintained hypothesis GEL implied probabilities. A recent related paper, La Vecchia et al. (2023),
constructs higher order correct confidence regions for the full parameter vector based on the unrestricted
GMM or GEL criterion, employing i.i.d. resampling of kernel function-based weighted sample moment
indicators evaluated at the respective first order efficient GMM or GEL estimator.

The KBB bootstrap approach taken here employs general forms for both the kernel function-based
weighted sample moment indicators and the GEL implied probabilities that define the bootstrap distri-
bution probability mass points. We examine both unrestricted and restricted moment condition models,
the latter subject to additional moment constraints and parametric restrictions expressed generally in
mixed form (Gouriéroux and Monfort, 1989); cf. Newey and McFadden (1994, section 9, pp.2215-2241),
Ruud (2000, chapter 22, pp.564-607) and Smith (2011, section 5, pp.1209-1213). The restricted GEL
implied probability GMM-KBB estimator is presented whose distribution suitably centred is first or-
der asymptotically valid, consistently estimating and approximating the asymptotic distribution of the
corresponding restricted GMM estimator. The GEL implied probability GMM estimator provides the
appropriate centring; this GMM estimator minimises the corresponding GMM criterion but, to compute
the requisite sample average moment indicator, replaces the standard GMM empirical measure by the
bootstrap mass point probabilities as weights. The asymptotic validity result is specialised for unre-
stricted GMM estimation and both efficient unrestricted and restricted GMM estimation.? We explore
the impact of using unrestricted and restricted GEL implied probabilities, efficient or otherwise, and the
standard empirical measure as bootstrap mass point probabilities. Correspondingly, we describe appro-
priately centred GEL implied probability GMM-KBB overidentifying moment restrictions test statistics
and likelihood ratio- (distance), score-, Lagrange multiplier- and generalised Wald-like test statistics
for mixed form additional moment constraints and parametric restrictions. We also define alternative
likelihood ratio-like and distance statistics which adapt and generalise the bootstrap statistic proposed
in Camponovo (2016) for the dependent data context and inference setting considered here.

The effect of efficient unrestricted and restricted GEL implied probabilities and the standard empirical
measure as bootstrap mass point probabilities on the form of the GEL implied probability GMM-
KBB test statistics is explored. We establish the first order asymptotic validity of these GEL implied
probability GMM-KBB test statistics for their non-bootstrap counterparts. Computationally simpler
alternative GEL implied probability GMM-KBB estimators and statistics are presented which avoid

3We note that the consistency proof for the EL block bootstrap of Allen et al. (2011) is in error if applied to the
inefficient GMM estimator. The bootstrap distribution of the GMM estimator should be centred at efficient 2SGMM.
Hence Allen et al. (2011, Theorems 1 and 2, p.114) are invalid in general although these results continue to hold if the
GMM weighting matrix is the efficient GMM metric.

[3]



the necessity of computing the GEL implied probability GMM-KBB estimator. Although the proofs in
the paper are developed for KBB they may be straightforwardly adapted analogously for other block
bootstrap methods.

This paper is organized as follows. Section 2 briefly surveys and summarises unrestricted and re-
stricted GMM estimation subject to additional moment constraints and parametric restrictions expressed
in mixed form together with associated GMM inference. GEL implied probabilities are introduced in
section 3.1 with the GEL implied probability GMM estimator described in section 3.2. GEL implied
probability GMM-KBB estimation and inference are discussed in sections 3.3 and 3.4. Section 4 presents
simulation evidence on the usefulness of the empirical distributions of GEL implied probability GMM-
KBB test statistics as descriptions of those of the corresponding GMM test statistics. Finally section
5 concludes. Appendix A provides preliminary lemmas and their proofs which are required for the
proofs given in Appendix B of the results of the main text. Appendix C details limit results for KBB

heteroskedastic and autocorrelation consistent variance matrix estimation.

2 GMM Preliminaries

Let z;, (t = 1,...,T), denote a sample of T observations on the stationary and strong mixing real
valued d.-dimensional vector process {z;:}52,. Also let E[-] and var[-] denote expectation and variance
taken with respect to the unknown probability measure P of the process {2 }52;.

Consider the moment indicator g(z,6), a dg-vector of known functions of the data observation z;
and the dg-vector § € © of unknown parameters, where @ C R% denotes the parameter space. The
moment vector ¢(z:,0) is partitioned as q(zt,0) = (g(zt, 8)', h(z:,0)"), where g(z¢,3) and h(z,0) are
d,- and dp,-subvectors, and the parameter vector  is partitioned 6 = (o, "), where a« € A and 8 € B
are d,- and dg-subvectors of 6, © = Ax B, A C R%, B C R%, d, > dg. We maintain the moment

condition

Elg(z:,8)] =0 (2.1)

at the true value 3, of 5 throughout the paper whereas the additional moment constraints and parametric
restrictions

E[h(z,0)] = 0, r(6) =0, (2.2)

satisfied by the true value 6y = (o}, By)’, constitute a hypothesis of particular interest, cf. Smith (2011,
Section 5. pp.1209-1213); both the moment indicator h(z;,-) and the d,-vector of parametric constraints
r(-) are expressed in mixed form (Gouriéroux and Monfort, 1989) depending on both the additional
parameter vector « as well as 3.

Let q:(0) = q(z,6), (t = 1,...,T), and define the sample mean §(6) = Zthl q:(0)/T and long-run
variance Z(0) = limp_, o var[TV/2§(0)], similarly g;(8) = g(z:, 3) and he(0) = h(z,0), (t = 1,...,T),

[4]



3(8) = o1, 9:(8)/T and h(0) = S°[_, ht(0)/T, and long-run variance ¥(8) = limy_, o, var[T"/2§(5)].
Also let = = E(fp) and X = X(8,).-

The GEL implied probability GMM-KBB sampling schemes, the main concern of this paper, make
use of GEL implied probabilities, see Section 3.1, defined in terms of the transformed kernel-weighted

moment indicator
s

qir (0) = W ZZ;;T k(?T)Qt(g)’ (2.3)

partitioned as g7 (6) = (9o (B), her (0)'), (t = 1,...,T), where St is a bandwidth parameter and k(:)
a kernel function with k; = [*_k(z)dz, (j = 1,2), and k = k} /k».

REMARK 2.1. A different scaling is employed here to that in Kitamura and Stutzer (1997) and Smith
(1997, 2011), namely (ko S7)~ /2 rather than (koS7)~', which permits the standard outer product form
to be employed as a consistent estimator of the long-run variance matrix =; see Remark 2.4 below.
The standard sample average §(0) (§(8), h(0)) and the sample average gz (0) = Zle ar(0)/T (g7 (B) =
Zthl ger(B)/T, hr(0) = Zthl hyr(0)/T) are first order asymptotically equivalent after scaling under the
assumptions stated below, i.e., both obey UWLs, e.g., supycy ||ch((9)/5’:1/2 —E[q:(0)]/k'/?|| — 0, prob-P,
cf. supgeg |4(6)—E[g(0)]]| — 0, prob-P, and CLTs, e.g., (T//St)*/2(4r(0) —E[dr(0)]) — N(0,Z(6)/k),
cf. TV2(4(0) — Elq:(0)]) —% N(0,Z(0)); see Smith (2011, Lemmas A.1, p.1217, and A.2, p.1219).

2.1 GMM Estimation

Since the GEL sample average ¢r(6) forms the basis of GEL implied probability GMM-KBB esti-
mators and statistics described below, the following discussion is conducted, without loss of generality,
in terms of ¢r(#) rather than §(#) used in standard GMM analysis.

Let Wyr denote a (dg,dq) p.s.d. matrix such that W, — Wy, prob-P, W, p.d. A restricted GMM
estimator for y is defined by

Op = arg minQT(H) (2.4)
0eO,

where O, = {0 € © : 7(0) = 0} with associated Lagrangean function L7 (0, 1) = Qp(0)/St — ku'r(0),

Lagrange multiplier estimator ji and GMM criterion
Or(0) = 4r(0) (Wyr)™'r(0). (2.5)

Cf. the standard GMM criterion which substitutes () for gr(6); see, e.g., the seminal paper Hansen
(1982). Cf. Smith (2005, Section 3, pp.165-166).

The following regularity conditions, cf. Gongalves and White (2004), are adaptations for the boot-
strap moment condition context of Parente and Smith (2021, Assumptions 3.1-3.6, p.382) and Smith
(2011, Assumptions 2.1, 2.2, p.1199, and 5.1, 5.3, p.1210).

[5]



Let G = El0g(80)/98), Q = El0qi(60)/00'], Ha = E[0hi(95)/00/], R = 0r(60)/06' and Ry —
or(6y)/0a’.

AssumPTION 2.1. (a) (Q,F,P) is a complete probability space; (b) the finite d.-dimensional sto-
chastic process z;: Q +—— R (t = 1,2,...), is stationary and strong mixing with mixing coefficients of
size —3v/(v — 1) for some v > 1 and is measurable for all ¢, (t = 1,2, ...).

Let I(z > 0) denote the indicator function, i.e., I(4) =1 if A true and 0 otherwise.

ASSUMPTION 2.2. (a) St — 00 and Sp = O(T27") with 2 < n < 1; (b) k(-): R — [~kmax, kmax),
Emax < 00, k(0) # 0, k1 # 0, and is continuous at 0 and almost everywhere; (c) ffooo k(z)dz < oo
where k(z) = I(z > 0)sup,>, [k(y)| + I(z < 0)sup,<, |k(y)]; (d) [K(X)| > 0 for all A\ € R, where
K(\) = (27r)_1/k(w) exp(—izA)dx.

AssuMPTION 2.3. (a) ¢: R% x © —— R% is F-measurable for each § € ©, @ = A x B, A
and B compact subsets of R% and R% respectively; (b) ¢:(-): © — R% and r: © — R are
continuous on © a.s.-P; (c) §y = (af, By) € O is the unique solution to E[g;(6)] = 0 and r(6) = 0; (d)
Elsupgee [1¢:(6)]|*] < oo for some o > max(4v, %), (e) ¢:(9) is global Lipschitz continuous on O, i.e., for
all 6,0° € ©, ||q.(0) — q.(0°)|| < L;||0 — 6°|| a.s-P and supTE[Zz;l Li/T] < o0; (£) E(0) is finite and
p.d. for all 6 € ©.

ASSUMPTION 2.4. (a) 0y € int(0); (b) ¢(#): © — R% is continuously differentiable on a neigh-
borhood N of g, (t = 1,2,...), and E[supge [|0g:(0)/00' ||/ (¢/(1+)=1] < o0 for some & > 0; (c) r(-):
© — R is continuously differentiable in a neighbourhood N of 6y and supge  |0r(6)/06'|| < oo; (d)
rank(G) = dg, rank(R) = d, and rank((H,, R.)") = d,.

REMARK 2.2. These assumptions are generally stronger than required for the consistency and as-
ymptotic normality of the restricted GMM estimator 07 (2.4) but are imposed here to provide for a
unified treatment of GMM and GMM-KBB; e.g, the non-bootstrap results allow strong mixing to be
replaced by ergodicity, see Hansen (1982, Assumption 2.1, p.1032) and also Hall (2005, Assumption 3.8,
p.66). Andrews (1991, Lemma 1, p.824) and Smith (2011, Assumption 2.1, p.1199) require the weaker
E;‘; §2a(5)*=D/? < oo implied by the mixing condition Assumption 2.1(b); see Andrews (1991, Com-
ment, p.824). Assumption 2.4(b) is slightly stronger than E[supge . [|0g:(0)/00'(|*/(*~Y] < 0o, Smith
(2011, Assumption 2.5(b), p.1200), and is required for heteroskedastic autocorrelation consistent (HAC)
bootstrap estimation of Z; see Lemma C.3 of Appendix C. See Smith (2011, pp.1199-1201, p.1210) for

further discussion of Assumptions 2.1-2.4.

For W, p.d., My, = (Q"(W,)"*Q + R'R)~" p.d. by Assumption 2.4(d). Let Hy, = Kw, Q' (W,)™*,
qu = (RquR/)_lRquQl(Wq)_l and qu = qu — quR/(RquR/)_lRqu. Also let qu =
(W)™t = (W,) " QHu,.

ProOPOSITION 2.1. (Consistency and Limiting Distribution of éT) Let p.s.d. Wyr — Wy, prob-P,

[6]



W, p.d. If Assumptions 2.1, 2.2 and 2.3(a)-(d)(f) are satisfied, then (a) Op — 6, fp — 0, prob-P. If,
in addition, Assumption 2.4 holds, then (b)

T2(07 — 00) =" N(0, Hw,EHiy ), T" iy =7 N(0, Jw, =iy, )-

REMARK 2.3. The first order asymptotic representations for O and ji are TY/2(0p — 00)/kY/2 +
Hw,(T/S7)Y%4r(00) — 0,TY?1ir/kY? — Jw, (T/S7)*?4r(60) — 0, prob-P, respectively; cf. Smith
(2001, (B.15) and (B.17), p.1229).

REMARK 2.4. An efficient restricted GMM estimator of 6y replaces Wyr in (2.5) by a p.s.d.
variance estimator Zp for = such that Zp — Z, prob-P. The efficient restricted GMM estimator
Or = areg glinQT(O) with Lagrangean function L£7(0, 1) = Qr(0)/Sr — ku'r(0), Lagrange multiplier
estirnatore ﬁ; and efficient GMM criterion Q7 (0) = G7(0) (Er) 'Gr(0). Hence, cf. Proposition 2.1,
01 — 6o, fip — 0, prob-P, and T'/2(07 — 6y) =9 N(0,K=), T"/?fip —% N(0, J=EJL) are asymptot-
ically independent. Cf. Smith (2011, Theorem 5.1, p.1210). Numerous HAC estimators =; have been
proposed under various assumptions; see inter alia Newey and West (1987), Gallant (1987), Andrews
(1991) and Ng and Perron (1996). Smith (2005, 2011) suggest an approach using the transformed mo-
ment indicator vectors g7 (0) (2.3), (t = 1,...,T). In particular, under the assumptions stated above,
given an initial 7"/2-consistent estimator 07 for 0, the standard outer product and centred variance
estimators Y2, g (07)qer (07)' /T, 3y (qr(07) — dr(07))(qur (1) — Gr(07))' /T — Z, prob-P, from
Assumption 2.2(a), since (T'/Sr)'/24r(Or) = O,(1); see Smith (2005, Theorem 2.1, p.165) and Smith
(2011, Lemma A.7, p.1223).* Other HAC consistent estimators of = obtain if the empirical measure
T—! is replaced by implied probabilities w7, (t = 1,...,T), satisfying Assumption 3.2, see Sections 3.1
and 3.2. The scaling (;onstants k1 and ko may also be replaced by their respective sample counterparts
b=k (5) /S G =12).

REMARK 2.5. In the absence of «, i.e., (2.2) E[h(2,8,)] = 0, 7(8y) = 0, My, is replaced by
(Q'(W,)~1Q)~! where now Q = E[0¢;(8,)/08']. Assumption 2.4(d) rank((H., R.)") = d, is no longer

required.

4Smith (2011, Section 2.5, pp.1201-1202) establishes the first order asymptotic equivalence between ZEr(6g) =
23:1 qt7(00)qe7(00)’ /T and HAC consistent estimators of = based on the induced p.s.d. kernel k*(-) = [ k(b—-)k(b)db/k2,
cf. Andrews (1991, p.822). Moreover, Parente and Smith (2018, Corollary 3.1, p.7) demonstrates the higher order opti-
mality of Ep(6o) with the kernel

k(z) = (%)1/2 iJl (67%) if x#0 and (%)1/23% if z=0,
which induces the optimal quadratic spectral or Bartlett-Priestley-Epanechnikov kernel

3 (sin 67y/5
(6my/5) " 6my/5
The Bessel function J,(+), see Gradshteyn and Ryzhik (1980, 8.402, p.951), is given by

kés (y) =

— cos 6my/5).

2k

v

z > z
Ju(z) = =— S |
@) =% I;O( ) T T kT 1)



REMARK 2.6. Assumptions 2.3, 2.4 and Proposition 2.1 are easily adapted for unrestricted GMM
estimation of 8,. Given Wyr, a (dg4,dy) p.s.d. matrix such that Wypr — W,, prob-P, W, p.d., an
unrestricted GMM estimator 3y = argminQr(8)/k, where the unrestricted GMM criterion Qr(3) =
ar(B) (Wyr)~*gr(B). The matrices af)ffze Proposition 2.1 relevant for unrestricted GMM estimation
of By are Ky, = My, = (G'(Wy)"'G)™', Hy, = Kw,G'(Wy)~', Jw, = 0 and Py, = (W)~ —
(Wy)~*Hy,. Thus, Br — By, prob-P, T2y — By) —*» N(0, Hw,XHjy ), cf. Proposition 2.1(a)(b),
and TY2(B; — By)/kY? + Hw,(T/Sr)?4r(60) — 0, prob-P, cf. Remark 2.3. Cf. Hansen (1982,
Theorems 2.1, p.1035, and 3.1, p.1042) and Hall (2005, Theorems 3.1, p.68, and 3.2, p. 71). Substituting
p.s.d. X7 — X, prob-P, for Wyr, the efficient unrestricted GMM estimator By — By, prob-P, TY/2(B,—
Bo) =% N(0,(G'S71G)~1) and TY2(By — By)/kY2 + Hx(T/S7)2§7(09) — 0, prob-P, where B, =
argminQy(8)/k with efficient unrestricted GMM criterion Q7 (3) = §r(8) (S1)Lgr(B). Smith (2005,
T}Buffrems 3.1, p.165, and 3.2, p.166) demonstrates that two-step, CUE and iterated GMM estimators

based on QT(B) are asymptotically equivalent to the optimal GMM estimator BT.

2.2 GMM Inference
2.2.1 Overidentification Tests

To test the validity of the maintained over-identifying moment conditions (2.1), Hansen (1982)

proposed the J-statistic, viz.
Jr = (T/S1)ir(Br) (Er) " or(Br),

where X1 — 3, prob-P, e.g., Xp = Zthl g (B)ger(Br)' /T, cf. Remarks 2.4 and 2.6.

PROPOSITION 2.2. Under Assumptions 2.1, 2.2, 2.3(a)-(d)(f) and 2.4, if ¥7 — X, prob-P, and
m > p, Jr =% x*(dy — dg).
Cf. Hansen (1982, Lemma 4.2, pp.1049-1050).

2.2.2 Specification Tests

Smith (2011, Section 5, pp.1209-1213) proposes a number of GEL classical-like statistics to test
the additional moment conditions and parametric restrictions (2.2). Correspondingly, we consider a

non-negative likelihood ratio-like statistic,
LRy [k = (T/Sr)(Gr(01) — ErSy(Sr) ' 4r(Br)) (Er) " (4r(0r) — ExSy(Sr) " ar(Br)),  (2:6)

where S, = (14,,0)" is a (dg,d,) selection matrix, i.e., Spgr(¢) = gr(83), cf. Smith (2011, (5.6), p.1212);
and the more common, but potentially negative valued, difference statistic as the normalised difference

of GMM criteria

Dr/k = (T/Sr)(ir(07) (Z1)) " tir(0r) — §r(Br) (1) ar(Br)), (2.7)



cf. Newey (1985) and Smith (2011, (5.6), p.1212), where Xp is the (d,, d,) top left diagonal block of

p.s.d. Ep, Ep — =, prob-P; a simplified score-like statistic
Sr/k = (T/Sr)ir(0r) ((Er)) " = SyPsrS,)ir(0r), (2:8)

where Py — Py, prob-P, cf. Remark 2.6, cf. Smith (2011, p.1213); a Lagrange multiplier-like statistic,
cf. the GEL LM-type statistic LM, Smith (2011, (5.4), p.1211),

LMk =T(GrOr) (Er) " /S7 2 By /Y ) Snu(Sh  YarSn) 1Sy (Gr(Or) (Er) 71/ SH 2, il /K2,
(2.9)
where the (dg + d,, dj, + d;) selection matrix Sy, = diag(Sh,la,), Sn = (1a,,0)" is a (dq,dn) selection

matrix, i.e., S} dr(-) = ho(-); a generalised Wald-type statistic
GWr/k = T(gr(07)' /Sy %, r(0r) [k *) W= (gr(07)' S (D7) /K2Y, (2.10)

where gr(-) = (Ig, — ErSq(X7)~1S))Gr(-), cf. Smith (2011, (5.5), p.1211), and the unrestricted es-
timator Oy = (é/T,B/T)' defined to circumvent the lack of identification of « under (2.1). Note that
the moment vector Gr(-) forming GWr may be expressed as (0, (hr(-) — (E1)ng(S7) " 97(-))"). An
alternative form for the averaged moment indicator ¢r(-) is the implied probability weighted average
() = Zthl mrqer(+) below (3.4), where the implied probabilities myr, (t = 1,...,T), satisfy Assump-
tion 3.2; see Sections 3.1 and 3.2.

The statistics (2.6), (2.8), (2.9) and (2.10) require consistent estimators Zr of = and ¥zr of

. 7

Ye= ( % Jgé]?g )
where Pz, K=, J= and M= are defined above Proposition 2.1, together with consistent estimators of
Q and R; note Je=JL = (RM=R')™! — I,,. E.g., with T1/2_consistent restricted 7 and unrestricted
Or = (&'T,B/T)’ estimators of 0y, Zp = Zthl a1 (07)qer (07 )T or Ele a7 (07)qr(07)' /T, cf. Remark
24, Qr = 3., Qur(07)/T or 31—, Qir(07)/T, where Qur(0) = dqir(0)/0¢', (¢ = 1,...,T), cf. Smith
(2011, p.1201), and Ry = R(07) or R(A7), where R(0) = r(0)/00'.

PRroOPOSITION 2.3. Let p.s.d. Zr — Z and p.s.d. Y=y — W=, prob-P. If Assumptions 2.1, 2.2,
2.3(a)-(d)(f) and 2.4 are satisfied, then
Tr =% *(dy — dy + d, — do),

where 7 = LR, D, S, LM or GW. Moreover, LRr, Dr, Sy, LM and GWr are asymptotically
equivalent.

Cf. Smith (2011, Theorem 5.2, p.1212).



REMARK 2.7. In the absence of «, i.e., E[h(z, 8y)] =0, r(8y) = 0, GWr is now based solely on the
unrestricted GMM estimator 3p. The moment function hp(By) = hp(Br) — (ET)hg(ET)*lgT(BT) is
a GMM-efficient estimator of E[h(z, 8,)] under the maintained hypothesis (2.1) and is asymptotically
equivalent to Zthl frtThtT(BT), see Smith (2011, (3.2), p.1205), where 7t¢r, (¢ = 1,...,T), are the
efficient unrestricted GEL implied probabilities defined in (3.3) below; cf. Ruud (2000, (22.23), p.575).
Cf. Remarks 2.5 and 2.6.

REMARK 2.8. See inter alia Newey and West (1987) for GMM tests of parametric restrictions
r(By) = 0 maintaining (2.1).> Newey (1985), Eichenbaum et al. (1988) and Ruud (2000) detail GMM
tests of additional moment restrictions E[h(z, 5)] = 0, cf. Remark 2.5; also see Smith (1997, Section
I1.3, pp.513-514) and Smith (2011, Section 5, pp.1211-1213) for GEL-based tests.®

3 GEL Implied Probability GMM-KBB

Let P} denote the bootstrap probability measure conditional on the observational data {z;}7_; with
E* and var* the corresponding conditional expectation and variance respectively.

Let mp = [T/St] denote the integer part of T'/Sp. The indices t¥ and the consequent bootstrap
sample qf:T(H), (s = 1,...,mp), denote mr independent draws with replacement from the index set
Tr = {1,...,T} and the bootstrap sample space {q(0)}1_, with bootstrap sampling probabilities
Pilatr (0) = qr (0)) = mr, (¢ = 1,...,T). The probabilities m;7 can depend on the data and sat-
isfy 0 < myr < 1 w.p.a.l, 23:1 mr = 1 and maxi<i<7 |Tmr — 1| — 0, prob-P; see Assumption 3.2
below. The identically sampled KBB method of Parente and Smith (2018, 2021) sets the bootstrap

sampling probabilities as the standard empirical GMM measures, i.e., 7;r = T, (t =1,...,T).

3.1 GEL Implied Probabilities

Of particular interest here are the bootstrap sampling probabilities myp, (¢ = 1,...,T), gener-
ated from GEL criteria. The relevant GEL criteria corresponding to (2.1) and (2.2) are 755T(ﬁ, Ag) =
Zthl o( ;gtT(ﬁ)/k1/2)/T and ’ﬁgT(H, Ag) = Zthl o( ;th(H)/k1/2)/T respectively, where p(-) denotes a
concave function normalised so that p(0) = 0 with derivatives p,(-) = & p(-)/0v?, (j = 0,1,2,...); we set,

without loss of generality, p;(0) = —1, (j = 1,2). Given unrestricted, B, see Remark 2.6, and restricted

SLRr (2.6) and Dr (2.7) set Sy = Iq and E7 as g with Gr(07) replaced by §r(Br) where Bp is the restricted
estimator for By. Sz (2.8) is similarly re-defined as Sr/k = (T/ST)ir(Br) (1) 'GrMsrGL(S7) " g7 (Br) with
Gr — G, Msp — Ms, prob-P. LM (2.9) sets S}, ,, = diag(0, I, ) and, hence, LM = T/, Ry Msp R fup with fup the
Lagrange multiplier estimator associated with the parametric restrictions r(8,) = 0; note G’T(ET)*l(T/ST)/lZ{;T(BT) —
R’TTl/2;1T — 0, prob-P, from the first order conditions. GWr (2.10) sets (jT(éT) as f]T(BT), i.e., 0, and is, thus, rendered
as GWrp = Tr(87) (R MsRL) ™ 1r(Or).

LRy (2.6) and Dr (2.7) replace Gr(fr) by Gr(By) where Bp is the restricted estimator for By. Sr (2.8)
is similarly re-defined. LMy (2.9) sets S, = diag(Sy,0) and R = 0 eliminating fip, ie., thus, LMg/k =
(T/St)ar (Br) (Er)~1SK(S) P=rSp) 1S4 (Er) Yar(Br). GWr (2.10) sets Gr(0r) as gr(Br) and r(0r) = 0, ie.,
GWr [k = (T/S7)hr (Br)'S; Per Sphr (Br).

[10]



v

01 (2.4) GMM estimators, the corresponding GEL estimators of \,, (0 = g, ¢), are
A\gr = arg  sup ﬁ;T(BT,Ag),/U\qT =arg sup ﬁST(éT,)\q), (3.1)
Ag€AGT Ag€AGT
where the parameter spaces A,r, (0 = g, q), are defined in Assumption 3.1(b) below.

AssumPTION 3.1. (a) p(-) is twice continuously differentiable and concave on its domain, an open
interval V' containing 0, p;(0) = py(0) = —1; (b) A\, € Ayr where Ayr = {)\, : || No]| < D(T/S7)~¢},
(0 = g,q), for some D > 0 with ﬁ <(<3.

Cf. Smith (2011, Assumption 2.4, p.1200).

PROPOSITION 3.1. If Assumptions 2.1, 2.2, 2.3(a)-(d)(f) and 3.1 hold, (a) A, — 0, prob-P, and,
(b) if in addition Assumption 2.4 holds, (T/S7)"/?Agr —% N(0,2 (14, — QHw,)=(la, — QHw,)'E").

REMARK 3.1. The first order asymptotic representation for Az is (T/S7)"/?Ayr /K2 +21W, Py, (T/St)"*4r(00) —
0, prob-P; see Proposition B.1. With the efficient restricted GMM estimator éT, see Remark 2.4, substi-
tuted in the requisite GEL criterion, i.e., IAquT(éT, Ag), the resultant GEL estimator (T/ST)1/25\,1T —dr
N(0, P=) which is asymptotically distributed independently of TV/2(01 — 6), prob-P; cf. Smith (2011,
Theorem 5.1, p.1210). A similar result to Proposition 3.1 obtains with the unrestricted GEL criterion
Prr(Brs Ag)s viz., Agr — 0, prob-P, (T/Sp)2Xgr =47 N(0,57(Is, — GHw,)S(la, — GHw,)'S™)
with (T/S7) Y2 Ay / kY 2457 W, Py, (T /S1)**§7(8y) — 0, prob-P, see Remark B.1. When the efficient
unrestricted GMM estimator 3 is substituted for 3, (T/S7)' ?Xyr — N(0, Pg) and is asymptotically
distributed independently of T1/2(BT — Boy), prob-P; cf. Smith (2011, Theorem 2.3, p.1201).

We define unrestricted (2.1) and restricted (2.2) GEL implied probabilities

- ~ v/ v
Fop = pl()‘;TgtT<6T)/k1/2) Fop = pl()‘qTQtT(eT)/kl/Q) (3.2)
tT — <7 < y T — o/ o ) .
ZST=1 P1(/\gT9sT(5T)/k1/2) Zstl P1 ()‘qTqST(eT)/kl/2)

(t=1,...,T), respectively; cf. Smith (2011, (3.1), p.1205).

REMARK 3.2. Particular examples are : EL 7yp = 1/T(1 + X;TgtT(BT)/k'l/Q), ity = 1/T(1 +
v/ v ~ ~. ~ ~
)‘qTQtT(GT)/kl/z)v cf. Owen (1988); ET: @ty = eXP(A;TgtT(ﬁT)/kl/Q)/ E::lexp(/\lngsT(BT)/kl/2)’
T = eXp(:\;T(]tT(éT)/kl/Z)/ZZZI exp(S\;quT(éT)/kl/Q), cf. Kitamura and Stutzer (1997); CUE

~ ~ ~ ~ v/ v

e = (1+ Ngger(Br) /KY2) ) Sy (1 + Agrger(Br) /KY2), #ir = (1 + Agraur(Br) /K72)) 0, (1 +
X;TqST(éT)/kl/Q), cf. Back and Brown (1993). See also Brown and Newey (1992, 2002) and Newey and
Smith (2004) for the general i.i.d. case. Members of the Cressie-Read (1984) family of discrepancies
also have a dual counterpart in the GEL class; see Newey and Smith (2004, Theorem 2.2, p.224). The

ratios 7ty and 7y, (6 = 1,...,T), sum to unity, are bounded between zero and unity w.p.a.1, prob-P, and

satisfy Assumption 3.2 below; see Lemma B.1.” GEL implied probabilities induce empirical measure

"Implied probabilities myr, (t = 1,...,T), may fail to be non-negative in finite samples. Antoine et al. (2007, (2.8),
(2.9), p.466) provide a remedy without affecting the analysis by defining appropriate shrinkage estimators. E.g., replace
7y by (e + T Le7)/(1+ &7), (t = 1,...,T), where &7 = —T min[min; <;<7 7¢T, 0]

[11]



counterparts to the expectation operator in (2.1) and (2.2) ensuring that the moment conditions are

satisfied in the sample, i.e., Zthl ’frtTgtT(BT) =0, Zthl 7uTth?fT(éT) =0.

Of particular interest are the efficient unrestricted (2.1) and restricted (2.2) GEL implied probabilities

~1 ~/

P pl(AngtT(BT)/k1/2) P pl(AqT~(1/tT(éT)!k1/2) , (3.3)

T ~1 ~ s NtT T
23:1 pl(/\ngsT(BT)/kl/Q) 25:1 P1 ()\qquT(GT)/kl/Q)

(t = 1,...,T), where the efficient GMM estimators 3, and 67 are substituted in the respective GEL

criteria above; see (3.1).
REMARK 3.3. Moment estimators with the efficient implied probabilities (3.3) substituting for the
standard empirical measure are optimal; see, respectively, Brown and Newey (1998, Corollary 1, p.458)

and Smith (2011, p.1206) for the i.i.d. and weakly dependent contexts.

3.2 GEL Implied Probability GMM Estimation

The restricted GEL implied probability (7-GEL) GMM estimator é; and associated GMM crite-
rion play important roles in the analysis elucidated below. In particular, the restricted 7-GEL GMM
estimator provides the appropriate centring for both inefficient and efficient restricted GMM bootstrap
estimators under the KBB sampling schemes considered in this paper. This 7-GEL GMM estimator
minimises a corresponding GMM criterion which, rather than using the standard sample average mo-
ment indicator ¢r(-), replaces the standard GMM empirical measure 7! by the bootstrap mass point
probabilities myr, (¢ = 1,...,T), as weights. The restricted 7-GEL GMM estimator is asymptotically
first order equivalent to and, thus, its empirical distribution provides an alternative, to that of the
corresponding GMM estimator.

Redefine the GMM criterion Qp(0) (2.5) as the 7-GEL GMM criterion
QF(8) = 47(6)' (Wyr) ™" d7.(6) (3-4)

with the GEL implied probability-weighted sample moment ¢7.(9) = Zle mrqer (0) replacing the em-
pirical sample moment Gr (). The restricted 7-GEL GMM estimator é; is then defined by
b = arg minQZ.(6), (3.5)
0€O,

with the corresponding Lagrange multiplier estimator ji]. of i associated with the parametric constraint
7(#) = 0 in the 7-GEL GMM Lagrangean £L7.(0) = O%.(0) /St — 2u/r(6) /.

AssumpPTION 3.2. (a) 0 < mpr <1 w.p.a.l, Zthl mr = 1; (b) maxi<i<7 [Tmer — 1| — 0, prob-P.

PROPOSITION 3.2. Let Wyr — Wy, prob-P, W, p.d. and Wyr p.s.d. Then, under Assumptions
2.1, 2.2(b)-(d), 2.3(a)-(d) and 3.2, if Sy — oo and Sy = o(TV/2), (a) Oy — 6y — 0, jif. — 0, prob-P.
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If, in addition, Assumptions 2.2(a) and 2.4 hold and if (T/St)'/2¢%(6y) = O,(1), then (b) T2y —
00)/k'/? + Hw, (T/St)Y?§(00) — 0, prob-P, and T2 7. /kY? — Jw, (T /St)Y?3(09) — 0, prob-P.

Cf. Remark 2.3.

COROLLARY 3.1. Let myp = Ty (3.2), (t = 1,...,T). Also let Wyr — W,, prob—P Wyr p.s.d.
and W, p.d. Then, under Assumptions 2.1, 2.2, 2.3(a)-(d)(f), 2.4 and 3.1, T/2 (9 —f07) — 0 and
T'2p% — 0, prob-P.

REMARK 3.4. As noted in Remark 3.2 the restricted GEL implied probabilities 71, (t = 1,...,T),
satisfy Assumption 3.2. Corollary 3.1 follows directly from Proposition 3.2 since (T/S7)Y2¢%5(0) —
QHw, (T/S7)%4r(0y) — 0, prob-P; see Corollary B.1 with ¢ = 1. Consequently, the first order
asymptotic properties of the 7-GEL GMM estimator 57; (3.5), being equivalent to the restricted GMM
estimator éT, are invariant to choice of limiting weighting matrix Wy used in the 7-GEL GMM criterion
Or.(0) (3.7). With the efficient restricted GEL implied probabilities 7y = 7,7 (3.3), (t = 1,...,T),
(T/S7)Y235(00) — QH=(T/S7)**Gr(09) — 0, prob-P. Thus, from Proposition 3.2, since Hy, QHz =
Hz, Section B.2(b)(c), and Jw, QHz= = 0, Section B.2(d), the restricted 7-GEL GMM estimator 5’7; is first
order asymptotically equivalent to the efficient two-step restricted GMM estimator (Z)T, ie., T2 (é; —
éT) — 0, and T/ QﬁfTr — 0, prob-P, a result again asymptotically invariant to the choice of weighting
matrix W.

REMARK 3.5. The unrestricted 7-GEL GMM estimator 3y = arg mingep OF.(3) where the 7-
GEL GMM criterion O%(8) = §7(8) (Wyr)~97(8), Wyr p.s.d., with the m-weighted sample average
9r(B) = ZtT 1 merger (B) replacing gr(5) in the GMM criterion Or(B), see Remark 2.6. If Wor — Wy,
prob-P, W, p.d., TV2(35.—By) k" >+ Hw, (T/Sr)"/*3%(B,) — 0, prob-P, cf. Proposition 3.2. Moreover,
if mpr = (3.2), (t = 1,...,7), since (T/Sr)V265.(8y) — GHw, (T/Sr)?4r(By) — 0, prob-P, by
Remark B.6(b), Tl/Q(B; — By) — 0, prob-P, cf. Corollary 3.1, invariant to the choice of metric W,
cf. Remark 3.4. Similarly, the 7-GEL GMM estimator B; is first order asymptotically equivalent to the
efficient two-step GMM estimator BT, ie., Tl/z(B; — BT) — 0, prob-P. With efficient restricted implied
probabilities 7yp, (t = 1,. T) (3.3), since Hx(T/St)2§5(8y) — S HH(T/ST)I/qu(GO) — 0, prob-
P, by Lemma B.2(b), T1/2(,6’ BT) — 0, prob-P, i.e., the --GEL GMM estimator ﬁT with efficient
unrestricted metric (X7)7! is first order asymptotically equivalent to the efficient restricted two-step
GMM estimator (.

REMARK 3.6. The discussion of Remark 3.4 may easily be adapted for the unrestricted GEL implied
probabilities 7, (¢ = 1,...,T). The first order asymptotic properties of the #-GEL GMM estima-
tor é; from the 7-GEL criterion OF(#) (3.4) with efficient restricted metric (E7)~" follow from the
first order conditions Hz(T/St)'/%§; (GT) — 0, prob-P. Now, by Remark B.6(b), (T/St)'/2¢5(00) —
((T/S1)!?Gr(00)—ES, X~ "Wy P, Sy (T/Sr)24r(80)) — 0, prob-P, yielding T2 (07 ~0r)~ K=Sy(Ms) TV (B, —
BT) — 0, prob-P, cf. Remark 2.6. Thus, with efficient unrestricted probabilities 71, (t = 1,...,T),
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~7

T1/2(9T — éT) — 0, prob-P, i.e., é; — O is first order equivalent to the efficient restricted estimator 7.

3.3 GEL Implied Probability GMM-KBB Estimation

We adopt the notation of Gongalves and White (2004). For a bootstrap statistic W, we write
Wi — 0, prob-P}, prob-P, if for any € > 0 and any § > 0, limy_,o P(P;(|W5| >¢) > ) = 0.
Let W7 — Wyr — 0, prob-P7, prob-P, W7* p.s.d. The restricted m-GEL GMM-KBB estimator

qgmr gmr
YT *

0. . is defined by

mr
é;*T = arg minQ,’;L*T (9), (3.6)

0€0,
with 7-GEL GMM-KBB Lagrangean £7* () = Q”m*T (0)/St —2p/'7(0)/k, estimator fi; of u, the La-

mT

grange multiplier associated with the parametric constraint r(6) = 0, and 7-GEL GMM-KBB criterion
Tk ATk % —1 ~m*

QmT (0) - q7nT (G)I(quT) QmT (9) (37)

where g% (0) = >0 q=7(0).

Theorem 3.1 states the consistency of the 7-GEL GMM-KBB bootstrap estimator éﬂm*T
THEOREM 3.1. (7-GEL GMM-KBB Estimator Consistency.) Let W[ — Wy p — 0, prob-P}, prob-

amr

P, Wi ps.d., Wyr — W, — 0, prob-P, Wyr p.s.d. and W, p.d. Under Assumptions 2.1, 2.2(b)-(d),
2.3(a)-(e) and 3.2, if S; — oo, Sg = o(T*/?) and TV/*/my — 0, then éjn*T —é; — 0 and fi,,. —jip — 0,
prob-P¥, prob-P.

Theorem 3.2 demonstrates the uniform convergence of the distribution of the appropriately centred
m-GEL GMM-KBB estimator é;*T (3.6) to that of the centred restricted GMM estimator 07 (2.4).

THEOREM 3.2. (m-GEL GMM-KBB Estimator Distribution Consistency.) Let Assumptions 2.1-2.4
and 3.2 hold. Then, if W77 ~— Wyr — 0, prob-Pg, prob-P, W7= p.s.d., Wyr — W, — 0, prob-P, Wr
p.s.d. and W, p.d.,

sup [PL(T"/3(8),, —07) < x) = P(T"/(br — 6) < x)| — 0, prob-P,
zER%

sup [PS(TY2 (i, — iiF) < @) = P(T*?fir < @)] 0, prob-P.
TERIT

Note the centring of the 7-GEL GMM-KBB distributions for é:; and fi; at the --GEL GMM esti-

mators é; and [i]. respectively.

REMARK 3.7. If myp = 74 (3.2), (t =1, ..., T), the #-GEL GMM-KBB estimator é; may be replaced
by the restricted GMM estimator 01 and ﬁ? omitted in the statement of Theorem 3.2; see Corollary 3.1.
The first result is not specific to 7-GEL GMM-KBB and also holds for other block bootstrap methods;
e.g., Theorems 3.1 and 3.2 apply to standard KBB, cf. Parente and Smith (2018, 2021), which uses the
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standard GMM bootstrap sampling probabilities w7 = T, (t = 1,...,T), thus, also entailing é; and
[T being replaced by Or and [i7 respectively. Moreover, with the efficient GEL implied probabilities
mr = T (3.3), (t = 1,...,T), see Remark 3.4, possibly counterintuitively, the 7-GEL GMM-KBB

*

estimator éﬂm is centered at the efficient GMM estimator 67 in Theorem 3.2, rather than the inefficient

T

el S e £

07, whether or not an efficient metric =77, Z7*

GMM-KBB criterion O7* (6).

— 27 — 0, prob-P¥, prob-P, is employed in the 7-GEL

REMARK 3.8. Lemma C.3 of Appendix C establishes that, under Assumptions 2.1-2.4 and 3.2, if
(T/S7)'245(60) = O,(1), then =* (é;*T) — Er — 0, prob-P*, prob-P, Zr — E — 0, prob-P, where
e Or) = S0 6500, Ve (B ) /i 00 Ei5ty (B ) = S0 (07 2 (B )=t (B ) (0 (O )=
g (Brn)) .

REMARK 3.9. Theorems 3.1 and 3.2 are easily adapted for unrestricted GMM estimation with
suitable modifications of Assumptions 2.1-2.4. With bootstrap sample gsz(ﬁ), (s = 1,....,mr), mr

independent draws with replacement from the sample space {g;7()}~_; with bootstrap sampling prob-

abilities P (977 (8) = gir (B)) = mer, (t = 1,...,T), define the unrestricted 7-GEL GMM-KBB esti-

mator 3, = arg Igianz*T (B) where Q7 (8) = grx (B) (Wi )~ tgm: (8), Wrs _ p.s.d. and g7 (8) =
€
Yo geer(B)/mp. I Wre  — Wyr — 0, prob-Pj, prob-P, Wyr — Wy, — 0, prob-P, W, p.d., then

gmr
T3k

B;*T —B7 — 0, prob-P*, prob-P, where 37 is defined in Remark 3.5, and SUp, s [P (TY2(B,,. —B7) <
z) — P(TY?(By — By) < x)] — 0, prob-P. Similarly to Remark 3.5 above, employing the unrestricted
GEL implied probabilities mr = 7 (3.2), (¢t = 1,...,T), the unrestricted #~-GEL GMM estimator
B; is replaced by BT, a result that also applies with standard GMM bootstrap sampling probabili-
ties myp = T, (t = 1,...,T). With efficient unrestricted GEL implied probabilities ;7 = 77 (3.3),
(t=1,..,T), see Remark 3.5, B; is replaced by the efficient unrestricted GMM estimator BT contradict-
ing Allen et al. (2011, Theorems 1 and 2, p.114) for their EL. MBB method, both estimators coinciding
only if W, = X.

Alternative less computationally intensive bootstraps may be constructed given the 7-GEL GMM
estimator é; thereby avoiding the use of the 7-GEL GMM-KBB estimator é::; Cf. the fast subsampling
procedure of Hong and Scaillet (2006); see also Camponovo et al. (2012).

COROLLARY 3.2. Suppose W, — W, — 0, Hw,r — Hw, — 0 and Jw,r — Jw, — 0, prob-P, W,r
p.s.d. and W, p.d. Then, under the conditions of Theorem 3.2, if W7» —W,r — 0, H{}V’;mT —Hw, 7 — 0

and J;r‘,’;mT - Jw,r — 0, prob-P, prob-P,

sup | P5(—H: . (T/S7) V2G5 (07) < @) — P(TY2(07 — 00)/k"/? < x)| — 0, prob-P,

rd I
TER™O

sup [P (I3 o (T/ST)YV2(@05 (07) — 45(07)) < @) — P(TY?jig /kY/? < )| — 0, prob-P.

TERIr ¢

Suitable estimators H{}‘}“q my and JQV’; my May be constructed straightforwardly from, e.g., an*T (éT)
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or Q. (07), where Q7 () = Y17, 0qf 1 (+) /00 /mar, R(Br) or R(f7) and Wi .
REMARK 3.10. Cf. the influence function corresponding to the 7-GEL GMM criterion OF(6) (3.4),
vViZ.,

Iy, (20 Fr) = =Hy, +(T/S1) (a5 (07) — 47 (07)), (¢ = 1,...,T),

where H{, ;- denotes an estimator of Hy, using Q%(é;), R(é;) and Wyr. Note that the term d;(é;) is
omitted in Corollary 3.2 since, from the 7-GEL GMM first order condition for é;, H{}VQT(T/ST)I/ZqA}(é;) —
0, prob-P. Cf. Gongalves and White (2004, Corollary 2.1, p.203); also see Davidson and MacKinnon
(1999).

REMARK 3.11. Computation may further be simplified by exploiting a suitable adaptation of the
GEL-KBB Local UWL Lemma A.4 in Appendix A, i.e., supge ||QA,’§L*T (6)— QA’QE(G)/S;/QH — 0, prob-P%,
prob-P, and replacing, e.g., an*T() by Q%(-) evaluated at Or or é; and W7 by Wer in the definition

Tk Tk ™ ™
of Hy ., and Jgr = to form Hy,  and Jy, 1,

sup [P (—Hiy, o(T/S7) /25 (07) < x) = P(TY?(0r — 0) /k"/? < 2)| — 0, prob-P,

xz€R%0

sup [PL (2 (1/51) 205, (0F) = 45 07)) < ) = PP 2 K12 < )] = 0, prob-P.
TeRr

A similar argument based on the UWLs supyceo ||Q}(9)—QAT(9)||/S;/2 || — 0, prob-P, supgeg ||QT(0)/S;/2 -
Q(0)/k?|| — 0, prob-P, cf. Lemma A.1, with Hy, 7 and Jy,r constructed using the estimator Qr(9)
evaluated at éT or é;, yields

sup [P (~Hw,r(T/S1)"* iy, (67) < 2) = P(T'/(Br — 60) /k/* < 2)| = 0, prob-P,
TER

sup [P (Jw,r(T/57)"/* (@5, (b7) — 47(07)) < @) = P(TY i /K'/* < )| — 0, prob-P.
z€Rdr

Strengthening Assumption 2.4(d) to include @, (and, thus, @) f.c.r. permits other confidence regions
for the full vector 6 to be formulated; conservative confidence regions for a smooth function of #y may be
obtained by the “projection” method, see, e.g., Dufour (2003, Section 6.2, 791-792). Let XZB(‘) denote
a chi-square c.d.f. with dy degrees of freedom. Also let Qr — @, Q, f.cr., and Er — =, prob-P.
To test 6 = 6y, the score statistic Sr(00) = (T/St)4r(00) (Er) " Qr(Q%(Er) Q1) ' Q4 (Er) "1 4r(00)

converges in distribution to Xﬁe(-) /k, prob-P, and is, thus, asymptotically pivotal.®
COROLLARY 3.3. Under the conditions of Theorem 3.2, if Q7 — @, Q,, f.c.r., and Ep — =, prob-P,
sup [PL(T/Sr) (@5 (07) — 67(07)) (Er) "' Qr(Qr(Er) ' Qr) ' @ (Er) (a0, (07) — 47(07)) < =)

T€ER 4

—P(Sr(fo)

SWith Q f.cr., My = (QW~1Q)~! and Hy = My Q' W~=1. To test 0 = 0o, the appropriate form of Sy (2.8) sets
Sy =14,, P =E71—- E71QM=zQ'E~! and §r(6o) substitutes for Gr(f).

IN

x)| — 0, prob-P.
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REMARK 3.12. Let z}, denote the a-level critical value from the empirical distribution of the 7-
GEL GMM-KBB statistic of Corollary 3.3. Inversion of the non-rejection region {Sr(0)) < z%} gives a
nominal a-level confidence region for fy. The Corollary 3.3 statistic potentially provides the basis for
asymptotic refinements but exploration of this topic is beyond the scope of the paper; cf. LaVecchia et

al. (2023).

3.4 GEL Implied Probability GMM-KBB Inference

The following subsections detail 7=-GEL GMM-KBB versions of the test statistics for the over-
identifying moment conditions (2.1) and the parametric restrictions and additional moment conditions
(2.2) outlined in subsections 2.2.1 and 2.2.2. These forms of statistic exploit the GEL first order condi-
tions which impose the population moment conditions on sample moments through re-weighting sample
moment indicators with the GEL implied probabilities rather than the standard empirical GMM weights

in the construction of sample averages.
3.4.1 Overidentification Tests

Let X7 — Y17 — 0, prob-PJ, prob-P; cf. Remark 3.8. Consider the m-GEL GMM-KBB over-
identifying moments test statistic

T ~ TR

T [k = (T/S7) (G5 Brny) — G5 (Br)) (S5 )G (Bray) — 95(B1)) (3.8)

where B; and B;*T are the efficient unrestricted 7-GEL GMM and m-GEL GMM-KBB estimators re-

spectively, see Remarks 3.5 and 3.9.

The following Theorem states the asymptotic validity of the 7-GEL GMM-KBB statistic J", for
overidentifying moment restrictions.

THEOREM 3.3. With Assumptions 2.1-2.4 and 3.2 appropriately restated, if ¥7* —Xp — 0, prob-P,
prob-P, ¥7* p.s.d., ¥pr — X — 0, prob-P, ¥r p.s.d.,

T

sup [P (T < ) — P(Jr < x)| — 0, prob-P.
I€R+

REMARK 3.13. With efficient unrestricted implied probabilities myr = 7y (3.3) or standard GMM
weights i = T~Y, (t = 1,...,T), the efficient unrestricted estimator BT may replace the 7-GEL GMM
estimator B;, cf. Remark 3.5. Moreover, with the former weights, the centring term ¢ (3;) in T (3.8)
may also be omitted since, from the first order conditions, (T/ST)I/Qgéra(BT) — 0, prob-P, cf. Proof of
Theorem 3.2. Thus, re-defining J% = (T/Sr)35, (B )V (S5 )37 (B ). supyer, [P (T < @) —
P(Jr/k < x)| — 0, prob-P. As noted in Remark 3.5, with inefficient unrestricted implied probabilities
mr = T (3.2), (t = 1,...,T), although the efficient metric (X7)~! is employed the resultant #-GEL

GMM estimator B; is equivalent to the unrestricted but inefficient estimator 3.
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REMARK 3.14. Hall and Horowitz (1996, p.898) proposes a non-overlapping GMM-MBB overidenti-
fying moment restrictions test statistic with standard GMM empirical weights 7,0 = 771, (t = 1,...,T),
cf. Remark 3.9, similar to J7* (3.8), an adjustment to which achieves higher order validity, see Hall
and Horowitz (1996, Theorems 2 and 3, p.902). Bravo and Crudu (2011, (8), p.3447) details an overlap-
ping 7-GEL GMM-MBB overidentifying moment restrictions test statistic with the efficient unrestricted
implied probabilities m;p = 7y (3.3), B replacing 3; in and dropping (T/S7)"/2§%(By) from T,
(3.8), see Bravo and Crudu (2011, Theorem 1, p.3448); cf. Remark 3.13. Allen et al. (2011, pp.112-
114) implements a similar uncentred statistic with both non-overlapping and overlapping MBB, implied
probabilities w7 = T, (t =1,...,T), and EL, myp = 1/T(1 + S‘;TgtT(BT)); (t=1,..,T), and flat ker-
nel k(z) =1, |z| <1, and 0, |z| > 1, defining the kernel weighted moment indicators g¢r(+), (¢ =1,...,T).

Similarly to Corollary 3.2, the use of the unrestricted 7-GEL GMM-KBB estimator BW*

mp May be

circumvented by the appropriate substitution of the efficient unrestricted 7-GEL GMM estimator 3;
Tk

since (T/S7)"/2g7" (BmT) — SPs(T/Sr)Y?g5" . (B;) — 0, prob-P%, prob-P, cf. Proof of Lemma B.3,
and HZ(T/ST)l/QQ}(B;) — 0, prob-P; viz.

T (By) [k = (T/S7) (95 (Br) — §5(B7)) PE(ams (By) — §5(Br))

COROLLARY 3.4. Under the Assumptions of Theorem 3.3, if P} — Por — 0, prob-P;, prob-P, and
PET — PE — 0, pI‘Ob—P,

sup [P (T (ﬁ;) <z)—P(Jr <z)| — 0, prob-P.
zER
REMARK 3.15. Further computational simplifications may be made; cf. Remark 3.11. Similarly
to Remark 3.13, the efficient unrestricted estimator BT may substitute for the 7-GEL GMM estimator
Zﬁ’; with the efficient unrestricted implied probabilities w7 = @ (3.3) or standard GMM weights
mr =T71, (t=1,..,T). Also g;z(@;) can be omitted if myp = Ty, (t = 1,...,T). The estimator P&

may be replaced by P&, or Psr, where Pip, Psr — Ps, prob-P.
3.4.2 Specification Tests

Consider the following 7-GEL GMM-KBB statistics for testing the additional moment restrictions
E[h(zt,00)] = 0 and parametric constraints 7(6y) = 0 (2.2): a likelihood ratio-like statistic
LRy Sk = (T/St) (G (Ony) — 47(07) — Z07, Se(E05) " G (Bny) — 97(B7))) (3.9)
X(E;*T)_l((qg:; (émT) - dg(éT)) - E;*TSQ(Z:H*T)_I(@ZL*T (BmT) - g%(BT))7
cf. (2.6); the 7-GEL GMM-KBB distance statistic

TC*

Dk = (T/Sr)(dn (0,

T qu

L) = @3 (07)) (En) " a5, 0r,,) — d7(07) (3.10)

—(T/S1) e Brg) = 95 (B7)) (St )™ (G (B ) — 97(BT)),
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where X7* - is the (dg,dg) top left diagonal block of p.s.d. Z7* , cf. below (2.6); a simplified score-like
statistic

Sk = (T/S0) (@ Opg) = 47 (07)) (BN ™" = S P So) G (O ) — 6707, (3.11)
cf. (2.8); a Lagrange multiplier-like statistic

~ T ~Tr /
o (Zm )M am (O ) — 45(07)) /54 - .
emiiy b = 1 (S O IOV ) (80,955,500 S0 312

y ( (En) ™ g, Ony) — a7(07))/ 51 ) 7
(i — B7) KM
cf. (2.9); a generalized Wald-like statistic
AT o (BT ! oms pTF o (AT
o @ Op) = FEO/SE ) g (@O — @D/ g

(r(0py) — r(07)) /K2 ’ (r(Ony) — 7(07)) /K2
cf. (2.10), where ¢ (1) = (I, — Z5.Se(X0) 718y )dme. (1) and G7-(-) = (o, — E5.54(XF)~1S)d7(-)-
The definition of QW”m*T requires 7-GEL GMM and n-GEL GMM-KBB estimators of the unidenti-

gwy:

mr

fied parameter «p under the maintained moment constraint E[g(z:, 8,] (2.1); to avoid this difficulty,

we set 6f = af and 47, = a7, Note that 55, () = (0, (W55, () = (55, )na (5, )~ 977,())) and
() = (0, (W) = (EF)ng(SF) G- CE. (2.10).

THEOREM 3.4. Under Assumptions 2.1-2.4 and 3.2, if Z7* —=r — 0, =Z7* p.s.d., VI —W=r — 0,
prob-P¥, prob-P, =1 — 2, U=y — Uz, prob-P,
sup |P5(Zr < x) —P(Tr < z)| — 0, prob-P,
TER 4
where 7 = LR, D, S, LM or GW. Moreover, LR" , Dr*., Si* ., LM" and GW] " are asymptotically

equivalent.

REMARK 3.16. As above, with efficient implied probabilities m;r = 7y (3.3) or standard GMM
weights mir = T~1, (t = 1,...,T), the efficient restricted estimator Or may substitute for the 7m-GEL
GMM estimator é; Moreover, with the former weights, the efficient restricted estimator ﬁT (@T)
can replace B; (9;) in 77*, T = LR and D (GW), see Remark 3.5, and the centring term (jéﬂ(é;)

in Tn’z;, T =LR, D, S, LM and GW, may also be omitted since, from the first order conditions,
(T/St)Y 2@;&(9;) — 0, prob-P, cf. Proof of Theorem 3.2. Similarly, with efficient unrestricted implied
probabilities myr = 77 (3.3) or standard GMM weights 77 = T, BT may substitute for B; and
g}(ﬁ;) omitted in Tg;, T = LR, D and GW. Additionally, since H=ES,Ps; = 0, with myr = 7y,
t=1,..,T), 67 may replace @; in gWﬁm*T; see Remark 3.5.

REMARK 3.17. Hall and Horowitz (1996, p.898), Bravo and Crudu (2011, (8), p.3447) and Allen et al.

(2011, pp.112-114) give t-statistics T'/2(3] Br) i/ ((GEe ) (2r% )= (GEx ))7)Y/2 under their respec-

mTi

tive bootstrap designs described in Remark 3.14 for the parametric hypothesis 3; = 0; cf. GWr (3.13)
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with no additional moment restrictions E[h(z, 8,)] = 0, noting My, = (G’S71Q)7 !, JsG = (RMxR')~!
and, thus, JsXJg = (RMgR')™!, cf. Section B.2(d). Uncentred distance, Lagrange multiplier and
Wald statistics for tests of r(8,) = 0 are proposed by Bravo and Crudu (2011, (10), p.3447). Their

distance statistic is a version of D (3.10) with gj*. (ﬁﬂm*T) replacing ¢r* (éﬂ* ) with efficient restricted

qu

implied probabilities mir = Ty (3.3), (¢t = 1,...,T), under r(8,) = 0, £7* substituting for Z7* | and

mr mr?
gmx (me*T) replacing g5~ (B;*T) with efficient unrestricted implied probabilities w7 = Ty (3.3), omit-

ting (j?(é;) and g;(B;) Their Lagrange multiplier statistic is S5* (3.11) with g7 (B:T) replacing
ATk (é

am T

(10), p.3447) Wald statistic is GW; (3.13) with efficient unrestricted implied probabilities 77 = 71
(33). (t = 1. T), My = (G'S7'G)™" and Je¥Jy = (RMR)™"; note (T/51)"/247; (Brs) = 0,

ng

) and (T/S7)"/47(07)

T %

Sy = 14,, X7 substituting for Z7*  and dropping qﬂi(é;) The Bravo and Crudu (2011,

mT)? m

AT

prob-P}, prob-P, (T/ST)1/2 (,BT) — 0, prob-P, replacing (T/ST)1/2qV,T{1*T(9mT

respectively, from the first order conditions. Cf. fn. 5.

We also define alternative 7-GEL GMM-KBB likelihood ratio-like and distance statistics which adapt
and generalise the bootstrap statistic proposed in Camponovo (2016) for the dependent data context and
inference setting considered here. Let Zp — = — 0, prob-P, Z¢ p.s.d. Rewrite the parametric constraint
n (2.2) as r(0) = r(a BT) Correspondingly, an alternative restricted 7-GEL GMM estimator 67 is
then defined by 7. = arg mingee, Or.(0), where ©; = {0 € © : () = r(a, B;)}, with associated m-GEL
GMM Lagrangean LZ.(0) = Q7.(0)/St — 24/ (r(6) — (v, B;))/k Lagrange multiplier estimator 47, and
7-GEL GMM criterion O%(0) = ¢%(0) (Er) 1¢%(0), cf. Remark 2.4. Define 6 = (&4, A;/)'. Also
let Z7* — Zp — 0, prob-Pj, prob-P, Z7* p.s.d. Then, cf. Camponovo (2016, (3.6), p. 37), with

parametric constraint now r(6) = r(6y), the corresponding restricted 7-GEL GMM-KBB estimator
0, = argmingeo, O (), where ©; = {0 € © : r(0) = r(d7)}, with 7-GEL GMM-KBB Lagrangean
E;*T 0) = Q;*T (0)/Sr—24 (r(8) —r(07)/k, Lagrange multiplier estimator fiyr s and 7-GEL GMM-KBB
criterion Q”* (0) = 47 (0) (Er,) " tan:.(0). Thus, cf. Proof of Proposition 3.2, Tl/Q(é; —07)/k +

H=(T/St)Y?G (HT) — 0, prob-P. The requisite 7-GEL GMM-KBB likelihood ratio-like and distance

statistics are respectively

LRy (070, 07)/k = (T/S7)((a% (Br,,) — Eme PR GR(07)) — E5 Se(Sme )71 (am: (Br,) — 65(B7)))
X (E0 )T (@5 (O ) — Eme PR @5 (07)) — E55 Sy (50 ) HGE: (Bray) — 35(B7),
(3.14)
and
D, (On, 07)/k = (T/Se)5 (On,) — B0 PEe @ (07)) (25 )7 HG5: (0,,,) — E55 P @7 (07))
—(T/St)(@5 (B — G5(B7)) (S5 )1 (Gm: (Brr) — 5(B7)- (3.15)
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THEOREM 3.5. Under Assumptions 2.1-2.4 and 3.2, if 27" —=7 — 0, 27" p.s.d,,

mr

oy — P=r — 0,

"‘m

prob-P}, prob-P, Er — E, P=p — Pz — 0, prob-P,

sup [P (T (0,

mT,QT) <z)—P(Tr < z)| — 0, prob-P,
TER 4+

where T = LR or D. Moreover, TmT (GmT, HT) and 77> of Theorem 3.4 are asymptotically equivalent.
REMARK 3.18. The complexity of the 7-GEL GMM-KBB likelihood ratio-like and distance statistics,
ﬁ;*T(émT,HT) and D, (GmT,HT) is reduced if only the parametric restrictions r(6y) = 0 are subject
to test and the additional moment constraints E[h(z¢,0p)] = 0 are maintained, cf. (2.2). In this case the
parametric constraint becomes () = r(é;) as now 6 = é;, where 9; denotes the efficient unrestricted
7-GEL GMM estimator of #p with moment condition E[g(z¢,6p)] = 0. It may be straightforwardly
demonstrated that (T/S7)/2G%(07) — 2P=(T/S7)/24%(07) — 0, prob-P, since H=(T/Sr)Y/2¢%(07) —
0, prob-P, noting M= = (Q'Z-'Q)~', Hz = M=Q'Z~" and H=(T/S7)"/?§ (GT) — 0, prob-P, enabling
the deletion of the matrix =7 PZ —in both statistics.
Computationally less burdensome 7-GEL GMM-KBB statistics may be defined in terms of the 7-GEL
GMM estimators é; or 9; Cf. Corollaries 3.2 and 3.4. Namely,

LRI (07, B7)/k = (T/Sr)((d% (07) — @5(07)) — Em Sy(Sm )" (gms (Br) — 95(B1)))

X P (a2 (07) — 47 (07)) — E5e Sy P&, (9m: (Br) — 65(B7));

DI (07, Br)/k = (T/ST)(d%, (07) — 5(07)) (25 )~ (@ (07) — a7(07))

T

—(T/S) (G (BT) = G7(BT)) (S50) ™ (G (B) — 97-(B1);

Srx (07)/k = (T/Sr)(5, (07) — @5(07)) (PZr, — SqPEh. SO(G5: (07) — d5(07);

. B (Zm )M (ax, (07) — @ (07))/54
M Or p = T( g 0 Y~ i 12

omT

) Shvl"(S;L H\I;‘ﬂ'* Shm) 1S;l,/l.

(GG 0r) — a5 (67)) /51
JZg G 07) S — /K2 )

ommrT

(r(b7) — r(07)) /K" "\ (r(07) — r(07)) /K
cf. (3.9), (3.10), (3.11), (3.12) and (3.13).

GW;: (@;W:T( (G557 (O7) = a7 (07))/ 51 >\p ((cizmé) HONIES >;

COROLLARY 3.5. Under the Assumptions of Theorem 3.4, if PL* — Pzr — 0, P35 — P — 0,

Emop

prob-P*, prob-P, and P=r — Pz — 0, Psr — Px — 0, prob-P,

sup |P5 (7,7 ()) <) — P(Tr < )| — 0, prob-P,
TER+
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where T = LR, D, S, LM or GW. Moreover, LR (07, Br), D (67, Br), S&(07), LME: (B, i)

T T

and GW, " (9;) are asymptotically equivalent.

REMARK 3.14. Further computational simplifications may be made similar to those in Remark 3.11.

4 Simulation Evidence

This section compares the performance of inference methods based on first order asymptotic theory,
cf. Section 2.2, with those that rely on bootstrap methods, in particular, the 7-GEL GMM-KBB
statistics of Section 3.4. We consider over-identifying moments J-statistics, see Sections 2.2.1 and 3.4.1,
and test statistics for parametric restrictions only, see Sections 2.2.2 and 3.4.2. Empirical rejection rates
for the various statistics are presented and are compared with their corresponding nominal sizes. Where
required, we employ a prewhitened version of the Newey and West (1987) HAC estimator of the long
run variance of the moment indicator throughout which, in our simulation design, behaved better than
the standard Newey-West (1987) HAC estimator; cf. Andrews and Monahan (1992).° We consider the
standard moving blocks bootstrap (MBB) alongside KBB methods based on different kernel-weighted
moment indicators together with implied probability versions of MBB and KBB. All experiments are

based on a simulation design similar to that of Inoue and Shintani (2006).

4.1 Design

We examine an instrumental variable model with intercept and regressor x;, viz.
yr = By + Boxe +ug, (t=-49,..,7),

with instrument vector z; = (1,wt,xt_1,xt_2)/. We set 57 = 0 and 85 = 0 and consider two distinct

data generating processes for x; and u;.

MoDEL 1 HOMOSKEDASTICITY. This model corresponds to the design considered in the simulation
study in Inoue and Shintani (2006), the regressor x; and regression error u; are each generated by

independent AR (1) processes with common autoregressive parameter p, i.e.,

—1/2
U = pup—1 + €1y, U—gg = €1,—49 (1 — p*) /

and

2 —1/2
Ty = PTy_1 + Eop, T_sg =€2,_49 (L —p°) 7,

9Empirical rejection rates of the various tests using an estimator of the moment indicator long-run variance based on
the quadratic spectral kernel were also computed; cf. fn.4. Results from these experiments are available from the authors
upon request.
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where &, = (e14,€2) ~ N (0, I2), (t = —49,...,T).

MODEL 2 HETEROSKEDASTICITY. Here u; is now generated by an AR(1)-GARCH(1,1) process,

while, as in MODEL 1, z; is generated by an AR(1) process independent of uy, i.e.,
—1/2
Ut = PUt—1 + O¢€1t, U—49 = €1,—49 [(1 - ,02)] / )

where

02 =0.1+0.3¢%,_ 07 | +0.607 ,,0%,0=1,
and

Ty = PTi—1 + €2t, T—49 = €2,-49 (1 - Pz)_1/2 .

Again g, = (e14,69¢) ~ N (0, 1), (t = —49,...,T).

REMARK 4.1. The MODEL 2 design choice is suggested by that in Allen et al. (2011, Section
5.1.2, p.115). Those authors consider a GARCH(1,1) specification for the error term w; but with-
out dependence. Dependence here in the conditional heteroskedasticity specification for o7 arises from

the introduction of the additional AR (1) component to give an AR (1)-GARCH(1,1) specification for u;.

Both models employ a sample {(y;,z}) }X; with autocorrelation parameter values p € {0.5,0.9} and
sample sizes T' € {64,128}. Note that, given our choice of instrument vector z, two data points are lost.

Each experiment employs 499 bootstrap replications with 5000 random samples.

4.2 Bootstrap Methods

As in Section 3 above mr = [T/St] denotes the integer part of T/St. Here the indices t* and the
consequent bootstrap sample gZ’:T(ﬁ), (s =1,...,mr), denote mr independent draws with replacement
from the index set 77 = {1,...,7} and the bootstrap sample space {gy7(3)}._,; with implied probability
bootstrap sampling probabilities mp, (¢t = 1,...,T), ie., Pi(gr (B) = g7 (B)) = mer, (t = 1,....7),
where the transformed kernel-weighted moment indicator g1 (8) = Ei;;T k(é)gt(ﬁ)/(kgST)l/Q,
(t =1,...,T). We consider implied probability bootstrap sampling schemes with the standard GMM

empirical measure, i.e., myr = T7', and unrestricted and restricted ET implied probabilities, i.e.,
~t

N o~/ ~ ~ - ~/ ~ ~/ ~
T = eXp()‘ngtT(ﬂT»/ZZ:l eXp()‘ngsT(/BT)) and Typ = eXp()\ngtT(ﬁT))/ZZﬂ eXp()‘ngsT(/BT>)
respectively, (t = 1,...,T), where BT and BT denote the efficient unrestricted and restricted GMM esti-

mators of f,; cf. Remarks 2.4 and 2.6. The ET implied probability bootstrap is adopted to avoid the

well-known convex-hull problem associated with EL estimation.!®

10Tables 7 and 8 provide an indication of the likely empirical failure of the convex hull condition necessary for the
application of ET empirical probabilities. The convex hull condition is considered to hold if || Zthl #rger (Br)| < 1076,
Overall, these tables indicate that it is a relatively rare occurrence across all KBB and MBB methods for both values of p
and both sample sizes.
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4.3 Test Statistics

Recall the GEL sample average gr(8) = Zthl gir(B)/T, the m-weighted sample average ¢7.(8) =
Ele mirger(3) and the 7-GEL GMM-KBB sample average g .(8) = > .5 9¢-r(B)/mz. Define the
centred long-run variance estimator $7% = Y7 (71 (B ) — G5 (B1)) (971 (Bony) — G5(B7))' /mer, f.
Remark 3.7, where the first step standard GMM-KBB estimator B;*T = argmingep i (B) 97 (8),
setting myp = T~ ! The efficient centred standard GMM-KBB estimator B;T is then given by

A Tk

ﬁmT = a’rg 15161181 g?n*T (B)I(E:H*T)ilg:rn*q“ (5)7
cf. (3.7).
4.3.1 Overidentification Tests

Recall the 7-GEL GMM-KBB over-identifying moments test statistic (3.8)

T = (T/S2)@55 (o) = G5 (57)) (555,) ™ @ty (Bon) = 97(51)
where 3; and B;*T are the efficient unrestricted 7-GEL GMM and n-GEL GMM-KBB estimators re-
spectively.
With both standard GMM empirical measure, i.e., mer = T71, and efficient unrestricted ET implied
probability, i.e., 7 = exp(Argir(Br))/ 1y exp(A g5 (Br))s of. (3.3), (¢ = 1,..,T), bootstrap
sampling schemes, the efficient unrestricted GMM estimator BT is substituted for the 7-GEL GMM

estimator B;, cf. Inoue and Shintani (2006). Moreover, with the efficient unrestricted ET implied

probabilities, QC’}(B;) is omitted. See Remark 3.14.
4.3.2 Specification Tests

The parametric restriction S5 = 0 is of interest here. We examine forms of 7-GEL GMM-KBB
distance, generalised Wald and Camponovo-like (2016) distance statistics adapted for parametric re-
strictions r(8,) = 0, cf. (3.10), (3.13) and (3.15), in the absence of « and additional moment constraints
E[h(z, 8y)] = 0, cf. (2.2). Namely

Dk = (T/S)a5 By ) — 95(B)) (S5 )1 (G5 (Bry) — §5(B7))
—(T/Se)a5 (B — G5(B7)) (S )1 (Gm: (Brr) — G5(B7);
GWIr = T(r(B,,,) — r(By)) (RE (Gre (S ) G Y RE ) " (r (B ) — 7(BT))

or, equivalently, to test 8, = 0, the t-statistic T1/2 B8
3.16;

32)2/(612:}/(EWm*T)_len*T)QQ)I/Q, see Remark

mT_

LR (B B/ = (T/ST) (@G (Brn) — G5 (B7)) (S5 ) " (95 (Bon) — §5(B7))

TO* TO* AT

—(T/ S35 (Bry) — G5(B7)) (S5 ) MG (B — G5(B1));
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Here B; and me*T are the efficient restricted 7-GEL GMM and 7-GEL GMM-KBB estimators re-
spectively. Likewise B; and B:T are the efficient unrestricted m-GEL GMM and 7-GEL GMM-KBB
estimators respectively and B;:; the restricted m-GEL GMM-KBB estimator subject to the constraint
r(B) = r(@’;), see Remark 3.17.
With the standard GMM empirical measures, myr = T 1, (t = 1,...,T), the efficient unrestricted
GMM estimator BT is substituted for the 7-GEL GMM estimators B;, see Remark 3.5 and Proposition
3.2 cf. Remark 2.5. With efficient unrestricted ET implied probabilities, 7;p = exp(j\;TgtT (Br))/ Zstl exp(j\;TgsT(ﬁT)),
t=1,..,T7), gg}(B;) is omitted. Similarly, with efficient restricted ET implied probabilities 7yp =
eXp(S\;TgtT(BT))/ZSTZI eXp(S\;TgST(BT)), (t=1,..T), gg(B;), see Remark 3.15, is omitted. The ef-
ficient restricted GMM estimator BT is substituted for the 7-GEL GMM estimator B; in all bootstrap

sampling schemes; cf. Remark 2.4.

4.4 Computational Issues

The choice of the bandwidth/block size St is important. Gongalves and White (2004) notes the
equivalence between the MBB variance estimator of the mean and the HAC variance matrix estimator
using the Bartlett kernel. Consequently, Gongalves and White (2004) bases the choice of MBB block size
on the optimal automatic bandwidth for the latter estimator; see Andrews (1991, Section 5, p.830-832).
Although this equivalence result is only valid for the mean, Gongalves and White (2004) also adopts this
choice for the quasi-maximum likelihood estimator. We also follow this approach.!!

Here, in contradistinction to Parente and Smith (2021), we use a prewhitened version of the Newey
and West (1987) HAC estimator of & to obtain efficient unrestricted and restricted GMM estimators (3
and f5; see Andrews and Monahan (1992). Cf. Remarks 2.4 and 2.6. A vector (V) AR(1) specification
is applied to the elements zt; where 4, (¢ = 1,...,T), are the VAR(1) residuals obtained from first
step GMM estimation. We then use a version of the automatic bandwidths described in Andrews
(1991, Section 6, pp.832-837) but we employ the non-parametric estimation approach due to Politis and
Romano (1995) applied to the elements of the VAR(1) residuals avoiding specification and estimation of
parametric univariate ARMA models as in Andrews (1991); cf. Parente and Smith (2021, Section 4.3,
pp. 387-388). Given the bandwidth/block size estimator S7 the prewhitened Newey and West (1987)
HAC estimator of X is the recoloured Newey and West (1987) HAC estimator based on the VAR(1)
residuals; see Andrews and Monahan (1992, (2.4), p.995).

Additionally, since the computed automatic bandwidth Sr might induce values of bootstrap sample
size mp = [T/ St] greater than T or equal to 1, we substituted the censored version min {max {ST, 1} , T/lO}.
An additional advantage of using the censored bandwidth estimator is an apparent improvement in the

convergence properties of the ET estimation algorithm.

11Smith (2011, Lemma A.3, p.1219) describes an equivalence between the KBB variance estimator and the corresponding
HAC estimator based on the induced kernel function £*(-). Also see Smith (2005, Lemma 2.1, p.164).

[25]



On a few rare occasions 7-GEL GMM-KBB ¥ estimates are poorly conditioned. These bootstrap
samples are discarded and replaced by additional samples so that only those with well-conditioned m-GEL

GMM-KBB estimates of ¥ are retained.!?

4.5 Notation

The subscripts TR, BT, QS and PP indicate use of, respectively, the truncated kernel, the Bartlett
kernel, the kernel that induces the quadratic-spectral kernel, see Smith (2011, Example 2.3, p.1204), and
the kernel version of the Paparoditis and Politis (2001) optimal taper to define the transformed kernel-
weighted moment indicator, cf. (2.3).!3 AsyMP denotes results for the standard GMM over-identifying
moments test computed using the efficient unrestricted GMM estimator BT and the prewhitened Newey
and West (1987) HAC covariance matrix estimator for ¥ described above. Results KBB are obtained
with the KBB method. MBB refers to the MBB method. Additionally, the superscripts 7 and 7, indicate
results with the ET implied probability bootstrap based on, respectively, unrestricted (E[g(z:, 8)] = 0)
and restricted (E[g(zt,8)] = 0, r(8) = 0) ET implied probabilities. Finally, the superscript ¢ denotes
the Camponovo-like 7-GEL GMM-KBB distance statistic ﬁz; (Bﬂm*T, B;)

4.6 Results

Tables 1-6 present percentage empirical rejection rates for Models 1 and 2 for the 7-GEL GMM-

P

KBB over-identifying moments test statistic J=*, generalised Wald GWJ"  t-statistic T'/2(B,,, —
B;)Q/(an*T’ (2 ) 7LGm* 122)1/2 and the m-GEL GMM-KBB distance and Camponovo-like (2016) dis-
tance specification test statistics based on nominal and bootstrap critical values computed at the 0.01,

0.05 and 0.10 levels. Results for the best performing tests are indicated by bold face text.

Tables 1 and 2 about here

Examining Tables 1 and 2, the standard over-identifying moments test ASYMP using critical values
based on asymptotic theory performs quite well even if p = 0.9. Similar results were also noted in the
simulation studies undertaken in Hall and Horowitz (1996) and Inoue and Shintani (2006). All KBB and
MBB over-identifying moment tests under-reject in Models 1 and 2 for both sample sizes T = 64 and
T = 128. As expected, the performance of all tests improves with increased sample size T' = 128. The
m-GEL GMM-KBB tests employing the standard empirical GMM measures perform somewhat better
than the corresponding MBB test for both models when p = 0.5 if T = 64, but only marginally so if

127]]-conditioned X, estimates tend to occur when the ET implied probabilities take large values for a few bootstrap
sample observations and appear to be problematic only for those estimates using restricted ET implied probabilities for
the smaller sample size T" = 64 and for the larger value p = 0.9; see Tables 9 and 10. Correspondingly, Tables 11 and 12
indicate that considerably more bootstrap replications are required in these cases.

13The Paparoditis and Politis (2001) taper kernel is defined as k(z) = I1(-0.5 <z < —0.07) (z +0.5)/0.43 +
I(—0.07 <2 <0.07) +1(0.07 <z <0.5)(0.5—x)/0.43, where I(-) denotes the indicator function.
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T = 128. When p = 0.9, the MBB™ test performs better than most 7-GEL GMM-KBB tests for both
models and sample sizes. In general, -GEL GMM-KBB tests computed with ET implied probabilities
achieve rejection rates closer to nominal levels than other methods apart from ASYMP, in particular, for
sample size T'= 128 and p = 0.5. Overall, KBB[, achieves the best performance with KBBT;, KBB[

PP TR?

and MBBT™ displaying reasonable size properties for both values of p and both sample sizes.

Tables 3 and 4 about here

Tables 3 and 4 show that the specification ASYMP ¢-tests based on first order asymptotic theory
are severely over-sized for all designs and are outperformed by all --GEL GMM-KBB t¢-tests. Of the
m-GEL GMM-KBB t¢-tests all KBB,; tests display the worst performance across all designs. Indeed,
for either design and for p = 0.9, all -GEL GMM-KBB and MBB statistics display poor size properties
for T' = 64 and only the KBB,, test possesses reasonable size properties for T = 128. For Model 1
and p = 0.5, for the smaller sample size T' = 64 KBB,, and MBB™ seem satisfactorily sized whereas
for T'= 128 KBBJ,, MBB™ and MBB"" tests perform reasonably but KBB; is now undersized. For
Model 2 and both sample sizes, KBBJ, and all MBB tests, especially the MBB™" test, seem competitive
for p = 0.5 with KBB[ satisfactory for the larger sample size T' = 128. In general there appears to be
no obvious ranking of 7=-GEL GMM-KBB and MBB ¢-tests in terms of their use of the standard GMM
measure, unrestricted or restricted ET implied probabilities. To summarise, for the smaller sample size
T =64 and p = 0.5 MBB™ appears the most satisfactory whereas for T' = 128 KBBJ,, KBB{,, MBB
and MBB™ t-tests are competitive. No 7-GEL GMM-KBB t¢-test can be recommended for the higher
value p = 0.9 with sample size T' = 64 although the KBB;; test is satisfactory for the larger sample size
T = 128. Overall MBB i¢-test statistics appear most reliable for both sample sizes and the lower value

p=0.5.

Tables 5 and 6 about here

Similarly to the t-statistics above the specification ASYMP distance tests based on first order as-
ymptotic theory are severely over-sized for all designs and are outperformed by all =-GEL GMM-KBB
distance tests; see Tables 5 and 6. Overall, none of the 7-GEL GMM-KBB distance tests uniformly
dominates the others. For Model 1, all 7-GEL GMM-KBB distance tests display poor size properties
for p = 0.9 and both sample sizes with the exception of the (somewhat under-sized) KBBy; and KBB[
tests whereas for Model 2 MBB7¢ provides a reasonably sized test. For p = 0.5 and sample size
T = 128 many 7-GEL GMM-KBB, e.g., KBB, KBBT,, KBB[;", KBB{;"“, KBB{" and KBB:“,
and all Camponovo-like (2016) MBB distance specification tests display reasonable size properties for

both designs. For p = 0.5, both sample sizes and across both designs, the Camponovo-like (2016) dis-
tance test KBBJ"“ possesses adequate size properties. For T' = 64 for Model 1, all MBB tests display
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poor size properties but MBBY, MBB™“ and MBB™" are reasonably sized for p = 0.5 and sample size
T = 128. For Model 2 for both sample sizes, the size properties of MBB®, MBB™® and MBB™ tests

™

are adequate for p = 0.5. In summary and overall, KBBy; and KBB{ tests, albeit under-sized, offer
reasonably robust test procedures. For larger sample sizes with moderate dependence, a number of KBB
and MBB specification tests offer empirical rejection rates close to the nominal ones. However, for high

values of p, larger sample sizes are required for reliable procedures.

4.7 Summary

Overall, the results from these simulation experiments are rather mixed. The standard over-
identifying moments test ASYMP using critical values based on asymptotic theory performs quite well. Of
m-GEL GMM-KBB KBB and MBB tests, KBB[,, and to a lesser degree, KBBT;, KBB[ and MBB™,
tests display reasonable size properties for both values of p and both sample sizes. In particular, for
moderate dependence and larger sample size, both 7-GEL GMM-KBB and MBB statistics with unre-
stricted ET probabilities provide reasonably sized test procedures. The performance of both standard
ASYMP ¢- and distance specification tests is unsatisfactory. Generally, all 7-GEL GMM-KBB and MBB
specification tests are unsatisfactory for both sample sizes and with strong dependence. For both sam-
ple sizes, moderate dependence and across both designs, MBB specification tests with unrestricted ET
probabilities offer reasonable test procedures. With a larger sample and moderate dependence, KBB] ,
KBB{s, MBB and MBB™" t-tests and KBB+, KBBT;, KBB};’, KBBJ;“, KBB{ and KBB{:*©
together with all Camponovo-like (2016) MBB distance specification tests are competitive indicating
that, in some cases, unrestricted and restricted ET probabilities can improve the size characteristics of

specification tests.

5 Conclusion

This article generalizes and extends the kernel block bootstrap (KBB) method introduced in Parente
and Smith (2018, 2021) to time-series models formulated in terms of moment conditions. We provide
a comprehensive treatment of the use of KBB for GMM estimation and inference for this context. The
paper details new KBB estimators and test statistics whose empirical distributions can serve as alterna-
tive approximations to those offered by standard and other bootstrap methods for GMM estimators and
test statistics for overidentifying moment conditions, parametric restrictions in mixed form and addi-
tional moment restrictions. We consider KBB methods that use the standard GMM empirical measure
and unrestricted and restricted GEL implied probabilities. The paper establishes the first-order validity
of the various methods generalizing Bravo and Crudu (2011) and (correcting) Allen et al. (2011). A
set of simulation experiments reveals that a number of the proposed tests perform well in practice in

circumstances with moderate dependence and for larger sample sizes.
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Appendix: Proofs

Throughout the Appendix, C' and A will denote generic positive constants that may be different in
different uses, and C, M, and T the Chebyshev, Markov, and triangle inequalities respectively.

Appendix A: Preliminary GEL-KBB Lemmas

In the following X;(#) substitutes, where appropriate, for ¢:(6), (¢t = 1,2,...), in Assumptions 2.1,
2.3 and 2.4.

Let Xor () = X020 1 k(s/ST)X1(0)/(kaST)V2, (t=1,..,T), X(0) = S1_, X;(0)/T and X1(0) =
Zle Xur(0)/T. Also let X7(0) = ZtT:I T Xor(0) and X% (0) = >0 X%p(0)/m7 where the indices
t* and the consequent bootstrap sample X @T(ﬁ), (s =1,...,mr), denote mr independent draws with
replacement from the index set 7r = {1,...,7} and the bootstrap sample space { X7 (0)}._; with sam-
pling probabilities P (X¢er (0) = X¢r (0)) = mer, (t = 1,...,T), with mq = [T'/St] the integer part of
T/St.

LemMmA A.1. (UWL.) If X(0), (t =1,2,...), satisfies Assumptions 2.1, 2.2 and 2.3 (a)(b)(d), then

sup | Xr(6)/S7/* = X(6)/k'/*|| 0, prob-P.
S

PROOF. The hypotheses of the UWLs Smith (2011, Lemma A.1, p.1217) and Newey and McFadden
(1994, Lemma 2.4, p.2129) for stationary and mixing (and, thus, ergodic) processes are satisfied under
Assumptions 2.1, 2.2 and 2.3 (a)(b)(d). Hence, noting supgeg || X (0) — E[X:(0)]]| — 0, prob-P, supyce
1 X7(0)/S3/? — kV/2E[X,(6)]|| — 0, prob-P. Thus, the result follows by T and k = O(1).H

LeEMMA A.2. (GEL-KBB Pointwise WLLN.) Suppose Assumptions 2.1, 2.2 and 2.3(a) are satisfied
by X:(0), (t = 1,2,...), and mp, (t = 1,...,T), satisfy Assumption 3.2. Then, if T%*/ms — 0 and

Elsupyee [|[X:(0)]|¢] < oo for some a > v, for each 6 € O,
(@) 1 X7 (0) = Xr(0)[1/S1/* — 0, (b) [|X775,(0) = XF(0)]|/S;/* — 0, prob-Py, prob-P.

PROOF. It is only necessary to prove (b) since

sup | 37, (1= Trer) (Xer (0)/S)/ T
S

1/2
s 1= Trr Y sup | Xr(0)/81/°/7

0p(1)0p(1) = 0p(1)

sup || X7(0) — X7.(0)[|/53°
0€c®O

IN

as maxy < ;<7 |Tmr—1| = 0,(1) by Assumption 3.2(b), Y1, supgee | Xer(8)/S3 /T < O(1) 1, supgeo || X:(0)]/T =
Op(1), Smith (2011, eq. (A.5), p.1218) and E[supycg || X:(0)||] < oo by hypothesis.
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The argument 6 is now suppressed for brevity throughout the remainder of the proof. First, cf.

Gongalves and White (2004, Proof of Lemma A.5, p.215),
X = X7 = (X5, - E (X)) — (X7 - E* (X7 ).

Since E*[X7* | = X7, the second term X7 — E*[X7* ] is zero. Hence, the result follows if, for any § > 0
and £ > 0 and large enough T, P(P((ka/S7)' /2| X5 — E*[XT ]| > 6) > &) < &

Wiite Kir = Xor/S%, (t = 1,...T), Kfp = X2q /S, (s = 1,..ymy), and K = Y1, Ko /T,
Kz = ZtT:l mirKer. Without loss of generality, set E*[X* ] = 0. Hence, K% = 0 and Kz = 0 since

mr

Kz = Zthl mirKir = (14 0,(1))Kr by Assumption 3.2(b). First, note that
T 1
E' KT = D merllKerll = (1+0p(1) Z Z e Pl X sll/ (k)2
1 T
Op(W i D, 1%l = 0p(1),

uniformly, (s = 1,...,my), by WLLN, by maxi<;<r |[Tmr — 1| = 0,(1) of Assumption 3.2(b) and

IN

Elsupyee [|[X:(0)]|¢] < 00, @ > v from Assumption 2.3(d). Also, for any ¢ > 0,
1 T 1 T
T Zt:1 | KCer|l — T2y Ker|[I([|Cer|| < mpd) = T Z Ko [T Corl| > mad)
1
< 23 Wl max (Kol > mrd).

Now, by M,
max el = O(l)mtax |1 X¢|| = Op(Tl/a);

cf. Newey and Smith (2004, Proof of Lemma A1, p.239). Hence, since, by hypothesis, TV /mqz = o(1),
max, [(||Ker[| > mrd) = 0,(1) and Yp_, [Ker|/T = Op(1),

B (KL TR 71| = mrd)] = (14 0,(10) 2 S [Ker lI(IKerl] = merd) = 0,(1). (A1)

The remaining part of the proof is similar to that for Khinchine’s WLLN given in Rao (1973, pp.112-

114). For each s define the pair of random variables

Vt*T = K?*TH(WC T|| < mrd), Wt*T = ICZT*TH(”’Ct*TH > mr0),

so that Kf.q = Vg + Wiq, (s = 1,ymp). Write Ve = 3" Vg fma, Wi = > Wiy fmy
and K7* = " lCt*T/mT Now
var* [V ] < B[V |%)/mr < SE*[| Vi, ). (A2)

Thus, from eq. (A.2), using C,
var*[[[Vx ||

mr

PV —E Vi 2 &)< ]
o\

2
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Also, |[Kr — E*[ViZr]|| = 0p(1), i-e., for any € > 0, T large enough, ||[Kr — E*[V;T,]|| < e, since by T
T
noting E*[V/T,] = thl T ke I(| Ko | < mpd) /T,

1Kr - BV = HfZ K~ (10,0 31 Kerl(Kerl < mrd)|

IN

T Z e [T ez || = mzd) + 0p(1) = 0p(1)

from eq. (A.1). Hence, for T large enough,

_ _ OE*[|\ViEr
PL(IVe = Krl| > 2¢) < HLQ% H]
By M,

PoWir # 0) =PLKE ] = mrd)

1
< —F*
- (IKE 7

]
(Il = mrd)] < pr

To see this, E*[||[ KL |[I(|[ 7 [| = mr6)] _op( ) fromeq. (A.1). Thus, for T"large enough, E*[[| %1 I([KE1 | =
mrd)] < 6% w.p.a.l. Write Wrx = Z ) W2 /mp. Thus, from eq. (A.3),

PLWr #0) < Z Pr(Wip #0) < (A.4)
Therefore,

PLIKS, = Krl

Y

4e) < PL(IVins — Kl + WL ]| = 42)

IN

Po(lVis = Krll = 2¢) + PLUIW || > 2)

mr mr

SE(IVELN E[IViirll]
< = PRUWa, Il #0) < TSJF(S.
where the first inequality follows from T, the third from eq. (A.3) and the final inequality from eq.
(A.4). Since 6 may be chosen arbitrarily small enough and E*[||[V;Zp[|] < E*[[|KT. 1 [l] = Op(1), the result
follows by M noting K7 = 0 by hypothesis.ll

LeEMMA A.3. (GEL-KBB Global UWL.) Suppose Assumptions 2.1, 2.2 and 2.3(a)(b)(e) and 3.2
are satisfied. Then, if TV/*/mp — 0 and E[supyeg || X¢(0)]|%] < oo for some a > v, for Sy — oo and
Sr = o(T"?),

(a) sup |77 (6)/S7 = X(6)/k'/2] = 0, prob-PL, prob-P.

(b) sup || X7 (6) - X7(0)]|/S¥* = 0, prob-Py, prob-P.

PROOF. Similarly to Proof of Lemma A.2, from Lemma A.1, the first result (a) follows from (b)
since supyce || X7(6) — X;E(Q)H/S%/Q = 0p(1). Result (b) is proven if

sup | X7 (6) — X7 (0)[|/S3/* — 0, prob-Py, prob-P.
HcO
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The following preliminary results are useful in the later analysis. By global Lipschitz continuity of

X:(+), Assumption 2.3(e), and by T, for T large enough,

%Z; SflT ZZ;;T |k (SST> X e—s(0) — Xi— s (0°)])/ (k) /A A.5)
= %Zthl ||Xt(9) - Xt(@o)mé Zz:lt_f k (;T) |/(k2)1/2

1 T
< Clo-01=Y, L

1X7(60)) — Xr(6°)]1/ S5

IN

since, for some 0 < C < oo, |ZS 1 k(s/S7)/Sr| < O(1) < C uniformly ¢ for large enough T', see
Smith (2011, eq. (A.5), p.1218). Hence, by M, from Assumption 2.3(e),

V

Pl X7 (0) = X7 (0) /54 e) < B[ X7 (6) = X7, (6)11/5 7] (A.6)

1 s
- an5&<9> - XFO")Il/ Sy

c o L 57
< Z(l+o(1))0 -0 ||fzt:1Lt'

The remaining part of the proof is identical to Gongalves and White (2000, Proof of Lemma A.2,
pp-30-31) and is given here for completeness; cf. Hall and Horowitz (1996, Proof of Lemma 8, p.913).
Givene > 0, let {n(0;,¢), (i = 1,...,I)} denote a finite subcover of © where n(0;,¢) = {6 € ©: |0 — ;|| < €},
(t=1,..,I). Now

sup || X75(0)) ~ Kr(0)/SY* = max  sup |X55(6)) - Xr(6)]/SY>.
0co ol 0en(0;,e)

The argument w € ) is omitted for brevity as in Gongalves and White (2000). It then follows that, for

any ¢ > 0 (and any fixed w),

Pi(sup 1X55 (6) = Xr(0)]/57% > 6) < ST P sup X7 (0) — Xr(0)]/SH? > ).

0€n(0,¢)

For any 0 € n(0;,¢), by T

|X75(0) = X @/ < |1X75.(00) = Xr(0)]l/S7” + | X77.(0) = X7 (69)1l/ 57
+[| X7 (0) - XT(&‘)H/S;/?

Hence, for any 6 > 0 and £ > 0,

> 0
PPL sup X55(6) ~ Xr(O/SH? > 6) > €) < PPLIXE 00) — Xr(0)l/SY2 > ) > %)
0en(6;,e)
5 0
FPPL( s X5 (0) - X 001/SYE > ) > )
6En(6:.) 3
FP( sup X0 (@)~ Xr(8)]/52 > 3). (A7)
0en(0i,e)
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By Lemma A.2

é §)<§

3) = 3 3
for large enough T'. Also, by M (for fixed w) and Assumption 2.3(e), noting L; > 0, (¢t = 1,...,T), from
eq. (A.6),

PPLIXE: (6:) — Xr(0:)]/Sy* >

_ ) 3C*e 1 T
« ) X X 01 1/2 V< =1 1))— L
Pi s IX50) = X @IS > ) < S0 W53, L

t—1

30*5 1 T 1 - S 1/2
S ROIED DD D €3 IVC

S N UES S

As a consequence, for any § > 0 and £ > 0, for T sufficiently large,

PP sup [ X75(0) = Xin(00)/S” > 3
0en(0;,¢)

1 1)
- P(TZT Lt>9(€* )

\Y
I

~—
W

~—

I

~—
(o9
~
&~
=

&
W

~—

1
. 90* Z
B 90* €
T

for the choice ¢ < &2§/27C*A, where, since, by hypothesis E[ZtT:1 L;/T) = O(1), the second and
third inequalities follow respectively from M and A a sufficiently large but finite constant such that
supp E[Z?zl L;/T] < A. Similarly, from eq. (A.5), for any § > 0 and £ > 0, by Assumption 2.3(e),
P(supyeyyo, o) | X1 (8) — Xr(8:)ll/S7% > §/3) < P(Ce Y[ L/T > §/3) < 3CeA/5 < ¢/3 for T
sufficiently large for the choice ¢ < £6/9CA.

Therefore, from eq. (A.7), the conclusion of the Lemma follows if

& 1 ¢
©T oA (0’30*)"

Let A denote a compact neighbourhood of ;.

LEMMA A.4. (GEL-KBB Local UWL.) Suppose Assumptions 2.1, 2.2 and 2.3(a)(b)(e) and 3.2 are
satisfied. Then, if 7V /mp — 0 and E[supgee || X:(0)]|%] < oo for some a > v, for Sp — oo and
Sr = o(T"?),

(a) sup X7, (6)/S3/* = X(0)/k*/2] = 0, prob-P, prob-P.
(b) sup X7, (6) = XF(O)]1/S5/* — 0, prob-P, prob-P.

ProOF. The Proof of Lemma A.3 may be simply adapted by replacing © by V.l
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Without loss of generality, set E[X(6)] =0
LeMMA A.5. (GEL-KBB CLT.) Let Assumptions 2.1,2.2(b)-(d), 2.3(a)(b)(d)(f) and 3.2 hold. Then,
if S7 — oo and Sy = O(T2 ") with L <n <1

sup |Pj((T/ST)1/2(X;*T(00) — X7(0y)) < x) — P(TY?X7(00) < )| — 0, prob-P.
TER

PRrOOF. The result is proven in STEPS 1-5 below; cf. Politis and Romano (1992, Proof of Theorem
2, pp. 1994-5). To simplify exposition, let mpy = T'/St be integer, d, = 1 and suppress the argument
o.

STEP 1. X1 — 0, prob-P. Follows by Smith (2011, Lemma A.1, p.1217) and E[X;] = 0.

StEP 2. P(E-V2TV2Xp < x/(k2)'/?) — ®(x), where ®(-) is the standard normal distribution
function. Follows by Smith (2011, Lemma A.2, p.1219).

STEP 3. sup, [P(E~Y2T'2Xr < x/(k2)'/?) — ®(2)] — 0. Follows by Pélya’s Theorem, Serfling
(1980, Theorem 1.5.3, p.18), from Step 2 and the continuity of ®(-).

STEP 4. var*[m. /2X”* * ] — E, prob-P. Note E*[X;;‘T] = XZ. Thus,

var’[m 1/QX’T*] = var*[ X[ ]

T VT2
= Z . mir (Xer — XT)

= QoMY (Xer)? — (Xr)?)

The result follows since (X7)? = O,(Sr/T), Smith (2011, Lemma A.2, p.1219), Sp = o(T'/?) by
hypothesis and Zthl(XtT)Q/T — Z, prob-P, Smith (2011, Lemma A.3, p.1219).
STEP 5. - -
lim P(su |P*(X:'FL*T — B X ]
7o TP e X 17
Applying the Berry-Esséen inequality, Serfling (1980, Theorem 1.9.5, p.33), noting the bootstrap sample

<z)—-®(x) >¢)=0.

observations { X[, };2 are independently distributed,

1 2 Tk v T
/ (X5, = XF) <z)-— d(x) Z E* (| X{r )_(”HB]var*[ZmT X732
1/2X7'r* /2 = 1/2 t T s=1 BT :

mr

Now var*[m. 1/QX””‘ *] — E> 0, prob-P, from Step 4. Furthermore, E*[|| X[ — XT||*] = Zthl e || Xer —
T s

X7IP = (14 0p(1)) 324y | Xer = XF?/T and

sup \77*(
x var*[m

1 T _ T o
T thl [ Xer — X[ < oA, | Xer — XT||* thl 1 Xir — X712

Op(Sy/ 2T/ ).

The equality follows since

IN

max | Xer — XTH

X Xz
o max [ Xor| + /%7

= Oy(S7°T") + 0,((St/T)"/*) = 0, (5, *T"/*)
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by M and Assumption 2.3(d), c¢f. Newey and Smith (2004, Proof of Lemma A1, p.239), and E?:l | X —
X7)?/T = O,(1), see the Proof of Step 4 above. Therefore

* (T/ST)l/Q(X;:l* _X%T—v) 1 1/2 1/
T - < - .
Sl;p |Pw{var*[(T/ST)l/QXg{;]l/Q — LE} @(:L‘)| — m;/g OP(]‘)OP(ST T )
51/2
= ,111/20 (Tl/a) = 017(1)’
mr

by hypothesis, yielding the required conclusion.ll

Appendix B: Proofs for GEL Implied Probability GMM-KBB

The indices t* and the consequent bootstrap sample qf;T(B), (s =1,...,mp), denote mp independent
draws with replacement from the index set 77 = {1,...,7'} and the bootstrap sample space {q:7(0)},
with sampling probabilities P (¢7r (0) = qir (0)) = mr, (t = 1,...,T), with mp = [T'/S7] the integer
part of T'//St.

B.1 Notation

Recall gir (6) = Y2 k(s/Sr)a(0)/(aSr)Y2, (8 = 1,..,T), 4(0) = S0, qu(6)/T and r(0) =
Y1 @i (0)/T. Also recall G7.(0) = 3, mrgir(0) and §%7.(0) = Y17, qip(6)/mr.

Additionally, recall the restricted 7-GEL GMM and 7-GEL GMM-KBB Lagrangeans L7.(d) =
QF.(9)/St — 2u/'r(0)/k and LT} (6) = Q7 (8)/Sr — 2u/r(8)/k, where OF.(0) = a7.(8) (Wyr) ' d47.(6)
and an*T(G) = e (0) (Wr) g (6), with Lagrange multipliers y associated with the paramet-
ric constraint 7(#) = 0. The restricted 7-GEL GMM and n-GEL GMM-KBB estimators are é; =

argminQF(0) and 0, = argmind7* (A) with 7-GEL GMM and 7-GEL GMM-KBB Lagrange multi-
0€0O, 0€O,

plier estimators /i and fi . Also recall the GEL criteria corresponding to (2.1) and (2.2) 755T(B, Ag) =
ZtT:l(p( ’ggtT(ﬁ)/kl/Q) — po)/T and 755T(9,)\q) = Z?:l p( ;th(H)/kl/z) — po)/T respectively and
the corresponding GEL estimators of A\,, (0 = g,q), ;\gT = argsup, ea,, ﬁgT(BT,Ag) and :\qT =
argsupy e, 755T(§T, Ag), where the parameter spaces A,r, (0 = g, ¢), are defined in Assumption 3.1.

Recall the matrix definitions relevant for restricted GMM estimation and inference My, = (Q’ W, LQ+
R'R)~', Kw, = Mw,—Mw,R' (RMw,R')"'RMw,, Hy, = Kw, QW ', Jw, = (RMw,R')"'RMwy, QW'
and Py, = W~ ! W, QK w, Q' I/V_1 and those relevant for unrestrlcted GMM estimation and inference
Kw, = Mw, = (G'W;'G)™', Hy, = Kw,G'W; !, Jw, =0 and Py, = W, ' — W, 'GKw,G'W, .

Let Q7.(0) = 947.(0)/0¢, mT( ) = 047 (0)/06" and the (dg,d,) selection matrix Sy = (I4,,0)’,
ie., Syqr = gir, (t=1,...,T).
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B.2 Useful Algebraic Results

(a) QW 'Q = (Mw,)"" — R'R; (b) Hw,Q = Kw,(Mw,)™";
() Kw,R =0, Kw,(Mw,) "Kw, = Kw,; (d) Jw,Q = (RMw,R')™" = Io,)R, Jw, Wy Tty, = (RMy, R) ™" — I ;

(e) Pw,Q = Jiy R.

and

(a) ngG = Idg; (b) ngG =0.

Hence,

quQKE = KE and ngGKg = Kz.
B.3 GEL Implied Probabilities

PROPOSITION B.1. If Assumptions 2.1, 2.2, 2.3(a)-(d)(f) and 3.1 hold, S\QT — 0, prob-P, and, if, in

addition, Assumption 2.4 also holds, (T/S7)"/*Ayr/kY? + Z= W, Py, (T/St)"/?4r(0o) — 0, prob-P.

REMARK B.1. Cf. Smith (2011, Theorem 5.1, p.1210, and eq. (B.16), p.1229) with the GMM estima-
tor A7 substituting for 7. Correspondingly, (T/St)Y?Ayr/k'/? + Z_lVVgPWgS!;(T/ST)UQ(}T(HO) — 0,
prob-P; cf. Smith (2011, Theorems 2.3, p.1201, and eq. (B.2), p.1225).

In this subsection we primarily deal with the restricted implied probabilities mr = 7t (3.2), (t =
1,...,T). Consequently Assumption 3.2 is automatically satisfied as elucidated in the next Lemma.

LeMMA B.1. If Assumptions 2.1, 2.2, 2.3(a)-(d)(f), 2.4 and 3.1 are satisfied, then maxy <<y |T7% —
1| — 0, prob-P, and

(T/ST)l/Q(thT—%) = %th(éT)/(T/ST)1/2:\qT(1+op(1))/k1/2+0p((ST/T3)1/2), uniformly (¢t = 1,...,T).
(B.1)
Proor. Cf. Smith (2011, eq. (B.4), p.1226).1
REMARK B.2. Correspondingly, for unrestricted implied probabilities w7 = 7rer (3.2), (¢ =1,...,T),
maxi<¢<7 |7y — 1| — 0, prob-P, and
(T/ST)l/Q(frtT—%) = %gtT(BT)'(T/ST)1/QXQT(1+o,,(1))/k1/2+op((sT/T3)1/2), uniformly (¢ = 1,...,T).
(B.2)

REMARK B.3. For the efficient restricted and unrestricted efficient implied probabilities, 77 and

ﬁ’tT (33)7 (f = 17 ...,T), maxi<t<T |T77rtT — 1| — 0, pI’Ob-’P7

(T/ST)1/2(ﬁt—l) = lth(éT)’(T/ST)1/25\qT(1+op(1))/k1/2+0p((ST/T3)1/2), uniformly (t =1, ...,T),

T T
(B.3)
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and maxi << |T7r — 1| — 0,

. 1 1 5 < .
(T/ST)1/2(7T,5T7?) = TgtT(5T)'(T/ST)1/2>\gT(1+0p(1))/k1/2+0p((ST/TS)1/2), uniformly (¢t =1,...,T).
(B.4)
Let G7.(1) = Zthl Terqer (+).
COROLLARY B.1. Under Assumptions 2.1, 2.2, 2.3(a)-(d)(f), 2.4 and 3.1, then
(T/S7)"*47(00) = (T/S1)'4r(00) — oWoPw, (T/S7)'*q41(60) + 05(1),0 € {0,1}. (B.5)

PRrROOF. Follows directly from Proposition B.1 and Lemma B.1.H

REMARK B.4. For unrestricted implied probabilities i = 77 (3.2), (t =1,...,T),
(T/S7)'*47(80) = (T/57)!247(80) — 054 Wy Pow, So(T/S7)"*4r(60) + 0p(1),0 € {0,1}.  (B.6)

REMARK B.5. Setting 0 = 0in egs. (B.5) and (B.6) gives Corollary B.1 and Remark B.4 for standard
GMM weighting T 1.

Let a:(0) = a(z,0), arr(0) = ZE;LT k(s/St)a:(0)/(keST)Y?, (t = 1,...,T), and define a%.(9) =
Simy frrarr(0), ar(0) = Y[ apr(0)/T and a(0) = 3_, ar(6)/T.

Lemma B.2 below mirrors Smith (2011, Theorem 3.1, p.1206).

LEMMA B.2. Let TV2(07 — 6y) — 0, prob-P. Let Assumptions 2.1, 2.2, 2.3(a)-(d)(f), 2.4 and 3.1
suitably modified be satisfied for (a:(6)’, ¢:(0)")" jointly. Then, (a) if E[a(z¢, 00)] # 0,

a5 (00)/Sy” = a(07)/k"? = 0 BagE "W, P, d(00) /K2 + 0,(1),0 € {0,1}, or (B.7)
(b) if Ela(z, 60)] =0,
(T/Sr)?a5(07) = TV24(07)/k? — 0 BagE~ Wy Puw, T ?4(00) /k"/? + 0,(1),0 € {0,1},  (B.8)
where Boy = > 00 Elai(00)qi—s(00)]. Additionally, if a,(0) = ¢:(0), (t = 1,...,T),
(T/ST) 245 (br) = T%4(07) /k*/* — oW, P, T24(00) /K*/* + 0,(1),0 € {0,1}.  (B.9)

PrOOF. First, using Lemma B.1,

(T/Sr)'?a5(br) = (T/Sr)"2ar(Or) + (1+ Op(l))a% Zil arr(07)qer (07)' (T/S1)/* A /K
+0,((Sr/T*)(T/Sr) *ar (b7).
Secondly, by Proposition B.1,
(T/Sr)"?ar(6r) = (T/Sr)"*ar(6r)
(Ut oo S v (O )air () (21, Pa, (T/S1) 2 (B0) + 0,(1))

+0,((Sr/T*))(T/Sr)Par (07).
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By UWL Lemma A.1, Ethl G;tT(éT)QtT(éT),/T — Byg, prob-P, cf. Smith (2011, Lemma A.7,
p.1223). Now, as (a) ar(07)/Ss* = 0,(1) if E[a(z,00)] # 0, cf. Smith (2011, Lemma A.1, p.1217),

Op(Sr/T"?))ar(0r)/S7* = Op(S1/T'?) = 0,(1),
or (b) (T/Sr)?ar(0r) = Op(1) if E[a(z,00)] = 0, cf. Smith (2011, Lemma A.2, p.1219),
Op(ST/T)(T/S)"*ar(67) = Op(Sr/T) = 0p(1).
Thus, as (a) ar(0r)/Sy* = (1 + 0(1))a(0r)/k"/? + Oy(Sr/T)"/2) or (b) (T/S7)"/2ar(0r) = (1 +
o(1)T2a(07) k% + O, ((Sr/T)Y/?), cf. Smith (2011, eq. (A.11), p.1219), either
(a) @ (0r)/Sy? = a(07)/k"? — 0 Bag= "W, Pw, d(60) /K> + 0,(1) or
(b) (T/S7)2a%(07) = T2a(07) /k"? — 0 BagE~ "Wy Po, TV 24(00) /k"/* + 0,(1).
Finally, if a;(0) = ¢;(6), (t = 1,...,T), then a%(8) = G%(0), a(f) = G(h) and B,, = Z. Hence, since
(T/Sr)24r(00) = (14 0(1))T*24(60) /K2 + Op((Sr/T)/?) from above,
(T/S7) 245 (07) = T24(0r) /kY? — oWy Py, T 24(00) /K"/? + 0,(1).1
REMARK B.6. For unrestricted implied probabilities w7 = 74 (3.2), (t =1,...,T),
(a) if Ela(z,00)] # 0, @5(07) /Sy = a(br)/k*? — 0 BugSyS "W,y Pu, S, T24(80) /K% + 0,(1) or

(b) if Ela(z:,60)] = 0, (T/Sr)"*a7(01) = TV/?a(br) /K /? —0 Bag Sy~ Wy Pav, ST 24(680) /K +0, (1),

and
(T/Sr)245(0r) = TY24(07)/k"? — 028,35 "Wy Pw, ST 24(00) /k/? + 0,(1).

Thus, if T"/2(B7 — By) — 0, prob-P,

(T/S7) 27 (Br) = T2§(Br) /KY? — oWy Pov,, T2§(B0) /K" + 0p(1).
REMARK B.7. The above results are straightforwardly specialised for efficient unrestricted and

restricted implied probabilities (3.3) by the substitution of Py () for ='W, Py, (W,) and Pz () for
E'W,Pw, (W,) respectively.

B.4 GEL Implied Probability GMM Estimation

PROOF OF PROPOSITION 3.2. (a) By T and CS, |O5(6) — Or(0)| < |g5(0)—dr(8)]12/Sr-|Wr|| '+
2||g5(6) — QT(G)H/S;/Z : ||qu~(9)||/571~/2 |Wyr|~!. Assumptions 2.3(a)(b) imply the compactness of the
restricted parameter space ©,. Now supycg, [G7:(0) — qAT(G)H/S;/2 — 0, prob-P, by Assumption 3.2(b)
and Proof of UWL Lemma A.1. Therefore supycg_ |OZ.(6) — Or(6)| — 0, prob-P, as |[Wyr — W,|| — 0,
prob-P. The result follows from Proposition 2.1(a).
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(b) From the first order conditions, employing UWL Lemma A.1 and GEL-KBB Global UWL
Lemma B.3, QW '(T/Sr)"/%q (07) — R'TY25 /Y2 — 0, prob-P. So, pre-multiplying by RMy,,
Jw, (T/Sr)'?G (HT) TY2p% /kY? — 0 and, thus, Hw, (T/St)"/?%¢ (GT) — 0, prob-P. After substitut-
ing (T/S7) Y267 (07) — (T/Sr) /265 (00) — (Q/k/2)T/2(B —6,) — 0 and since Jw,Q = (RMw, R')™"
I4,)R, noting RT"/?(87—6,) — 0, prob-P, we conclude T*/2 (8. —6)/k'/?>+ Hy, (T/S7)"/?§5(60) — 0,
prob-P, cf. Smith (2011, eq. (B.15), p.1229), and TV/247./k'/2 — Jyw, (T/S7)"?5(60) — 0, prob-P, cf.
Smith (2011, eq. (B.17), p.1229).1

PRrOOF OF COROLLARY 3.1. Substituting (T7/S7)Y/2¢5(00) — QHw, (T/Sr)'/?Gr(0) — 0, prob-P,
see Lemma B.2(b) with o = 1, and noting Hw, QKw, = Kw,, T1/2(é;rf€0) JEV2+Hw, (T/S7)Y%4r(00) —
0, prob-P. The second result follows since RHy, = 0.1

B.5 GEL Implied Probability GMM-KBB Estimation

PROOF OF THEOREM 3.1. The proof verifies the conditions of Gongalves and White (2004, Lemma
A.2,p.212). To do so, replace n by T, Qz(-,0) by Or(0) and Q(-,w, ) by OF* (6). Conditions (al) and
(a2) hold under Assumptions 2.1 and 2.3(a)(b). Condition (a3) supycg, 1Q7(0)—Q0(0)/k|/Sr — 0, prob-
P, where the population GMM criterion Qg (0) = Eg;(6)] W,E|[g:(8)], follows as in Newey and McFadden
(1994, Proof of Theorem 2.6, p.2132) from the UWL Lemma A.1 supgee ||dr(6)/S5 > —(6)/k/2|| — 0,
prob-P, E[supyce, [lg:(0)]]] < oo from Assumption 2.3(d), |[Wer — W,|| — 0, prob-P, W, p.d. by
hypothesis and QO(H) uniquely minimised at 6y by Assumption 2.3(c). Hence 01 — 6y — 0, prob-P.

Conditions (b1) and (b2) follow from Assumptions 2.1 and 2.3(a)(b). To prove (b3) supgce. |Q”m*T (0)—
Qr(0)|/St — 0, prob-PZ, prob-P, from T and CS,

197 (0) = Qr(O)/Sr <l (8) = dr (O)IIP/ St - W |7
+20ldr(O)1/57* - lldgs, (0) = ar(O)I1/ Sy - 11Wan, |~
Har @O /St - [ Worll = Wy = WarllllWem 17
Now by GEL-KBB UWL Lemma A.3 supyeq [|§%%(0) — Gr(0)]|/Sy/> — 0, prob-Ps, prob-P. Also,

ar@/sy” < ir(0)/51* — Elas(0))/k* B @)lI/E = 0,(1) by
UWL Lemma A.1 and Assumption 2.3(d). The result then follows since H — Wyr|| — 0, prob-P%,

gmr
prob-P, by hypothesis.l

ProOOF OF THEOREM 3.2. Extensive use is made of GEL-KBB Local UWL Lemma A.4 and As-
sumption 2.3(b), i.e., Q%*T(éﬂm*T)/S;/Q — Q/k'/? and R(0), ) — R, prob-P}, prob-P, for any 0;,  — 0y,
prob-P¥, prob-P.

From Theorem 3.1, by Assumptions 2.3(c) and 2.4(c), 8, € N w.p.a.1, prob-P*, prob-P. Thus, the

s Ymop

first order conditions for 9 . are satisfied with equality w.p.a.1, prob-Pj, prob-P, i.e. ,Qrx (u 2 (Wre ) (UWm*T)/ST—

Tk

R(éﬂ* ) i / k= 0. Pre-multiplying by RMy, , RMy, ( mT(va)/S:lrﬂ) Wane)™ (T/ST)l/Q‘jgz*T (Op)—

qgmr
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9

RMyy, R(0
and, thus, prob-P, prob-P,

* * 9

) TY2am Jk = 0. Since R(é;T)—R — 0, RMWqR(Gl*T)’ is p.d. w.p.a.1, prob-P}, prob-P,

™
m T

9

TY2T [k — (RMw, R(0,,,) )" RMw, (Q5 (070,) /S Y (Wi ) ~HT ) Sr) 24 (B, ) — 0. (B.10)
Substituting back, (Mg, — My, R(B,,. ) (RMyw, R(0r, )') " RMw, ) Q72 (6, ) /Sy >y (Wi )T/ Se) V2407 (G) =

0, prob-P;, prob-P, which, together with the Taylor expansion (T/Sr)Y/2G% (6, ) = (T/Sr)" /245, (O7)+

(Qrx (B ) /Sy )T /(B

mr

07, and RMyy, Q' (W,)~'Q = (I, — RMw, R')R, yields

B é;), prob-PY, prob-P, where @;*T is on the line segment joining éﬂm*T and

T

K, (@, (000,11 Wi ) 71T/ S0) 2 a5, (07) + TV (0

mr qmr

—073)/k — 0, (B.11)

mT

prob-P*, prob-P, noting RT"/ 2(5’:; — é;) — 0 from the first order conditions, W7* = — W,, prob-Pj,

prob-P, by hypothesis, and extensive use of GEL-KBB Local UWL Lemma A.4.

Now

(T/S7)Y%qm (07) = (T/Sr)Y2(a% (80) — G5(60)) (B.12)
+(T/ST) 235 (00) + (T/ST) (a5 (B7) — 4. (80)).

By another Taylor expansion, of (7'/S7)Y/2G™* (é;) about 6,

Ay
(T/52)" (@57, (0r) = a5 (00)) = (@ (B7)/ 57 )T/ (B — 60), (B.13)
prob-P%*, prob-P, where 07, lies on the line segment joining 7. and 6. Since H. w, (T/S7)Y Qq?(é;) -0
and (T/S7)2(g5(07) — G7(60)) — QTY2(By — 60)/k'/2 — 0, prob-P, cf. Proof of Proposition 3.2(b),
back-substitution using GEL-KBB Local UWL Lemma A.4 yields

Tk VT

Kw, (QF (0n, /S22 (W V" H(T/S7) Y235 (00) + (QF, (07) /Sy )T ?(b7 — 6)) — 0, (B.14)

qmr mr

prob-P?* . prob-P. So, substituting eq. (B.13) into eq. (B.12) and thence into eq. (B.11), noting eq.
(B.14),

Tk

TV2(@, —07)/k + Kw, (QN (Bn ) /Sy ) (W )N T/ Sr)V2 (65 (Bo) — G5(60)) — 0, (B.15)

prob-P%, prob-P. By GEL-KBB CLT Lemma A.5, (T/S1)Y2(G%* (00) — ¢5(00)) — (T/St)* ?Gr(00) —

qu
T*

0, prob-P*, prob-P. Hence, since Q7 (0, )/Sy/* — Q/k/? from GEL-KBB Local UWL Lemma
A4, W= — W, by hypothesis, prob-P*, prob-P, and (T/Sr)24r(6y) —* N(0,Z/k), prob-P,

qmr

Tl/Q(éWm*T - é;) converges in distribution to N(0, Hw,EHyy, ), prob-P;, prob-P.

Substitution from the Taylor expansion for (T/Sy)/2¢r (é::;) below eq. (B.10) yields TV/2p7" /k—
(RMuw, B(6,,)) " RMw, Q7 (6,0,)/S1%) (Wi )~ (T/S2)V /245, (B7) — 0. prob-PZ, prob-P, not-

U v

ing from the first order conditions Jyy, QTY/? (CAne —9;) — 0, prob-P, prob-P. Similarly, from the Taylor
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v

expansion eq. (B.13), TY/2j™* /k—(RMyw, R(0,, ))"*RMyy, (Qr. (B, )/SH) (WEr ) "HT/Sr) 247 (00) —

L. qmr Imy

Oor TV2 7" /M2 —Jw, (T/ST)Y2G%" (6) — 0, prob-P}, prob-P. As T2 T /K2~ Jw, (T/Sr)Y235(00) —
0, prob-P, cf. Proof of Proposition 3.2(b), again recalling GEL-KBB CLT Lemma A.5, T/ (i7" — i7)
converges in distribution to N (0, JWqEJ{/Vq), prob-P}, prob-P.

Theorem 3.2 then follows by Pélya’s Theorem, Serfling (1980, Theorem 1.5.3, p.18), and continuity
of the normal distribution c.d.f. B

PROOF OF COROLLARY 3.2. Immediate from eq. (B.11) and first order condition Hyy, (T'/Sr)'/?q (HT)
0, prob-P, and T2 /kY2 — Jy (T/S7)'/%G7% (67) — 0, prob-Ps, prob-P, cf. Proof of Theorem
3.2, and first order condition TV/2j17./kY/2 — Jy, (T/ST)I/QQ}(é;) — 0, prob-P, cf. Proof of Proposition
3.2(b). M.

PROOF OF COROLLARY 3.3. From eq. (B.13) and, below, (T/S7)Y/2(¢%(07) — §%(60)) — QT /(07 —
0o)/k*/? — 0, prob-P,

QEN(T/Sr) (G (b7) — 47 (67)) — Q=71 (T/S1) /(7 (B0) — G7(60)) — 0, prob-P, prob-P.

Since, from GEL-KBB CLT Lemma A.5, (T/S7)Y2(§%* (60) — G5(00)) — (T/S7)?¢r(00) — 0, as Q

qu
fer., (QE71Q)"Y2Q=E"HT/Sr)/?(4x (00) — G (00)) converges in distribution to N (0, I4,/k), prob-
P, prob-P. Therefore,

sup [PL((QET'Q)V2QENT/Sr) " (any, (07) — d7(07) < w/k'?)

x€R%

~PUQET'Q)VPQENT/Sr) 24r (o) < w/k'/?)| =0, prob-P,

follows by Pélya’s Theorem, Serfling (1980, Theorem 1.5.3, p.18), and the continuity of the normal
c.d.f. ®(-) recalling sup,, |P(E~Y2(T/Sr)" 247 (00) < x/k'/?) — ®(2)| — 0 from STEP 3 of the Proof of
GEL-KBB CLT Lemma A.5. B

B.6 GEL Implied Probability GMM-KBB Inference

LeEmMA B.3. Let Assumptions 2.1-2.4 and 3.2 hold. Then, if Z7* — Zp — 0, prob-P%, prob-P,

mT
’_‘ﬂ'*

. p.s.d., and Er — E — 0, prob-P, Er p.s.d.,

T %

(T/S) (655 Orey) — G7(07)) — EP=(T/Sr)"*4r(60) — 0, prob-PJ, prob-P.

mT

PrOOF. Using GEL-KBB Local UWL A .4, setting W/ = Z"* in (B.11), T1/2(9 - OT)/k: +

qmr mr

K=( A;;b (NmT)/Slﬂ) (Em VYT Sr)Y2qrr (87) — 0, prob-PZ, prob-P. Also, by a Taylor expansion

mr

and GEL-KBB local UWL Lemma A .4,

s

(T/Sr)YV2 (@5 (By,) — a5 (07)) = (Q (97)/S,/ )T /(6 — 07)
= QTY*(0,, —07)/k?,

mr
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prob-P, prob-P, where 67 is on the line segment joining 9;* and é; Hence, substituting for 7'/2 (éjn*T -
~T
0T)7

Tk

(T/S)Y2q% (B, ) — 2P=(T/Sr)Y2G% (07) — 0, prob-Py, prob-P. (B.16)

mT

Now, by Taylor expansions, (T/Sr)"/2(d55. (07) — a5 (00)) — (Q. (7)) /S5 *)TV2(87 — 65) — 0, prob-

Pz, prob-P, and (T/Sr)Y/2(T/Sr)V2(q(07) — G5(00)) — (QF(67) /S5 )T /(87 — 64) — 0, prob-P,

where GT and 07 lie on the line segment joining 9T and #y. Thus,
(T/57)"2(d5 (B7) — @F(07) — (T/S1)'/*(@5;(6o) — @ (60)) — 0, prob-PZ, prob-P,  (B.17)

since QT* (HT )/S:1F/27 AT(QT))/SI/2 — Q/k?, prob-P?, prob-P, by GEL-KBB Local UWL Lemma
A.4 and UWL Lemma A.1. Therefore, combining eqgs. (B.16) and (B.17), since H=(T/St)"/?§ (QT) — 0,
prob-P,

(T/Sr) (45 (0,,,) — G5(07)) — EP=(T/Sr)2 (G5 (00) — GF(00)) —

prob-P}, prob-P. By GEL-KBB CLT Lemma A.5 (T'/S7)Y/2(¢%* (60) — 5.(00)) — (T/S7)"?G47(00) — 0
prob-P*, prob-P, and the conclusion of the Lemma follows.ll

Recall the alternative restricted 7-GEL GMM estimator 9; defined by 9; — arg mingeo, OF(6), with
associated 7-GEL GMM Lagrangean £7.(0) = QF.(0)/St—2u' (r(0) —7(a, B1))/k, Lagrange multiplier es-
timator /17, and 7-GEL GMM criterion OF(0) = ¢5(0)' (Er) " ¢7-(0). Additionally, recall b7 = (&, A;I)’
and the corresponding restricted 7-GEL GMM-KBB estimator GmT = argmingce, QmT( ), with 7-GEL
GMM-KBB Lagrangean E”m*T (9) = an*T (6)/Sr—2u/ (r(0) —r(67)/k, Lagrange multiplier estimator T
and 7-GEL GMM-KBB criterion Q”* (0) = qn.(0) (BT ) "t (0).

LEMMA B.4. Let Assumptions 2.1-2.4 and 3.2 be satisfied. Then, if ='* —Z — 0, prob-P, prob-P,

. p.s.d., and Er — E — 0, prob-P, Er p.s.d.,

T %

(T/Sr)"/(@5, (07,) = EP=d7(07)) — EP=(T/S7)" (a5, (60) — d7(00)) — 0, prob-P, prob-P.

PRrOOF. The Proof replicates the steps in the Proof of Lemma B.3 above. Notlng RT1/2(9 —9T)
0, prob-P%, prob-P, from the first order conditions, T/2(0,. —HT)/k+K (QF ( )/51/2) (Em )T/ Sr)Y2qr; (9T)
0, prob-P}, prob-P. Also, by a Taylor expansion and GEL-KBB Local UWL Lemma A .4,

T %

(T/S0) ity Ory) — e (B7)) = Qi (07)/Sy )T 207, — 67)

= QTY*(6,. —b7)/k?,

mr
prob-P%, prob-P, where @;* is on the line segment joining 0;* and 0; Hence, substituting for Q7"'/2 (0:; —
o

9T)7

(T/S1) 57, (0rny) — EP=(T/S1)' 2G5, (67) — 0, prob-P, prob-P,

qu
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cf. eq. (B.16). Similar Taylor expansions to those in the Proof of Lemma B.3 yield (T'/Sr)'/2(47. (67)—

ar (00))—(Qr (05) /Sy )T 2(B7.—60) — 0and (T/Sr)"/2(d5(B7)—d3(60)) —(Q5(Br) /S7/ ) T2 (b —

0o) — 0, prob-Pr, prob-P, where 6%* and 7 lie on the line segment joining 9; and 6. Hence,
(T/57)"* (g5 (b7) — @F(07) — (T/S1)'/*(5:.(Bo) — @ (60)) — 0, prob-P, prob-P,

of. (B.17), since QT* (05) /542, Qm(07))/S3/> — Q/k'/2, prob-P%, prob-P, by GEL-KBB local UWL
Lemma A.4. Therefore, substituting for (T/S7)'/247* (A7), by a Taylor expansion,

am T

. Tk

(T/Sr)/(@5, (O7,) = EP=d7(07)) — EP=(T/S7)" (a5 (60) — d7(00)) — 0, prob-P, prob-P,

prob-P}, prob-P. The result is then immediate by GEL-KBB CLT Lemma A5, i.e., (T'/S7)Y2(G7 (60)—
@7 (00)) — (T/S1)"/4r(60) — 0, prob-P;, prob-P.M

B.6.1 Overidentification Tests

ProoOF OF THEOREM 3.3. Replacing E, Pz by ¥, Ps, ¢5.(-), ¢7(), 4r(-) by g5 (), 67(-), g7(-)
and 0,.., 07 by B,,., By, in Lemma B.3, (T/Sr)*2(355 (Bry) — 35(B1)) — SPu(T/S1)Y237(8y) — 0,
prob-P*, prob-P. Likewise (T/S7)"2g7(By) — SP*(T/S7)"241(8,) — 0, prob-P. Therefore, as
(T/S7)?4r(By) —* N(0,%/k), prob-P, J=* converges in distribution to N(0,EZPsX) x 7! x
N(0,EPsY) = N(0,%) x Py x N(0,%) ~ x*(d, — dg), prob-P, prob-P, and the conclusion follows by
Polya’s Theorem, Serfling (1980, Theorem 1.5.3, p.18), noting Jr —97 x2(d, — dg), prob-P, and the
continuity of the x?(d, — dg) c.d.f.H

B.6.2 Specification Tests

Tk

PROOF OF THEOREM 3.4. LR : From Lemma B.3 (T/Sr)"2(qx:. (6 )~ @5 (07)) —ZEP=(T/S1) 241 (60) —

I
0 and (T/S1)"*(@75%, (Bpp ) =G5 (31) = SPs(T/57)' 7 (Bo) — 0, prob-PZ, prob-P. Now, as =77, — &,
Xrt — %, prob-Pj, prob-P, by hypothesis, LR, /k — (T/St)4r(6o)' (P= — SQPES!'J)QT(HO) — 0, prob-
P%, prob-P, noting P==S, Py, = Sy Ps. Since LR /k— (T/ST)QT(HO)’(PE—SgPES;)dT(HO) — 0, prob-P,
and (T/Sr)qr(00) (P= — Sy PsSy)ar(6o) — N(0,5/k)" x (P= — Sy P¥Sy) x N(0,E/k) ~ x*(dy + (dg —
dg) — (de — dg))/k, prob-P, see Rao and Mitra (1971, Theorem 9.2.1, p.171); cf. Smith (2011, p.1229).
Hence, cf. Smith (2011, eq. (B.18), p.1229), the claim follows by Polya’s Theorem and the continuity of
the x2 c.d.f.l
D7, From the Proof of Theorem 3.4 for LR} (T/S1) (@5 (Brr) = 47 (07)) (557,)) ™ (@57, () =
§7(07))~(T/S1)ir(60)' P=dr(00) — 0, prob-PZ, prob-P. Similarly, (T/S1)(§5, (B ~97(B7)) (575) ™ (375, (B )~
g;(é?)) — (T/ST)(jT(90)’SgPZS;ch(90) — 0, prob-Pj, prob-P. The equivalence with LR then
follows.H
Spr : Similarly, from Lemma B.3, ((E57) " — Sy P&5,, ST/ Sr) V2 (G5 (O ) — 3(07)) — (P= —

SQPZS;)(T/ST)I/%T(OO) — 0, prob-P7, prob-P. The conclusion is shown since, cf. LRI | (T'/St)Gr(60) (P=—

mT?
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S PuSg)ar(60) — x*(dr + (dg — dg) — (dg — dg))/k, prob-P.H

LM}« Let
= 0 Q
T==| 0 0 R |.
Q R 0

Define the (dy + d + dg,dp + d;) selection matrix Sy , = (8]

h“,O’)’. Then (Sg )’(TE)_l(Se ) =

S ¥Y=Sh,u, see Smith (2011, p.1230). From a Taylor expansion of g5, (@ ) about HmT, (T/ST)1/2(jfn*T(9
(T/S) (G55 Oy = 54797 (B ) — QT (6

mr)
(Aﬂ'*

é:T)/kl/Q — 0, prob-P%, prob-P. Then, from
the first order conditions for 9mT, noting ¢7*. () = (Ia, — Zpr . Sg(X5) 1S (),

v ATk E—l ATk () SI/Z _ S Y- ATr* 51/2
_ 1/2 hﬂm*T (emT)/Sjl“/z _ 1/2 qu / ~ﬂ_* 1/2 g ( mT)/ T
(T=) (Sh T T(Aﬂ* )/kl/Q T Aﬂ* /k' — 0,
m Oy — Oy )12

prob-PJ, prob-P. Hence,

B L 51/2 =—lgmx (g 51/2
(Sh,) (T=) 1(Sii,t)Tl/2< ("é?r( )/2)152 )—Sh#Tl/Q( ql",?*( /kl/)z/ ’ )Ho,
mT

prob-P7, prob-P; cf. Smith (2011, eq. (B.22), p.1230). Therefore, together with the similar result

i (6052 =147, (30)/51
(S0,)(T=) 1<sz,u>T1/2<T@%)T/)k/1/g )—sh,uzﬂ/?( %Igyﬂ >—>0, prob-P.

cf. W, (3.13), prob-Py, prob-P,

T (h”* (éﬂ- ) hﬂ' (QT))/Sl/Q )’ / < (hn* (é ) h7r (GT))/51/2 )
LM 7 S, WeSp, [ P o
/k ! ( (r(emr) - r( ))/kl/Q h’M\IIH " (T(QmT) — 7«( ))/k1/2 0.8

TT*

GWrr Substituting the expansions (T/St)2(Gr (O ) =G5 (B )= QT 2(0r, —6 /B2 — 0
and T/2r (9 ) RT'/? (0 -0, ) — 0, prob-P%, prob-P, and, similarly, those for qT(GT) and r(HT),
as P=Q = JLR and J=Q = J=EJLR, GW," may be expressed as (T'/St)((¢r" (6,,

mr Gy

~T0*

2) = @ (07)) —
=8, 2 (@, (Bny) = 90 (7)) P (@57, Bry) = 47 (07) = 250375 (B, )~ 97(B1), prob-P2, prob-
P. Cf. LR}, eq. (3.9). Note that, from the first order conditions for HmT, o7, B

mr

and B;, Pz may
be replaced by Z~'.1

T

PROOF OF THEOREM 3.5. From Lemma B.4, (T/St)'/2(¢7* (ém*T) =re Pr qr(07)—EP=(T/Sr)V2 (a5,

G
d7(60)) — 0, prob-P, prob-P. Since, (T/St)"/?(q5. (0 §7(07))—EP=(T/St)"/?4r(60) — 0, prob-

P, prob-P, from Lemma B.3, and, by GEL-KBB CLT Lemma A.5, (T/S7)"/2(¢%* (60) — ¢7(60)) —

QmT

(T/S7)*?Gr(09) — 0, prob-PZ, prob-P, the results follow immediately. Cf. Proof of Theorem 3.2 for
LR} and D’ A

mr

Tk
mT) -



Appendix C: GEL Implied Probability GMM-KBB HAC Vari-
ance Matrix Estimation

In the following X;(0) and Y;(0) substitute, where appropriate, for ¢:(9), (t = 1,2,...), in Assump-
tions 2.1, 2.3 and 2.4.

Let Xir (0) = Y2 ¢ k(s/S1)Xe(0)/(kaST)V2, Yir(0) = Yi2; 1 k(s/S1)Yi(0)/(kaST)V/2, (8 =
Loy T), X(0) = Y02y Xa(0)/T, Y (0) = 3., Ya(0)/T and X (6) = S, Xer(0)/T, Y (0) = Yo, Yir(0)/T
Alsolet X7(0) = 3/, mr Xy (0), Vi (0) = 32,y mrYer(0) and X7 (0) = Y00 X2p(0) /ma, Y2 (0) =
2oy YiIp(0)/mr where the indices ¢} and the consequent bootstrap sample (X7.r(0), Y7 (0)), (s =
1,...,mr), denote mr independent draws with replacement from the index set 7r = {1,...,T} and the
bootstrap sample space { X7 (), Y;r(0) }{—, with sampling probabilities P (X1 (6) = Xor (6), Yip(0) =
Yir(0)) = mer, (t=1,...,T), with my = [T/St] the integer part of T'/St.

The argument 6 is suppressed in the proofs of the following lemmas without loss of generality.

LemMA C.1. (GEL-KBB HAC Variance Pointwise WLLN.) Let E[X,(0)] = 0. Also let {X;(0)},~,
satisfy Assumptions 2.1(b) and 2.3(d). If Assumptions 2.2 and 3.2 hold, then

1 mr T 2 1 T 2 * .
(a) P Zszl(Xt;T(a)) -7 . (Xer(6))” = 0, prob-P, prob-P;
1 mr . T *
(b) o Zszl(xﬂw))2 - thl T (Xer(0))? — 0, prob-P%, prob-P.

PROOF. By Assumption 3.2(b) Z?Zl(XtT)Q/T—Zthl w7 (Xer)? — 0, prob-P. Hence, as Zle(XtT)Q/T =
0,(1), cf. Smith (2011, Lemma A.3, p.1219), the Lemma follows by T if (b) is proven. The proof offered
is similar to that in Gongalves and White (2004, Proof of Lemma B.1, pp.217-218).

First, since E*[(XZ%T)z] = Zthl 77 (Xer)?, by M,

" 1 mr - T 1 " 1 mr - T
Polloe Y (KE? = Y (X)) > €) < B = Y (X - Y mXer P

mr s=1 ep s=1
(C.1)
for some p > 1. Now
* 1 mr T T 1 * mr T * s
E*[|— Z _1(Xt.’§T)2 - Z _ 7TtT(XtT)2|p] = —E I Z _ ((th;T)Q —-E [(th;T)Qmp]
mr s= t=1 mp s=1

]_ « mT - % -
< ORI X E)? — BT (XTI
T =

for some C' < oo by the extension to the Burkholder inequality in White and Chen (1996, Lemma
A2(iv), p.299) as (X%T)2 - E*[(X,Z%T)Q], (s =1,..,mp), are i.i.d. zero mean. For 1 < p < 2,
by Jensen’s inequality, White (1984, Proposition 2.38, p.27), E*[(3211) [(Xfip)? — E*[(Xt”:T)2]|2)p/2] <
mrE*[|(Xfir)?~E*[(X[i7)?]|]. Invoking the ¢,-inequality, White (1984, Proposition 3.8, p.33), E*[|(X[. 1)
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—E*[(XZ1)?]P] < 2PE*[| X[ |?]. Hence, substituting in eq. (C.1),

1 mr 9 T 2 1 2
% T2 _ < POE | XT..|2P )
Pl SRR - m(Xer)? > e) < Epm%_lz CE*[| X7 r[?] (C.2)

1 T
— P 2p
o ermb? e Zt:1 mir| X |

1 1 T
- 12" C(1+ 0p(1)) 7 >, Xl

ePmop

Now, by M, cf. Newey and Smith (2004, Proof of Lemma A1, p.239),

A

1 T 2 1 T ) 2p—-1)
T Zt:l [Xer| =T thl R (121%)% | Xer])

= O,(Tr VI,

noting Ethl | Xir|?/T = O,(1), cf. Smith (2011, Lemma A.3, p.1219). Thus, from eq. (C.2),

2PC(1 + Op(l))Op(TQ(p_l)/a)

p—1

1 mr
(= (XD Xor)? <
Pw(lmT 521( fer) 1 m(Xer)] > g) < -

— OP(T(p—l)(2/a—n—1/2)) — op(l).

The second equality and, thus, the result, follow from Assumptions 2.2(a) and 2.3(d) since o > 4.1

LemMa C.2. (GEL-KBB Outer Product Estimation.) Let {(X;,Y;};2, satisfy Assumption 2.1(b)

and E[|Xt|dp},E[|Yt|%] <A, 0< A < oo, for some 1 < p<2andd>1. If Assumptions 2.2 and 3.2
hold, then

1 mr

T2 Doy X ¥ir = 0, prob-PZ, prob-P.

Proor. Cf. Gongalves and White (2004, Proof of Lemma B.2, p.218). By M, for some 1 < p < 2,
using the c¢q-inequality with r = p,

* 1 mr T i 1/2 1 * 1 mr T T
— “ " < —= — « “
P”(‘m:r 25:1 XipYip| >T/%) < Epr/QE [|mT 25:1 XlpYip

7]

1 I 1 mr T T *[ VT ™
< T2 2P (E HmiT Zs:l( Yy — EYXE Y p]) P
1 mr
— B[ XL Y0P
+ |mT Zs:l [(XErYiip]P)
1

= opTe/2 2R+ Fy).

o ™ ™ * ™ s J— M
Since X7.p YTy — E*[X7 7Y Ip], (s =1,...,mr), are independent zero mean,
mr

1 " - - *[ T m
Fy < WCE [(Zs—l |XrYip —E [Xt:TY;:THQ)p/z]
7 -

for some C' < co by the extension to the Burkholder inequality White and Chen (1996, Lemma A.2(iv),
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p-299). Hence, for 1 < p < 2, by Jensen’s inequality and the c¢,-inequality,

1 * s s * s T
B < —FCEY| XYy — B [XE Y]]
mr
< QPOE*HXMQJT 7
T

1 1 T
_ mer| XerYirlP = e 27C(1+ 0p(1)) 7 thl | X7 Yir|P.

Also, by Jensen’s inequality and Assumption 3.2(b),

mr s U
F = p|Z Xt*T)/t* ]|

E*HXZ%TYth‘ ]

T 1 T ,
Yo XYl = (Lt 0,(1) 5 > [XerYir|”.

IN

By M and Holder inequality, White (1984, Proposition 3.4, p.30),

1 T 1 T
P(7 >, [ XeYrlr > 8)< 75 2y BllXerYer|”]

d
< :r(sZ“ X 7)) V4B Yi | #4014,

Then, by T and Minkowski inequality, White (1984, Proposition 3.11, p.34),

1 t—1 s
Ell(ke) *Xer/SF1] = Ellg= 30, R Xl ]
1 t—1 S dp
< Bl o, X))

1 t—1

(g 3 BB ]y = o)

T-1
E[|X¢|%] is bounded by hypothesis and Z e |k(s/ST)|/ST = O(1). By the same reasoning
E[|(k2)1/2}QT/S:1F/2|%] = O(1). The result follows since S/T*/? = o(1) by Assumption 2.2(a).H

Let

Tk 1 mr by T
S (0) = mr Zs:l at-r(0)az-r(0)".
LemMma C.3. (GEL-GMM HAC Variance Estimation.) Under Assumptions 2.1-2.4 and 3.2, if
(T/51)"243(60) = Op(1),

Tk

=T (0

mr

— E, prob-P}, prob-P.

mr)

PRrOOF. Adopting a proof strategy similar to that of Gongalves and White (2004, Proof of Theorem
3.1, pp.216-217), first consider the infeasible estimator Z7* (o) of E. Fix any & € R, 0 < [|€]| < oo.
Now &'ERF (00)€ = 3212 (€'af7(00))? /mr. Applying Lemma C.1 with X,(6o) = €':(0o), (t = 1,..., T),

1

mT 2 T , 9 N
me Z Qt* 00))” — T thl(f @7 (00))” — 0, prob-P;, prob-P.
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Thus, by Smith (2011, Lemma A.3, p.1219),
— Z qt* )2 — &'Z¢ — 0, prob-P7, prob-P.
mr

It remains to prove that ¢'=7* (umT)f f'"”* (60)¢ — 0, prob-P*, prob-P. By a first order Taylor

mr

expansion of (¢ qt*T(é:jT))Q around 6

Tk

(€ a0 ))? = (€a57(00)) + 2€ a0 ) (€ QT (070)) Oy, — 00))

ATE . . o e ATT*
where 0, is on the line segment joining 0, .

and 0y and Q7. (0) = 6qZ‘%T(9)/39/, (s =1,....,mr).
Substituting

= e = —— 3" (a0 ””%Z (€ a7 (O ) (€ QR (B ) By — Bo).

mr

7|'>l<

The first term is 'E7* (o). For the second term, denoting the jth column of Q7. (6 MT) by QF.r (0.

(€ QEr (O Oy — 00) = X901 (€ QT (077,)) (B, — 00,5), and, thus,

Tk

Y O, )€ Qe (,nT>><éZi;;—eo>=Zj”:1<é,,LT,j—eo,j>miTZ (€ 07 Qs 07

Now, by T and CS,

m

o S 2 O D Qg O ) < 2 ST s (€672(0)] sup (€ Q)

s=lgeco
Define X7.7(0) = supgee, \(E'q{%T(ﬁ)ﬂ and YT7.(0) = supgee, |(§’Q:§T’j(9))|. Applying Lemma C.2
withp=1+4¢ and d = a/(1 + ¢) for some £ > 0,

1

mr / /
—_ su T.(0))| su w7 .:(0))] — 0, prob-P}, prob-P,
T 2my > o 96(5'(5 a7 ( ))|ee<§|(§ Qf-1,;(0))] P P

by Assumption 2.4(b). The result then follows from Proposition 3.2 and Theorem 3.2 writing 7/ 2(0
0o) = TV/2(0, — 67) +T'/?(07 — 6;). W

mT_
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Table 1. Model 1: Empirical Rejection Probabilities: Overidentifying Moment Restrictions Tests.

T 64 128

p 0.5 0.9 0.5 0.9
LEVEL 1.00 5.00 10.00 | 1.00 5.00 10.00 | 1.00 5.00 10.00 | 1.00 5.00 10.00
ASYMP | 0.40 4.04 964 | 096 534 1222 | 068 448 10.04 | 088 5.12 10.74
KBB.z | 028 3.28 846 | 0.60 390 9.60 | 0.58 4.16 9.64 | 0.80 4.60 9.46
KBBT, | 030 334 880 | 0.72 398 9.96 | 082 4.36 994 | 0.80 4.78 9.76
KBBg, | 028 278 7.28 | 0.70 3.32 790 | 0.62 4.02 932 | 0.84 424 8.50
KBB], | 034 334 814 | 0.80 394 896 | 0.70 4.40 9.64 | 0.76 4.12  8.68
KBB, | 034 298 6.88 | 1.22 356 7.10| 0.64 4.00 8.82 | 148 450 8.16
KBBj], | 0.70 3.68 800 | 1.78 4.86 9.42 | 1.00 4.64 9.82 | 1.56 4.90 9.10
KBBy | 022 3.08 7.62| 0.82 3.72 850 | 0.62 4.02 944 | 1.00 4.30 8.68
KBB7, | 040 346 836 | 1.02 408 928 0.80 4.38 9.70 | 0.88 452  9.18
MBB 024 286 686 | 1.14 3.86 856 | 0.64 3.82 9.02 | 1.28 452 8.70
MBB™ | 0.54 334 798| 148 490 9.72 | 0.60 4.26 948 | 1.44 494 942




Table 2. Model 2: Empirical Rejection Probabilities: Overidentifying Moment Restrictions Tests.

T 64 128

p 0.5 0.9 0.5 0.9
LEVEL | 1.00 5.00 10.00 | 1.00 5.00 10.00 | 1.00 5.00 10.00 | 1.00 5.00 10.00
ASYMP | 042 394 940 | 0.76 4.90 11.52 | 0.52 486 10.16 | 0.76 5.36 10.52
KBB.s | 028 292 796 | 054 342 820 | 046 392 9.06 | 0.56 4.24 9.22
KBBT, | 034 332 820 | 074 366 870 | 048 454 9.72]| 070 480 9.34
KBBg, | 024 240 650 | 0.60 2.84 6.88| 0.42 3.8 8.60 | 0.74 3.90 7.98
KBB], | 042 344 806 | 0.72 348 798| 0.50 436 9.26 | 0.68 4.28 8.54
KBB:, | 044 258 6.00 | 1.00 296 6.02 | 054 3.66 812 | 1.26 4.26 7.42
KBB], | 0.70 392 800 | 1.58 454 838|080 494 934 | 132 5.16 9.02
KBBqs | 028 258 692 | 0.70 298 738 | 048 388 886 | 0.76 4.20 8.22
KBB7, | 040 3.52 812 ] 0.74 376 826 | 0.54 446 9.50 | 0.84 4.54 9.00
MBB 032 260 642 | 1.04 318 7.16| 046 3.76 842 | 1.00 444 8.02
MBB™ | 048 344 794 | 128 428 868 | 0.58 446 930 | 1.02 5.12 9.28




Table 3. Model 1: Empirical Rejection Probabilities: Parametric Restrictions ¢-Tests.

T 64 128

) 05 0.9 0.5 0.9

LEVEL 1.00 5.00 10.00 | 1.00 5.00 10.00 | 1.00 5.00 10.00 | 1.00 5.00 10.00

AsYmMP | 6.10 13.54 20.34 | 20.38 31.98 39.84 | 3.14 9.08 15.14 | 12.54 23.50 30.58

KBB.; | 3.34 970 1578 | 944 20.18 2832 | 190 7.16 12.72 | 542 14.66 22.64
KBBY, | 248 812 1354 | 742 1534 2212 | 1.58 6.34 11.50 | 4.22 11.10 17.88
KBBT; | 320 9.46 1558 | 6.86 16.64 24.74 | 1.90 7.26 12.50 | 4.52 13.06 20.80

KBBg, | 220 736 1290 | 6.04 15.00 21.78 | 1.38 5.90 11.04 | 3.48 1040 17.06
KBB?, | 1.78 6.46 11.88 | 4.78 11.26 16.74 | 1.22 528 10.58 | 2.564  7.88 13.22
KBBi; | 1.94 6.84 1260 | 3.52 1094 16.80 | 1.34 6.04 11.12 | 238 8.10 14.98

KBB;y | 0.96  4.60 9.14 | 3.00 9.68 16.32 | 0.80 4.06 8.44 1.52 5.52 10.86
KBBj], | 0.88 4.16 848 | 230 814 1354 | 0.64 392 812 | 1.04 4.46 9.12
KBB7: | 0.64 4.40 8.84 | 1.50 6.54 13.04 | 0.70 4.08 854 | 0.82 4.22 9.06

KBBqy | 230 750 1336 | 6.46 1498 21.92 | 1.50 6.02 11.42 | 3.40 10.50 17.52
KBB{s | 204 678 1240 | 504 11.76 1740 | 1.46 558 10.74 | 2.74 820 13.98
KBB( | 224 744 1286 | 4.26 1236 19.02 | 146 6.02 11.32 | 2.72 930 15.98

MBB 1.78 592 1142 | 478 1224 1958 | 1.02 486 994 | 232 8.02 14.42
MBB™ | 1.52 5.16 10.66 | 3.78 950 1520 | 086 4.84 9.40 1.96 6.56 11.72
MBB”™ | 1.30 584 11.14 | 268 9.02 16.06 | 1.08 4.88  9.88 1.76  6.30 12.86




Table 4. Model 2: Empirical Rejection Probabilities: Parametric Restrictions ¢-Tests.

T 64 128
) 05 0.9 0.5 0.9

LEVEL | 1.00 500 10.00 | 1.00 5.00 10.00 | 1.00 5.00 10.00 | 1.00 500 10.00
ASYMP | 5.40 13.02 2044 | 10.00 3044 38.22 | 3.16 10.46 1654 | 12.50 22.58 30.36
KBB,, | 2.64 004 1558 | 8.62 1830 26.72 | 172 722 1350 | 512 1356 20.46
KBB™, | 220 7.38 13.02| 6.32 1378 2008 | 1.52 646 1248 | 3.74 1054 16.10
KBB7; | 2.28 898 1494 | 582 14.82 2258 | 1.94 746 13.60 | 4.20 12.62 19.56
KBB,, | 1.50 6.34 12.16 | 5.16 12.04 2020 | 1.12 504 11.34 | 2.94 940 15.18
KBBT, | 1.20 582 1094 | 3.72 10.06 1534 | 1.08 556 10.88 | 2.16 7.36 11.78
KBBJ; | 144 646 1240 | 3.22 934 1586 | 1.20 596 11.64 | 2.20 818 14.20
KBB,, | 0.78 380 806 | 2.30 870 14.66| 0.62 382 862 | 124 508 10.08
KBBT, | 070 338 7.8 | 1.90 6.90 1234 | 056 3.64 822| 080 4.26  8.16
KBBJ; | 046 354 832 | 148 594 11.82| 0.74 404  9.10| 0.60 442  9.28
KBBy | 1.04 688 12.70 | 542 1208 2040 | 1.20 508 11.62| 3.32 9064 1580
KBB7, | 140 598 1140 | 4.18 1044 16.08 | 1.06 566 10.92 | 238 7.86 12.34
KBBI; | 1.72 6.82 13.04 | 3.80 1078 17.82 | 1.24 632 12.08| 2.64 898 1528

MBB | 1.24 516 1042 | 3.04 11.06 17.38 | 0.88 5.06 10.06 | 2.18 7.40 13.28
MBB~™ | 0.90 476 940 | 2.82 826 1358 | 0.74 458 982 | 1.80 592 10.88
MBB™ | 0.94 5.08 1056 | 1430 7.94 224 |1.00 540 1074 | 1.38 6.66 12.48




Table 5. Model 1: Empirical Rejection Probabilities: Parametric Restrictions LR-GMM Tests.

T 64 128
p 0.5 0.9 0.5 0.9

LEVEL | 1.00 5.00 10.00 | 1.00 5.00 10.00 | 1.00 5.00 10.00 | 1.00  5.00 10.00
ASYMP 6.10 13.54 20.34 | 20.38 31.98 39.84 | 3.14 9.08 15.14 | 12.54 23.50 30.58
KBBx 1.36 590 1182 | 1.74 878 16.00 | 0.98 5.30 10.72 | 1.32 7.18 13.94
KBB¢S, 334  9.70 1578 | 944 20.18 2832 | 1.90 7.16 12.72 | 542 14.66 22.64
KBB7, 1.26 560 1140 | 1.30 724 1430 | 094 5.04 1064 | 092 6.82 13.58
KBBT | 248 812 13.54 | 742 1534 2212 | 1.58 6.34 11.50 | 4.22 11.10 17.88
KBB7T: 320 946 1558 | 6.86 16.64 24.74 | 1.90 7.26 1250 | 4.52 13.06 20.80
KBBT;“ | 230 7.80 13.18 | 514 1342 19.74 | 1.52 6.32 11.18 | 3.66 11.16 17.90
KBBg: 1.00 4.36 9.06 | 0.74 484 1088 | 048 410 9.16 | 048 424 9.74
KBB¢, 220 736 1290 | 6.04 15.00 21.78 | 1.38 590 11.04 | 3.48 10.40 17.06
KBBj, 0.62 3.84 8.66 048 396 9.06 | 0.40 4.18 9.04 | 0.52 3.68 8.88
KBBj;® | 1.78 6.46 11.88 | 4.78 11.26 16.74 | 1.22 5.28 10.58 | 2.54 7.88 13.22
KBBgr 194 6.84 1260 | 3.52 10.94 16.80 | 1.34 6.04 11.12 | 2.38 8.10 14.98
KBB:;“ | 122 5.06 10.16 | 2.52 826 14.24 | 0.96 4.66 9.38 1.78  6.50 12.16
KBB;» 0.18  2.20 5.18 0.10 1.34 476 | 0.24 254  6.20 | 0.08 1.18  4.16
KBB¢, 0.96 4.60 9.14 3.00 968 1632 | 0.80 4.06 844 | 1.52 5.52 10.86
KBB7, 0.14 1.92 5.02 0.08 1.06 3.84 | 0.24 242 6.28 | 0.08 1.06  3.62
KBBr:® | 0.88  4.16 8.48 230 814 1354 | 064 392 812 | 1.04 446 9.12
KBB; 0.64 4.40 8.84 1.50 6.54 13.04 | 0.70 4.08 854 | 0.82 422  9.06
KBBp:“ | 0.34 272 6.24 080 360 792 | 046 3.18 7.10 | 0.60 2.70  6.62
KBBs 0.88  4.50 9.50 0.72 524 1142 | 066 434 950 | 0.54 442 9.94
KBBg 230 750 1336 | 646 1498 2192 | 1.50 6.02 11.42 | 3.40 10.50 17.52
KBBs 0.72  4.22 8.86 054 442 998 | 0.58 4.08 9.18 | 0.60 416 9.62
KBB{ | 2.04 6.78 1240 | 504 11.76 17.40 | 1.46 5.58 10.74 | 2.74 8.20 13.98
KBBg: 224 744 1286 | 426 1236 19.02 | 146 6.02 11.32 | 272 930 15.98
KBBg:“ | 1.52 590 11.16 | 2.86 9.02 1536 | 1.04 5.14 9.98 | 2.10 7.62 14.00
MBB 0.56  3.40 7.30 028 302 806 | 038 326 7.72 | 020 254 6.88
MBB¢ 1.78 592 1142 | 478 1224 1958 | 1.02 486 9.94 | 232 8.02 14.42
MBB™ 0.44 3.24 7.00 020 234 666 | 0.26 326 7.86 | 0.26 212  6.48
MBB™¢ | 1.52 5.16 10.66 | 3.78 9.50 15.20 | 0.86 4.84  9.40 1.96 6.56 11.72
MBB™ 1.30 584 11.14 | 268 9.02 16.06 | 1.08 4.88 9.88 176 630 12.86
MBB™¢ | 0.82 4.14 8.64 1.70  6.60 1194 | 0.86 3.98 8.66 132 5.38 10.38




Table 6. Model 2: Empirical Rejection Probabilities: Parametric Restrictions LR-GMM Tests.

T 64 128
p 0.5 0.9 0.5 0.9

LEVEL | 1.00 5.00 10.00 | 1.00 5.00 10.00 | 1.00 5.00 10.00 | 1.00  5.00  10.00
ASYMP 5.40 13.92 20.44 | 19.00 30.44 38.22 | 3.16 10.46 16.54 | 12.50 22.58 30.36
KBB .y 092 534 1082 | 1.54 7.08 1430 | 1.04 540 11.04 | 0.82 6.48 13.02
KBBS, 2.64 9.04 1558 | 862 1830 26.72 | 1.72 722 13.50 | 5.12 13.56 20.46
KBBFT, 0.72 496 1060 | 1.08 6.18 1262 | 094 5.16 11.06 | 0.68 5.68 12.18
KBBT | 220 738 13.02 | 6.32 13.78 20.08 | 1.52 6.46 1248 | 3.74 10.54 16.10
KBBT: 228 898 1494 | 582 14.82 2258 | 1.94 746 13.60 | 4.20 12.62 19.56
KBBT; | 1.62 696 1248 | 3.92 1126 17.96 | 1.32 6.44 11.98 | 3.16 9.82 16.10
KBBgy 0.40 3.48 7.80 0.50  3.84 9.10 | 0.62 3.94 9.24 0.36  3.70 8.76
KBB¢, 1.50 6.34 1216 | 5.16 1294 20.20 | 1.12 594 1134 | 294 940 15.18
KBBj}, 0.44 3.16 7.56 0.40  3.28 7.64 | 0.56 3.84 8.92 0.28  3.12 8.32
KBBj;" | 1.20 5.82 1094 | 3.72 10.06 15.34 | 1.08 5.56 10.88 | 2.16 7.36  11.78
KBBgr 1.44 646 1240 | 3.22 934 1588 | 1.20 596 11.64 | 2.20 8.18 14.20
KBBj;“ | 0.86 4.44 9.22 206 7.14 1218 | 0.88 4.62 9.76 148 630 11.30
KBB;» 0.10 1.66 4.64 0.06 1.26 4.30 | 0.30 2.20 6.46 0.02 1.02 3.92
KBB¢, 0.78  3.80 8.06 230 870 14.66 | 0.62 3.82 8.62 1.24 5.08 10.08
KBB7T, 0.08 1.50 4.02 0.02  0.92 3.28 | 032 226 6.40 0.12  0.80 3.32
KBB;¢ | 0.70  3.38 7.86 1.90 690 1234 | 0.56 3.64 8.22 0.80 4.26 8.16
KBB: 0.46 3.54 8.32 148 594 11.82 | 0.74 4.04 9.10 0.60 4.42 9.28
KBBJ;“ | 0.30  1.96 5.08 0.58  3.30 7.06 | 0.34 3.14 7.26 0.46 2.64 6.22
KBBs 0.50  3.68 8.28 0.66  4.36 9.36 | 0.52 4.32 9.48 0.42 4.12 9.00
KBB4 1.94 688 12,70 | 542 1298 2040 | 1.20 598 11.62 | 3.32 9.64 15.80
KBB{ 0.50 3.20 8.02 0.48  3.66 8.66 | 0.56  3.92 9.18 0.48  3.56 8.86
KBB{ | 1.40 598 1140 | 4.18 1044 16.08 | 1.06 5.66 10.92 | 2.38 7.86 12.34
KBBg 172 682 13.04 | 3.80 10.78 1782 | 1.24 6.32 12.08 | 2.64 898 15.28
KBBg:“ | 1.06 4.84 10.30 | 220 7.96 13.38 | 0.92 550 10.64 | 2.00 6.72 12.44
MBB 0.34 2.64 6.74 0.24 264 6.66 | 0.52  3.38 8.16 0.10 2.14 6.26
MBB¢® 124 516 1042 | 394 11.06 1738 | 0.88 5.06 10.06 | 2.18 7.40 13.28
MBB7™ 0.30  2.56 6.26 0.20  2.02 548 | 044 3.14 7.94 0.12 1.70 5.86
MBB™¢ | 0.90 4.76 9.40 2.82 826 13.58 | 0.74 4.58 9.82 1.80 592 10.88
MBB”™ | 094 5.08 1056 | 224 794 1430 | 1.00 540 10.74 | 1.38 6.66 12.48
MBB™ ¢ | 0.58 3.42 8.02 1.52 5.38 10.18 | 0.70 4.38 8.92 1.14 4.84 9.40




Table 7. Model 1: Percentage of Cases inside Convex Hull.

T 64 128
p 0.5 0.9 0.5 0.9
ETx 100.00  99.84 | 100.00 100.00
ETg: 99.96  99.82 | 100.00 99.84
ETpp 100.00  99.98 | 100.00 100.00
ET 99.98  100.00 | 100.00  99.98
ET\gs | 100.00 99.96 | 100.00 100.00
ET,rx | 100.00 100.00 | 100.00 100.00
ET, 5y | 100.00 100.00 | 100.00 100.00
ET,pp | 100.00 100.00 | 100.00 100.00
ET, s | 100.00 100.00 | 100.00 100.00
ET, s | 100.00 100.00 | 100.00 100.00




Table 8. Model 2: Percentage of Cases inside Convex Hull.

T 64 128

p 0.5 0.9 0.5 0.9
ETx 99.94  99.86 | 100.00 100.00
ETg: 99.92 99.76 | 99.98  99.88

ETpp 100.00  100.00 | 100.00 100.00
ET 99.96  99.96 | 99.98 100.00
ET\gs | 100.00  99.98 | 100.00 100.00
ET,rx | 100.00 100.00 | 100.00 100.00
ET, 5y | 100.00 100.00 | 100.00 100.00
ET,pp | 100.00 100.00 | 100.00 100.00
ET, s | 100.00 100.00 | 100.00 100.00
ET, s | 100.00 100.00 | 100.00 100.00




Table 9. Model 1: Percentage of Cases with Ill Conditioned X

mr*

T 64 128

P 0.5 0.9 0.5 0.9
w | 0.00 0.00 | 0.00 0.00
w | 006 032] 0.00 0.08
w | 014 1.86 | 0.00 0.36

)

)

)
¥* Jsr | 0.00 0.00 | 0.00 0.00
ST e | 012 0.36 | 0.00  0.16
) | 0.38 4.34 | 0.00 1.26
(=%, Jee | 0.00 0.00 | 0.00 0.00
(7 Jep | 0.00  0.02 | 0.00 0.00
(S )ee | 0.02 0.92 | 0.00  0.12
Tk, Jes | 000 0.00 | 0.00 0.00
(37 Jos | 0.04  0.06 | 0.00 0.08
(27 *)0s | 022 244 | 0.02  0.64

Jups | 0.00 0.00 | 0.00 0.00
(5™ Vs | 002 0.14 | 0.00 0.00
(ST %)yps | 0.28 216 | 0.00 0.18




Table 10. Model 2: Percentage of Cases with Ill Conditioned X*

mr*®

T 64 128

0 05 09 | 05 009
(=5, ) | 0.00 0.00 [ 0.00 0.00
(ST Yen | 020 0.28 | 0.00 0.02
(Z7r)e | 042 1.90 | 0.02  0.34
(X5, )sr | 0.00 0.00 [ 0.00 0.00
(27 Jye | 016 0.46 | 0.02  0.12
(S7%)yr | 062 4.24 | 0.16 1.16
(S, Jee | 000 0.00 | 0.00 0.00
(27 Yee | 0.02 0.00 | 0.00 0.00
(7 )pe | 0.04  0.82 | 0.00 0.08
(S, )as | 000 0.00 | 0.00 0.00
(27 Jos | 012 0.06 | 0.02  0.00
(S7*)gs | 0.32 2,06 | 0.08  0.50
(X5, )wws | 0.00  0.00 | 0.00 0.00
(27 Jups | 0.06  0.22 | 0.00 0.00
(Sm)yps | 026 224 | 0.00  0.18




Table 11. Model 1: Average Number of Extra Bootstrap Replications Required Because of Ill Conditioned

UL
T 64 128
o | 05 0905 09
(=5, )m | 0.0 0.0 |00 0.0
(X7 Jer | 0.0 1.9 100 0.0
() | 0.1 650 | 0.0 3.5
(X5, )sr | 0.0 0000 0.0
(Im Jpr | 0.5 196.4 | 0.0 4.4
(Smr)yr | 1.7 359.6 | 0.0 8.8
(E:(?LT)PP 00 OO 00 00
(Z% Jer | 0.0 03100 00
(7 ) | 0.0 26.8 | 0.0 2.9
(5, )as | 0.0 00|00 0.0
(57 )os | 0.3 00|00 0.1
(Sm*)gs | 0.1 183.2 (0.0 15
(E:nT)MBB 0.0 0.0 | 0.0 0.0
(55 ups | 0.0 1.1]00 00
(S )ss | 0.0 95900 1.3




Table 12. Model 2: Average Number of Extra Bootstrap Replications Required Because of Ill Conditioned

o,
T 64 128

P 05 09 |05 09

S5 Jm | 00 00 |00 00

S Ve | 1729 |00 0.0

ST, | 202 356 | 01 28

S5 Jsr | 00 0.0 |00 00

)

)

)

) .

Jar | 0.8 136 |02 04
™Y | 5.3 5024 | 04 258
e | 00 00 |00 00
)

)

)

)

)

P 0.0 0.0 0.0 0.0

—~ e~~~ ]~~~

, .
ST, | 23 786 | 0.0 05
i Jas | 0.0 00 [00 00
ST Yes | 15 11 |00 0.0
Sm¥)es | 303 2216 | 5.8 85

(Sh,)ws | 00 0.0 [00 0.0

(ST Jwes | 01 824 | 0.0 0.0

(Sr)yps | 6.0 852 | 0.0 5.3
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