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1 Introduction

The recent papers Parente and Smith (2018, 2021) introduce a novel bootstrap method, the kernel

block bootstrap (KBB), for the analysis of time-series data. This article generalizes and extends KBB

to provide a comprehensive treatment of its use for GMM estimation and inference in time-series models

formulated in terms of moment conditions. KBB procedures that employ bootstrap distributions with

generalised empirical likelihood implied probabilities as probability mass points are also considered. The

paper details new KBB estimators and test statistics whose empirical distributions can serve as alter-

native approximations to those o¤ered by standard and other bootstrap methods for GMM estimators

and test statistics.

The particular focus of the paper is generalized method of moments (GMM) proposed in the sem-

inal paper Hansen (1982) which, because of its wide-spread applicability in many and varied contexts,

has become the main workhorse for estimation and inference in the analysis of economic data. As is

widely appreciated, however, for the sample sizes usually available in practice, the standard large sample

distributions of GMM estimators and statistics typically poorly approximate their respective empirical

distributions, a situation worsened in the time-series context due to dependence; see inter alia Burnside

and Eichenbaum (1996), Christiano and den Haan (1996) and Hansen, Heaton and Yaron (1996). The

bootstrap method originally proposed in the landmark paper Efron (1979) o¤ers an alternative approach

to ameliorate this problem and has often been found to be successful in this regard. From a practical

standpoint the bootstrap, being a resampling method, has the bene�t of not requiring the application

of complicated formulae. Theoretically, the bootstrap may admit asymptotic re�nements if the statistic

of interest is asymptotically pivotal and a smooth function of the data.

This article departs from the dominant paradigm of bootstrap resampling of moving blocks; see, e.g.,

the review paper Kreiss and Paparoditis (2011) and associated discussion and the monographs Shao and

Tu (1995) and Lahiri (2003). We introduce resampling schemes based on the KBB method of Parente

and Smith (2018, 2021), which, rather than work with the observational sample moment indicators or

functions directly, resamples suitable kernel function-based weighted transformations of the sample mo-

ment indicators, an idea borrowed from the (generalised) empirical likelihood ((G)EL) literature, see,

e.g., Kitamura and Stutzer (1997) and Smith (1997, 2011).1 Furthermore, we implement KBB by inde-

pendently resampling from bootstrap distributions which employ either the standard empirical measure

or GEL implied probabilities as mass points, the latter thereby potentially exploiting e¢ cient moment

estimation, cf. Brown and Newey (1998) and Smith (2011). The KBB method itself is a generalisation

1Such transformations in the presence of weakly dependent data induce large sample e¢ ciency for GEL as with randomly
sampled data. The sample mean and, moreover, the standard random sample variance of the transformed sample moment
indicators respectively provide a consistent estimator for the population mean, Smith (2011, Lemma A.1, p.1217), and a
heteroskedastic and autocorrelation (HAC) consistent and automatically positive semide�nite estimator for the variance
of the standardized mean of the original sample moment indicators, Smith (2005, Section 2, pp.161-165, and 2011, Lemma
A.3, p.1219).
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of the tapered block bootstrap (TBB), Paparoditis and Politis (2001), but, in contradistinction, allows

kernel functions with unbounded support and includes the incomplete blocks at the beginning and end

of the sample. While both KBB and TBB admit familiar kernels with �nite support, e.g., rectangular,

Bartlett and Tukey-Hanning, KBB also allows non-monotonic truncated kernels in the positive quadrant,

e.g., �at-top cosine windows (D�Antona and Ferrero, 2006, p.40), excluded by TBB, cf. Paparoditis and

Politis (2001, Assumption 2, p.1107). For a more detailed comparison, see Parente and Smith (2018,

section 4.1, pp.6-8).2

Bootstrap methods for moment condition models have been developed in numerous contributions;

see inter alia Hahn (1996) and Brown and Newey (1992, 2002) for randomly sampled data and Hall and

Horowitz (1996) and Andrews (2002) for weakly dependent data. Two strands to this literature may be

discerned: �rst, i.i.d. resampling and, secondly, GEL implied probability resampling. In the former

Hahn (1996), for i.i.d. data, proves the consistency of the 2-step (2S) GMM bootstrap distribution for

the limiting distribution of standard 2SGMM. Camponovo (2016) investigates asymptotic re�nements of

an i.i.d. bootstrap for quasi-likelihood ratio type tests of nonlinear restrictions which are applicable in

a GMM framework. Hall and Horowitz (1996), with weakly dependent data, after centering the bootstrap

sample moment indicators at their sample mean, apply the non-overlapping moving blocks bootstrap

(MBB) method of Carlstein (1986) to the 2SGMM estimator, a t-test statistic for a single parametric

restriction and the Hansen (1982) test statistic for over-identifying moment restrictions. Their resultant

bootstrap statistics admit asymptotic re�nements after appropriate re-scaling. Andrews (2002) extends

Hall and Horowitz (1996) to standard overlapping MBB (Künsch, 1989, and Liu and Singh, 1992), and

the k-step bootstrap (Davidson and Mackinnon, 1999). Both papers, however, require a form of m-

dependence to achieve higher order re�nements, an assumption relaxed in Inoue and Shintani (2006)

for the instrumental variable linear model. In the latter literature, Brown and Newey (1992, 2002),

for i.i.d. data, suggests independent resampling from a bootstrap distribution with GEL implied

probabilities replacing the standard empirical measure, hazarding that this bootstrap method might

o¤er theoretical improvements over standard i.i.d. resampling. More recently, the (G)EL implied

probability bootstrap was extended to the time series context in Allen et al. (2011) and Bravo and

Crudu (2012) using the rectangular kernel-weighted observational sample moment indicators and GEL

implied probabilities as bootstrap distribution mass point probabilities. These papers di¤er in a number

of respects: �rst, Allen et al. (2011) studies EL implied probabilities while Bravo and Crudu (2011)

uses GEL implied probabilities, Smith (2011, (3.1), p.1205); secondly, Allen et al. (2011) analyses both

non-overlapping and overlapping MBB whereas Bravo and Crudu (2012) only studies the latter; thirdly,

Allen et al. (2011) investigates �rst order validity for general GMM estimators whereas Bravo and

2 In the case of the sample mean, a particular choice of the kernel with unbounded support yields a bootstrap variance
estimator that is asymptotically equivalent in mean square to the optimal quadratic spectral estimator of the long run
variance, see Parente and Smith (2018, Corollary 3.1, p.6) and fn.4 below; cf. Andrews (1991, Theorem 2, p.829).
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Crudu (2011) only considers the e¢ cient 2SGMM estimator, with both articles addressing the �rst-

order asymptotic behaviour of their respective bootstrapped over-identifying moment test statistics and

Wald test statistics for parametric restrictions; �nally, Bravo and Crudu (2011) proposes bootstrap

Lagrange multiplier and distance statistics for parametric restrictions using null hypothesis rather than

maintained hypothesis GEL implied probabilities. A recent related paper, La Vecchia et al. (2023),

constructs higher order correct con�dence regions for the full parameter vector based on the unrestricted

GMM or GEL criterion, employing i.i.d. resampling of kernel function-based weighted sample moment

indicators evaluated at the respective �rst order e¢ cient GMM or GEL estimator.

The KBB bootstrap approach taken here employs general forms for both the kernel function-based

weighted sample moment indicators and the GEL implied probabilities that de�ne the bootstrap distri-

bution probability mass points. We examine both unrestricted and restricted moment condition models,

the latter subject to additional moment constraints and parametric restrictions expressed generally in

mixed form (Gouriéroux and Monfort, 1989); cf. Newey and McFadden (1994, section 9, pp.2215-2241),

Ruud (2000, chapter 22, pp.564-607) and Smith (2011, section 5, pp.1209-1213). The restricted GEL

implied probability GMM-KBB estimator is presented whose distribution suitably centred is �rst or-

der asymptotically valid, consistently estimating and approximating the asymptotic distribution of the

corresponding restricted GMM estimator. The GEL implied probability GMM estimator provides the

appropriate centring; this GMM estimator minimises the corresponding GMM criterion but, to compute

the requisite sample average moment indicator, replaces the standard GMM empirical measure by the

bootstrap mass point probabilities as weights. The asymptotic validity result is specialised for unre-

stricted GMM estimation and both e¢ cient unrestricted and restricted GMM estimation.3 We explore

the impact of using unrestricted and restricted GEL implied probabilities, e¢ cient or otherwise, and the

standard empirical measure as bootstrap mass point probabilities. Correspondingly, we describe appro-

priately centred GEL implied probability GMM-KBB overidentifying moment restrictions test statistics

and likelihood ratio- (distance), score-, Lagrange multiplier- and generalised Wald-like test statistics

for mixed form additional moment constraints and parametric restrictions. We also de�ne alternative

likelihood ratio-like and distance statistics which adapt and generalise the bootstrap statistic proposed

in Camponovo (2016) for the dependent data context and inference setting considered here.

The e¤ect of e¢ cient unrestricted and restricted GEL implied probabilities and the standard empirical

measure as bootstrap mass point probabilities on the form of the GEL implied probability GMM-

KBB test statistics is explored. We establish the �rst order asymptotic validity of these GEL implied

probability GMM-KBB test statistics for their non-bootstrap counterparts. Computationally simpler

alternative GEL implied probability GMM-KBB estimators and statistics are presented which avoid

3We note that the consistency proof for the EL block bootstrap of Allen et al. (2011) is in error if applied to the
ine¢ cient GMM estimator. The bootstrap distribution of the GMM estimator should be centred at e¢ cient 2SGMM.
Hence Allen et al. (2011, Theorems 1 and 2, p.114) are invalid in general although these results continue to hold if the
GMM weighting matrix is the e¢ cient GMM metric.
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the necessity of computing the GEL implied probability GMM-KBB estimator. Although the proofs in

the paper are developed for KBB they may be straightforwardly adapted analogously for other block

bootstrap methods.

This paper is organized as follows. Section 2 brie�y surveys and summarises unrestricted and re-

stricted GMM estimation subject to additional moment constraints and parametric restrictions expressed

in mixed form together with associated GMM inference. GEL implied probabilities are introduced in

section 3.1 with the GEL implied probability GMM estimator described in section 3.2. GEL implied

probability GMM-KBB estimation and inference are discussed in sections 3.3 and 3.4. Section 4 presents

simulation evidence on the usefulness of the empirical distributions of GEL implied probability GMM-

KBB test statistics as descriptions of those of the corresponding GMM test statistics. Finally section

5 concludes. Appendix A provides preliminary lemmas and their proofs which are required for the

proofs given in Appendix B of the results of the main text. Appendix C details limit results for KBB

heteroskedastic and autocorrelation consistent variance matrix estimation.

2 GMM Preliminaries

Let zt, (t = 1; :::; T ), denote a sample of T observations on the stationary and strong mixing real

valued dz-dimensional vector process fztg1t=1. Also let E[�] and var[�] denote expectation and variance

taken with respect to the unknown probability measure P of the process fztg1t=1.

Consider the moment indicator q(zt; �), a dq-vector of known functions of the data observation zt

and the d�-vector � 2 � of unknown parameters, where � � Rd� denotes the parameter space. The

moment vector q(zt; �) is partitioned as q(zt; �) = (g(zt; �)
0; h(zt; �)

0)0, where g(zt; �) and h(zt; �) are

dg- and dh-subvectors, and the parameter vector � is partitioned � = (�0; �
0)0, where � 2 A and � 2 B

are d�- and d�-subvectors of �, � = A� B, A � Rd� , B � Rd� , dg � d� . We maintain the moment

condition

E[g(zt; �)] = 0 (2.1)

at the true value �0 of � throughout the paper whereas the additional moment constraints and parametric

restrictions

E[h(zt; �)] = 0; r(�) = 0; (2.2)

satis�ed by the true value �0 = (�00; �
0
0)
0, constitute a hypothesis of particular interest, cf. Smith (2011,

Section 5. pp.1209-1213); both the moment indicator h(zt; �) and the dr-vector of parametric constraints

r(�) are expressed in mixed form (Gouriéroux and Monfort, 1989) depending on both the additional

parameter vector � as well as �.

Let qt(�) = q(zt; �), (t = 1; :::; T ), and de�ne the sample mean q̂(�) =
PT

t=1 qt(�)=T and long-run

variance �(�) = limT!1 var[T
1=2q̂(�)], similarly gt(�) = g(zt; �) and ht(�) = h(zt; �), (t = 1; :::; T ),
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ĝ(�) =
PT

t=1 gt(�)=T and ĥ(�) =
PT

t=1 ht(�)=T , and long-run variance �(�) = limT!1 var[T
1=2ĝ(�)].

Also let � = �(�0) and � = �(�0).

The GEL implied probability GMM-KBB sampling schemes, the main concern of this paper, make

use of GEL implied probabilities, see Section 3.1, de�ned in terms of the transformed kernel-weighted

moment indicator

qtT (�) =
1

(k2ST )1=2

Xt�1

s=t�T
k(
s

ST
)qt(�); (2.3)

partitioned as qtT (�) = (gtT (�)
0
; htT (�)

0
)0, (t = 1; :::; T ), where ST is a bandwidth parameter and k(�)

a kernel function with kj =
R1
�1 k(x)

jdx, (j = 1; 2), and k = k21=k2.

Remark 2.1. A di¤erent scaling is employed here to that in Kitamura and Stutzer (1997) and Smith

(1997, 2011), namely (k2ST )�1=2 rather than (k2ST )�1, which permits the standard outer product form

to be employed as a consistent estimator of the long-run variance matrix �; see Remark 2.4 below.

The standard sample average q̂(�) (ĝ(�), ĥ(�)) and the sample average q̂T (�) =
PT

t=1 qtT (�)=T (ĝT (�) =PT
t=1 gtT (�)=T , ĥT (�) =

PT
t=1 htT (�)=T ) are �rst order asymptotically equivalent after scaling under the

assumptions stated below, i.e., both obey UWLs, e.g., sup�2� kq̂T (�)=S
1=2
T �E[qt(�)]=k1=2k ! 0, prob-P,

cf. sup�2� kq̂(�)�E[qt(�)]k ! 0, prob-P, and CLTs, e.g., (T=ST )1=2(q̂T (�)�E[q̂T (�)])!dP N (0;�(�)=k),

cf. T 1=2(q̂(�)� E[qt(�)])!dP N(0;�(�)); see Smith (2011, Lemmas A.1, p.1217, and A.2, p.1219).

2.1 GMM Estimation

Since the GEL sample average q̂T (�) forms the basis of GEL implied probability GMM-KBB esti-

mators and statistics described below, the following discussion is conducted, without loss of generality,

in terms of q̂T (�) rather than q̂(�) used in standard GMM analysis.

Let WqT denote a (dq; dq) p.s.d. matrix such that WqT ! Wq, prob-P, Wq p.d. A restricted GMM

estimator for �0 is de�ned by

��T = argmin
�2�r

�QT (�) (2.4)

where �r = f� 2 � : r(�) = 0g with associated Lagrangean function �LT (�; �) = �QT (�)=ST � k�0r(�),

Lagrange multiplier estimator ��T and GMM criterion

�QT (�) = q̂T (�)0(WqT )
�1q̂T (�): (2.5)

Cf. the standard GMM criterion which substitutes q̂(�) for q̂T (�); see, e.g., the seminal paper Hansen

(1982). Cf. Smith (2005, Section 3, pp.165-166).

The following regularity conditions, cf. Gonçalves and White (2004), are adaptations for the boot-

strap moment condition context of Parente and Smith (2021, Assumptions 3.1-3.6, p.382) and Smith

(2011, Assumptions 2.1, 2.2, p.1199, and 5.1, 5.3, p.1210).
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Let G = E[@gt(�0)=@�
0], Q = E[@qt(�0)=@�

0], H� = E[@ht(�0)=@�
0], R = @r(�0)=@�

0 and R� =

@r(�0)=@�
0.

Assumption 2.1. (a) (
;F ;P) is a complete probability space; (b) the �nite dz-dimensional sto-

chastic process zt: 
 7�! Rdz , (t = 1; 2; :::), is stationary and strong mixing with mixing coe¢ cients of

size �3v=(v � 1) for some � > 1 and is measurable for all t, (t = 1; 2; :::).

Let I(x � 0) denote the indicator function, i.e., I(A) = 1 if A true and 0 otherwise.

Assumption 2.2. (a) ST ! 1 and ST = O(T
1
2��) with 1

6 < � <
1
2 ; (b) k(�): R ! [�kmax; kmax],

kmax < 1, k(0) 6= 0, k1 6= 0, and is continuous at 0 and almost everywhere; (c)
R1
�1

�k(x)dx < 1

where �k(x) = I(x � 0) supy�x jk(y)j + I(x < 0) supy�x jk(y)j; (d) jK(�)j � 0 for all � 2 R, where

K(�) = (2�)�1
Z
k(x) exp(�ix�)dx.

Assumption 2.3. (a) q: Rdz � � 7�! Rdq is F-measurable for each � 2 �, � = A � B, A

and B compact subsets of Rd� and Rd� respectively; (b) qt(�): � 7�! Rdq and r: � ! Rdr are

continuous on � a:s:-P; (c) �0 = (�00; �00)0 2 � is the unique solution to E[qt(�)] = 0 and r(�) = 0; (d)

E[sup�2� kqt(�)k�] <1 for some � > max(4v; 1� ); (e) qt(�) is global Lipschitz continuous on �, i.e., for

all �; �0 2 �, kqt(�) � qt(�0)k � Ltk� � �0k a.s.-P and supT E[
PT

t=1 Lt=T ] < 1; (f) �(�) is �nite and

p.d. for all � 2 �.

Assumption 2.4. (a) �0 2 int(�); (b) qt(�): � 7�! Rdq is continuously di¤erentiable on a neigh-

borhood N of �0, (t = 1; 2; :::), and E[sup�2N k@qt(�)=@�0k�=(�=(1+")�1)] < 1 for some " > 0; (c) r(�):

� ! Rdr is continuously di¤erentiable in a neighbourhood N of �0 and sup�2N k@r(�)=@�0k < 1; (d)

rank(G) = d� , rank(R) = dr and rank((H 0
�; R

0
�)
0) = d�.

Remark 2.2. These assumptions are generally stronger than required for the consistency and as-

ymptotic normality of the restricted GMM estimator ��T (2.4) but are imposed here to provide for a

uni�ed treatment of GMM and GMM-KBB; e.g, the non-bootstrap results allow strong mixing to be

replaced by ergodicity, see Hansen (1982, Assumption 2.1, p.1032) and also Hall (2005, Assumption 3.8,

p.66). Andrews (1991, Lemma 1, p.824) and Smith (2011, Assumption 2.1, p.1199) require the weakerP1
j=1 j

2�(j)(v�1)=v <1 implied by the mixing condition Assumption 2.1(b); see Andrews (1991, Com-

ment, p.824). Assumption 2.4(b) is slightly stronger than E[sup�2N k@qt(�)=@�0k�=(��1)] < 1, Smith

(2011, Assumption 2.5(b), p.1200), and is required for heteroskedastic autocorrelation consistent (HAC)

bootstrap estimation of �; see Lemma C.3 of Appendix C. See Smith (2011, pp.1199-1201, p.1210) for

further discussion of Assumptions 2.1-2.4.

For Wq p.d., MWq = (Q
0(Wq)

�1Q+R0R)�1 p.d. by Assumption 2.4(d). Let HWq = KWqQ
0(Wq)

�1,

JWq = (RMWqR
0)�1RMWqQ

0(Wq)
�1 and KWq = MWq �MWqR

0(RMWqR
0)�1RMWq . Also let PWq =

(Wq)
�1 � (Wq)

�1QHWq
.

Proposition 2.1. (Consistency and Limiting Distribution of ��T .) Let p.s.d. WqT ! Wq, prob-P,

[6]



Wq p.d. If Assumptions 2.1, 2.2 and 2.3(a)-(d)(f) are satis�ed, then (a) ��T ! �0, ��T ! 0, prob-P. If,

in addition, Assumption 2.4 holds, then (b)

T 1=2(��T � �0)!dP N (0;HWq�H
0
Wq
); T 1=2��T !dP N (0; JWq�J

0
Wq
):

Remark 2.3. The �rst order asymptotic representations for ��T and ��T are T
1=2(��T � �0)=k1=2 +

HWq
(T=ST )

1=2q̂T (�0) ! 0; T 1=2��T =k
1=2 � JWq

(T=ST )
1=2q̂T (�0) ! 0, prob-P, respectively; cf. Smith

(2001, (B.15) and (B.17), p.1229).

Remark 2.4. An e¢ cient restricted GMM estimator of �0 replaces WqT in (2.5) by a p.s.d.

variance estimator �T for � such that �T ! �, prob-P. The e¢ cient restricted GMM estimator

~�T = argmin
�2�r

~QT (�) with Lagrangean function ~LT (�; �) = ~QT (�)=ST � k�0r(�), Lagrange multiplier

estimator ~�T and e¢ cient GMM criterion ~QT (�) = q̂T (�)
0(�T )

�1q̂T (�). Hence, cf. Proposition 2.1,

~�T ! �0, ~�T ! 0, prob-P, and T 1=2(~�T � �0)!dP N(0;K�), T 1=2~�T !dP N(0; J��J
0
�) are asymptot-

ically independent. Cf. Smith (2011, Theorem 5.1, p.1210). Numerous HAC estimators �T have been

proposed under various assumptions; see inter alia Newey and West (1987), Gallant (1987), Andrews

(1991) and Ng and Perron (1996). Smith (2005, 2011) suggest an approach using the transformed mo-

ment indicator vectors qtT (�) (2.3), (t = 1; :::; T ). In particular, under the assumptions stated above,

given an initial T 1=2-consistent estimator ��T for �0, the standard outer product and centred variance

estimators
PT

t=1 qtT (
��T )qtT (��T )

0=T ,
PT

t=1(qtT (
��T )� q̂T (��T ))(qtT (��T )� q̂T (��T ))0=T ! �, prob-P, from

Assumption 2.2(a), since (T=ST )1=2q̂T (��T ) = Op(1); see Smith (2005, Theorem 2.1, p.165) and Smith

(2011, Lemma A.7, p.1223).4 Other HAC consistent estimators of � obtain if the empirical measure

T�1 is replaced by implied probabilities �tT , (t = 1; :::; T ), satisfying Assumption 3.2, see Sections 3.1

and 3.2. The scaling constants k1 and k2 may also be replaced by their respective sample counterparts

k̂j =
PT�1

s=1�T k
�

s
ST

�j
=ST , (j = 1; 2).

Remark 2.5. In the absence of �, i.e., (2.2) E[h(zt; �0)] = 0; r(�0) = 0, MWq
is replaced by

(Q0(Wq)
�1Q)�1 where now Q = E[@qt(�0)=@�

0]. Assumption 2.4(d) rank((H 0
�; R

0
�)
0) = d� is no longer

required.

4Smith (2011, Section 2.5, pp.1201-1202) establishes the �rst order asymptotic equivalence between �T (�0) =PT
t=1 qtT (�0)qtT (�0)

0=T and HAC consistent estimators of � based on the induced p.s.d. kernel k�(�) =
R
k(b��)k(b)db=k2,

cf. Andrews (1991, p.822). Moreover, Parente and Smith (2018, Corollary 3.1, p.7) demonstrates the higher order opti-
mality of �T (�0) with the kernel

k(x) =

�
5�

8

�1=2 1
x
J1

�
6�x

5

�
if x 6= 0 and ( 5�

8
)1=2

3�

5
if x = 0;

which induces the optimal quadratic spectral or Bartlett-Priestley-Epanechnikov kernel

k�qs(y) =
3

(6�y=5)2
(
sin 6�y=5

6�y=5
� cos 6�y=5):

The Bessel function J�(�), see Gradshteyn and Ryzhik (1980, 8.402, p.951), is given by

J�(z) =
z�

2�

1X
k=0

(�1)k z2k

22kk!�(� + k + 1)
:

[7]



Remark 2.6. Assumptions 2.3, 2.4 and Proposition 2.1 are easily adapted for unrestricted GMM

estimation of �0. Given WgT , a (dg; dg) p.s.d. matrix such that WgT ! Wg, prob-P, Wg p.d., an

unrestricted GMM estimator ��T = argmin
�2B

�QT (�)=k, where the unrestricted GMM criterion �QT (�) =

ĝT (�)
0(WgT )

�1ĝT (�). The matrices above Proposition 2.1 relevant for unrestricted GMM estimation

of �0 are KWg
= MWg

= (G0(Wg)
�1G)�1, HWg

= KWg
G0(Wg)

�1, JWg
= 0 and PWg

= (Wg)
�1 �

(Wg)
�1HWg

. Thus, ��T ! �0, prob-P, T 1=2(��T � �0)!dP N (0;HWg
�H 0

Wg), cf. Proposition 2.1(a)(b),

and T 1=2(��T � �0)=k1=2 + HWg (T=ST )
1=2ĝT (�0) ! 0, prob-P, cf. Remark 2.3. Cf. Hansen (1982,

Theorems 2.1, p.1035, and 3.1, p.1042) and Hall (2005, Theorems 3.1, p.68, and 3.2, p. 71). Substituting

p.s.d. �T ! �, prob-P, forWgT , the e¢ cient unrestricted GMM estimator �̂T ! �0, prob-P, T 1=2(�̂T�

�0) !dP N (0; (G0��1G)�1) and T 1=2(�̂T � �0)=k1=2 +H�(T=ST )1=2ĝT (�0) ! 0, prob-P, where �̂T =

argmin
�2B

Q̂T (�)=k with e¢ cient unrestricted GMM criterion Q̂T (�) = ĝT (�)0(�T )�1ĝT (�). Smith (2005,

Theorems 3.1, p.165, and 3.2, p.166) demonstrates that two-step, CUE and iterated GMM estimators

based on Q̂T (�) are asymptotically equivalent to the optimal GMM estimator �̂T .

2.2 GMM Inference

2.2.1 Overidenti�cation Tests

To test the validity of the maintained over-identifying moment conditions (2.1), Hansen (1982)

proposed the J -statistic, viz.

JT = (T=ST )ĝT (�̂T )0(�T )�1ĝT (�̂T );

where �T ! �, prob-P, e.g., �T =
PT

t=1 gtT (
��T )gtT (

��T )
0=T , cf. Remarks 2.4 and 2.6.

Proposition 2.2. Under Assumptions 2.1, 2.2, 2.3(a)-(d)(f) and 2.4, if �T ! �, prob-P, and

m > p, JT !dP �2(dg � d�).

Cf. Hansen (1982, Lemma 4.2, pp.1049-1050).

2.2.2 Speci�cation Tests

Smith (2011, Section 5, pp.1209-1213) proposes a number of GEL classical-like statistics to test

the additional moment conditions and parametric restrictions (2.2). Correspondingly, we consider a

non-negative likelihood ratio-like statistic,

LRT =k = (T=ST )(q̂T (~�T )� �TSg(�T )�1ĝT (�̂T ))0(�T )�1(q̂T (~�T )� �TSg(�T )�1ĝT (�̂T )); (2.6)

where Sg = (Idg ; 0)
0 is a (dq; dg) selection matrix, i.e., S0g q̂T (�) = ĝT (�), cf. Smith (2011, (5.6), p.1212);

and the more common, but potentially negative valued, di¤erence statistic as the normalised di¤erence

of GMM criteria

DT =k = (T=ST )(q̂T (~�T )0(�T ))�1q̂T (~�T )� ĝT (�̂T )0(�T )�1ĝT (�̂T )); (2.7)

[8]



cf. Newey (1985) and Smith (2011, (5.6), p.1212), where �T is the (dg; dg) top left diagonal block of

p.s.d. �T , �T ! �, prob-P; a simpli�ed score-like statistic

ST =k = (T=ST )q̂T (~�T )0((�T ))�1 � SgP�TS0g)q̂T (~�T ); (2.8)

where P�T ! P�, prob-P, cf. Remark 2.6, cf. Smith (2011, p.1213); a Lagrange multiplier-like statistic,

cf. the GEL LM-type statistic LMa, Smith (2011, (5.4), p.1211),

LMT =k = T (q̂T (~�T )
0(�T )

�1=S
1=2
T ; ~�0T =k

1=2)Sh;�(S
0
h;�	�TSh;�)

�1S0h;�(q̂T (
~�T )

0(�T )
�1=S

1=2
T ; ~�0T =k

1=2)0;

(2.9)

where the (dq + dr; dh + dr) selection matrix Sh;� = diag(Sh; Idr ), Sh = (Idh ; 0)
0 is a (dq; dh) selection

matrix, i.e., S0hq̂T (�) = ĥT (�); a generalised Wald-type statistic

GWT =k = T (�qT (�̂T )
0=S

1=2
T ; r(�̂T )

0=k1=2)	�T (�qT (�̂T )
0S
1=2
T ; r(�̂T )

0=k1=2)0; (2.10)

where �qT (�) = (Idq � �TSg(�T )�1S0g)q̂T (�), cf. Smith (2011, (5.5), p.1211), and the unrestricted es-

timator �̂T = (~�0T ; �̂
0
T )
0 de�ned to circumvent the lack of identi�cation of � under (2.1). Note that

the moment vector �qT (�) forming GWT may be expressed as (00; (ĥT (�) � (�T )hg(�T )�1ĝT (�))0)0. An

alternative form for the averaged moment indicator �qT (�) is the implied probability weighted average

q̂�T (�) =
PT

t=1 �tT qtT (�) below (3.4), where the implied probabilities �tT , (t = 1; :::; T ), satisfy Assump-

tion 3.2; see Sections 3.1 and 3.2.

The statistics (2.6), (2.8), (2.9) and (2.10) require consistent estimators �T of � and 	�T of

	� =

�
P� �J 0�
�J� J��J

0
�

�
;

where P�, K�, J� and M� are de�ned above Proposition 2.1, together with consistent estimators of

Q and R; note J��J 0� = (RM�R
0)�1 � Idr . E.g., with T 1=2-consistent restricted ��T and unrestricted

��T = (��
0
T ;
��
0
T )
0 estimators of �0, �T =

PT
t=1 qtT (

��T )qtT (��T )
0=T or

PT
t=1 qtT (

��T )qtT (��T )
0=T , cf. Remark

2.4, QT =
PT

t=1QtT (
��T )=T or

PT
t=1QtT (

��T )=T , where QtT (�) = @qtT (�)=@�
0, (t = 1; :::; T ), cf. Smith

(2011, p.1201), and RT = R(��T ) or R(��T ), where R(�) = @r(�)=@�
0.

Proposition 2.3. Let p.s.d. �T ! � and p.s.d. 	�T ! 	�, prob-P. If Assumptions 2.1, 2.2,

2.3(a)-(d)(f) and 2.4 are satis�ed, then

TT !dP �2(dq � dg + dr � d�);

where T = LR, D, S, LM or GW. Moreover, LRT , DT , ST , LMT and GWT are asymptotically

equivalent.

Cf. Smith (2011, Theorem 5.2, p.1212).
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Remark 2.7. In the absence of �, i.e., E[h(zt; �0)] = 0, r(�0) = 0, GWT is now based solely on the

unrestricted GMM estimator �̂T . The moment function �hT (�̂T ) = ĥT (�̂T ) � (�T )hg(�T )�1ĝT (�̂T ) is

a GMM-e¢ cient estimator of E[h(zt; �0)] under the maintained hypothesis (2.1) and is asymptotically

equivalent to
PT

t=1 �̂tThtT (�̂T ), see Smith (2011, (3.2), p.1205), where �̂tT , (t = 1; :::; T ), are the

e¢ cient unrestricted GEL implied probabilities de�ned in (3.3) below; cf. Ruud (2000, (22.23), p.575).

Cf. Remarks 2.5 and 2.6.

Remark 2.8. See inter alia Newey and West (1987) for GMM tests of parametric restrictions

r(�0) = 0 maintaining (2.1).
5 Newey (1985), Eichenbaum et al. (1988) and Ruud (2000) detail GMM

tests of additional moment restrictions E[h(zt; �)] = 0, cf. Remark 2.5; also see Smith (1997, Section

II.3, pp.513-514) and Smith (2011, Section 5, pp.1211-1213) for GEL-based tests.6

3 GEL Implied Probability GMM-KBB

Let P�! denote the bootstrap probability measure conditional on the observational data fztgTt=1 with

E� and var� the corresponding conditional expectation and variance respectively.

Let mT = [T=ST ] denote the integer part of T=ST . The indices t�s and the consequent bootstrap

sample q�t�sT (�), (s = 1; :::;mT ), denote mT independent draws with replacement from the index set

TT = f1; :::; Tg and the bootstrap sample space fqtT (�)gTt=1 with bootstrap sampling probabilities

P�!(q�t�sT (�) = qtT (�)) = �tT , (t = 1; :::; T ). The probabilities �tT can depend on the data and sat-

isfy 0 � �tT � 1 w.p.a.1,
PT

t=1 �tT = 1 and max1�t�T jT�tT � 1j ! 0, prob-P; see Assumption 3.2

below. The identically sampled KBB method of Parente and Smith (2018, 2021) sets the bootstrap

sampling probabilities as the standard empirical GMM measures, i.e., �tT = T�1, (t = 1; :::; T ).

3.1 GEL Implied Probabilities

Of particular interest here are the bootstrap sampling probabilities �tT , (t = 1; :::; T ), gener-

ated from GEL criteria. The relevant GEL criteria corresponding to (2.1) and (2.2) are P̂�gT (�; �g) =PT
t=1 �(�

0
ggtT (�)=k

1=2)=T and P̂�qT (�; �q) =
PT

t=1 �(�
0
qqtT (�)=k

1=2)=T respectively, where �(�) denotes a

concave function normalised so that �(0) = 0 with derivatives �j(�) = @j�(�)=@vj , (j = 0; 1; 2; :::); we set,

without loss of generality, �j(0) = �1, (j = 1; 2). Given unrestricted, ��T , see Remark 2.6, and restricted
5LRT (2.6) and DT (2.7) set Sg = Idgand �T as �T with q̂T (~�T ) replaced by ĝT (~�T ) where ~�T is the restricted

estimator for �0. ST (2.8) is similarly re-de�ned as ST =k = (T=ST )ĝT (~�T )
0(�T )�1GTM�TG

0
T (�T )

�1ĝT (~�T ) with
GT ! G, M�T !M�, prob-P . LMT (2.9) sets Sh;� = diag(0; Idr ) and, hence, LMT = T ~�

0
TRTM�TR

0
T ~�T with ~�T the

Lagrange multiplier estimator associated with the parametric restrictions r(�0) = 0; note G
0
T (�T )

�1(T=ST )=12ĝT (~�T )�
R0TT

1=2~�T ! 0, prob-P, from the �rst order conditions. GWT (2.10) sets �qT (�̂T ) as �gT (�̂T ), i.e., 0, and is, thus, rendered
as GWT = Tr(�̂T )

0(RTM�TR
0
T )

�1r(�̂T ).
6LRT (2.6) and DT (2.7) replace q̂T (~�T ) by q̂T (~�T ) where ~�T is the restricted estimator for �0. ST (2.8)

is similarly re-de�ned. LMT (2.9) sets Sh;� = diag(Sh; 0) and R = 0 eliminating ~�T , i.e., thus, LMT =k =

(T=ST )q̂T (~�T )
0(�T )�1Sh(S0hP�TSh)

�1S0h(�T )
�1q̂T (~�T ). GWT (2.10) sets �qT (�̂T ) as �qT (�̂T ) and r(�̂T ) = 0, i.e.,

GWT =k = (T=ST )�hT (�̂T )
0S0hP�TSh

�hT (�̂T ).
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��T (2.4) GMM estimators, the corresponding GEL estimators of �o, (o = g; q), are

��gT = arg sup
�g2�gT

P̂�gT (��T ; �g); ��qT = arg sup
�q2�qT

P̂�qT (��T ; �q); (3.1)

where the parameter spaces �oT , (o = g; q), are de�ned in Assumption 3.1(b) below.

Assumption 3.1. (a) �(�) is twice continuously di¤erentiable and concave on its domain, an open

interval V containing 0, �1(0) = �2(0) = �1; (b) �o 2 �oT where �oT = f�o : k�ok � D(T=ST )
��g,

(o = g; q), for some D > 0 with 1
2�� < � <

1
2 .

Cf. Smith (2011, Assumption 2.4, p.1200).

Proposition 3.1. If Assumptions 2.1, 2.2, 2.3(a)�(d)(f) and 3.1 hold, (a) ��qT ! 0, prob-P, and,

(b) if in addition Assumption 2.4 holds, (T=ST )1=2��qT !dP N (0;��1(Idq�QHWq )�(Idq�QHWq )
0��1).

Remark 3.1. The �rst order asymptotic representation for ��qT is (T=ST )1=2��qT =k1=2 +��1WqPWq
(T=ST )

1=2q̂T (�0)!

0, prob-P; see Proposition B.1. With the e¢ cient restricted GMM estimator ~�T , see Remark 2.4, substi-

tuted in the requisite GEL criterion, i.e., P̂ �qT (~�T ; �q), the resultant GEL estimator (T=ST )
1=2~�qT !dP

N (0; P�) which is asymptotically distributed independently of T 1=2(~�T � �0), prob-P; cf. Smith (2011,

Theorem 5.1, p.1210). A similar result to Proposition 3.1 obtains with the unrestricted GEL criterion

P̂�gT (��T ; �g), viz., ��gT ! 0, prob-P, (T=ST )1=2��gT !dP N (0;��1(Idg � GHWg
)�(Idg � GHWg

)0��1)

with (T=ST )1=2��gT =k1=2+��1WgPWg
(T=ST )

1=2ĝT (�0)! 0, prob-P, see Remark B.1. When the e¢ cient

unrestricted GMM estimator �̂T is substituted for ��T , (T=ST )
1=2�̂gT ! N (0; P�) and is asymptotically

distributed independently of T 1=2(�̂T � �0), prob-P; cf. Smith (2011, Theorem 2.3, p.1201).

We de�ne unrestricted (2.1) and restricted (2.2) GEL implied probabilities

��tT =
�1(
��
0
gT gtT (

��T )=k
1=2)PT

s=1 �1(
��
0
gT gsT (

��T )=k
1=2)

; ��tT =
�1(
��
0
qT qtT (

��T )=k
1=2)PT

s=1 �1(
��
0
qT qsT (

��T )=k1=2)
; (3.2)

(t = 1; :::; T ), respectively; cf. Smith (2011, (3.1), p.1205).

Remark 3.2. Particular examples are : EL ��tT = 1=T (1 + ��
0
gT gtT (

��T )=k
1=2), ��tT = 1=T (1 +

��
0
qT qtT (

��T )=k
1=2), cf. Owen (1988); ET: ��tT = exp(��

0
gT gtT (

��T )=k
1=2)=

PT
s=1 exp(

��
0
gT gsT (

��T )=k
1=2),

��tT = exp(��
0
qT qtT (

��T )=k
1=2)=

PT
s=1 exp(

��
0
qT qsT (

��T )=k
1=2), cf. Kitamura and Stutzer (1997); CUE

��tT = (1 + ��
0
gT gtT (

��T )=k
1=2)=

PT
s=1(1 +

��
0
gT gsT (

��T )=k
1=2), ��tT = (1 + ��

0
qT qtT (

��T )=k
1=2)=

PT
s=1(1 +

��
0
qT qsT (

��T )=k
1=2), cf. Back and Brown (1993). See also Brown and Newey (1992, 2002) and Newey and

Smith (2004) for the general i.i.d. case. Members of the Cressie-Read (1984) family of discrepancies

also have a dual counterpart in the GEL class; see Newey and Smith (2004, Theorem 2.2, p.224). The

ratios ��tT and ��tT , (t = 1; :::; T ), sum to unity, are bounded between zero and unity w.p.a.1, prob-P, and

satisfy Assumption 3.2 below; see Lemma B.1.7 GEL implied probabilities induce empirical measure

7 Implied probabilities �tT , (t = 1; :::; T ), may fail to be non-negative in �nite samples. Antoine et al. (2007, (2.8),
(2.9), p.466) provide a remedy without a¤ecting the analysis by de�ning appropriate shrinkage estimators. E.g., replace
��tT by (��tT + T�1�"T )=(1 + �"T ), (t = 1; :::; T ), where �"T = �T min[min1�t�T ��tT ; 0].
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counterparts to the expectation operator in (2.1) and (2.2) ensuring that the moment conditions are

satis�ed in the sample, i.e.,
PT

t=1 ��tT gtT (
��T ) = 0,

PT
t=1 ��tT qtT (

��T ) = 0.

Of particular interest are the e¢ cient unrestricted (2.1) and restricted (2.2) GEL implied probabilities

�̂tT =
�1(�̂

0
gT gtT (�̂T )=k

1=2)PT
s=1 �1(�̂

0
gT gsT (�̂T )=k

1=2)
; ~�tT =

�1(
~�
0
qT qtT (

~�T )=k
1=2)PT

s=1 �1(
~�
0
qT qsT (

~�T )=k1=2)
; (3.3)

(t = 1; :::; T ), where the e¢ cient GMM estimators �̂T and ~�T are substituted in the respective GEL

criteria above; see (3.1).

Remark 3.3. Moment estimators with the e¢ cient implied probabilities (3.3) substituting for the

standard empirical measure are optimal; see, respectively, Brown and Newey (1998, Corollary 1, p.458)

and Smith (2011, p.1206) for the i.i.d. and weakly dependent contexts.

3.2 GEL Implied Probability GMM Estimation

The restricted GEL implied probability (�-GEL) GMM estimator ��
�

T and associated GMM crite-

rion play important roles in the analysis elucidated below. In particular, the restricted �-GEL GMM

estimator provides the appropriate centring for both ine¢ cient and e¢ cient restricted GMM bootstrap

estimators under the KBB sampling schemes considered in this paper. This �-GEL GMM estimator

minimises a corresponding GMM criterion which, rather than using the standard sample average mo-

ment indicator q̂T (�), replaces the standard GMM empirical measure T�1 by the bootstrap mass point

probabilities �tT , (t = 1; :::; T ), as weights. The restricted �-GEL GMM estimator is asymptotically

�rst order equivalent to and, thus, its empirical distribution provides an alternative, to that of the

corresponding GMM estimator.

Rede�ne the GMM criterion �QT (�) (2.5) as the �-GEL GMM criterion

�Q�T (�) = q̂�T (�)0(WqT )
�1q̂�T (�) (3.4)

with the GEL implied probability-weighted sample moment q̂�T (�) =
PT

t=1 �tT qtT (�) replacing the em-

pirical sample moment q̂T (�). The restricted �-GEL GMM estimator ��
�

T is then de�ned by

��
�

T = argmin
�2�r

�Q�T (�); (3.5)

with the corresponding Lagrange multiplier estimator ���T of � associated with the parametric constraint

r(�) = 0 in the �-GEL GMM Lagrangean �L�T (�) = �Q�T (�)=ST � 2�0r(�)=k.

Assumption 3.2. (a) 0 � �tT � 1 w.p.a.1,
PT

t=1 �tT = 1; (b) max1�t�T jT�tT � 1j ! 0, prob-P.

Proposition 3.2. Let WqT ! Wq, prob-P, Wq p.d. and WqT p.s.d. Then, under Assumptions

2.1, 2.2(b)-(d), 2.3(a)-(d) and 3.2, if ST ! 1 and ST = o(T 1=2), (a) ��
�

T � �0 ! 0, ���T ! 0, prob-P.
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If, in addition, Assumptions 2.2(a) and 2.4 hold and if (T=ST )1=2q̂�T (�0) = Op(1), then (b) T
1=2(��

�

T �

�0)=k
1=2 +HWq (T=ST )

1=2q̂�T (�0)! 0, prob-P, and T 1=2���T =k1=2 � JWq (T=ST )
1=2q̂�T (�0)! 0, prob-P.

Cf. Remark 2.3.

Corollary 3.1. Let �tT = ��tT (3.2), (t = 1; :::; T ). Also let WqT ! Wq, prob-P, WqT p.s.d.

and Wq p.d. Then, under Assumptions 2.1, 2.2, 2.3(a)-(d)(f), 2.4 and 3.1, T 1=2(��
��

T � ��T ) ! 0 and

T 1=2����T ! 0, prob-P.

Remark 3.4. As noted in Remark 3.2 the restricted GEL implied probabilities ��tT , (t = 1; :::; T ),

satisfy Assumption 3.2. Corollary 3.1 follows directly from Proposition 3.2 since (T=ST )1=2q̂��T (�0) �

QHWq
(T=ST )

1=2q̂T (�0) ! 0, prob-P; see Corollary B.1 with � = 1. Consequently, the �rst order

asymptotic properties of the ��-GEL GMM estimator ��
��

T (3.5), being equivalent to the restricted GMM

estimator ��T , are invariant to choice of limiting weighting matrix Wq used in the �-GEL GMM criterion

�Q�T (�) (3.7). With the e¢ cient restricted GEL implied probabilities �tT = ~�tT (3.3), (t = 1; :::; T ),

(T=ST )
1=2q̂~�T (�0) � QH�(T=ST )1=2q̂T (�0) ! 0, prob-P. Thus, from Proposition 3.2, since HWq

QH� =

H�, Section B.2(b)(c), and JWqQH� = 0, Section B.2(d), the restricted ~�-GEL GMM estimator ��
~�

T is �rst

order asymptotically equivalent to the e¢ cient two-step restricted GMM estimator ~�T , i.e., T 1=2(��
~�

T �
~�T ) ! 0, and T 1=2��~�T ! 0, prob-P, a result again asymptotically invariant to the choice of weighting

matrix Wq.

Remark 3.5. The unrestricted �-GEL GMM estimator ��
�

T = argmin�2B �Q�T (�) where the �-

GEL GMM criterion �Q�T (�) = ĝ�T (�)
0(WgT )

�1ĝ�T (�), WgT p.s.d., with the �-weighted sample average

ĝ�T (�) =
PT

t=1 �tT gtT (�) replacing ĝT (�) in the GMM criterion �QT (�), see Remark 2.6. If WgT !Wg,

prob-P,Wg p.d., T 1=2(��
�

T��0)=k1=2+HWg
(T=ST )

1=2ĝ�T (�0)! 0, prob-P, cf. Proposition 3.2. Moreover,

if �tT = ��tT (3.2), (t = 1; :::; T ), since (T=ST )1=2ĝ��T (�0) � GHWg (T=ST )
1=2ĝT (�0) ! 0, prob-P, by

Remark B.6(b), T 1=2(��
��

T � ��T ) ! 0, prob-P, cf. Corollary 3.1, invariant to the choice of metric Wg,

cf. Remark 3.4. Similarly, the �̂-GEL GMM estimator ��
�̂

T is �rst order asymptotically equivalent to the

e¢ cient two-step GMM estimator �̂T , i.e., T
1=2(��

�̂

T � �̂T )! 0, prob-P. With e¢ cient restricted implied

probabilities ~�tT , (t = 1; :::; T ), (3.3), since H�(T=ST )1=2ĝ~�T (�0) � SgH�(T=ST )1=2q̂T (�0) ! 0, prob-

P, by Lemma B.2(b), T 1=2(�̂
~�

T � ~�T ) ! 0, prob-P, i.e., the ~�-GEL GMM estimator �̂
~�

T with e¢ cient

unrestricted metric (�T )�1 is �rst order asymptotically equivalent to the e¢ cient restricted two-step

GMM estimator ~�T .

Remark 3.6. The discussion of Remark 3.4 may easily be adapted for the unrestricted GEL implied

probabilities ��tT , (t = 1; :::; T ). The �rst order asymptotic properties of the ��-GEL GMM estima-

tor ~�
��

T from the �-GEL criterion �Q�T (�) (3.4) with e¢ cient restricted metric (�T )�1 follow from the

�rst order conditions H�(T=ST )1=2q̂��T (��
��

T ) ! 0, prob-P. Now, by Remark B.6(b), (T=ST )1=2q̂��T (�0) �

((T=ST )
1=2q̂T (�0)��Sg��1WgPWgS

0
g(T=ST )

1=2q̂T (�0))! 0, prob-P, yielding T 1=2(~���T�~�T )�K�Sg(M�)
�1T 1=2(�̂T�

��T ) ! 0, prob-P, cf. Remark 2.6. Thus, with e¢ cient unrestricted probabilities �̂tT , (t = 1; :::; T ),
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T 1=2(~�
��

T � ~�T )! 0, prob-P, i.e., ~���T � ~�T is �rst order equivalent to the e¢ cient restricted estimator ~�T .

3.3 GEL Implied Probability GMM-KBB Estimation

We adopt the notation of Gonçalves and White (2004). For a bootstrap statistic W �
T we write

W �
T ! 0, prob-P�!, prob-P, if for any " > 0 and any � > 0, limT!1 P(P�!(jW �

T j > ") > �) = 0.

Let W��
qmT

�WqT ! 0, prob-P�!, prob-P, W��
qmT

p.s.d. The restricted �-GEL GMM-KBB estimator

��
��
mT

is de�ned by

��
��
mT

= argmin
�2�r

�Q��mT
(�); (3.6)

with �-GEL GMM-KBB Lagrangean �L��mT
(�) = �Q��mT

(�)=ST � 2�0r(�)=k, estimator ����mT
of �, the La-

grange multiplier associated with the parametric constraint r(�) = 0, and �-GEL GMM-KBB criterion

�Q��mT
(�) = q̂��mT

(�)0(W��
qmT

)�1q̂��mT
(�): (3.7)

where q̂��mT
(�) =

PmT

s=1 qt�sT (�).

Theorem 3.1 states the consistency of the �-GEL GMM-KBB bootstrap estimator ��
��
mT
.

Theorem 3.1. (�-GEL GMM-KBB Estimator Consistency.) Let W��
qmT

�WqT ! 0, prob-P�!, prob-

P, W��
qmT

p.s.d., WqT �Wq ! 0, prob-P, WqT p.s.d. and Wq p.d. Under Assumptions 2.1, 2.2(b)-(d),

2.3(a)-(e) and 3.2, if ST !1, ST = o(T 1=2) and T 1=�=mT ! 0, then ��
��
mT
���

�

T ! 0 and ����mT
� ���T ! 0,

prob-P�!, prob-P.

Theorem 3.2 demonstrates the uniform convergence of the distribution of the appropriately centred

�-GEL GMM-KBB estimator ��
��
mT

(3.6) to that of the centred restricted GMM estimator ��T (2.4).

Theorem 3.2. (�-GEL GMM-KBB Estimator Distribution Consistency.) Let Assumptions 2.1-2.4

and 3.2 hold. Then, if W��
qmT

�WqT ! 0, prob-P�!, prob-P, W��
qmT

p.s.d., WqT �Wq ! 0, prob-P, WqT

p.s.d. and Wq p.d.,

sup
x2Rd�

jP�!(T 1=2(��
��
mT

� ��
�

T ) � x)� P(T 1=2(��T � �0) � x)j ! 0, prob-P,

sup
x2Rdr

jP�!(T 1=2(����mT
� ���T ) � x)� P(T 1=2��T � x)j ! 0, prob-P.

Note the centring of the �-GEL GMM-KBB distributions for ��
��
mT

and ����mT
at the �-GEL GMM esti-

mators ��
�

T and ��
�
T respectively.

Remark 3.7. If �tT = ��tT (3.2), (t = 1; :::; T ), the ��-GEL GMM-KBB estimator ��
��

T may be replaced

by the restricted GMM estimator ��T and ��
��
T omitted in the statement of Theorem 3.2; see Corollary 3.1.

The �rst result is not speci�c to ��-GEL GMM-KBB and also holds for other block bootstrap methods;

e.g., Theorems 3.1 and 3.2 apply to standard KBB, cf. Parente and Smith (2018, 2021), which uses the
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standard GMM bootstrap sampling probabilities �tT = T�1, (t = 1; :::; T ), thus, also entailing ��
�

T and

���T being replaced by ��T and ��T respectively. Moreover, with the e¢ cient GEL implied probabilities

�tT = ~�tT (3.3), (t = 1; :::; T ), see Remark 3.4, possibly counterintuitively, the ~�-GEL GMM-KBB

estimator ��
~��
mT

is centered at the e¢ cient GMM estimator ~�T in Theorem 3.2, rather than the ine¢ cient

��T , whether or not an e¢ cient metric ���mT
, ���mT

��T ! 0, prob-P�!, prob-P, is employed in the ~�-GEL

GMM-KBB criterion �Q~��
mT
(�).

Remark 3.8. Lemma C.3 of Appendix C establishes that, under Assumptions 2.1-2.4 and 3.2, if

(T=ST )
1=2q̂�T (�0) = Op(1), then ���mT

(��
��
mT
) � �T ! 0, prob-P�!, prob-P, �T � � ! 0, prob-P, where

���mT
(��
��
mT
) =

PmT

s=1 q
�
t�sT
(��
��
mT
)q�t�sT (

��
��
mT
)0=mT or ���mT

(��
��
mT
) =

PmT

s=1(q
�
t�sT
(��
��
mT
)�q̂��mT

(��
��
mT
))(q�t�sT (

��
��
mT
)�

q̂��mT
(��
��
mT
))0=mT .

Remark 3.9. Theorems 3.1 and 3.2 are easily adapted for unrestricted GMM estimation with

suitable modi�cations of Assumptions 2.1-2.4. With bootstrap sample g�t�sT (�), (s = 1; :::;mT ), mT

independent draws with replacement from the sample space fgtT (�)gTt=1 with bootstrap sampling prob-

abilities P�!(g�t�sT (�) = gtT (�)) = �tT , (t = 1; :::; T ), de�ne the unrestricted �-GEL GMM-KBB esti-

mator ��
��
mT

= argmin
�2B

�Q��mT
(�) where �Q��mT

(�) = ĝ��mT
(�)0(W��

gmT
)�1ĝ��mT

(�), W��
gmT

p.s.d. and ĝ��mT
(�) =PmT

s=1 gt�sT (�)=mT . If W��
gmT

� WgT ! 0, prob-P�!, prob-P, WgT � Wg ! 0, prob-P, Wg p.d., then

��
��
mT
����T ! 0, prob-P�!, prob-P, where ��

�

T is de�ned in Remark 3.5, and supx2Rd� jP�!(T 1=2(��
��
mT
����T ) �

x) � P(T 1=2(��T � �0) � x)j ! 0, prob-P. Similarly to Remark 3.5 above, employing the unrestricted

GEL implied probabilities �tT = ��tT (3.2), (t = 1; :::; T ), the unrestricted ��-GEL GMM estimator

��
��

T is replaced by ��T , a result that also applies with standard GMM bootstrap sampling probabili-

ties �tT = T�1, (t = 1; :::; T ). With e¢ cient unrestricted GEL implied probabilities �tT = �̂tT (3.3),

(t = 1; :::; T ), see Remark 3.5, ��
�̂

T is replaced by the e¢ cient unrestricted GMM estimator �̂T contradict-

ing Allen et al. (2011, Theorems 1 and 2, p.114) for their EL MBB method, both estimators coinciding

only if Wg = �.

Alternative less computationally intensive bootstraps may be constructed given the �-GEL GMM

estimator ��
�

T thereby avoiding the use of the �-GEL GMM-KBB estimator ��
��
mT
. Cf. the fast subsampling

procedure of Hong and Scaillet (2006); see also Camponovo et al. (2012).

Corollary 3.2. Suppose WqT �Wq ! 0, HWqT �HWq
! 0 and JWqT � JWq

! 0, prob-P, WqT

p.s.d. andWq p.d. Then, under the conditions of Theorem 3.2, ifW��
qmT

�WqT ! 0, H��
WqmT

�HWqT ! 0

and J��WqmT
� JWqT ! 0, prob-P�!, prob-P,

sup
x2Rd�

jP�!(�H��
WqmT

(T=ST )
1=2q̂��mT

(��
�

T ) � x)� P(T 1=2(��T � �0)=k1=2 � x)j ! 0; prob-P;

sup
x2Rdr

jP�!(J��WqmT
(T=ST )

1=2(q̂��mT
(��
�

T )� q̂�T (��
�

T )) � x)� P(T 1=2��T =k1=2 � x)j ! 0; prob-P:

Suitable estimators H��
WqmT

and J��WqmT
may be constructed straightforwardly from, e.g., Q̂��mT

(��T )
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or Q̂��mT
(��
�

T ), where Q̂
��
mT
(�) =

PmT

s=1 @q
�
t�sT
(�)=@�0=mT , R(��T ) or R(��

�

T ) and W
��
qmT

.

Remark 3.10. Cf. the in�uence function corresponding to the �-GEL GMM criterion �Q�T (�) (3.4),

viz.,

IF�WqT (zt; F̂T ) = �H
�
WqT (T=ST )

1=2(q̂�tT (
��
�

T )� q̂�T (��
�

T )); (t = 1; :::; T );

where H�
WqT

denotes an estimator of HWq
using Q̂�T (��

�

T ), R(��
�

T ) and WqT . Note that the term q̂�T (
��
�

T ) is

omitted in Corollary 3.2 since, from the �-GEL GMM�rst order condition for ��
�

T ,H
�
WqT

(T=ST )
1=2q̂�T (

��
�

T )!

0, prob-P. Cf. Gonçalves and White (2004, Corollary 2.1, p.203); also see Davidson and MacKinnon

(1999).

Remark 3.11. Computation may further be simpli�ed by exploiting a suitable adaptation of the

GEL-KBB Local UWL Lemma A.4 in Appendix A, i.e., sup�2N kQ̂��mT
(�)� Q̂�T (�)=S

1=2
T k ! 0, prob-P�!,

prob-P, and replacing, e.g., Q̂��mT
(�) by Q̂�T (�) evaluated at ��T or ��

�

T and W
��
qmT

by WqT in the de�nition

of H��
WqmT

and J��WqmT
to form H�

WqT
and J�WqT

,

sup
x2Rd�

jP�!(�H�
WqT (T=ST )

1=2q̂��mT
(��
�

T ) � x)� P(T 1=2(��T � �0)=k1=2 � x)j ! 0; prob-P;

sup
x2Rdr

jP�!(J�WqT (T=ST )
1=2(q̂��mT

(��
�

T )� q̂�T (��
�

T )) � x)� P(T 1=2��T =k1=2 � x)j ! 0; prob-P:

A similar argument based on the UWLs sup�2� kQ̂�T (�)�Q̂T (�)k=S
1=2
T k ! 0, prob-P, sup�2� kQ̂T (�)=S

1=2
T �

Q(�)=k1=2k ! 0, prob-P, cf. Lemma A.1, with HWqT and JWqT constructed using the estimator Q̂T (�)

evaluated at ��T or ��
�

T , yields

sup
x2Rd�

jP�!(�HWqT (T=ST )
1=2q̂��mT

(��
�

T ) � x)� P(T 1=2(��T � �0)=k1=2 � x)j ! 0; prob-P;

sup
x2Rdr

jP�!(JWqT (T=ST )
1=2(q̂��mT

(��
�

T )� q̂�T (��
�

T )) � x)� P(T 1=2��T =k1=2 � x)j ! 0; prob-P:

Strengthening Assumption 2.4(d) to include Q� (and, thus, Q) f.c.r. permits other con�dence regions

for the full vector �0 to be formulated; conservative con�dence regions for a smooth function of �0 may be

obtained by the �projection�method, see, e.g., Dufour (2003, Section 6.2, 791-792). Let �2d� (�) denote

a chi-square c.d.f. with d� degrees of freedom. Also let QT ! Q, Q� f.c.r., and �T ! �, prob-P.

To test � = �0, the score statistic ST (�0) = (T=ST )q̂T (�0)0(�T )�1QT (Q0T (�T )�1QT )�1Q0T (�T )�1q̂T (�0)

converges in distribution to �2d� (�)=k, prob-P, and is, thus, asymptotically pivotal.
8

Corollary 3.3. Under the conditions of Theorem 3.2, if QT ! Q, Q� f.c.r., and �T ! �, prob-P,

sup
x2R+

jP�!((T=ST )(q̂��mT
(~�
�

T )� q̂�T (��
�

T ))(�T )
�1QT (Q

0
T (�T )

�1QT )
�1Q0T (�T )

�1(q̂��mT
(~�
�

T )� q̂�T (��
�

T )) � x)

�P(ST (�0) � x)j ! 0; prob-P:
8With Q f.c.r., MW = (Q0W�1Q)�1 and HW = MWQ

0W�1. To test � = �0, the appropriate form of ST (2.8) sets
Sg = Id� , P� = �

�1� ��1QM�Q
0��1 and q̂T (�0) substitutes for q̂T (~�T ).
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Remark 3.12. Let x�� denote the �-level critical value from the empirical distribution of the �-

GEL GMM-KBB statistic of Corollary 3.3. Inversion of the non-rejection region fST (�)) � x��g gives a

nominal �-level con�dence region for �0. The Corollary 3.3 statistic potentially provides the basis for

asymptotic re�nements but exploration of this topic is beyond the scope of the paper; cf. LaVecchia et

al. (2023).

3.4 GEL Implied Probability GMM-KBB Inference

The following subsections detail �-GEL GMM-KBB versions of the test statistics for the over-

identifying moment conditions (2.1) and the parametric restrictions and additional moment conditions

(2.2) outlined in subsections 2.2.1 and 2.2.2. These forms of statistic exploit the GEL �rst order condi-

tions which impose the population moment conditions on sample moments through re-weighting sample

moment indicators with the GEL implied probabilities rather than the standard empirical GMM weights

in the construction of sample averages.

3.4.1 Overidenti�cation Tests

Let ���mT
� �T ! 0, prob-P�!, prob-P; cf. Remark 3.8. Consider the �-GEL GMM-KBB over-

identifying moments test statistic

J ��
mT
=k = (T=ST )(ĝ

��
mT
(�̂
��
mT
)� ĝ�T (�̂

�

T ))
0(���mT

)�1(ĝ��mT
(�̂
��
mT
)� ĝ�T (�̂

�

T )) (3.8)

where �̂
�

T and �̂
��
mT

are the e¢ cient unrestricted �-GEL GMM and �-GEL GMM-KBB estimators re-

spectively, see Remarks 3.5 and 3.9.

The following Theorem states the asymptotic validity of the �-GEL GMM-KBB statistic J ��
mT

for

overidentifying moment restrictions.

Theorem 3.3. With Assumptions 2.1-2.4 and 3.2 appropriately restated, if ���mT
��T ! 0, prob-P�!,

prob-P, ���mT
p.s.d., �T � �! 0, prob-P, �T p.s.d.,

sup
x2R+

jP�!(J ��
mT

� x)� P(JT � x)j ! 0, prob-P:

Remark 3.13. With e¢ cient unrestricted implied probabilities �tT = �̂tT (3.3) or standard GMM

weights �tT = T�1, (t = 1; :::; T ), the e¢ cient unrestricted estimator �̂T may replace the �-GEL GMM

estimator �̂
�

T ; cf. Remark 3.5. Moreover, with the former weights, the centring term ĝ
�̂
T (�̂T ) in J ��

mT
(3.8)

may also be omitted since, from the �rst order conditions, (T=ST )1=2ĝ�̂T (�̂T ) ! 0, prob-P, cf. Proof of

Theorem 3.2. Thus, re-de�ning J �̂�
mT

= (T=ST )ĝ
�̂�
mT
(�̂
�̂�
mT
)0(��̂�mT

)�1ĝ�̂�mT
(�̂
�̂�
mT
), supx2R+

jP?(J �̂�
mT

� x)�

P(JT =k � x)j ! 0, prob-P. As noted in Remark 3.5, with ine¢ cient unrestricted implied probabilities

�tT = ��tT (3.2), (t = 1; :::; T ), although the e¢ cient metric (�T )�1 is employed the resultant ��-GEL

GMM estimator �̂
�

T is equivalent to the unrestricted but ine¢ cient estimator ��T .
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Remark 3.14. Hall and Horowitz (1996, p.898) proposes a non-overlapping GMM-MBB overidenti-

fying moment restrictions test statistic with standard GMM empirical weights �tT = T�1, (t = 1; :::; T ),

cf. Remark 3.9, similar to J ��
mT

(3.8), an adjustment to which achieves higher order validity, see Hall

and Horowitz (1996, Theorems 2 and 3, p.902). Bravo and Crudu (2011, (8), p.3447) details an overlap-

ping �̂-GEL GMM-MBB overidentifying moment restrictions test statistic with the e¢ cient unrestricted

implied probabilities �tT = �̂tT (3.3), �̂T replacing �̂
�

T in and dropping (T=ST )
1=2ĝ�̂T (�̂T ) from J ��

mT

(3.8), see Bravo and Crudu (2011, Theorem 1, p.3448); cf. Remark 3.13. Allen et al. (2011, pp.112-

114) implements a similar uncentred statistic with both non-overlapping and overlapping MBB, implied

probabilities �tT = T�1, (t = 1; :::; T ), and EL, �tT = 1=T (1 + �̂
0
gT gtT (�̂T )), (t = 1; :::; T ), and �at ker-

nel k(x) = 1, jxj � 1, and 0, jxj > 1, de�ning the kernel weighted moment indicators gtT (�), (t = 1; :::; T ).

Similarly to Corollary 3.2, the use of the unrestricted �-GEL GMM-KBB estimator �̂
��
mT

may be

circumvented by the appropriate substitution of the e¢ cient unrestricted �-GEL GMM estimator �̂
�

T

since (T=ST )1=2ĝ��mT
(�̂
��
mT
) � �P�(T=ST )1=2ĝ��mT

(�̂
�

T ) ! 0, prob-P�!, prob-P, cf. Proof of Lemma B.3,

and H�(T=ST )1=2ĝ�T (�̂
�

T )! 0, prob-P; viz.

J ��
mT
(�̂
�

T )=k = (T=ST )(ĝ
��
mT
(�̂
�

T )� ĝ�T (�̂
�

T ))
0P���T (ĝ

��
mT
(�̂
�

T )� ĝ�T (�̂T ))

Corollary 3.4. Under the Assumptions of Theorem 3.3, if P���T �P�T ! 0, prob-P�!, prob-P, and

P�T � P� ! 0, prob-P,

sup
x2R+

jP�!(J ��
mT
(�̂
�

T ) � x)� P(JT � x)j ! 0, prob-P:

Remark 3.15. Further computational simpli�cations may be made; cf. Remark 3.11. Similarly

to Remark 3.13, the e¢ cient unrestricted estimator �̂T may substitute for the �-GEL GMM estimator

�̂
�

T with the e¢ cient unrestricted implied probabilities �tT = �̂tT (3.3) or standard GMM weights

�tT = T
�1, (t = 1; :::; T ). Also ĝ�T (�̂

�

T ) can be omitted if �tT = �̂tT , (t = 1; :::; T ). The estimator P
��
�T

may be replaced by P��T or P�T , where P
�
�T , P�T ! P�, prob-P.

3.4.2 Speci�cation Tests

Consider the following �-GEL GMM-KBB statistics for testing the additional moment restrictions

E[h(zt; �0)] = 0 and parametric constraints r(�0) = 0 (2.2): a likelihood ratio-like statistic

LR��
mT
=k = (T=ST )((q̂

��
mT
(~�
��
mT
)� q̂�T (~�

�

T ))� ���mT
Sg(�

��
mT
)�1(ĝ��mT

(�̂
��
mT
)� ĝ�T (�̂

�

T )))
0 (3.9)

�(���mT
)�1((q̂��mT

(~�
��
mT
)� q̂�T (~�

�

T ))� ���mT
Sg(�

��
mT
)�1(ĝ��mT

(�̂
��
mT
)� ĝ�T (�̂

�

T ));

cf. (2.6); the �-GEL GMM-KBB distance statistic

D��mT
=k = (T=ST )(q̂

��
mT
(~�
��
mT
)� q̂�T (~�

�

T ))
0(���mT

)�1(q̂��mT
(~�
��
mT
)� q̂�T (~�

�

T )) (3.10)

�(T=ST )(ĝ��mT
(�̂
��
mT
)� ĝ�T (�̂

�

T ))
0(���mT

)�1(ĝ��mT
(�̂
��
mT
)� ĝ�T (�̂

�

T ));
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where ���mT
is the (dg; dg) top left diagonal block of p.s.d. ���mT

, cf. below (2.6); a simpli�ed score-like

statistic

S��mT
=k = (T=ST )(q̂

��
mT
(~�
��
mT
)� q̂�T (~�

�

T ))
0((���mT

)�1 � SgP���mT
S0g)(q̂

��
mT
(~�
��
mT
)� q̂�T (~�

�

T ); (3.11)

cf. (2.8); a Lagrange multiplier-like statistic

LM��
mT
=k = T

�
(���mT

)�1(�q��mT
(~�
��
mT
)� �q�T (~�

�

T ))=S
1=2
T

(~���mT
� ~��T )=k1=2

�0
Sh;�(S

0
h;�	

��
mT
Sh;�)

�1S0h;� (3.12)

�
�
(���mT

)�1(�q��mT
(~�
��
mT
)� �q�T (~�

�

T ))=S
1=2
T

(~���mT
� ~��T )=k1=2

�
;

cf. (2.9); a generalized Wald-like statistic

GW��
mT
=k = T

 
(�q��mT

(�̂
��
mT
)� �q�T (�̂

�

T ))=S
1=2
T

(r(�̂
��
mT
)� r(�̂

�

T ))=k
1=2

!0
	��mT

 
(�q��mT

(�̂
��
mT
)� �q�T (�̂

�

T ))=S
1=2
T

(r(�̂
��
mT
)� r(�̂

�

T ))=k
1=2

!
; (3.13)

cf. (2.10), where �q��mT
(�) = (Idq � ���mT

Sg(�
��
mT
)�1S0g)q̂

��
mT
(�) and �q�T (�) = (Idq � ��TSg(��T )�1S0g)q̂�T (�).

The de�nition of GW��
mT

requires �-GEL GMM and �-GEL GMM-KBB estimators of the unidenti-

�ed parameter �0 under the maintained moment constraint E[g(zt; �0] (2.1); to avoid this di¢ culty,

we set �̂�T = ~��T and �̂
��
mT

= ~���mT
. Note that �q��mT

(�) = (00; (ĥ��mT
(�) � (���mT

)hg(�
��
mT
)�1ĝ��mT

(�))0)0 and

�q�T (�) = (00; (ĥ�T (�)� (��T )hg(��T )�1ĝ�T (�))0)0. Cf. (2.10).

Theorem 3.4. Under Assumptions 2.1-2.4 and 3.2, if ���mT
��T ! 0, ���mT

p.s.d., 	���mT
�	�T ! 0,

prob-P�!, prob-P, �T ! �, 	�T ! 	�, prob-P,

sup
x2R+

jP�!(T ��mT
� x)� P(TT � x)j ! 0, prob-P;

where T = LR, D, S, LM or GW. Moreover, LR��
mT
, D��mT

, S��mT
, LM��

mT
and GW��

mT
are asymptotically

equivalent.

Remark 3.16. As above, with e¢ cient implied probabilities �tT = ~�tT (3.3) or standard GMM

weights �tT = T�1, (t = 1; :::; T ), the e¢ cient restricted estimator ~�T may substitute for the �-GEL

GMM estimator ~�
�

T . Moreover, with the former weights, the e¢ cient restricted estimator ~�T (~�T )

can replace �̂
�

T (�̂
�

T ) in T ~��
mT
, T = LR and D (GW), see Remark 3.5, and the centring term q̂~�T (

~�
~�

T )

in T ~��
mT
, T = LR, D, S, LM and GW, may also be omitted since, from the �rst order conditions,

(T=ST )
1=2q̂~�T (

~�
~�

T ) ! 0, prob-P, cf. Proof of Theorem 3.2. Similarly, with e¢ cient unrestricted implied

probabilities �tT = �̂tT (3.3) or standard GMM weights �tT = T�1, �̂T may substitute for �̂
�

T and

ĝ�T (�̂
�

T ) omitted in T ~��
mT
, T = LR, D and GW. Additionally, since H��SgP� = 0, with �tT = �̂tT ,

(t = 1; :::; T ), �̂T may replace �̂
�̂

T in GW �̂�
mT
; see Remark 3.5.

Remark 3.17. Hall and Horowitz (1996, p.898), Bravo and Crudu (2011, (8), p.3447) and Allen et al.

(2011, pp.112-114) give t-statistics T 1=2(�̂
��
mT
� �̂T )j=(((G��mT

)0(���mT
)�1(G��mT

))jj)1=2 under their respec-

tive bootstrap designs described in Remark 3.14 for the parametric hypothesis �0j = 0; cf. GW��
mT

(3.13)
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with no additional moment restrictions E[h(zt; �0)] = 0, noting M� = (G
0��1G)�1, J�G = (RM�R

0)�1

and, thus, J��J� = (RM�R
0)�1, cf. Section B.2(d). Uncentred distance, Lagrange multiplier and

Wald statistics for tests of r(�0) = 0 are proposed by Bravo and Crudu (2011, (10), p.3447). Their

distance statistic is a version of D��mT
(3.10) with ĝ~��mT

(~�
~��
mT
) replacing q̂��mT

(~�
��
mT
) with e¢ cient restricted

implied probabilities �tT = ~�tT (3.3), (t = 1; :::; T ), under r(�0) = 0, ���mT
substituting for ���mT

, and

ĝ�̂�mT
(�̂
�̂�
mT
) replacing ĝ��mT

(�̂
��
mT
) with e¢ cient unrestricted implied probabilities �tT = �̂tT (3.3), omit-

ting q̂~�T (~�
~�

T ) and ĝ
�̂
T (�̂

�̂

T ). Their Lagrange multiplier statistic is S��mT
(3.11) with ĝ~��mT

(~�
~��
mT
) replacing

q̂��mT
(~�
��
mT
), Sg = Idg , �

��
mT

substituting for ���mT
and dropping q̂~�T (~�

~�

T ). The Bravo and Crudu (2011,

(10), p.3447) Wald statistic is GW��
mT

(3.13) with e¢ cient unrestricted implied probabilities �tT = �̂tT

(3.3), (t = 1; :::; T ), M� = (G0��1G)�1 and J��J� = (RM�R
0)�1; note (T=ST )1=2�g�̂�mT

(�̂
�̂�
mT
) ! 0,

prob-P�!, prob-P, (T=ST )1=2�g�̂T (�̂
�̂

T ) ! 0, prob-P, replacing (T=ST )1=2�q��mT
(�̂
��
mT
) and (T=ST )1=2�q�T (�̂

�

T )

respectively, from the �rst order conditions. Cf. fn. 5.

We also de�ne alternative �-GEL GMM-KBB likelihood ratio-like and distance statistics which adapt

and generalise the bootstrap statistic proposed in Camponovo (2016) for the dependent data context and

inference setting considered here. Let �T ��! 0, prob-P, �T p.s.d. Rewrite the parametric constraint

in (2.2) as r(�) = r(�; �̂
�

T ). Correspondingly, an alternative restricted �-GEL GMM estimator _�
�

T is

then de�ned by _�
�

T = argmin�2� _r
~Q�T (�), where � _r = f� 2 � : r(�) = r(�; �̂

�

T )g, with associated �-GEL

GMM Lagrangean _L�T (�) = ~Q�T (�)=ST � 2�0(r(�)� r(�; �̂
�

T ))=k, Lagrange multiplier estimator _�
�
T , and

�-GEL GMM criterion ~Q�T (�) = q̂�T (�)
0(�T )

�1q̂�T (�), cf. Remark 2.4. De�ne ��
�

T = ( _��0T ; �̂
�0
T )

0. Also

let ���mT
� �T ! 0, prob-P�!, prob-P, ���mT

p.s.d. Then, cf. Camponovo (2016, (3.6), p. 37), with

parametric constraint now r(�) = r(��
�

T ), the corresponding restricted �-GEL GMM-KBB estimator

��
��
mT

= argmin�2��r
~Q��mT

(�), where ��r = f� 2 � : r(�) = r(��
�

T )g, with �-GEL GMM-KBB Lagrangean
~L��mT

(�) = ~Q��mT
(�)=ST �2�0(r(�)�r(��

�

T )=k, Lagrange multiplier estimator��
��
mT
, and �-GEL GMM-KBB

criterion ~Q��mT
(�) = q̂��mT

(�)0(���qmT
)�1q̂��mT

(�). Thus, cf. Proof of Proposition 3.2, T 1=2(��
�

T � ��
�

T )=k +

H�(T=ST )
1=2q̂�T (

��
�

T ) ! 0, prob-P. The requisite �-GEL GMM-KBB likelihood ratio-like and distance

statistics are respectively

LR��
mT
(��
��
mT
; ��
�

T )=k = (T=ST )((q̂
��
mT
(��
��
mT
)� ���mT

P���mT
q̂�T (
��
�

T ))� ���mT
Sg(�

��
mT
)�1(ĝ��mT

(�̂
��
mT
)� ĝ�T (�̂

�

T )))
0

�(���mT
)�1((q̂��mT

(��
��
mT
)� ���mT

P���mT
q̂�T (
��
�

T ))� ���mT
Sg(�

��
mT
)�1(ĝ��mT

(�̂
��
mT
)� ĝ�T (�̂

�

T ));

(3.14)

and

D��mT
(��
��
mT
; ��
�

T )=k = (T=ST )(q̂
��
mT
(��
��
mT
)� ���mT

P���mT
q̂�T (
��
�

T ))
0(���mT

))�1(q̂��mT
(��
��
mT
)� ���mT

P���mT
q̂�T (
��
�

T ))

�(T=ST )(ĝ��mT
(�̂
��
mT
)� ĝ�T (�̂

�

T ))
0(���mT

)�1(ĝ��mT
(�̂
��
mT
)� ĝ�T (�̂

�

T )): (3.15)
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Theorem 3.5. Under Assumptions 2.1-2.4 and 3.2, if ���mT
��T ! 0, ���mT

p.s.d., P���mT
�P�T ! 0,

prob-P�!, prob-P, �T ! �, P�T � P� ! 0, prob-P,

sup
x2R+

jP�!(T
��
mT
(��
��
mT
; ��
�

T ) � x)� P(TT � x)j ! 0, prob-P;

where T = LR or D. Moreover, T ��mT
(��
��
mT
; ��
�

T ) and T ��mT
of Theorem 3.4 are asymptotically equivalent.

Remark 3.18. The complexity of the �-GEL GMM-KBB likelihood ratio-like and distance statistics,

LR��
mT
(��
��
mT
; ��
�

T ) and D
��
mT
(��
��
mT
; ��
�

T ), is reduced if only the parametric restrictions r(�0) = 0 are subject

to test and the additional moment constraints E[h(zt; �0)] = 0 are maintained, cf. (2.2). In this case the

parametric constraint becomes r(�) = r(�̂
�

T ) as now ��
�

T = �̂
�

T , where �̂
�

T denotes the e¢ cient unrestricted

�-GEL GMM estimator of �0 with moment condition E[q(zt; �0)] = 0. It may be straightforwardly

demonstrated that (T=ST )1=2q̂�T (�̂
�

T )��P�(T=ST )1=2q̂�T (�̂
�

T )! 0, prob-P, since H�(T=ST )1=2q̂�T (�̂
�

T )!

0, prob-P, noting M� = (Q
0��1Q)�1, H� =M�Q

0��1 and H�(T=ST )1=2q̂�T (�̂
�

T )! 0, prob-P, enabling

the deletion of the matrix ���mT
P���mT

in both statistics.

Computationally less burdensome �-GEL GMM-KBB statistics may be de�ned in terms of the �-GEL

GMM estimators ~�
�

T or �̂
�

T . Cf. Corollaries 3.2 and 3.4. Namely,

LR��
mT
(~�
�

T ; �̂
�

T )=k = (T=ST )((q̂
��
mT
(~�
�

T )� q̂�T (~�
�

T ))� ���mT
Sg(�

��
mT
)�1(ĝ��mT

(�̂
�

T )� ĝ�T (�̂
�

T )))
0

�P���mT
((q̂��mT

(~�
�

T )� q̂�T (~�
�

T ))� ���mT
SgP

��
�mT

(ĝ��mT
(�̂
�

T )� ĝ�T (�̂
�

T ));

D��mT
(~�
�

T ; �̂
�

T )=k = (T=ST )(q̂
��
mT
(~�
�

T )� q̂�T (~�
�

T ))
0(���mT

))�1(q̂��mT
(~�
�

T )� q̂�T (~�
�

T ))

�(T=ST )(ĝ��mT
(�̂
�

T )� ĝ�T (�̂
�

T ))
0(���mT

)�1(ĝ��mT
(�̂
�

T )� ĝ�T (�̂
�

T ));

S��mT
(~�
�

T )=k = (T=ST )(q̂
��
mT
(~�
�

T )� q̂�T (~�
�

T ))
0(P���mT

� SgP���mT
S0g)(q̂

��
mT
(~�
�

T )� q̂�T (~�
�

T );

LM��
mT
(~�
�

T ; ~�
�
T )=k = T

 
(���mT

)�1(q̂��mT
(~�
�

T )� ~q�T (~�
�

T ))=S
1=2
T

J���mT
q̂��mT

(~�
�

T )=S
1=2
T � ~��T =k1=2

!0
Sh;�(S

0
h;�	

��
mT
Sh;�)

�1S0h;�

�
 
(���mT

)�1(q̂��mT
(~�
�

T )� q̂�T (~�
�

T ))=S
1=2
T

J���mT
q̂��mT

(~�
�

T )=S
1=2
T � ~��T =k1=2

!
;

GW��
mT
(�̂
�

T )=k = T

 
(�q��mT

(�̂
�

T )� �q�T (�̂
�

T ))=S
1=2
T

(r(�̂
�

T )� r(�̂
�

T ))=k
1=2

!0
	��mT

 
(�q��mT

(�̂
�

T )� �q�T (�̂
�

T ))=S
1=2
T

(r(�̂
�

T )� r(�̂
�

T ))=k
1=2

!
;

cf. (3.9), (3.10), (3.11), (3.12) and (3.13).

Corollary 3.5. Under the Assumptions of Theorem 3.4, if P���mT
� P�T ! 0, P���T � P�T ! 0,

prob-P�!, prob-P, and P�T � P� ! 0, P�T � P� ! 0, prob-P,

sup
x2R+

jP�!(T ��mT
(�) � x)� P(TT � x)j ! 0, prob-P;
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where T = LR, D, S, LM or GW. Moreover, LR��
mT
(~�
�

T ; �̂
�

T ), D��mT
(~�
�

T ; �̂
�

T ), S��mT
(~�
�

T ), LM��
mT
(~�
�

T ; ~�
�
T )

and GW��
mT
(�̂
�

T ) are asymptotically equivalent.

Remark 3.14. Further computational simpli�cations may be made similar to those in Remark 3.11.

4 Simulation Evidence

This section compares the performance of inference methods based on �rst order asymptotic theory,

cf. Section 2.2, with those that rely on bootstrap methods, in particular, the �-GEL GMM-KBB

statistics of Section 3.4. We consider over-identifying moments J -statistics, see Sections 2.2.1 and 3.4.1,

and test statistics for parametric restrictions only, see Sections 2.2.2 and 3.4.2. Empirical rejection rates

for the various statistics are presented and are compared with their corresponding nominal sizes. Where

required, we employ a prewhitened version of the Newey and West (1987) HAC estimator of the long

run variance of the moment indicator throughout which, in our simulation design, behaved better than

the standard Newey-West (1987) HAC estimator; cf. Andrews and Monahan (1992).9 We consider the

standard moving blocks bootstrap (MBB) alongside KBB methods based on di¤erent kernel-weighted

moment indicators together with implied probability versions of MBB and KBB. All experiments are

based on a simulation design similar to that of Inoue and Shintani (2006).

4.1 Design

We examine an instrumental variable model with intercept and regressor xt, viz.

yt = �1 + �2xt + ut; (t = �49; :::; T );

with instrument vector zt = (1; xt; xt�1; xt�2)
0. We set �1 = 0 and �2 = 0 and consider two distinct

data generating processes for xt and ut.

Model 1 Homoskedasticity. This model corresponds to the design considered in the simulation

study in Inoue and Shintani (2006), the regressor xt and regression error ut are each generated by

independent AR(1) processes with common autoregressive parameter �, i.e.,

ut = �ut�1 + "1t; u�49 = "1;�49
�
1� �2

��1=2
and

xt = �xt�1 + "2t; x�49 = "2;�49
�
1� �2

��1=2
;

9Empirical rejection rates of the various tests using an estimator of the moment indicator long-run variance based on
the quadratic spectral kernel were also computed; cf. fn.4. Results from these experiments are available from the authors
upon request.
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where "t = ("1t; "2t)
0 � N (0; I2), (t = �49; :::; T ).

Model 2 Heteroskedasticity. Here ut is now generated by an AR(1)-GARCH(1,1) process,

while, as in Model 1, xt is generated by an AR(1) process independent of ut, i.e.,

ut = �ut�1 + �t"1t; u�49 = "1;�49
��
1� �2

���1=2
;

where

�2t = 0:1 + 0:3"
2
1t�1�

2
t�1 + 0:6�

2
t�1; �

2
�49 = 1;

and

xt = �xt�1 + "2t; x�49 = "2;�49
�
1� �2

��1=2
:

Again "t = ("1t; "2t)
0 � N (0; I2), (t = �49; :::; T ).

Remark 4.1. The Model 2 design choice is suggested by that in Allen et al. (2011, Section

5.1.2, p.115). Those authors consider a GARCH(1,1) speci�cation for the error term ut but with-

out dependence. Dependence here in the conditional heteroskedasticity speci�cation for �2t arises from

the introduction of the additional AR(1) component to give an AR(1)-GARCH(1,1) speci�cation for ut.

Both models employ a sample f(yt; x0t)
0gTt=1 with autocorrelation parameter values � 2 f0:5; 0:9g and

sample sizes T 2 f64; 128g. Note that, given our choice of instrument vector zt, two data points are lost.

Each experiment employs 499 bootstrap replications with 5000 random samples.

4.2 Bootstrap Methods

As in Section 3 above mT = [T=ST ] denotes the integer part of T=ST . Here the indices t�s and the

consequent bootstrap sample g�t�sT (�), (s = 1; :::;mT ), denote mT independent draws with replacement

from the index set TT = f1; :::; Tg and the bootstrap sample space fgtT (�)gTt=1 with implied probability

bootstrap sampling probabilities �tT , (t = 1; :::; T ), i.e., P�!(g�t�sT (�) = gtT (�)) = �tT , (t = 1; :::; T ),

where the transformed kernel-weighted moment indicator gtT (�) =
Pt�1

s=t�T k(
s
ST
)gt(�)=(k2ST )

1=2,

(t = 1; :::; T ). We consider implied probability bootstrap sampling schemes with the standard GMM

empirical measure, i.e., �tT = T�1, and unrestricted and restricted ET implied probabilities, i.e.,

�̂tT = exp(�̂
0
gT gtT (�̂T ))=

PT
s=1 exp(�̂

0
gT gsT (�̂T )) and ~�tT = exp(~�

0
gT gtT (

~�T ))=
PT

s=1 exp(
~�
0
gT gsT (

~�T ))

respectively, (t = 1; :::; T ), where �̂T and ~�T denote the e¢ cient unrestricted and restricted GMM esti-

mators of �0; cf. Remarks 2.4 and 2.6. The ET implied probability bootstrap is adopted to avoid the

well-known convex-hull problem associated with EL estimation.10

10Tables 7 and 8 provide an indication of the likely empirical failure of the convex hull condition necessary for the
application of ET empirical probabilities. The convex hull condition is considered to hold if k

PT
t=1 �̂tT gtT (�̂T )k < 10�6.

Overall, these tables indicate that it is a relatively rare occurrence across all KBB and MBB methods for both values of �
and both sample sizes.
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4.3 Test Statistics

Recall the GEL sample average ĝT (�) =
PT

t=1 gtT (�)=T , the �-weighted sample average ĝ
�
T (�) =PT

t=1 �tT gtT (�) and the �-GEL GMM-KBB sample average ĝ
��
mT
(�) =

PmT

s=1 g
�
t�sT
(�)=mT . De�ne the

centred long-run variance estimator ���mT
=
PmT

s=1(g
�
t�sT
(��
��
mT
)� ĝ�T (�̂

�

T ))(g
�
t�sT
(��
��
mT
)� ĝ�T (�̂

�

T ))
0=mT , cf.

Remark 3.7, where the �rst step standard GMM-KBB estimator ��
��
mT

= argmin�2B ĝ
��
mT
(�)0ĝ��mT

(�),

setting �tT = T�1 The e¢ cient centred standard GMM-KBB estimator �̂
�
mT

is then given by

�̂
��
mT

= argmin
�2B

ĝ��mT
(�)0(���mT

)�1ĝ��mT
(�);

cf. (3.7).

4.3.1 Overidenti�cation Tests

Recall the �-GEL GMM-KBB over-identifying moments test statistic (3.8)

J ��
mT

= (T=ST )(ĝ
��
mT
(�̂
��
mT
)� ĝ�T (�̂

�

T ))
0(���mT

)�1(ĝ��mT
(�̂
��
mT
)� ĝ�T (�̂

�

T ))

where �̂
�

T and �̂
��
mT

are the e¢ cient unrestricted �-GEL GMM and �-GEL GMM-KBB estimators re-

spectively.

With both standard GMM empirical measure, i.e., �tT = T�1, and e¢ cient unrestricted ET implied

probability, i.e., �̂tT = exp(�̂
0
gT gtT (�̂T ))=

PT
s=1 exp(�̂

0
gT gsT (�̂T )), cf. (3.3), (t = 1; :::; T ), bootstrap

sampling schemes, the e¢ cient unrestricted GMM estimator �̂T is substituted for the �-GEL GMM

estimator �̂
�

T ; cf. Inoue and Shintani (2006). Moreover, with the e¢ cient unrestricted ET implied

probabilities, ĝ�T (�̂
�

T ) is omitted. See Remark 3.14.

4.3.2 Speci�cation Tests

The parametric restriction �2 = 0 is of interest here. We examine forms of �-GEL GMM-KBB

distance, generalised Wald and Camponovo-like (2016) distance statistics adapted for parametric re-

strictions r(�0) = 0, cf. (3.10), (3.13) and (3.15), in the absence of � and additional moment constraints

E[h(zt; �0)] = 0, cf. (2.2). Namely

D��mT
=k = (T=ST )(ĝ

��
mT
(~�
��
mT
)� ĝ�T (~�

�

T ))
0(���mT

)�1(ĝ��mT
(~�
��
mT
)� ĝ�T (~�

�

T ))

�(T=ST )(ĝ��mT
(�̂
��
mT
)� ĝ�T (�̂

�

T ))
0(���mT

)�1(ĝ��mT
(�̂
��
mT
)� ĝ�T (�̂

�

T ));

GW��
mT

= T (r(�̂
��
mT
)� r(�̂

�

T ))
0(R��mT

(G��0mT
(���mT

)�1G��mT
)�1R��0mT

)�1(r(�̂
��
mT
)� r(�̂

�

T ))

or, equivalently, to test �2 = 0, the t-statistic T
1=2(�̂

��
mT

� �̂
�

T )2=(G
��0
mT
(���mT

)�1G��mT
)22)1=2, see Remark

3.16;

LR��
mT
( _�
��
mT
; �̂

�

T )=k = (T=ST )(ĝ
��
mT
( _�
��
mT
)� ĝ�T (�̂

�

T ))
0(���mT

)�1(ĝ��mT
( _�
��
mT
)� ĝ�T (�̂

�

T ))

�(T=ST )(ĝ��mT
(�̂
��
mT
)� ĝ�T (�̂

�

T ))
0(���mT

)�1(ĝ��mT
(�̂
��
mT
)� ĝ�T (�̂

�

T ));
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Here ~�
�

T and ~�
��
mT

are the e¢ cient restricted �-GEL GMM and �-GEL GMM-KBB estimators re-

spectively. Likewise �̂
�

T and �̂
��
mT

are the e¢ cient unrestricted �-GEL GMM and �-GEL GMM-KBB

estimators respectively and _�
��
mT

the restricted �-GEL GMM-KBB estimator subject to the constraint

r(�) = r(�̂
�

T ), see Remark 3.17.

With the standard GMM empirical measures, �tT = T�1, (t = 1; :::; T ), the e¢ cient unrestricted

GMM estimator �̂T is substituted for the �-GEL GMM estimators �̂
�

T ; see Remark 3.5 and Proposition

3.2 cf. Remark 2.5. With e¢ cient unrestricted ET implied probabilities, �̂tT = exp(�̂
0
gT gtT (�̂T ))=

PT
s=1 exp(�̂

0
gT gsT (�̂T )),

(t = 1; :::; T ), ĝ�T (�̂
�

T ) is omitted. Similarly, with e¢ cient restricted ET implied probabilities ~�tT =

exp(~�
0
gT gtT (

~�T ))=
PT

s=1 exp(
~�
0
gT gsT (

~�T )), (t = 1; :::; T ), ĝ
�
T (
~�
�

T ), see Remark 3.15, is omitted. The ef-

�cient restricted GMM estimator ~�T is substituted for the �-GEL GMM estimator ~�
�

T in all bootstrap

sampling schemes; cf. Remark 2.4.

4.4 Computational Issues

The choice of the bandwidth/block size ST is important. Gonçalves and White (2004) notes the

equivalence between the MBB variance estimator of the mean and the HAC variance matrix estimator

using the Bartlett kernel. Consequently, Gonçalves and White (2004) bases the choice of MBB block size

on the optimal automatic bandwidth for the latter estimator; see Andrews (1991, Section 5, p.830-832).

Although this equivalence result is only valid for the mean, Gonçalves and White (2004) also adopts this

choice for the quasi-maximum likelihood estimator. We also follow this approach.11

Here, in contradistinction to Parente and Smith (2021), we use a prewhitened version of the Newey

and West (1987) HAC estimator of � to obtain e¢ cient unrestricted and restricted GMM estimators �̂T

and ~�T ; see Andrews and Monahan (1992). Cf. Remarks 2.4 and 2.6. A vector (V) AR(1) speci�cation

is applied to the elements zt�ut where �ut, (t = 1; :::; T ), are the VAR(1) residuals obtained from �rst

step GMM estimation. We then use a version of the automatic bandwidths described in Andrews

(1991, Section 6, pp.832-837) but we employ the non-parametric estimation approach due to Politis and

Romano (1995) applied to the elements of the VAR(1) residuals avoiding speci�cation and estimation of

parametric univariate ARMA models as in Andrews (1991); cf. Parente and Smith (2021, Section 4.3,

pp. 387-388). Given the bandwidth/block size estimator ŜT the prewhitened Newey and West (1987)

HAC estimator of � is the recoloured Newey and West (1987) HAC estimator based on the VAR(1)

residuals; see Andrews and Monahan (1992, (2.4), p.995).

Additionally, since the computed automatic bandwidth ŜT might induce values of bootstrap sample

sizemT = [T=ST ] greater than T or equal to 1, we substituted the censored versionmin
n
max

n
ŜT ; 1

o
; T=10

o
.

An additional advantage of using the censored bandwidth estimator is an apparent improvement in the

convergence properties of the ET estimation algorithm.

11Smith (2011, Lemma A.3, p.1219) describes an equivalence between the KBB variance estimator and the corresponding
HAC estimator based on the induced kernel function k�(�). Also see Smith (2005, Lemma 2.1, p.164).
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On a few rare occasions �-GEL GMM-KBB � estimates are poorly conditioned. These bootstrap

samples are discarded and replaced by additional samples so that only those with well-conditioned �-GEL

GMM-KBB estimates of � are retained.12

4.5 Notation

The subscripts tr, bt, qs and pp indicate use of, respectively, the truncated kernel, the Bartlett

kernel, the kernel that induces the quadratic-spectral kernel, see Smith (2011, Example 2.3, p.1204), and

the kernel version of the Paparoditis and Politis (2001) optimal taper to de�ne the transformed kernel-

weighted moment indicator, cf. (2.3).13 asymp denotes results for the standard GMM over-identifying

moments test computed using the e¢ cient unrestricted GMM estimator �̂T and the prewhitened Newey

and West (1987) HAC covariance matrix estimator for � described above. Results KBB are obtained

with the KBBmethod. MBB refers to the MBBmethod. Additionally, the superscripts � and �r indicate

results with the ET implied probability bootstrap based on, respectively, unrestricted (E[g(zt; �)] = 0)

and restricted (E[g(zt; �)] = 0; r(�) = 0) ET implied probabilities. Finally, the superscript c denotes

the Camponovo-like �-GEL GMM-KBB distance statistic LR��
mT
( _�
��
mT
; �̂

�

T ).

4.6 Results

Tables 1-6 present percentage empirical rejection rates for Models 1 and 2 for the �-GEL GMM-

KBB over-identifying moments test statistic J ��
mT
, generalised Wald GW��

mT
t-statistic T 1=2(�̂

��
mT

�

�̂
�

T )2=(G
��0
mT
(���mT

)�1G��mT
)22)1=2 and the �-GEL GMM-KBB distance and Camponovo-like (2016) dis-

tance speci�cation test statistics based on nominal and bootstrap critical values computed at the 0:01,

0:05 and 0:10 levels. Results for the best performing tests are indicated by bold face text.

Tables 1 and 2 about here

Examining Tables 1 and 2, the standard over-identifying moments test asymp using critical values

based on asymptotic theory performs quite well even if � = 0:9. Similar results were also noted in the

simulation studies undertaken in Hall and Horowitz (1996) and Inoue and Shintani (2006). All KBB and

MBB over-identifying moment tests under-reject in Models 1 and 2 for both sample sizes T = 64 and

T = 128. As expected, the performance of all tests improves with increased sample size T = 128. The

�-GEL GMM-KBB tests employing the standard empirical GMM measures perform somewhat better

than the corresponding MBB test for both models when � = 0:5 if T = 64, but only marginally so if

12 Ill-conditioned ��mt
estimates tend to occur when the ET implied probabilities take large values for a few bootstrap

sample observations and appear to be problematic only for those estimates using restricted ET implied probabilities for
the smaller sample size T = 64 and for the larger value � = 0:9; see Tables 9 and 10. Correspondingly, Tables 11 and 12
indicate that considerably more bootstrap replications are required in these cases.
13The Paparoditis and Politis (2001) taper kernel is de�ned as k (x) = I (�0:5 � x < �0:07) (x+ 0:5) =0:43 +

I (�0:07 � x � 0:07) + I (0:07 < x � 0:5) (0:5� x) =0:43; where I (�) denotes the indicator function.
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T = 128. When � = 0:9, the MBB� test performs better than most �-GEL GMM-KBB tests for both

models and sample sizes. In general, �-GEL GMM-KBB tests computed with ET implied probabilities

achieve rejection rates closer to nominal levels than other methods apart from asymp, in particular, for

sample size T = 128 and � = 0:5. Overall, KBB�pp achieves the best performance with KBB
�
tr, KBB

�
qs

and MBB� displaying reasonable size properties for both values of � and both sample sizes.

Tables 3 and 4 about here

Tables 3 and 4 show that the speci�cation asymp t-tests based on �rst order asymptotic theory

are severely over-sized for all designs and are outperformed by all �-GEL GMM-KBB t-tests. Of the

�-GEL GMM-KBB t-tests all KBBtr tests display the worst performance across all designs. Indeed,

for either design and for � = 0:9, all �-GEL GMM-KBB and MBB statistics display poor size properties

for T = 64 and only the KBBpp test possesses reasonable size properties for T = 128. For Model 1

and � = 0:5, for the smaller sample size T = 64 KBBpp and MBB� seem satisfactorily sized whereas

for T = 128 KBB�bt, MBB
� and MBB�r tests perform reasonably but KBBpp is now undersized. For

Model 2 and both sample sizes, KBB�bt and all MBB tests, especially theMBB
�r test, seem competitive

for � = 0:5 with KBB�qs satisfactory for the larger sample size T = 128. In general there appears to be

no obvious ranking of �-GEL GMM-KBB and MBB t-tests in terms of their use of the standard GMM

measure, unrestricted or restricted ET implied probabilities. To summarise, for the smaller sample size

T = 64 and � = 0:5 MBB� appears the most satisfactory whereas for T = 128 KBB�bt, KBB
�
qs, MBB

and MBB�r t-tests are competitive. No �-GEL GMM-KBB t-test can be recommended for the higher

value � = 0:9 with sample size T = 64 although the KBBpp test is satisfactory for the larger sample size

T = 128. Overall MBB t-test statistics appear most reliable for both sample sizes and the lower value

� = 0:5.

Tables 5 and 6 about here

Similarly to the t-statistics above the speci�cation asymp distance tests based on �rst order as-

ymptotic theory are severely over-sized for all designs and are outperformed by all �-GEL GMM-KBB

distance tests; see Tables 5 and 6. Overall, none of the �-GEL GMM-KBB distance tests uniformly

dominates the others. For Model 1, all �-GEL GMM-KBB distance tests display poor size properties

for � = 0:9 and both sample sizes with the exception of the (somewhat under-sized) KBBbt and KBB�qs

tests whereas for Model 2 MBB�r;c provides a reasonably sized test. For � = 0:5 and sample size

T = 128 many �-GEL GMM-KBB, e.g., KBBtr, KBB�tr, KBB
�;c
bt , KBB

�r;c
bt , KBB�;cqs and KBB�r;cqs ,

and all Camponovo-like (2016) MBB distance speci�cation tests display reasonable size properties for

both designs. For � = 0:5, both sample sizes and across both designs, the Camponovo-like (2016) dis-

tance test KBB�r;cbt possesses adequate size properties. For T = 64 for Model 1, all MBB tests display
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poor size properties but MBBc, MBB�;c and MBB�r are reasonably sized for � = 0:5 and sample size

T = 128. For Model 2 for both sample sizes, the size properties of MBBc, MBB�;c and MBB�r tests

are adequate for � = 0:5. In summary and overall, KBBbt and KBB�qs tests, albeit under-sized, o¤er

reasonably robust test procedures. For larger sample sizes with moderate dependence, a number of KBB

and MBB speci�cation tests o¤er empirical rejection rates close to the nominal ones. However, for high

values of �, larger sample sizes are required for reliable procedures.

4.7 Summary

Overall, the results from these simulation experiments are rather mixed. The standard over-

identifying moments test asymp using critical values based on asymptotic theory performs quite well. Of

�-GEL GMM-KBB KBB and MBB tests, KBB�pp, and to a lesser degree, KBB
�
tr, KBB

�
qs and MBB

�,

tests display reasonable size properties for both values of � and both sample sizes. In particular, for

moderate dependence and larger sample size, both �-GEL GMM-KBB and MBB statistics with unre-

stricted ET probabilities provide reasonably sized test procedures. The performance of both standard

asymp t- and distance speci�cation tests is unsatisfactory. Generally, all �-GEL GMM-KBB and MBB

speci�cation tests are unsatisfactory for both sample sizes and with strong dependence. For both sam-

ple sizes, moderate dependence and across both designs, MBB speci�cation tests with unrestricted ET

probabilities o¤er reasonable test procedures. With a larger sample and moderate dependence, KBB�bt,

KBB�qs, MBB and MBB�r t-tests and KBBtr, KBB�tr, KBB
�;c
bt , KBB

�r;c
bt , KBB�;cqs and KBB�r;cqs

together with all Camponovo-like (2016) MBB distance speci�cation tests are competitive indicating

that, in some cases, unrestricted and restricted ET probabilities can improve the size characteristics of

speci�cation tests.

5 Conclusion

This article generalizes and extends the kernel block bootstrap (KBB) method introduced in Parente

and Smith (2018, 2021) to time-series models formulated in terms of moment conditions. We provide

a comprehensive treatment of the use of KBB for GMM estimation and inference for this context. The

paper details new KBB estimators and test statistics whose empirical distributions can serve as alterna-

tive approximations to those o¤ered by standard and other bootstrap methods for GMM estimators and

test statistics for overidentifying moment conditions, parametric restrictions in mixed form and addi-

tional moment restrictions. We consider KBB methods that use the standard GMM empirical measure

and unrestricted and restricted GEL implied probabilities. The paper establishes the �rst-order validity

of the various methods generalizing Bravo and Crudu (2011) and (correcting) Allen et al. (2011). A

set of simulation experiments reveals that a number of the proposed tests perform well in practice in

circumstances with moderate dependence and for larger sample sizes.
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Appendix: Proofs

Throughout the Appendix, C and � will denote generic positive constants that may be di¤erent in

di¤erent uses, and C, M, and T the Chebyshev, Markov, and triangle inequalities respectively.

Appendix A: Preliminary GEL-KBB Lemmas

In the following Xt(�) substitutes, where appropriate, for qt(�), (t = 1; 2; :::), in Assumptions 2.1,

2.3 and 2.4.

Let XtT (�) =
Pt�1

s=t�T k(s=ST )Xt(�)=(k2ST )
1=2, (t = 1; :::; T ), �X(�) =

PT
t=1Xt(�)=T and �XT (�) =PT

t=1XtT (�)=T . Also let �X
�
T (�) =

PT
t=1 �tTXtT (�) and �X��

mT
(�) =

PmT

s=1X
�
t�sT
(�)=mT where the indices

t�s and the consequent bootstrap sample X
�
t�sT
(�), (s = 1; :::;mT ), denote mT independent draws with

replacement from the index set TT = f1; :::; Tg and the bootstrap sample space fXtT (�)gTt=1 with sam-

pling probabilities P�!(Xt�sT (�) = XtT (�)) = �tT , (t = 1; :::; T ), with mT = [T=ST ] the integer part of

T=ST .

Lemma A.1. (UWL.) If Xt(�), (t = 1; 2; :::), satis�es Assumptions 2.1, 2.2 and 2.3 (a)(b)(d), then

sup
�2�

k �XT (�)=S1=2T � �X(�)=k1=2k ! 0; prob-P:

Proof. The hypotheses of the UWLs Smith (2011, Lemma A.1, p.1217) and Newey and McFadden

(1994, Lemma 2.4, p.2129) for stationary and mixing (and, thus, ergodic) processes are satis�ed under

Assumptions 2.1, 2.2 and 2.3 (a)(b)(d). Hence, noting sup�2� k �X(�)� E[Xt(�)]k ! 0, prob-P, sup�2�
k �XT (�)=S1=2T � k1=2E[Xt(�)]k ! 0, prob-P. Thus, the result follows by T and k = O(1).�

Lemma A.2. (GEL-KBB Pointwise WLLN.) Suppose Assumptions 2.1, 2.2 and 2.3(a) are satis�ed

by Xt(�), (t = 1; 2; :::), and �tT , (t = 1; :::; T ), satisfy Assumption 3.2. Then, if T 1=�=mT ! 0 and

E[sup�2� kXt(�)k�] <1 for some � > v, for each � 2 �,

(a) k �X��
mT
(�)� �XT (�)k=S1=2T ! 0, (b) k �X��

mT
(�)� �X�

T (�)k=S
1=2
T ! 0, prob-P�!, prob-P:

Proof. It is only necessary to prove (b) since

sup
�2�

k �XT (�)� �X�
T (�)k=S

1=2
T = sup

�2�
k
XT

t=1
(1� T�tT )(XtT (�)=S1=2T )=Tk

� max
1�t�T

j1� T�tT j
XT

t=1
sup
�2�

kXtT (�)=S1=2T k=T

= op(1)Op(1) = op(1)

asmax1�t�T jT�tT�1j = op(1) by Assumption 3.2(b),
PT

t=1 sup�2� kXtT (�)=S
1=2
T k=T � O(1)

PT
t=1 sup�2� kXt(�)k=T =

Op(1), Smith (2011, eq. (A.5), p.1218) and E[sup�2� kXt(�)k] <1 by hypothesis.
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The argument � is now suppressed for brevity throughout the remainder of the proof. First, cf.

Gonçalves and White (2004, Proof of Lemma A.5, p.215),

�X��
mT

� �X�
T = ( �X

��
mT

� E�[ �X��
mT
])� ( �X�

T � E�[ �X��
mT
]):

Since E�[ �X��
mT
] = �X�

T , the second term �X�
T �E�[ �X��

mT
] is zero. Hence, the result follows if, for any � > 0

and � > 0 and large enough T , P(P�!((k2=ST )1=2k �X��
mT

� E�[ �X��
mT
]k > �) > �) < �.

Write KtT = XtT =S
1=2
T , (t = 1; :::; T ), K�t�sT = X�

t�sT
=S

1=2
T , (s = 1; :::;mT ), and �KT =

PT
t=1KtT =T ,

�K�T =
PT

t=1 �tTKtT . Without loss of generality, set E�[ �X��
mT
] = 0. Hence, �K�T = 0 and �KT = 0 since

�K�T =
PT

t=1 �tTKtT = (1 + op(1)) �KT by Assumption 3.2(b). First, note that

E�[kK�t�sT k] =
XT

t=1
�tT kKtT k = (1 + op(1))

1

T

XT

t=1
k 1
ST

Xt�1

s=t�T
k(
s

ST
)Xt�sk=(k2)1=2

� Op(1)
1

T

XT

t=1
kXtk = Op(1);

uniformly, (s = 1; :::;mT ), by WLLN, by max1�t�T jT�tT � 1j = op(1) of Assumption 3.2(b) and

E[sup�2� kXt(�)k�] <1, � > v from Assumption 2.3(d). Also, for any � > 0,

1

T

XT

t=1
kKtT k �

1

T

XT

t=1
kKtT kI(kKtT k < mT �) =

1

T

XT

t=1
kKtT kI(kKtT k � mT �)

� 1

T

XT

t=1
kKtT kmax

t
I(kKtT k � mT �):

Now, by M,

max
t
kKtT k = O(1)max

t
kXtk = Op(T 1=�);

cf. Newey and Smith (2004, Proof of Lemma A1, p.239). Hence, since, by hypothesis, T 1=�=mT = o(1),

maxt I(kKtT k � mT �) = op(1) and
PT

t=1 kKtT k=T = Op(1),

E�[kK�t�sT kI(kK
�
t�sT
k � mT �)] = (1 + op(1))

1

T

XT

t=1
kKtT kI(kKtT k � mT �) = op(1): (A.1)

The remaining part of the proof is similar to that for Khinchine�s WLLN given in Rao (1973, pp.112-

114). For each s de�ne the pair of random variables

V �t�sT = K
�
t�sT
I(kK�t�sT k < mT �);W

�
t�sT

= K�t�sT I(kK
�
t�sT
k � mT �);

so that K�t�sT = V
�
t�sT

+W�
t�sT
, (s = 1; :::;mT ). Write �V ��mT

=
XmT

s=1
V �t�sT =mT , �W��

mT
=
XmT

s=1
W�
t�sT
=mT

and �K��mT
=
XmT

s=1
K�t�sT =mT . Now

var�[k �V ��mT
k] � E�[kV �t�sT k

2]=mT � �E�[kV �t�sT k]: (A.2)

Thus, from eq. (A.2), using C,

P�!(k �V ��mT
� E�[V �t�sT ]k � ") �

var�[k �V ��mT
k]

"2

�
�E�[kV �t�sT k]

"2
:
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Also, k �KT � E�[V �t�sT ]k = op(1), i.e., for any " > 0, T large enough, k �KT � E�[V �t�sT ]k � ", since by T,

noting E�[V �t�sT ] =
XT

t=1
�tTKtT I( jKtT j < mT �)=T ,

k �KT � E�[V �t�sT ]k = k 1
T

XT

t=1
KtT � (1 + op(1))

1

T

XT

t=1
KtT I(jKtT j < mT �)k

� 1

T

XT

t=1
kKtT kI(kKtT k � mT �) + op(1) = op(1)

from eq. (A.1). Hence, for T large enough,

P�!(k �V ��mT
� �KT k � 2") �

�E�[kV �t�sT k]
"2

: (A.3)

By M,

P�!(W�
t�sT

6= 0) = P�!(kK�t�sT k � mT �)

� 1

mT �
E�[kK�t�sT kI(kK

�
t�sT
k � mT �)] �

�

mT
:

To see this, E�[kK�t�sT kI(kK
�
t�sT
k � mT �)] = op(1) from eq. (A.1). Thus, for T large enough, E�[kK�t�sT kI(kK

�
t�sT
k �

mT �)] � �2 w.p.a.1. Write �W��
mT

=
XmT

s=1
W�
t�sT
=mT . Thus, from eq. (A.3),

P�!( �W��
mT

6= 0) �
XmT

s=1
P�!(W�

t�sT
6= 0) � �: (A.4)

Therefore,

P�!(k �K��mT
� �KT k � 4") � P�!(k �V ��mT

� �KT k+ k �W��
mT
k � 4")

� P�!(k �V ��mT
� �KT k � 2") + P�!(k �W��

mT
k � 2")

�
�E�[k �V �t�sT k]

"2
+ P�!(k �W �

mT
k 6= 0) �

�E�[kV �t�sT k]
"2

+ �:

where the �rst inequality follows from T, the third from eq. (A.3) and the �nal inequality from eq.

(A.4). Since � may be chosen arbitrarily small enough and E�[kV �t�sT k] � E
�[kK�t�sT k] = Op(1), the result

follows by M noting �KT = 0 by hypothesis.�

Lemma A.3. (GEL-KBB Global UWL.) Suppose Assumptions 2.1, 2.2 and 2.3(a)(b)(e) and 3.2

are satis�ed. Then, if T 1=�=mT ! 0 and E[sup�2� kXt(�)k�] < 1 for some � > v, for ST ! 1 and

ST = o(T
1=2),

(a) sup
�2�

k �X��
mT
(�)=S

1=2
T � �X(�)=k1=2k ! 0, prob-P�!, prob-P;

(b) sup
�2�

k �X��
mT
(�)� �X�

T (�)k=S
1=2
T ! 0, prob-P�!, prob-P:

Proof. Similarly to Proof of Lemma A.2, from Lemma A.1, the �rst result (a) follows from (b)

since sup�2� k �XT (�)� �X�
T (�)k=S

1=2
T = op(1). Result (b) is proven if

sup
�2�

k �X��
mT
(�)� �XT (�)k=S1=2T ! 0, prob-P�!, prob-P:
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The following preliminary results are useful in the later analysis. By global Lipschitz continuity of

Xt(�), Assumption 2.3(e), and by T, for T large enough,

k �XT (�))� �XT (�
0)k=S1=2T � 1

T

XT

t=1

1

ST

Xy�1

s=t=T
jk
�
s

ST

�
jkXt�s(�)�Xt�s(�0)k=(k2)1=2(A.5)

=
1

T

XT

t=1
kXt(�)�Xt(�0)kj

1

ST

XT�t

s=1�t
k

�
s

ST

�
j=(k2)1=2

� Ck� � �0k 1
T

XT

t=1
Lt

since, for some 0 < C < 1, j
PT�t

s=1�t k(s=ST )=ST j � O(1) < C uniformly t for large enough T , see

Smith (2011, eq. (A.5), p.1218). Hence, by M, from Assumption 2.3(e),

P�!(k �X��
mT
(�)� �X��

mT
(�0)k=S1=2T > ") � 1

"
E�[k �X��

mT
(�)� �X��

mT
(�0)k=S1=2T ] (A.6)

=
1

"
k �X�

T (�)� �X�
T (�

0)k=S1=2T

� C

"
(1 + op(1))k� � �0k

1

T

XT

t=1
Lt:

The remaining part of the proof is identical to Gonçalves and White (2000, Proof of Lemma A.2,

pp.30-31) and is given here for completeness; cf. Hall and Horowitz (1996, Proof of Lemma 8, p.913).

Given " > 0, let f�(�i; "); (i = 1; :::; I)g denote a �nite subcover of� where �(�i; ") = f� 2 �: k� � �ik < "g,

(i = 1; :::; I). Now

sup
�2�

k �X��
mT
(�))� �XT (�)k=S1=2T = max

i=1;:::;I
sup

�2�(�i;")
k �X��

mT
(�))� �XT (�)k=S1=2T :

The argument ! 2 
 is omitted for brevity as in Gonçalves and White (2000). It then follows that, for

any � > 0 (and any �xed !),

P�!(sup
�2�

k �X��
mT
(�)� �XT (�)k=S1=2T > �) �

XI

i=1
P�!( sup

�2�(�i;�)
k �X��

mT
(�)� �XT (�)k=S1=2T > �):

For any � 2 �(�i; "), by T,

k �X��
mT
(�)� �XT (�)k=S1=2T � k �X��

mT
(�i)� �XT (�i)k=S1=2T + k �X��

mT
(�)� �X��

mT
(�i)k=S1=2T

+k �XT (�)� �XT (�i)k=S1=2T :

Hence, for any � > 0 and � > 0,

P(P�!( sup
�2�(�i;")

k �X��
mT
(�)� �XT (�)k=S1=2T > �) > �) � P(P�!(k �X��

mT
(�i)� �XT (�i)k=S1=2T >

�

3
) >

�

3
)

+P(P�!( sup
�2�(�i;")

k �X��
mT
(�))� �X��

mT
(�i)k=S1=2T >

�

3
) >

�

3
)

+P( sup
�2�(�i;")

k �XT (�))� �XT (�i)k=S1=2T >
�

3
): (A.7)
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By Lemma A.2

P(P�!(k �X��
mT
(�i)� �XT (�i)k=S1=2T >

�

3
) >

�

3
) <

�

3

for large enough T . Also, by M (for �xed !) and Assumption 2.3(e), noting Lt � 0, (t = 1; :::; T ), from

eq. (A.6),

P�!( sup
�2�(�i;")

k �X��
mT
(�)� �X��

mT
(�i)k=S1=2T >

�

3
) � 3C�"

�
(1 + op(1))

1

T

XT

t=1
LtT

� 3C�"

�
(1 + op(1))

1

T

XT

t=1
Lt

1

ST

Xt�1

s=t=T
jk
�
s

ST

�
j=(k2)1=2

� 3C�"

�
(1 + op(1))O(1)

1

T

XT

t=1
Lt:

As a consequence, for any � > 0 and � > 0, for T su¢ ciently large,

P(P�!( sup
�2�(�i;")

k �X��
mT
(�))� �X��

mT
(�i)k=S1=2T >

�

3
) >

�

3
) � P(3C

�"

�

1

T

XT

t=1
Lt >

�

3
)

= P( 1
T

XT

t=1
Lt >

��

9C�"
)

� 9C�"

��
E[
1

T

XT

t=1
Lt]

� 9C�"�

��
<
�

3

for the choice " < �2�=27C��, where, since, by hypothesis E[
PT

t=1 Lt=T ] = O(1), the second and

third inequalities follow respectively from M and � a su¢ ciently large but �nite constant such that

supT E[
PT

t=1 Lt=T ] < �. Similarly, from eq. (A.5), for any � > 0 and � > 0, by Assumption 2.3(e),

P (sup�2�(�i;") k �XT (�) � �XT (�i)k=S1=2T > �=3) � P (C"
PT

t=1 Lt=T > �=3) � 3C"�=� < �=3 for T

su¢ ciently large for the choice " < ��=9C�.

Therefore, from eq. (A.7), the conclusion of the Lemma follows if

" =
��

9�
max

�
1

C
;
�

3C�

�
:�

Let N denote a compact neighbourhood of �0.

Lemma A.4. (GEL-KBB Local UWL.) Suppose Assumptions 2.1, 2.2 and 2.3(a)(b)(e) and 3.2 are

satis�ed. Then, if T 1=�=mT ! 0 and E[sup�2� kXt(�)k�] < 1 for some � > v, for ST ! 1 and

ST = o(T
1=2),

(a) sup
�2N

k �X��
mT
(�)=S

1=2
T � �X(�)=k1=2k ! 0, prob-P�!, prob-P;

(b) sup
�2N

k �X��
mT
(�)� �X�

T (�)k=S
1=2
T ! 0, prob-P�!, prob-P:

Proof. The Proof of Lemma A.3 may be simply adapted by replacing � by N .�
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Without loss of generality, set E[Xt(�0)] = 0.

Lemma A.5. (GEL-KBB CLT.) Let Assumptions 2.1,2.2(b)-(d), 2.3(a)(b)(d)(f) and 3.2 hold. Then,

if ST !1 and ST = O(T
1
2��) with 1

6 < � <
1
2 ,

sup
x2R

jP�!((T=ST )1=2( �X��
mT
(�0)� �X�

T (�0)) � x)� P(T 1=2 �XT (�0) � x)j ! 0; prob-P:

Proof. The result is proven in Steps 1-5 below; cf. Politis and Romano (1992, Proof of Theorem

2, pp. 1994-5). To simplify exposition, let mT = T=ST be integer, dq = 1 and suppress the argument

�0.

Step 1. �XT ! 0, prob-P. Follows by Smith (2011, Lemma A.1, p.1217) and E[Xt] = 0.

Step 2. P(��1=2T 1=2 �XT � x=(k2)
1=2) ! �(x), where �(�) is the standard normal distribution

function. Follows by Smith (2011, Lemma A.2, p.1219).

Step 3. supx jP(��1=2T 1=2 �XT � x=(k2)
1=2) � �(x)j ! 0. Follows by Pólya�s Theorem, Ser�ing

(1980, Theorem 1.5.3, p.18), from Step 2 and the continuity of �(�).

Step 4. var�[m1=2
T

�X��
mT
]! �, prob-P. Note E�[ �X��

mT
] = �X�

T . Thus,

var�[m
1=2
T

�X��
mT
] = var�[X�

t�T ]

=
XT

t=1
�tT (XtT � �X�

T )
2

= (1 + op(1))(
1

T

XT

t=1
(XtT )

2 � ( �XT )2):

The result follows since ( �XT )2 = Op(ST =T ), Smith (2011, Lemma A.2, p.1219), ST = o(T 1=2) by

hypothesis and
PT

t=1(XtT )
2=T ! �, prob-P, Smith (2011, Lemma A.3, p.1219).

Step 5.

lim
T!1

P( sup
x
jP�!(

�X��
mT

� E�[ �X��
mT
]

var�[ �X��
mT
]1=2

� x)� �(x)j � ") = 0:

Applying the Berry-Esséen inequality, Ser�ing (1980, Theorem 1.9.5, p.33), noting the bootstrap sample

observations fX�
t�sT
gmT
s=1 are independently distributed,

sup
x
jP�!(

m
1=2
T ( �X��

mT
� �X�

T )

var�[m
1=2
T

�X��
mT
]1=2

� x)� �(x)j � C

m
1=2
T

XmT

s=1
E�[kX�

t�sT
� �X�

T k3]var�[
XmT

s=1
X�
t�sT
]�3=2:

Now var�[m1=2
T

�X��
mT
]! � > 0, prob-P, from Step 4. Furthermore, E�[kX�

t�sT
� �X�

T k3] =
PT

t=1 �tT kXtT �
�X�
T k3 = (1 + op(1))

PT
t=1 kXtT � �X�

T k3=T and

1

T

XT

t=1
kXtT � �X�

T k3 � max
1�t�T

kXtT � �X�
T k
1

T

XT

t=1
kXtT � �X�

T k2

= Op(S
1=2
T T 1=�):

The equality follows since

max
1�t�T

kXtT � �X�
T k � max

1�t�T
kXtT k+ k �X�

T k

= Op(S
1=2
T T 1=�) +Op((ST =T )

1=2) = Op(S
1=2
T T 1=�)
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by M and Assumption 2.3(d), cf. Newey and Smith (2004, Proof of Lemma A1, p.239), and
PT

t=1 kXtT �
�X�
T k2=T = Op(1), see the Proof of Step 4 above. Therefore

sup
x
jP�!f

(T=ST )
1=2( �X��

mT
� �X�

T )

var�[(T=ST )1=2 �X��
mT
]1=2

� xg � �(x)j � 1

m
1=2
T

Op(1)Op(S
1=2
T T 1=�)

=
S
1=2
T

m
1=2
T

Op(T
1=�) = op(1);

by hypothesis, yielding the required conclusion.�

Appendix B: Proofs for GEL Implied Probability GMM-KBB

The indices t�s and the consequent bootstrap sample q
�
t�sT
(�), (s = 1; :::;mT ), denotemT independent

draws with replacement from the index set TT = f1; :::; Tg and the bootstrap sample space fqtT (�)gTt=1
with sampling probabilities P�!(q�t�sT (�) = qtT (�)) = �tT , (t = 1; :::; T ), with mT = [T=ST ] the integer

part of T=ST .

B.1 Notation

Recall qtT (�) =
Pt�1

s=t�T k(s=ST )qt(�)=(k2ST )
1=2, (t = 1; :::; T ), q̂(�) =

PT
t=1 qt(�)=T and q̂T (�) =PT

t=1 qtT (�)=T . Also recall q̂
�
T (�) =

PT
t=1 �tT qtT (�) and q̂

��
mT
(�) =

PmT

s=1 q
�
t�sT
(�)=mT .

Additionally, recall the restricted �-GEL GMM and �-GEL GMM-KBB Lagrangeans �L�T (�) =
�Q�T (�)=ST � 2�0r(�)=k and �L��mT

(�) = �Q��mT
(�)=ST � 2�0r(�)=k, where �Q�T (�) = q̂�T (�)

0(WqT )
�1q̂�T (�)

and �Q��mT
(�) = q̂��mT

(�)0(W��
qT )

�1q̂��mT
(�), with Lagrange multipliers � associated with the paramet-

ric constraint r(�) = 0. The restricted �-GEL GMM and �-GEL GMM-KBB estimators are ��
�

T =

argmin
�2�r

�Q�T (�) and ��
��
mT

= argmin
�2�r

�Q��mT
(�) with �-GEL GMM and �-GEL GMM-KBB Lagrange multi-

plier estimators ���T and ��
��
mT
. Also recall the GEL criteria corresponding to (2.1) and (2.2) P̂�gT (�; �g) =PT

t=1(�(�
0
ggtT (�)=k

1=2) � �0)=T and P̂�qT (�; �q) =
PT

t=1 �(�
0
qqtT (�)=k

1=2) � �0)=T respectively and

the corresponding GEL estimators of �o, (o = g; q), ��gT = arg sup�g2�gT P̂
�
gT (
��T ; �g) and ��qT =

arg sup�q2�qT P̂
�
qT (
��T ; �q), where the parameter spaces �oT , (o = g; q), are de�ned in Assumption 3.1.

Recall the matrix de�nitions relevant for restricted GMM estimation and inferenceMWq
= (Q0W�1

q Q+

R0R)�1,KWq
=MWq

�MWq
R0(RMWq

R0)�1RMWq
,HWq

= KWq
Q0W�1

q , JWq
= (RMWq

R0)�1RMWq
Q0W�1

q

and PWq =W
�1
q �W�1

q QKWqQ
0W�1

q and those relevant for unrestricted GMM estimation and inference

KWg =MWg = (G
0W�1

g G)�1, HWg = KWgG
0W�1

g , JWg = 0 and PWg =W
�1
g �W�1

g GKWgG
0W�1

g .

Let Q̂�T (�) = @q̂�T (�)=@�
0, Q̂��mT

(�) = @q̂��mT
(�)=@�0 and the (dg; dq) selection matrix Sg = (Idg ; 0)

0,

i.e., S0gqtT = gtT , (t = 1; :::; T ).
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B.2 Useful Algebraic Results

(a) Q0W�1
q Q = (MWq

)�1 �R0R; (b) HWq
Q = KWq

(MWq
)�1;

(c) KWq
R0 = 0, KWq

(MWq
)�1KWq

= KWq
; (d) JWq

Q = ((RMWq
R0)�1 � Idr )R, JWq

WqJ
0
Wq
= (RMWq

R0)�1 � Idr ;

(e) PWqQ = J
0
Wq
R.

and

(a) HWgG = Idg ; (b) PWgG = 0.

Hence,

HWqQK� = K� and HWgGK� = K�:

B.3 GEL Implied Probabilities

Proposition B.1. If Assumptions 2.1, 2.2, 2.3(a)-(d)(f) and 3.1 hold, ��qT ! 0, prob-P, and, if, in

addition, Assumption 2.4 also holds, (T=ST )1=2��qT =k1=2 + ��1WqPWq (T=ST )
1=2q̂T (�0)! 0, prob-P.

Remark B.1. Cf. Smith (2011, Theorem 5.1, p.1210, and eq. (B.16), p.1229) with the GMM estima-

tor ��T substituting for ~�T . Correspondingly, (T=ST )1=2��gT =k1=2 +��1WgPWg
S0g(T=ST )

1=2q̂T (�0)! 0,

prob-P; cf. Smith (2011, Theorems 2.3, p.1201, and eq. (B.2), p.1225).

In this subsection we primarily deal with the restricted implied probabilities �tT = ��tT (3.2), (t =

1; :::; T ). Consequently Assumption 3.2 is automatically satis�ed as elucidated in the next Lemma.

Lemma B.1. If Assumptions 2.1, 2.2, 2.3(a)-(d)(f), 2.4 and 3.1 are satis�ed, then max1�t�T jT ��tT �

1j ! 0, prob-P, and

(T=ST )
1=2(��tT�

1

T
) =

1

T
qtT (��T )

0(T=ST )
1=2��qT (1+op(1))=k

1=2+Op((ST =T
3)1=2); uniformly (t = 1; :::; T ):

(B.1)

Proof. Cf. Smith (2011, eq. (B.4), p.1226).�
Remark B.2. Correspondingly, for unrestricted implied probabilities �tT = ��tT (3.2), (t = 1; :::; T ),

max1�t�T jT ��tT � 1j ! 0, prob-P, and

(T=ST )
1=2(��tT�

1

T
) =

1

T
gtT (��T )

0(T=ST )
1=2��gT (1+op(1))=k

1=2+Op((ST =T
3)1=2); uniformly (t = 1; :::; T ):

(B.2)

Remark B.3. For the e¢ cient restricted and unrestricted e¢ cient implied probabilities, ~�tT and

�̂tT (3.3), (t = 1; :::; T ), max1�t�T jT ~�tT � 1j ! 0, prob-P,

(T=ST )
1=2(~�t�

1

T
) =

1

T
qtT (~�T )

0(T=ST )
1=2~�qT (1+op(1))=k

1=2+Op((ST =T
3)1=2); uniformly (t = 1; :::; T );

(B.3)
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and max1�t�T jT �̂tT � 1j ! 0,

(T=ST )
1=2(�̂tT�

1

T
) =

1

T
gtT (�̂T )

0(T=ST )
1=2�̂gT (1+op(1))=k

1=2+Op((ST =T
3)1=2); uniformly (t = 1; :::; T ):

(B.4)

Let q̂��T (�) =
PT

t=1 ��tT qtT (�).

Corollary B.1. Under Assumptions 2.1, 2.2, 2.3(a)-(d)(f), 2.4 and 3.1, then

(T=ST )
1=2q̂��T (�0) = (T=ST )

1=2q̂T (�0)� �WqPWq
(T=ST )

1=2q̂T (�0) + op(1); � 2 f0; 1g: (B.5)

Proof. Follows directly from Proposition B.1 and Lemma B.1.�
Remark B.4. For unrestricted implied probabilities �tT = ��tT (3.2), (t = 1; :::; T ),

(T=ST )
1=2q̂��T (�0) = (T=ST )

1=2q̂T (�0)� �SgWgPWg
S0g(T=ST )

1=2q̂T (�0) + op(1); � 2 f0; 1g: (B.6)

Remark B.5. Setting � = 0 in eqs. (B.5) and (B.6) gives Corollary B.1 and Remark B.4 for standard

GMM weighting T�1.

Let at(�) = a(zt; �), atT (�) =
Pt�1

s=t�T k(s=ST )at(�)=(k2ST )
1=2, (t = 1; :::; T ), and de�ne â��T (�) =PT

t=1 ��tTatT (�), âT (�) =
PT

t=1 atT (�)=T and â(�) =
PT

t=1 at(�)=T .

Lemma B.2 below mirrors Smith (2011, Theorem 3.1, p.1206).

Lemma B.2. Let T 1=2( _�T � �0) ! 0, prob-P. Let Assumptions 2.1, 2.2, 2.3(a)-(d)(f), 2.4 and 3.1

suitably modi�ed be satis�ed for (at(�)0; qt(�)0)0 jointly. Then, (a) if E[a(zt; �0)] 6= 0,

â��T (
_�T )=S

1=2
T = â( _�T )=k

1=2 � �Baq��1WqPWq
q̂(�0)=k

1=2 + op(1); � 2 f0; 1g; or (B.7)

(b) if E[a(zt; �0)] = 0,

(T=ST )
1=2â��T (

_�T ) = T
1=2â( _�T )=k

1=2 � �Baq��1WqPWq
T 1=2q̂(�0)=k

1=2 + op(1); � 2 f0; 1g; (B.8)

where Baq =
P1

s=�1 E[at(�0)qt�s(�0)
0]. Additionally, if at(�) = qt(�), (t = 1; :::; T ),

(T=ST )
1=2q̂��T (

_�T ) = T
1=2q̂( _�T )=k

1=2 � �WqPWqT
1=2q̂(�0)=k

1=2 + op(1); � 2 f0; 1g: (B.9)

Proof. First, using Lemma B.1,

(T=ST )
1=2â��T (

_�T ) = (T=ST )
1=2âT ( _�T ) + (1 + op(1))�

1

T

XT

t=1
atT ( _�T )qtT (��T )

0(T=ST )
1=2��qT =k

1=2

+Op((ST =T
2))(T=ST )

1=2âT ( _�T ):

Secondly, by Proposition B.1,

(T=ST )
1=2â��T (

_�T ) = (T=ST )
1=2âT ( _�T )

�(1 + op(1))�
1

T

XT

t=1
atT ( _�T )qtT (��T )

0(��1WqPWq
(T=ST )

1=2q̂T (�0) + op(1))

+Op((ST =T
2))(T=ST )

1=2âT ( _�T ):
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By UWL Lemma A.1,
PT

t=1 atT (
_�T )qtT (��T )

0=T ! Baq, prob-P, cf. Smith (2011, Lemma A.7,

p.1223). Now, as (a) âT ( _�T )=S
1=2
T = Op(1) if E[a(zt; �0)] 6= 0, cf. Smith (2011, Lemma A.1, p.1217),

Op(ST =T
1=2))âT ( _�T )=S

1=2
T = Op(ST =T

1=2) = op(1);

or (b) (T=ST )1=2âT ( _�T ) = Op(1) if E[a(zt; �0)] = 0, cf. Smith (2011, Lemma A.2, p.1219),

Op(ST =T )(T=ST )
1=2âT ( _�T ) = Op(ST =T ) = op(1):

Thus, as (a) âT ( _�T )=S
1=2
T = (1 + o(1))â( _�T )=k

1=2 + Op((ST =T )
1=2) or (b) (T=ST )1=2âT ( _�T ) = (1 +

o(1))T 1=2â( _�T )=k
1=2 +Op((ST =T )

1=2), cf. Smith (2011, eq. (A.11), p.1219), either

(a) â��T ( _�T )=S
1=2
T = â( _�T )=k

1=2 � �Baq��1WqPWq q̂(�0)=k
1=2 + op(1) or

(b) (T=ST )1=2â��T ( _�T ) = T
1=2â( _�T )=k

1=2 � �Baq��1WqPWqT
1=2q̂(�0)=k

1=2 + op(1):

Finally, if at(�) = qt(�), (t = 1; :::; T ), then â��T (�) = q̂
��
T (�), â(�) = q̂(�) and Baq = �. Hence, since

(T=ST )
1=2q̂T (�0) = (1 + o(1))T

1=2q̂(�0)=k
1=2 +Op((ST =T )

1=2) from above,

(T=ST )
1=2q̂��T (

_�T ) = T
1=2q̂( _�T )=k

1=2 � �WqPWq
T 1=2q̂(�0)=k

1=2 + op(1):�

Remark B.6. For unrestricted implied probabilities �tT = ��tT (3.2), (t = 1; :::; T ),

(a) if E[a(zt; �0)] 6= 0, â��T ( _�T )=S
1=2
T = â( _�T )=k

1=2 � �BaqSg��1WgPWg
S0gT

1=2q̂(�0)=k
1=2 + op(1) or

(b) if E[a(zt; �0)] = 0, (T=ST )1=2â��T ( _�T ) = T
1=2â( _�T )=k

1=2��BaqSg��1WgPWg
S0gT

1=2q̂(�0)=k
1=2+op(1);

and

(T=ST )
1=2q̂��T (

_�T ) = T
1=2q̂( _�T )=k

1=2 � ��Sg��1WgPWg
S0gT

1=2q̂(�0)=k
1=2 + op(1):

Thus, if T 1=2(��T � �0)! 0, prob-P,

(T=ST )
1=2ĝ��T (

��T ) = T
1=2ĝ(��T )=k

1=2 � �WgPWg
T 1=2ĝ(�0)=k

1=2 + op(1):

Remark B.7. The above results are straightforwardly specialised for e¢ cient unrestricted and

restricted implied probabilities (3.3) by the substitution of P� (�) for ��1WgPWg (Wg) and P� (�) for

��1WqPWq
(Wq) respectively.

B.4 GEL Implied Probability GMM Estimation

Proof of Proposition 3.2. (a) By T and CS, j �Q�T (�)� �QT (�)j � kq̂�T (�)�q̂T (�)k2=ST �kWqT k�1+

2kq̂�T (�) � q̂T (�)k=S
1=2
T � kq̂T (�)k=S1=2T � kWqT k�1. Assumptions 2.3(a)(b) imply the compactness of the

restricted parameter space �r. Now sup�2�r
kq̂�T (�)� q̂T (�)k=S

1=2
T ! 0, prob-P, by Assumption 3.2(b)

and Proof of UWL Lemma A.1. Therefore sup�2�r
j �Q�T (�)� �QT (�)j ! 0, prob-P, as kWqT �Wqk ! 0,

prob-P. The result follows from Proposition 2.1(a).
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(b) From the �rst order conditions, employing UWL Lemma A.1 and GEL-KBB Global UWL

Lemma B.3, Q0W�1
q (T=ST )

1=2q̂�T (
��
�

T ) � R0T 1=2���T =k1=2 ! 0, prob-P. So, pre-multiplying by RMWq
,

JWq
(T=ST )

1=2q̂�T (
��
�

T )�T 1=2���T =k1=2 ! 0 and, thus, HWq
(T=ST )

1=2q̂�T (
��
�

T )! 0, prob-P. After substitut-

ing (T=ST )1=2q̂�T (��
�

T )�(T=ST )1=2q̂�T (�0)�(Q=k1=2)T 1=2(��
�

T��0)! 0 and since JWqQ = ((RMWqR
0)�1�

Idr )R, noting RT
1=2(��

�

T ��0)! 0, prob-P, we conclude T 1=2(��
�

T ��0)=k1=2+ HWq (T=ST )
1=2q̂�T (�0)! 0,

prob-P, cf. Smith (2011, eq. (B.15), p.1229), and T 1=2���T =k1=2 � JWq
(T=ST )

1=2q̂�T (�0)! 0, prob-P, cf.

Smith (2011, eq. (B.17), p.1229).�
Proof of Corollary 3.1. Substituting (T=ST )1=2q̂��T (�0) � QHWq

(T=ST )
1=2q̂T (�0) ! 0, prob-P,

see Lemma B.2(b) with � = 1, and notingHWqQKWq = KWq , T
1=2(��

��

T��0)=k1=2+HWq (T=ST )
1=2q̂T (�0)!

0, prob-P. The second result follows since RHWq
= 0.�

B.5 GEL Implied Probability GMM-KBB Estimation

Proof of Theorem 3.1. The proof veri�es the conditions of Gonçalves and White (2004, Lemma

A.2, p.212). To do so, replace n by T , QT (�; �) by �QT (�) and Q�T (�; !; �) by �Q��mT
(�). Conditions (a1) and

(a2) hold under Assumptions 2.1 and 2.3(a)(b). Condition (a3) sup�2�r
j �QT (�)� �Q0(�)=kj=ST ! 0, prob-

P, where the population GMM criterion �Q0(�) = E[qt(�)]0WqE[qt(�)], follows as in Newey and McFadden

(1994, Proof of Theorem 2.6, p.2132) from the UWL Lemma A.1 sup�2�r
kq̂T (�)=S1=2T � q̂(�)=k1=2k ! 0,

prob-P, E[sup�2�r
kqt(�)k] < 1 from Assumption 2.3(d), kWqT � Wqk ! 0, prob-P, Wq p.d. by

hypothesis and �Q0(�) uniquely minimised at �0 by Assumption 2.3(c). Hence ��T � �0 ! 0, prob-P.

Conditions (b1) and (b2) follow from Assumptions 2.1 and 2.3(a)(b). To prove (b3) sup�2�r
j �Q��mT

(�)�
�QT (�)j=ST ! 0, prob-P�!, prob-P, from T and CS,

j �Q��mT
(�)� �QT (�)j=ST � kq̂��mT

(�)� q̂T (�)k2=ST � kW��
qmT

k�1

+2kq̂T (�)k=S1=2T � kq̂��mT
(�)� q̂T (�)k=S1=2T � kW��

qmT
k�1

+kq̂T (�)k2=ST � kWqT k�1kW��
qmT

�WqT kkW��
qmT

k�1:

Now by GEL-KBB UWL Lemma A.3 sup�2�r
kq̂��mT

(�) � q̂T (�)k=S1=2T ! 0, prob-P�!, prob-P. Also,

sup�2�r
kq̂T (�)k=S1=2T � sup�2�r

kq̂T (�)=S1=2T � E[qt(�)]=k1=2k + sup�2�r
kE[qt(�)]k=k1=2 = Op(1) by

UWL Lemma A.1 and Assumption 2.3(d). The result then follows since kW��
qmT

�WqT k ! 0, prob-P�!,

prob-P, by hypothesis.�
Proof of Theorem 3.2. Extensive use is made of GEL-KBB Local UWL Lemma A.4 and As-

sumption 2.3(b), i.e., Q̂��mT
(��
��
mT
)=S

1=2
T ! Q=k1=2 and R(��

��
mT
)! R, prob-P�!, prob-P, for any ��

��
mT

! �0,

prob-P�!, prob-P.

From Theorem 3.1, by Assumptions 2.3(c) and 2.4(c), ��
��
mT

2 N w.p.a.1, prob-P�!, prob-P. Thus, the

�rst order conditions for ��
��
mT

are satis�ed with equality w.p.a.1, prob-P�!, prob-P, i.e., Q̂��mT
(��
��
mT
)0(W��

qmT
)�1q̂��mT

(��
��
mT
)=ST�

R(��
��
mT
)0����mT

=k = 0. Pre-multiplying byRMWq , RMWq (Q̂
��
mT
(��
��
mT
)=S

1=2
T )0(W��

qmT
)�1(T=ST )

1=2q̂��mT
(��
��
mT
)�
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RMWq
R(��

��
mT
)0T 1=2����mT

=k = 0. Since R(��
��
mT
)�R! 0, RMWq

R(��
��
mT
)0 is p.d. w.p.a.1, prob-P�!, prob-P,

and, thus, prob-P�!, prob-P,

T 1=2����mT
=k � (RMWqR(

��
��
mT
)0)�1RMWq (Q̂

��
mT
(��
��
mT
)=S

1=2
T )0(W��

qmT
)�1(T=ST )

1=2q̂��mT
(��
��
mT
)! 0: (B.10)

Substituting back, (MWq�MWqR(
��
��
mT
)0(RMWqR(

��
��
mT
)0)�1RMWq )(Q̂

�̂�
mT
(��
��
mT
)=S

1=2
T )0(W��

qmT
)�1(T=ST )

1=2q̂��mT
(��
��
mT
) =

0, prob-P�!, prob-P, which, together with the Taylor expansion (T=ST )1=2q̂��mT
(��
��
mT
) = (T=ST )

1=2q̂��mT
(��
�

T )+

(Q̂��mT
(��
��
mT
)=S

1=2
T )T 1=2(��

��
mT

� ��
�

T ), prob-P�!, prob-P, where ��
��
mT

is on the line segment joining ��
��
mT

and

��
�

T , and RMWqQ
0(Wq)

�1Q = (Idr �RMWqR
0)R, yields

KWq (Q̂
��
mT
(��
��
mT
)=S

1=2
T )0(W��

qmT
)�1(T=ST )

1=2q̂��mT
(��
�

T ) + T
1=2(��

��
mT

� ��
�

T )=k ! 0; (B.11)

prob-P�!, prob-P, noting RT 1=2(��
��
mT

� ��
�

T )! 0 from the �rst order conditions, W��
qmT

! Wq, prob-P�!,

prob-P, by hypothesis, and extensive use of GEL-KBB Local UWL Lemma A.4.

Now

(T=ST )
1=2q̂��mT

(��
�

T ) = (T=ST )
1=2(q̂��mT

(�0)� q̂�T (�0)) (B.12)

+(T=ST )
1=2q̂�T (�0) + (T=ST )

1=2(q̂��mT
(��
�

T )� q̂��mT
(�0)):

By another Taylor expansion, of (T=ST )1=2q̂��mT
(��
�

T ) about �0,

(T=ST )
1=2(q̂��mT

(��
�

T )� q̂��mT
(�0)) = (Q̂

��
mT
( _�
�

T )=S
1=2
T )T 1=2(��

�

T � �0); (B.13)

prob-P�!, prob-P, where _�
�

T lies on the line segment joining ��
�

T and �0. Since HWq
(T=ST )

1=2q̂�T (
��
�

T )! 0

and (T=ST )1=2(q̂�T (��
�

T ) � q̂�T (�0)) � QT 1=2(��
�

T � �0)=k1=2 ! 0, prob-P, cf. Proof of Proposition 3.2(b),

back-substitution using GEL-KBB Local UWL Lemma A.4 yields

KWq
(Q̂��mT

(��
��
mT
)=S

1=2
T )0(W��

qmT
)�1((T=ST )

1=2q̂�T (�0) + (Q̂
��
mT
( _�
�

T )=S
1=2
T )T 1=2(��

�

T � �0))! 0; (B.14)

prob-P�!, prob-P. So, substituting eq. (B.13) into eq. (B.12) and thence into eq. (B.11), noting eq.

(B.14),

T 1=2(��
��
mT

� ��
�

T )=k +KWq (Q̂
��
mT
(��
��
mT
)=S

1=2
T )0(W��

qmT
)�1(T=ST )

1=2(q̂��mT
(�0)� q̂�T (�0))! 0; (B.15)

prob-P�!, prob-P. By GEL-KBB CLT Lemma A.5, (T=ST )1=2(q̂��mT
(�0)� q̂�T (�0))� (T=ST )1=2q̂T (�0)!

0, prob-P�!, prob-P. Hence, since Q̂��mT
(��
��
mT
)=S

1=2
T ! Q=k1=2 from GEL-KBB Local UWL Lemma

A.4, W��
qmT

! Wq by hypothesis, prob-P�!, prob-P, and (T=ST )1=2q̂T (�0) !dP N(0;�=k), prob-P,

T 1=2(��
��
mT

� ��
�

T ) converges in distribution to N(0;HWq�H
0
Wq
), prob-P�!, prob-P.

Substitution from the Taylor expansion for (T=ST )1=2q̂��mT
(��
��
mT
) below eq. (B.10) yields T 1=2����mT

=k�

(RMWq
R(��

��
mT
)0)�1RMWq

(Q̂��mT
(��
��
mT
)=S

1=2
T )0(W��

qmT
)�1(T=ST )

1=2q̂��mT
(��
�

T ) ! 0, prob-P�!, prob-P, not-

ing from the �rst order conditions JWq
QT 1=2(��

��
mT
���

�

T )! 0, prob-P�!, prob-P. Similarly, from the Taylor
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expansion eq. (B.13), T 1=2����mT
=k�(RMWq

R(��
��
mT
)0)�1RMWq

(Q̂��mT
(��
��
mT
)=S

1=2
T )0(W��

qmT
)�1(T=ST )

1=2q̂��mT
(�0)!

0 or T 1=2����mT
=k1=2�JWq

(T=ST )
1=2q̂��mT

(�0)! 0, prob-P�!, prob-P. As T 1=2���T =k1=2�JWq
(T=ST )

1=2q̂�T (�0)!

0, prob-P, cf. Proof of Proposition 3.2(b), again recalling GEL-KBB CLT Lemma A.5, T 1=2(����mT
� ���T )

converges in distribution to N(0; JWq�J
0
Wq
), prob-P�!, prob-P.

Theorem 3.2 then follows by Pólya�s Theorem, Ser�ing (1980, Theorem 1.5.3, p.18), and continuity

of the normal distribution c.d.f. �
Proof of Corollary 3.2. Immediate from eq. (B.11) and �rst order conditionHWq (T=ST )

1=2q̂�T (
��
�

T )!

0, prob-P, and T 1=2����mT
=k1=2 � JWq (T=ST )

1=2q̂��mT
(��
�

T ) ! 0, prob-P�!, prob-P, cf. Proof of Theorem

3.2, and �rst order condition T 1=2���T =k
1=2�JWq

(T=ST )
1=2q̂�T (

��
�

T )! 0, prob-P, cf. Proof of Proposition

3.2(b). �.
Proof of Corollary 3.3. From eq. (B.13) and, below, (T=ST )1=2(q̂�T (~�

�

T )� q̂�T (�0))�QT 1=2(~�
�

T �

�0)=k
1=2 ! 0, prob-P,

Q0��1(T=ST )
1=2(q̂��mT

(~�
�

T )� q̂�T (~�
�

T ))�Q0��1(T=ST )1=2(q̂��mT
(�0)� q̂�T (�0))! 0, prob-P�!, prob-P:

Since, from GEL-KBB CLT Lemma A.5, (T=ST )1=2(q̂��mT
(�0) � q̂�T (�0)) � (T=ST )1=2q̂T (�0) ! 0, as Q

f.c.r., (Q0��1Q)�1=2Q0��1(T=ST )1=2(q̂��mT
(�0) � q̂�T (�0)) converges in distribution to N(0; Id�=k), prob-

P�!, prob-P. Therefore,

sup
x2Rd�

jP�!((Q0��1Q)�1=2Q0��1(T=ST )1=2(q̂��mT
(~�
�

T )� q̂�T (~�
�

T )) � x=k1=2)

�P((Q0��1Q)�1=2Q0��1(T=ST )1=2q̂T (�0) � x=k1=2)j ! 0; prob-P;

follows by Pólya�s Theorem, Ser�ing (1980, Theorem 1.5.3, p.18), and the continuity of the normal

c.d.f. �(�) recalling supx
��P(��1=2(T=ST )1=2q̂T (�0) � x=k1=2)� �(x)��! 0 from Step 3 of the Proof of

GEL-KBB CLT Lemma A.5. �

B.6 GEL Implied Probability GMM-KBB Inference

Lemma B.3. Let Assumptions 2.1-2.4 and 3.2 hold. Then, if ���mT
� �T ! 0, prob-P�!, prob-P,

���mT
p.s.d., and �T � �! 0, prob-P, �T p.s.d.,

(T=ST )
1=2(q̂��mT

(~�
��
mT
)� q̂�T (~�

�

T ))� �P�(T=ST )1=2q̂T (�0)! 0, prob-P�!, prob-P.

Proof. Using GEL-KBB Local UWL A.4, setting W��
qmT

= ���mT
in (B.11), T 1=2(~�

��
mT

� ~��T )=k +

K�(Q̂
��
mT
(~�
��
mT
)=S

1=2
T )0(���mT

)�1(T=ST )
1=2q̂��mT

(~�
�

T ) ! 0, prob-P�!, prob-P. Also, by a Taylor expansion

and GEL-KBB local UWL Lemma A.4,

(T=ST )
1=2(q̂��mT

(~�
��
mT
)� q̂��mT

(~�
�

T )) = (Q̂��mT
(��
��
T )=S

1=2
T )T 1=2(~�

��
mT

� ~��T )

= QT 1=2(~�
��
mT

� ~��T )=k1=2;

[41]



prob-P�!, prob-P, where ��
��
T is on the line segment joining ~�

��
T and ~�

�

T . Hence, substituting for T
1=2(~�

��
mT
�

~�
�

T ),

(T=ST )
1=2q̂��mT

(~�
��
mT
)� �P�(T=ST )1=2q̂��mT

(~�
�

T )! 0, prob-P�!, prob-P. (B.16)

Now, by Taylor expansions, (T=ST )1=2(q̂��mT
(~�
�

T )� q̂��mT
(�0))� (Q̂��mT

(��
��
T )=S

1=2
T )T 1=2(~�

�

T � �0)! 0, prob-

P�!, prob-P, and (T=ST )1=2(T=ST )1=2(q̂�T (~�
�

T ) � q̂�T (�0)) � (Q̂�T ( _�T )=S
1=2
T )T 1=2(~�

�

T � �0) ! 0, prob-P,

where ��
��
T and _�T lie on the line segment joining ~�

�

T and �0. Thus,

(T=ST )
1=2(q̂��mT

(~�
�

T )� q̂�T (~�
�

T ))� (T=ST )1=2(q̂��mT
(�0)� q̂�T (�0))! 0, prob-P�!, prob-P, (B.17)

since Q̂��mT
(��
��
T )=S

1=2
T , Q̂�T ( _�T ))=S

1=2
T ! Q=k1=2, prob-P�!, prob-P, by GEL-KBB Local UWL Lemma

A.4 and UWL Lemma A.1. Therefore, combining eqs. (B.16) and (B.17), sinceH�(T=ST )1=2q̂�T (~�
�

T )! 0,

prob-P,

(T=ST )
1=2(q̂��mT

(~�
��
mT
)� q̂�T (~�

�

T ))� �P�(T=ST )1=2(q̂��mT
(�0)� q̂�T (�0))! 0;

prob-P�!, prob-P. By GEL-KBB CLT Lemma A.5 (T=ST )1=2(q̂��mT
(�0)� q̂�T (�0))� (T=ST )1=2q̂T (�0)! 0,

prob-P�!, prob-P, and the conclusion of the Lemma follows.�

Recall the alternative restricted �-GEL GMM estimator _�
�

T de�ned by _�
�

T = argmin�2�r
~Q�T (�), with

associated �-GEL GMM Lagrangean _L�T (�) = ~Q�T (�)=ST�2�0(r(�)�r(�; �̂
�

T ))=k, Lagrange multiplier es-

timator _��T , and �-GEL GMM criterion ~Q�T (�) = q̂�T (�)0(�T )�1q̂�T (�). Additionally, recall ��
�

T = ( _�
�0
T ; �̂

�0
T )

0

and the corresponding restricted �-GEL GMM-KBB estimator _�
��
mT

= argmin�2�r
~Q��mT

(�), with �-GEL

GMM-KBB Lagrangean ~L��mT
(�) = ~Q��mT

(�)=ST�2�0(r(�)�r(��
�

T )=k, Lagrange multiplier estimator ��
��
mT
,

and �-GEL GMM-KBB criterion ~Q��mT
(�) = q̂��mT

(�)0(���qmT
)�1q̂��mT

(�).

Lemma B.4. Let Assumptions 2.1-2.4 and 3.2 be satis�ed. Then, if ���mT
��T ! 0, prob-P�!, prob-P,

���mT
p.s.d., and �T � �! 0, prob-P, �T p.s.d.,

(T=ST )
1=2(q̂��mT

( _�
��
mT
)� �P�q̂�T (��

�

T ))� �P�(T=ST )1=2(q̂��mT
(�0)� q̂�T (�0))! 0, prob-P�!, prob-P:

Proof. The Proof replicates the steps in the Proof of Lemma B.3 above. Noting RT 1=2( _�
��
mT
����T )!

0, prob-P�!, prob-P, from the �rst order conditions, T 1=2( _�
��
mT
����T )=k+K�(Q̂

��
mT
( _�
��
mT
)=S

1=2
T )0(���mT

)�1(T=ST )
1=2q̂��mT

(��
�

T )!

0, prob-P�!, prob-P. Also, by a Taylor expansion and GEL-KBB Local UWL Lemma A.4,

(T=ST )
1=2(q̂��mT

( _�
��
mT
)� q̂��mT

(��
�

T )) = (Q̂��mT
(��
��
T )=S

1=2
T )T 1=2( _�

��
mT

� ���T )

= QT 1=2( _�
��
mT

� ���T )=k1=2;

prob-P�!, prob-P, where ��
��
T is on the line segment joining _�

��
T and ��

�

T . Hence, substituting forQT
1=2( _�

��
mT
�

��
�

T ),

(T=ST )
1=2q̂��mT

( _�
��
mT
)� �P�(T=ST )1=2q̂��mT

(��
�

T )! 0, prob-P�!, prob-P,
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cf. eq. (B.16). Similar Taylor expansions to those in the Proof of Lemma B.3 yield (T=ST )1=2(q̂��mT
(��
�

T )�

q̂��mT
(�0))�(Q̂��mT

(���T )=S
1=2
T )T 1=2(��

�

T��0)! 0 and (T=ST )1=2(q̂�T (��
�

T )�q̂�T (�0))�(Q̂�T (��T )=S
1=2
T )T 1=2(��

�

T�

�0)! 0, prob-P�!, prob-P, where ���T and ��T lie on the line segment joining ��
�

T and �0. Hence,

(T=ST )
1=2(q̂��mT

(��
�

T )� q̂�T (��
�

T ))� (T=ST )1=2(q̂��mT
(�0)� q̂�T (�0))! 0, prob-P�!, prob-P;

cf. (B.17), since Q̂��mT
(���T )=S

1=2
T , Q̂�T (��T ))=S

1=2
T ! Q=k1=2, prob-P�!, prob-P, by GEL-KBB local UWL

Lemma A.4. Therefore, substituting for (T=ST )1=2q̂��mT
(��
�

T ), by a Taylor expansion,

(T=ST )
1=2(q̂��mT

( _�
��
mT
)� �P�q̂�T (��

�

T ))� �P�(T=ST )1=2(q̂��mT
(�0)� q̂�T (�0))! 0, prob-P�!, prob-P;

prob-P�!, prob-P. The result is then immediate by GEL-KBB CLT Lemma A.5, i.e., (T=ST )1=2(q̂��mT
(�0)�

q̂�T (�0))� (T=ST )1=2q̂T (�0)! 0, prob-P�!, prob-P.�

B.6.1 Overidenti�cation Tests

Proof of Theorem 3.3. Replacing �, P� by �, P�, q̂��mT
(�), q̂�T (�), q̂T (�) by ĝ��mT

(�), ĝ�T (�), ĝT (�)

and ~�
��
mT
, ~�

�

T by �̂
��
mT
, �̂

�

T , in Lemma B.3, (T=ST )
1=2(ĝ��mT

(�̂
��
mT
)� ĝ�T (�̂

�

T ))��P�(T=ST )1=2ĝT (�0)! 0,

prob-P�!, prob-P. Likewise (T=ST )1=2ĝT (�̂T ) � �P�(T=ST )1=2ĝT (�0) ! 0, prob-P. Therefore, as

(T=ST )
1=2ĝT (�0) !dP N(0;�=k), prob-P, J ��

mT
converges in distribution to N(0;�P��)0 � ��1 �

N(0;�P��) = N(0;�)
0 � P� �N(0;�) � �2(dg � d�), prob-P�!, prob-P, and the conclusion follows by

Polya�s Theorem, Ser�ing (1980, Theorem 1.5.3, p.18), noting JT !dP �2(dg � d�), prob-P, and the

continuity of the �2(dg � d�) c.d.f.�

B.6.2 Speci�cation Tests

Proof of Theorem 3.4. LR��
mT
: From Lemma B.3 (T=ST )1=2(q̂��mT

(~�
��
mT
)�q̂�T (~�

�

T ))��P�(T=ST )1=2q̂T (�0)!

0 and (T=ST )1=2(ĝ��mT
(�̂
��
mT
)�ĝ�T (�̂

�

T ))��P�(T=ST )1=2ĝT (�0)! 0, prob-P�!, prob-P. Now, as ���mT
! �,

���mT
! �, prob-P�!, prob-P, by hypothesis, LR��

mT
=k� (T=ST )q̂T (�0)0(P� � SgP�S0g)q̂T (�0)! 0, prob-

P�!, prob-P, noting P��SgP� = SgP�. Since LRT =k�(T=ST )q̂T (�0)0(P��SgP�S0g)q̂T (�0)! 0, prob-P,

and (T=ST )q̂T (�0)0(P� � SgP�S0g)q̂T (�0) ! N(0;�=k)0 � (P� � SgP�S0g)�N(0;�=k) � �2(dr + (dq �

dg)� (d� � d�))=k, prob-P, see Rao and Mitra (1971, Theorem 9.2.1, p.171); cf. Smith (2011, p.1229).

Hence, cf. Smith (2011, eq. (B.18), p.1229), the claim follows by Polya�s Theorem and the continuity of

the �2 c.d.f.�
D��mT

: From the Proof of Theorem 3.4 for LR��
mT
, (T=ST )(q̂��mT

(~�
��
mT
)� q̂�T (~�

�

T ))
0(���mT

))�1(q̂��mT
(~�
��
mT
)�

q̂�T (
~�
�

T ))�(T=ST )q̂T (�0)0P�q̂T (�0)! 0, prob-P�!, prob-P. Similarly, (T=ST )(ĝ��mT
(�̂
��
mT
)�ĝ�T (�̂

�

T ))
0(���mT

)�1(ĝ��mT
(�̂
��
mT
)�

ĝ�T (�̂
�

T )) � (T=ST )q̂T (�0)0SgP�S0g q̂T (�0) ! 0, prob-P�!, prob-P. The equivalence with LR��
mT

then

follows.�
S��mT

: Similarly, from Lemma B.3, ((���mT
)�1 � SgP���mT

S0g)(T=ST )
1=2(q̂��mT

(~�
��
mT
) � q̂�T (~�

�

T )) � (P� �

SgP�S
0
g)(T=ST )

1=2q̂T (�0)! 0, prob-P�!, prob-P. The conclusion is shown since, cf. LR��
mT
, (T=ST )q̂T (�0)0(P��
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SgP�S
0
g)q̂T (�0)! �2(dr + (dq � dg)� (d� � d�))=k, prob-P.�

LM��
mT
: Let

�� =

0@ � 0 Q
0 0 R
Q0 R0 0

1A :
De�ne the (dq + dr + d�; dh + dr) selection matrix S�h;� = (S0h;�; 0

0)0. Then (S�h;�)
0(��)

�1(S�h;�) =

S0h;�	�Sh;�, see Smith (2011, p.1230). From a Taylor expansion of �q
��
mT
(�̂
��
mT
) about ~�

��
mT
, (T=ST )1=2�q��mT

(�̂
��
mT
)�

(T=ST )
1=2(q̂��mT

(~�
��
mT
)�Sg��1ĝ��mT

(�̂
��
mT
))�QT 1=2(�̂

��
mT
�~���mT

)=k1=2 ! 0, prob-P�!, prob-P. Then, from

the �rst order conditions for ~�
��
mT
, noting �q��mT

(�) = (Idq � ���mT
Sg(�

��
mT
)�1S0g)q̂

��
mT
(�),

(��)
�1(S�h;�)T

1=2

 
�h��mT

(�̂
��
mT
)=S

1=2
T

r(�̂
��
mT
)=k1=2

!
�T 1=2

0B@ ��1q̂��mT
(~�
��
mT
)=S

1=2
T � Sg��1ĝ��mT

(�̂
��
mT
)=S

1=2
T

~���mT
=k1=2

(�̂
��
mT

� ~���mT
)=k1=2

1CA! 0,

prob-P�!, prob-P. Hence,

(S�h;�)
0(��)

�1(S�h;�)T
1=2

 
�h��mT

(�̂
��
mT
)=S

1=2
T

r(�̂
��
mT
)=k1=2

!
� Sh;�T 1=2

�
��1q̂��mT

(~�
��
mT
)=S

1=2
T

~���mT
=k1=2

�
! 0,

prob-P�!, prob-P; cf. Smith (2011, eq. (B.22), p.1230). Therefore, together with the similar result

(S�h;�)(��)
�1(S�h;�)T

1=2

 
�h�T (�̂

�

T )=S
1=2
T

r(�̂
�

T )=k
1=2

!
� Sh;�T 1=2

�
��1q̂�Y (

~�
�

T )=S
1=2
T

~��T =k
1=2

�
! 0, prob-P:

cf. GW��
mT

(3.13), prob-P�!, prob-P,

LM��
mT
=k � T

 
(�h��mT

(�̂
��
mT
)� �h�T (�̂

�

T ))=S
1=2
T

(r(�̂
��
mT
)� r(�̂

�

T ))=k
1=2

!0
S0h;�	�Sh;�

 
(�h��mT

(�̂
��
mT
)� �h�T (�̂

�

T ))=S
1=2
T

(r(�̂
��
mT
)� r(�̂

�

T ))=k
1=2

!
! 0.�

GW��
mT
: Substituting the expansions (T=ST )1=2(q̂��mT

(�̂
��
mT
)�q̂��mT

(~�
��
mT
))�QT 1=2(�̂

��
mT
�~���mT

)=k1=2 ! 0

and T 1=2r(�̂
��
mT
)�RT 1=2(�̂

��
mT
� ~���mT

)! 0, prob-P�!, prob-P, and, similarly, those for q̂�T (�̂
�

T ) and r(�̂
�

T ),

as P�Q = J 0�R and J�Q = J��J
0
�R, GW

��
mT

may be expressed as (T=ST )((q̂��mT
(~�
��
mT
) � q̂�T (~�

�

T )) �

�Sg�
�1(ĝ��mT

(�̂
��
mT
)� ĝT (�̂

�

T ))
0P�((q̂

��
mT
(~�
��
mT
)� q̂�T (~�

�

T ))��Sg��1(ĝ��mT
(�̂
��
mT
)� ĝT (�̂

�

T )), prob-P�!, prob-

P. Cf. LR��
mT

eq. (3.9). Note that, from the �rst order conditions for ~�
��
mT
, ~�

�

T , �̂
��
mT

and �̂
�

T , P� may

be replaced by ��1.�
Proof of Theorem 3.5. From Lemma B.4, (T=ST )1=2(q̂��mT

(��
��
mT
)����mT

P���mT
q̂�T (
��
�

T ))��P�(T=ST )1=2(q̂��mT
(�0)�

q̂�T (�0))! 0, prob-P�!, prob-P. Since, (T=ST )1=2(q̂��mT
(~�
��
mT
)� q̂�T (~�

�

T ))��P�(T=ST )1=2q̂T (�0)! 0, prob-

P�!, prob-P, from Lemma B.3, and, by GEL-KBB CLT Lemma A.5, (T=ST )1=2(q̂��mT
(�0) � q̂�T (�0)) �

(T=ST )
1=2q̂T (�0) ! 0, prob-P�!, prob-P, the results follow immediately. Cf. Proof of Theorem 3.2 for

LR��
mT

and D��mT
.�
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Appendix C: GEL Implied Probability GMM-KBBHACVari-
ance Matrix Estimation

In the following Xt(�) and Yt(�) substitute, where appropriate, for qt(�), (t = 1; 2; :::), in Assump-

tions 2.1, 2.3 and 2.4.

Let XtT (�) =
Pt�1

s=t�T k(s=ST )Xt(�)=(k2ST )
1=2, YtT (�) =

Pt�1
s=t�T k(s=ST )Yt(�)=(k2ST )

1=2, (t =

1; :::; T ), �X(�) =
PT

t=1Xt(�)=T , �Y (�) =
PT

t=1 Yt(�)=T and �XT (�) =
PT

t=1XtT (�)=T , �YT (�) =
PT

t=1 YtT (�)=T .

Also let �X�
T (�) =

PT
t=1 �tTXtT (�), �Y

�
T (�) =

PT
t=1 �tTYtT (�) and �X

��
mT
(�) =

PmT

s=1X
�
t�sT
(�)=mT , �Y ��mT

(�) =PmT

s=1 Y
�
t�sT
(�)=mT where the indices t�s and the consequent bootstrap sample (X

�
t�sT
(�); Y �t�sT (�)), (s =

1; :::;mT ), denote mT independent draws with replacement from the index set TT = f1; :::; Tg and the

bootstrap sample space fXtT (�); YtT (�)gTt=1 with sampling probabilities P�!(Xt�sT (�) = XtT (�) ; Y
�
t�sT
(�) =

YtT (�)) = �tT , (t = 1; :::; T ), with mT = [T=ST ] the integer part of T=ST .

The argument � is suppressed in the proofs of the following lemmas without loss of generality.

Lemma C.1. (GEL-KBB HAC Variance Pointwise WLLN.) Let E[Xt(�)] = 0. Also let fXt(�)g1t=1
satisfy Assumptions 2.1(b) and 2.3(d). If Assumptions 2.2 and 3.2 hold, then

(a)
1

mT

XmT

s=1
(X�

t�sT
(�))2 � 1

T

XT

t=1
(XtT (�))

2 ! 0, prob-P�!, prob-P;

(b)
1

mT

XmT

s=1
(X�

t�sT
(�))2 �

XT

t=1
�tT (XtT (�))

2 ! 0, prob-P�!, prob-P:

Proof. By Assumption 3.2(b)
PT

t=1(XtT )
2=T�

PT
t=1 �tT (XtT )

2 ! 0, prob-P. Hence, as
PT

t=1(XtT )
2=T =

Op(1), cf. Smith (2011, Lemma A.3, p.1219), the Lemma follows by T if (b) is proven. The proof o¤ered

is similar to that in Gonçalves and White (2004, Proof of Lemma B.1, pp.217-218).

First, since E�[(X�
t�sT
)2] =

PT
t=1 �tT (XtT )

2, by M,

P�!(j
1

mT

XmT

s=1
(X�

t�sT
)2 �

XT

t=1
�tT (XtT )

2j > ") � 1

"p
E�[j 1

mT

XmT

s=1
(X�

t�sT
)2 �

XT

t=1
�t(XtT )

2jp]

(C.1)

for some p > 1. Now

E�[j 1
mT

XmT

s=1
(X�

t�sT
)2 �

XT

t=1
�tT (XtT )

2jp] =
1

mp
T

E�[j
XmT

s=1
((X�

t�sT
)2 � E�[(X�

t�sT
)2])jp]

� 1

mp
T

CE�[(
XmT

s=1
j(X�

t�sT
)2 � E�[(X�

t�sT
)2]j2)p=2]

for some C < 1 by the extension to the Burkholder inequality in White and Chen (1996, Lemma

A.2(iv), p.299) as (X�
t�sT
)2 � E�[(X�

t�sT
)2], (s = 1; :::;mT ), are i.i.d. zero mean. For 1 < p � 2,

by Jensen�s inequality, White (1984, Proposition 2.38, p.27), E�[(
PmT

s=1 j(X�
t�sT
)2 � E�[(X�

t�sT
)2]j2)p=2] �

mTE
�[j(X�

t�sT
)2�E�[(X�

t�sT
)2]jp]. Invoking the cr-inequality, White (1984, Proposition 3.8, p.33), E�[j(X�

t�sT
)2
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�E�[(X�
t�sT
)2]jp] � 2pE�[jX�

t�sT
j2p]. Hence, substituting in eq. (C.1),

P�!(j
1

mT

XmT

s=1
(X�

t�sT
)2 �

XT

t=1
�t(XtT )

2j > ") � 1

"pmp�1
T

2pCE�[jX�
t�sT
j2p] (C.2)

=
1

"pmp�1
T

2pC
XT

t=1
�tT jXtT j2p

=
1

"pmp�1
T

2pC(1 + op(1))
1

T

XT

t=1
jXtT j2p:

Now, by M, cf. Newey and Smith (2004, Proof of Lemma A1, p.239),

1

T

XT

t=1
jXtT j2p � 1

T

XT

t=1
jXtT j2( max

1�t�T
jXtT j)2(p�1)

= Op(T
2(p�1)=�);

noting
PT

t=1 jXtT j2=T = Op(1), cf. Smith (2011, Lemma A.3, p.1219). Thus, from eq. (C.2),

P�!(j
1

mT

XmT

s=1
(X�

t�sT
)2 �

XT

t=1
�t(XtT )

2j > ") � 1

"pmp�1
T

2pC(1 + op(1))Op(T
2(p�1)=�)

= Op(T
(p�1)(2=����1=2)) = op(1):

The second equality and, thus, the result, follow from Assumptions 2.2(a) and 2.3(d) since � > 4.�

Lemma C.2. (GEL-KBB Outer Product Estimation.) Let f(Xt; Ytg1t=1 satisfy Assumption 2.1(b)

and E[jXtjdp];E[jYtj
dp
d�1 ] < �, 0 < � < 1, for some 1 < p � 2 and d > 1. If Assumptions 2.2 and 3.2

hold, then
1

T 1=2mT

XmT

s=1
X�
t�sT
Y �t�sT ! 0, prob-P�!, prob-P:

Proof. Cf. Gonçalves and White (2004, Proof of Lemma B.2, p.218). By M, for some 1 < p � 2,

using the cr-inequality with r = p,

P�!(j
1

mT

XmT

s=1
X�
t�sT
Y �t�sT j > T

1=2") � 1

"pT p=2
E�[j 1

mT

XmT

s=1
X�
t�sT
Y �t�sT j

p]

� 1

"pT p=2
2p�1(E�[j 1

mT

XmT

s=1
(X�

t�sT
Y �t�sT � E

�[X�
t�sT
Y �t�sT ])j

p]

+ j 1
mT

XmT

s=1
E�[X�

t�sT
Y �t�sT ]j

p)

=
1

"pT p=2
2p�1(F1 + F2):

Since X�
t�sT
Y �t�sT � E

�[X�
t�sT
Y �t�sT ], (s = 1; :::;mT ), are independent zero mean,

F1 �
1

mp
T

CE�[(
XmT

s=1
jX�

t�sT
Y �t�sT � E

�[X�
t�sT
Y �t�sT ]j

2)p=2]

for some C <1 by the extension to the Burkholder inequality White and Chen (1996, Lemma A.2(iv),
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p.299). Hence, for 1 < p � 2, by Jensen�s inequality and the cr-inequality,

F1 � 1

mp�1
T

CE�[jX�
t�sT
Y �t�sT � E

�[X�
t�sT
Y �t�sT ]j

p]

� 1

mp�1
T

2pCE�[jX�
t�sT
Y �t�sT j

p]

=
1

mp�1
T

2pC
XT

t=1
�tT jXtTYtT jp =

1

mp�1
T

2pC(1 + op(1))
1

T

XT

t=1
jXtTYtT jp:

Also, by Jensen�s inequality and Assumption 3.2(b),

F2 =
1

mp
T

j
XmT

s=1
E�[X�

t�sT
Y �t�sT ]j

p

� E�[jX�
t�sT
Y �t�sT j

p]

=
XT

t=1
�tT jXtTYtT jp = (1 + op(1))

1

T

XT

t=1
jXtTYtT jp:

By M and Hölder inequality, White (1984, Proposition 3.4, p.30),

P( 1
T

XT

t=1
jXtTYtT jp > �) � 1

T�

XT

t=1
E[jXtTYtT jp]

� 1

T�

XT

t=1
(E[jXtT jdp])1=d(E[jYtT j

dp
d�1 ])(d�1)=d:

Then, by T and Minkowski inequality, White (1984, Proposition 3.11, p.34),

E[j(k2)1=2XtT =S1=2T jdp] = E[j 1
ST

Xt�1

s=t�T
k(
s

ST
)Xt�sjdp]

� E[(
1

ST

Xt�1

s=t�T
jk( s
ST
)jjXt�sj)dp]

� (
1

ST

Xt�1

s=t�T
jk( s
ST
)jE[jXt�sjdp]1=dp)dp = O(1)

as E[jXtjdp] is bounded by hypothesis and
XT�1

s=1�T
jk(s=ST )j=ST = O(1). By the same reasoning

E[j(k2)1=2YtT =S1=2T j
dp
d�1 ] = O(1). The result follows since ST =T 1=2 = o(1) by Assumption 2.2(a).�

Let

���mT
(�) =

1

mT

XmT

s=1
q�t�sT (�)q

�
t�sT
(�)0:

Lemma C.3. (GEL-GMM HAC Variance Estimation.) Under Assumptions 2.1-2.4 and 3.2, if

(T=ST )
1=2q̂�T (�0) = Op(1),

���mT
(��
��
mT
)! �, prob-P�!, prob-P:

Proof. Adopting a proof strategy similar to that of Gonçalves and White (2004, Proof of Theorem

3.1, pp.216-217), �rst consider the infeasible estimator ���mT
(�0) of �. Fix any � 2 Rdq , 0 < k�k < 1.

Now �0���mT
(�0)� =

PmT

t=1(�
0q�t�sT (�0))

2=mT . Applying Lemma C.1 with Xt(�0) = �
0qt(�0), (t = 1; :::; T ),

1

mT

XmT

s=1
(�0q�t�sT (�0))

2 � 1

T

XT

t=1
(�0qtT (�0))

2 ! 0, prob-P�!, prob-P:
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Thus, by Smith (2011, Lemma A.3, p.1219),

1

mT

XmT

t=1
(�0q�t�sT (�0))

2 � �0�� ! 0, prob-P�!, prob-P:

It remains to prove that �0���mT
(��
��
mT
)� � �0���mT

(�0)� ! 0, prob-P�!, prob-P. By a �rst order Taylor

expansion of (�0q�t�sT (
��
��
mT
))2 around �0

(�0q�t�sT (
��
��
mT
))2 = (�0q�t�sT (�0))

2 + 2(�0q�t�sT (
��
��
mT
))(�0Q�t�sT (

��
��
mT
))(��

��
mT

� �0))

where ��
��
mT

is on the line segment joining ��
��
mT

and �0 and Q�t�sT (�) = @q�t�sT (�)=@�
0, (s = 1; :::;mT ).

Substituting

�0���mT
(��
��
mT
)� =

1

mT

XmT

s=1
(�0q�t�sT (�0))

2 +
2

mT

XmT

s=1
(�0q�t�sT (

��
��
mT
))(�0Q�t�sT (

��
��
mT
))(��

��
mT

� �0):

The �rst term is �0���mT
(�0)�. For the second term, denoting the jth column ofQ�t�sT (

��
��
mT
) byQ�t�sT;j(

��
��
mT
),

(�0Q�t�sT (
��
��
mT
))(��

��
mT

� �0) =
Pd�

j=1(�
0Q�t�sT;j(

��
��
mT
))(��

��
mT;j

� �0;j), and, thus,

1

mT

XmT

s=1
(�0q�t�sT (

��
��
mT
))(�0Q�t�sT (

��
��
mT
))(��

��
mT
��0) =

Xd�

j=1
(��
��
mT;j

��0;j)
1

mT

XmT

s=1
(�0q�t�sT (

��
��
mT
))(�0Q�t�sT;j(

��
��
mT
)):

Now, by T and CS,

j 1
mT

XmT

s=1
(�0q�t�sT (

��
��
mT
))(�0Q�t�sT;j(

��
��
mT
))j � 1

mT

XmT

s=1
sup
�2�r

j(�0q�t�sT (�))j sup
�2�r

j(�0Q�t�sT;j(�))j:

De�ne X�
t�sT
(�) = sup�2�r

j(�0q�t�sT (�))j and Y
�
t�sT
(�) = sup�2�r

j(�0Q�t�sT;j(�))j. Applying Lemma C.2

with p = 1 + " and d = �=(1 + ") for some " > 0,

1

T 1=2mT

XmT

s=1
sup
�2�r

j(�0q�t�sT (�))j sup
�2�r

j(�0Q�t�sT;j(�))j ! 0, prob-P�!, prob-P;

by Assumption 2.4(b). The result then follows from Proposition 3.2 and Theorem 3.2 writing T 1=2(��
��
mT
�

�0) = T
1=2(��

��
mT

� ��
�

T ) + T
1=2(��

�

T � �0). �
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Table 1. Model 1: Empirical Rejection Probabilities: Overidentifying Moment Restrictions Tests.

T 64 128
ρ 0.5 0.9 0.5 0.9

level 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00
asymp 0.40 4.04 9.64 0.96 5.34 12.22 0.68 4.48 10.04 0.88 5.12 10.74
KBBtr 0.28 3.28 8.46 0.60 3.90 9.60 0.58 4.16 9.64 0.80 4.60 9.46
KBBπtr 0.30 3.34 8.80 0.72 3.98 9.96 0.82 4.36 9.94 0.80 4.78 9.76
KBBbt 0.28 2.78 7.28 0.70 3.32 7.90 0.62 4.02 9.32 0.84 4.24 8.50
KBBπbt 0.34 3.34 8.14 0.80 3.94 8.96 0.70 4.40 9.64 0.76 4.12 8.68
KBBpp 0.34 2.98 6.88 1.22 3.56 7.10 0.64 4.00 8.82 1.48 4.50 8.16
KBBπpp 0.70 3.68 8.00 1.78 4.86 9.42 1.00 4.64 9.82 1.56 4.90 9.10
KBBqs 0.22 3.08 7.62 0.82 3.72 8.50 0.62 4.02 9.44 1.00 4.30 8.68
KBBπqs 0.40 3.46 8.36 1.02 4.08 9.28 0.80 4.38 9.70 0.88 4.52 9.18
MBB 0.24 2.86 6.86 1.14 3.86 8.56 0.64 3.82 9.02 1.28 4.52 8.70
MBBπ 0.54 3.34 7.98 1.48 4.90 9.72 0.60 4.26 9.48 1.44 4.94 9.42



Table 2. Model 2: Empirical Rejection Probabilities: Overidentifying Moment Restrictions Tests.

T 64 128
ρ 0.5 0.9 0.5 0.9

level 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00
asymp 0.42 3.94 9.40 0.76 4.90 11.52 0.52 4.86 10.16 0.76 5.36 10.52
KBBtr 0.28 2.92 7.96 0.54 3.42 8.20 0.46 3.92 9.06 0.56 4.24 9.22
KBBπtr 0.34 3.32 8.20 0.74 3.66 8.70 0.48 4.54 9.72 0.70 4.80 9.34
KBBbt 0.24 2.40 6.50 0.60 2.84 6.88 0.42 3.86 8.60 0.74 3.90 7.98
KBBπbt 0.42 3.44 8.06 0.72 3.48 7.98 0.50 4.36 9.26 0.68 4.28 8.54
KBBpp 0.44 2.58 6.00 1.00 2.96 6.02 0.54 3.66 8.12 1.26 4.26 7.42
KBBπpp 0.70 3.92 8.00 1.58 4.54 8.38 0.80 4.94 9.34 1.32 5.16 9.02
KBBqs 0.28 2.58 6.92 0.70 2.98 7.38 0.48 3.88 8.86 0.76 4.20 8.22
KBBπqs 0.40 3.52 8.12 0.74 3.76 8.26 0.54 4.46 9.50 0.84 4.54 9.00
MBB 0.32 2.60 6.42 1.04 3.18 7.16 0.46 3.76 8.42 1.00 4.44 8.02
MBBπ 0.48 3.44 7.94 1.28 4.28 8.68 0.58 4.46 9.30 1.02 5.12 9.28



Table 3. Model 1: Empirical Rejection Probabilities: Parametric Restrictions t-Tests.

T 64 128
ρ 0.5 0.9 0.5 0.9

level 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00
asymp 6.10 13.54 20.34 20.38 31.98 39.84 3.14 9.08 15.14 12.54 23.50 30.58
KBBtr 3.34 9.70 15.78 9.44 20.18 28.32 1.90 7.16 12.72 5.42 14.66 22.64
KBBπtr 2.48 8.12 13.54 7.42 15.34 22.12 1.58 6.34 11.50 4.22 11.10 17.88
KBBπrtr 3.20 9.46 15.58 6.86 16.64 24.74 1.90 7.26 12.50 4.52 13.06 20.80
KBBbt 2.20 7.36 12.90 6.04 15.00 21.78 1.38 5.90 11.04 3.48 10.40 17.06
KBBπbt 1.78 6.46 11.88 4.78 11.26 16.74 1.22 5.28 10.58 2.54 7.88 13.22
KBBπrbt 1.94 6.84 12.60 3.52 10.94 16.80 1.34 6.04 11.12 2.38 8.10 14.98
KBBpp 0.96 4.60 9.14 3.00 9.68 16.32 0.80 4.06 8.44 1.52 5.52 10.86
KBBπpp 0.88 4.16 8.48 2.30 8.14 13.54 0.64 3.92 8.12 1.04 4.46 9.12
KBBπrpp 0.64 4.40 8.84 1.50 6.54 13.04 0.70 4.08 8.54 0.82 4.22 9.06
KBBqs 2.30 7.50 13.36 6.46 14.98 21.92 1.50 6.02 11.42 3.40 10.50 17.52
KBBπqs 2.04 6.78 12.40 5.04 11.76 17.40 1.46 5.58 10.74 2.74 8.20 13.98
KBBπrqs 2.24 7.44 12.86 4.26 12.36 19.02 1.46 6.02 11.32 2.72 9.30 15.98
MBB 1.78 5.92 11.42 4.78 12.24 19.58 1.02 4.86 9.94 2.32 8.02 14.42
MBBπ 1.52 5.16 10.66 3.78 9.50 15.20 0.86 4.84 9.40 1.96 6.56 11.72
MBBπr 1.30 5.84 11.14 2.68 9.02 16.06 1.08 4.88 9.88 1.76 6.30 12.86



Table 4. Model 2: Empirical Rejection Probabilities: Parametric Restrictions t-Tests.

T 64 128
ρ 0.5 0.9 0.5 0.9

level 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00
asymp 5.40 13.92 20.44 19.00 30.44 38.22 3.16 10.46 16.54 12.50 22.58 30.36
KBBtr 2.64 9.04 15.58 8.62 18.30 26.72 1.72 7.22 13.50 5.12 13.56 20.46
KBBπtr 2.20 7.38 13.02 6.32 13.78 20.08 1.52 6.46 12.48 3.74 10.54 16.10
KBBπrtr 2.28 8.98 14.94 5.82 14.82 22.58 1.94 7.46 13.60 4.20 12.62 19.56
KBBbt 1.50 6.34 12.16 5.16 12.94 20.20 1.12 5.94 11.34 2.94 9.40 15.18
KBBπbt 1.20 5.82 10.94 3.72 10.06 15.34 1.08 5.56 10.88 2.16 7.36 11.78
KBBπrbt 1.44 6.46 12.40 3.22 9.34 15.86 1.20 5.96 11.64 2.20 8.18 14.20
KBBpp 0.78 3.80 8.06 2.30 8.70 14.66 0.62 3.82 8.62 1.24 5.08 10.08
KBBπpp 0.70 3.38 7.86 1.90 6.90 12.34 0.56 3.64 8.22 0.80 4.26 8.16
KBBπrpp 0.46 3.54 8.32 1.48 5.94 11.82 0.74 4.04 9.10 0.60 4.42 9.28
KBBqs 1.94 6.88 12.70 5.42 12.98 20.40 1.20 5.98 11.62 3.32 9.64 15.80
KBBπqs 1.40 5.98 11.40 4.18 10.44 16.08 1.06 5.66 10.92 2.38 7.86 12.34
KBBπrqs 1.72 6.82 13.04 3.80 10.78 17.82 1.24 6.32 12.08 2.64 8.98 15.28
MBB 1.24 5.16 10.42 3.94 11.06 17.38 0.88 5.06 10.06 2.18 7.40 13.28
MBBπ 0.90 4.76 9.40 2.82 8.26 13.58 0.74 4.58 9.82 1.80 5.92 10.88
MBBπr 0.94 5.08 10.56 14.30 7.94 2.24 1.00 5.40 10.74 1.38 6.66 12.48



Table 5. Model 1: Empirical Rejection Probabilities: Parametric Restrictions LR-GMM Tests.

T 64 128
ρ 0.5 0.9 0.5 0.9

level 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00
asymp 6.10 13.54 20.34 20.38 31.98 39.84 3.14 9.08 15.14 12.54 23.50 30.58
KBBtr 1.36 5.90 11.82 1.74 8.78 16.00 0.98 5.30 10.72 1.32 7.18 13.94
KBBctr 3.34 9.70 15.78 9.44 20.18 28.32 1.90 7.16 12.72 5.42 14.66 22.64
KBBπtr 1.26 5.60 11.40 1.30 7.24 14.30 0.94 5.04 10.64 0.92 6.82 13.58
KBBπ,ctr 2.48 8.12 13.54 7.42 15.34 22.12 1.58 6.34 11.50 4.22 11.10 17.88
KBBπrtr 3.20 9.46 15.58 6.86 16.64 24.74 1.90 7.26 12.50 4.52 13.06 20.80
KBBπr,ctr 2.30 7.80 13.18 5.14 13.42 19.74 1.52 6.32 11.18 3.66 11.16 17.90
KBBbt 1.00 4.36 9.06 0.74 4.84 10.88 0.48 4.10 9.16 0.48 4.24 9.74
KBBcbt 2.20 7.36 12.90 6.04 15.00 21.78 1.38 5.90 11.04 3.48 10.40 17.06
KBBπbt 0.62 3.84 8.66 0.48 3.96 9.06 0.40 4.18 9.04 0.52 3.68 8.88
KBBπ,cbt 1.78 6.46 11.88 4.78 11.26 16.74 1.22 5.28 10.58 2.54 7.88 13.22
KBBπrbt 1.94 6.84 12.60 3.52 10.94 16.80 1.34 6.04 11.12 2.38 8.10 14.98
KBBπr,cbt 1.22 5.06 10.16 2.52 8.26 14.24 0.96 4.66 9.38 1.78 6.50 12.16
KBBpp 0.18 2.20 5.18 0.10 1.34 4.76 0.24 2.54 6.20 0.08 1.18 4.16
KBBcpp 0.96 4.60 9.14 3.00 9.68 16.32 0.80 4.06 8.44 1.52 5.52 10.86
KBBπpp 0.14 1.92 5.02 0.08 1.06 3.84 0.24 2.42 6.28 0.08 1.06 3.62
KBBπ,cpp 0.88 4.16 8.48 2.30 8.14 13.54 0.64 3.92 8.12 1.04 4.46 9.12
KBBπrpp 0.64 4.40 8.84 1.50 6.54 13.04 0.70 4.08 8.54 0.82 4.22 9.06
KBBπr,cpp 0.34 2.72 6.24 0.80 3.60 7.92 0.46 3.18 7.10 0.60 2.70 6.62
KBBqs 0.88 4.50 9.50 0.72 5.24 11.42 0.66 4.34 9.50 0.54 4.42 9.94
KBBcqs 2.30 7.50 13.36 6.46 14.98 21.92 1.50 6.02 11.42 3.40 10.50 17.52
KBBπqs 0.72 4.22 8.86 0.54 4.42 9.98 0.58 4.08 9.18 0.60 4.16 9.62
KBBπ,cqs 2.04 6.78 12.40 5.04 11.76 17.40 1.46 5.58 10.74 2.74 8.20 13.98
KBBπrqs 2.24 7.44 12.86 4.26 12.36 19.02 1.46 6.02 11.32 2.72 9.30 15.98
KBBπr,cqs 1.52 5.90 11.16 2.86 9.02 15.36 1.04 5.14 9.98 2.10 7.62 14.00
MBB 0.56 3.40 7.30 0.28 3.02 8.06 0.38 3.26 7.72 0.20 2.54 6.88
MBBc 1.78 5.92 11.42 4.78 12.24 19.58 1.02 4.86 9.94 2.32 8.02 14.42
MBBπ 0.44 3.24 7.00 0.20 2.34 6.66 0.26 3.26 7.86 0.26 2.12 6.48
MBBπ,c 1.52 5.16 10.66 3.78 9.50 15.20 0.86 4.84 9.40 1.96 6.56 11.72
MBBπr 1.30 5.84 11.14 2.68 9.02 16.06 1.08 4.88 9.88 1.76 6.30 12.86
MBBπr,c 0.82 4.14 8.64 1.70 6.60 11.94 0.86 3.98 8.66 1.32 5.38 10.38



Table 6. Model 2: Empirical Rejection Probabilities: Parametric Restrictions LR-GMM Tests.

T 64 128
ρ 0.5 0.9 0.5 0.9

level 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00 1.00 5.00 10.00
asymp 5.40 13.92 20.44 19.00 30.44 38.22 3.16 10.46 16.54 12.50 22.58 30.36
KBBtr 0.92 5.34 10.82 1.54 7.08 14.30 1.04 5.40 11.04 0.82 6.48 13.02
KBBctr 2.64 9.04 15.58 8.62 18.30 26.72 1.72 7.22 13.50 5.12 13.56 20.46
KBBπtr 0.72 4.96 10.60 1.08 6.18 12.62 0.94 5.16 11.06 0.68 5.68 12.18
KBBπ,ctr 2.20 7.38 13.02 6.32 13.78 20.08 1.52 6.46 12.48 3.74 10.54 16.10
KBBπrtr 2.28 8.98 14.94 5.82 14.82 22.58 1.94 7.46 13.60 4.20 12.62 19.56
KBBπr,ctr 1.62 6.96 12.48 3.92 11.26 17.96 1.32 6.44 11.98 3.16 9.82 16.10
KBBbt 0.40 3.48 7.80 0.50 3.84 9.10 0.62 3.94 9.24 0.36 3.70 8.76
KBBcbt 1.50 6.34 12.16 5.16 12.94 20.20 1.12 5.94 11.34 2.94 9.40 15.18
KBBπbt 0.44 3.16 7.56 0.40 3.28 7.64 0.56 3.84 8.92 0.28 3.12 8.32
KBBπ,cbt 1.20 5.82 10.94 3.72 10.06 15.34 1.08 5.56 10.88 2.16 7.36 11.78
KBBπrbt 1.44 6.46 12.40 3.22 9.34 15.88 1.20 5.96 11.64 2.20 8.18 14.20
KBBπr,cbt 0.86 4.44 9.22 2.06 7.14 12.18 0.88 4.62 9.76 1.48 6.30 11.30
KBBpp 0.10 1.66 4.64 0.06 1.26 4.30 0.30 2.20 6.46 0.02 1.02 3.92
KBBcpp 0.78 3.80 8.06 2.30 8.70 14.66 0.62 3.82 8.62 1.24 5.08 10.08
KBBπpp 0.08 1.50 4.02 0.02 0.92 3.28 0.32 2.26 6.40 0.12 0.80 3.32
KBBπ,cpp 0.70 3.38 7.86 1.90 6.90 12.34 0.56 3.64 8.22 0.80 4.26 8.16
KBBπrpp 0.46 3.54 8.32 1.48 5.94 11.82 0.74 4.04 9.10 0.60 4.42 9.28
KBBπr,cpp 0.30 1.96 5.08 0.58 3.30 7.06 0.34 3.14 7.26 0.46 2.64 6.22
KBBqs 0.50 3.68 8.28 0.66 4.36 9.36 0.52 4.32 9.48 0.42 4.12 9.00
KBBcqs 1.94 6.88 12.70 5.42 12.98 20.40 1.20 5.98 11.62 3.32 9.64 15.80
KBBπqs 0.50 3.20 8.02 0.48 3.66 8.66 0.56 3.92 9.18 0.48 3.56 8.86
KBBπ,cqs 1.40 5.98 11.40 4.18 10.44 16.08 1.06 5.66 10.92 2.38 7.86 12.34
KBBπrqs 1.72 6.82 13.04 3.80 10.78 17.82 1.24 6.32 12.08 2.64 8.98 15.28
KBBπr,cqs 1.06 4.84 10.30 2.20 7.96 13.38 0.92 5.50 10.64 2.00 6.72 12.44
MBB 0.34 2.64 6.74 0.24 2.64 6.66 0.52 3.38 8.16 0.10 2.14 6.26
MBBc 1.24 5.16 10.42 3.94 11.06 17.38 0.88 5.06 10.06 2.18 7.40 13.28
MBBπ 0.30 2.56 6.26 0.20 2.02 5.48 0.44 3.14 7.94 0.12 1.70 5.86
MBBπ,c 0.90 4.76 9.40 2.82 8.26 13.58 0.74 4.58 9.82 1.80 5.92 10.88
MBBπr 0.94 5.08 10.56 2.24 7.94 14.30 1.00 5.40 10.74 1.38 6.66 12.48
MBBπr,c 0.58 3.42 8.02 1.52 5.38 10.18 0.70 4.38 8.92 1.14 4.84 9.40



Table 7. Model 1: Percentage of Cases inside Convex Hull.

T 64 128
ρ 0.5 0.9 0.5 0.9

ETtr 100.00 99.84 100.00 100.00
ETbt 99.96 99.82 100.00 99.84
ETpp 100.00 99.98 100.00 100.00
ETqs 99.98 100.00 100.00 99.98
ETmbb 100.00 99.96 100.00 100.00
ETr,tr 100.00 100.00 100.00 100.00
ETr,bt 100.00 100.00 100.00 100.00
ETr,pp 100.00 100.00 100.00 100.00
ETr,qs 100.00 100.00 100.00 100.00
ETr,mbb 100.00 100.00 100.00 100.00



Table 8. Model 2: Percentage of Cases inside Convex Hull.

T 64 128
ρ 0.5 0.9 0.5 0.9

ETtr 99.94 99.86 100.00 100.00
ETbt 99.92 99.76 99.98 99.88
ETpp 100.00 100.00 100.00 100.00
ETqs 99.96 99.96 99.98 100.00
ETmbb 100.00 99.98 100.00 100.00
ETr,tr 100.00 100.00 100.00 100.00
ETr,bt 100.00 100.00 100.00 100.00
ETr,pp 100.00 100.00 100.00 100.00
ETr,qs 100.00 100.00 100.00 100.00
ETr,mbb 100.00 100.00 100.00 100.00



Table 9. Model 1: Percentage of Cases with Ill Conditioned Σ∗mT
.

T 64 128
ρ 0.5 0.9 0.5 0.9

(Σ∗mT
)tr 0.00 0.00 0.00 0.00

(Σπ∗mT
)tr 0.06 0.32 0.00 0.08

(Σπr∗mT
)tr 0.14 1.86 0.00 0.36

(Σ∗mT
)bt 0.00 0.00 0.00 0.00

(Σπ∗mT
)bt 0.12 0.36 0.00 0.16

(Σπr∗mT
)bt 0.38 4.34 0.00 1.26

(Σ∗mT
)pp 0.00 0.00 0.00 0.00

(Σπ∗mT
)pp 0.00 0.02 0.00 0.00

(Σπr∗mT
)pp 0.02 0.92 0.00 0.12

(Σ∗mT
)qs 0.00 0.00 0.00 0.00

(Σπ∗mT
)qs 0.04 0.06 0.00 0.08

(Σπr∗mT
)qs 0.22 2.44 0.02 0.64

(Σ∗mT
)mbb 0.00 0.00 0.00 0.00

(Σπ∗mT
)mbb 0.02 0.14 0.00 0.00

(Σπr∗mT
)mbb 0.28 2.16 0.00 0.18



Table 10. Model 2: Percentage of Cases with Ill Conditioned Σ∗mT
.

T 64 128
ρ 0.5 0.9 0.5 0.9

(Σ∗mT
)tr 0.00 0.00 0.00 0.00

(Σπ∗mT
)tr 0.20 0.28 0.00 0.02

(Σπr∗mT
)tr 0.42 1.90 0.02 0.34

(Σ∗mT
)bt 0.00 0.00 0.00 0.00

(Σπ∗mT
)bt 0.16 0.46 0.02 0.12

(Σπr∗mT
)bt 0.62 4.24 0.16 1.16

(Σ∗mT
)pp 0.00 0.00 0.00 0.00

(Σπ∗mT
)pp 0.02 0.00 0.00 0.00

(Σπr∗mT
)pp 0.04 0.82 0.00 0.08

(Σ∗mT
)qs 0.00 0.00 0.00 0.00

(Σπ∗mT
)qs 0.12 0.06 0.02 0.00

(Σπr∗mT
)qs 0.32 2.06 0.08 0.50

(Σ∗mT
)mbb 0.00 0.00 0.00 0.00

(Σπ∗mT
)mbb 0.06 0.22 0.00 0.00

(Σπr∗mT
)mbb 0.26 2.24 0.00 0.18



Table 11. Model 1: Average Number of Extra Bootstrap Replications Required Because of Ill Conditioned
Σ∗mT

.

T 64 128
ρ 0.5 0.9 0.5 0.9

(Σ∗mT
)tr 0.0 0.0 0.0 0.0

(Σπ∗mT
)tr 0.0 1.9 0.0 0.0

(Σπr∗mT
)tr 0.1 65.0 0.0 3.5

(Σ∗mT
)bt 0.0 0.0 0.0 0.0

(Σπ∗mT
)bt 0.5 196.4 0.0 4.4

(Σπr∗mT
)bt 1.7 359.6 0.0 8.8

(Σ∗mT
)pp 0.0 0.0 0.0 0.0

(Σπ∗mT
)pp 0.0 0.3 0.0 0.0

(Σπr∗mT
)pp 0.0 26.8 0.0 2.9

(Σ∗mT
)qs 0.0 0.0 0.0 0.0

(Σπ∗mT
)qs 0.3 0.0 0.0 0.1

(Σπr∗mT
)qs 0.1 183.2 0.0 1.5

(Σ∗mT
)mbb 0.0 0.0 0.0 0.0

(Σπ∗mT
)mbb 0.0 1.1 0.0 0.0

(Σπr∗mT
)mbb 0.0 95.9 0.0 1.3



Table 12. Model 2: Average Number of Extra Bootstrap Replications Required Because of Ill Conditioned
Σ∗mT

.

T 64 128
ρ 0.5 0.9 0.5 0.9

(Σ∗mT
)tr 0.0 0.0 0.0 0.0

(Σπ∗mT
)tr 1.7 2.9 0.0 0.0

(Σπr∗mT
)tr 20.2 35.6 0.1 2.8

(Σ∗mT
)bt 0.0 0.0 0.0 0.0

(Σπ∗mT
)bt 0.8 13.6 0.2 0.4

(Σπr∗mT
)bt 5.3 502.4 0.4 25.8

(Σ∗mT
)pp 0.0 0.0 0.0 0.0

(Σπ∗mT
)pp 0.0 0.0 0.0 0.0

(Σπr∗mT
)pp 2.3 78.6 0.0 0.5

(Σ∗mT
)qs 0.0 0.0 0.0 0.0

(Σπ∗mT
)qs 1.5 1.1 0.0 0.0

(Σπr∗mT
)qs 30.3 221.6 5.8 8.5

(Σ∗mT
)mbb 0.0 0.0 0.0 0.0

(Σπ∗mT
)mbb 0.1 82.4 0.0 0.0

(Σπr∗mT
)mbb 6.0 85.2 0.0 5.3
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