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Abstract. The Arellano-Bond estimator is a fundamental method for dynamic panel data

models, widely used in practice. However, the estimator is severely biased when the data’s

time series dimension T is long due to the large degree of overidentification. We show that

weak dependence along the panel’s time series dimension naturally implies approximate

sparsity of the most informative moment conditions, motivating the following approach

to remove the bias: First, apply LASSO to the cross-section data at each time period to

construct most informative (and cross-fitted) instruments, using lagged values of suitable co-

variates. This step relies on approximate sparsity to select the most informative instruments.

Second, apply a linear instrumental variable estimator after first differencing the dynamic

structural equation using the constructed instruments. Under weak time series dependence,

we show the new estimator is consistent and asymptotically normal under much weaker

conditions on T ’s growth than the Arellano-Bond estimator. Our theory covers models with

high dimensional covariates, including multiple lags of the dependent variable, common in

modern applications. We illustrate our approach by applying it to weekly county-level panel

data from the United States to study opening K-12 schools and other mitigation policies’

short and long-term effects on COVID-19’s spread.

Keywords: Dynamic panel model, Arellano-Bond Estimator, GMM, LASSO, Debiasing

1. Introduction

Panel data involve observations collected for cross-sectional units (i = 1, . . . , N) over mul-

tiple time periods (t = 1, . . . , T ). Models for panel data are commonly used in economics

and other social sciences because they allow researchers to control for unobserved unit and

time heterogeneity and account for unit-level dynamics. These models have multiple appli-

cations, including evaluating job training and minimum wage regulations in labor economics,
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studying household consumption and economic growth in macroeconomics, estimating de-

mand models for products in microeconomics, and analyzing payout policies and investment

decisions in corporate finance. See Bond (2002) for a review of methods and applications of

dynamic panel data models.

The Arellano-Bond estimator (AB) is the most widely used fundamental method for panel

models (Arellano and Bond, 1991). It applies to dynamic linear models that include lagged

dependent variables and predetermined covariates as explanatory variables and unobserved

unit and time fixed effects. After taking first differences to remove the unit fixed effects, AB

constructs moment conditions using sufficiently lagged dependent variables and covariates

as instruments and applies the General Method Moment (GMM) to estimate the model

parameters. However, AB might be severely biased in long panels when T is large. The

problem arises because the number of moment conditions grows with the square of T , T 2,

leading to many instrument bias caused by the large degree of overidentification in the GMM

problem (e.g., Newey and Smith, 2004). More precisely, AB has an asymptotic bias of order

T/N , which might not be negligible compared to 1/
√
NT , the size of the stochastic error,

when the time dimension T is sufficiently large relative to N (Alvarez and Arellano, 2003).

This problem causes bias in estimates and undercoverage of confidence intervals.

We address the bias issue in AB estimators within long panels through a two-step method.

Initially, we select the most informative moment conditions, followed by applying a linear in-

strumental variable estimation using instruments derived from these conditions. Specifically,

as the number of AB’s moment conditions varies across time periods, we perform a moment

selection procedure on cross-section data for each time individually. We utilize the least

absolute shrinkage and selection operator (LASSO) Tibshirani (1996) as our selector, given

the naturally sparse structure of the moment conditions under appropriate weak temporal

dependence conditions.

Several moment selection methods have been previously established in other contexts. For

instance, Donald et al. (2009) introduced an alternative method for selecting instruments

based on asymptotic mean squared error calculations. Belloni et al. (2012) described a

similar approach to select optimal instruments using LASSO in cross-section instrumental

variable (IV) models. Other methods for constructing optimal instruments through model

averaging have been proposed by Kuersteiner and Okui (2010) and Okui (2011). Luo (2016)

expanded the LASSO selector to nonlinear GMM settings with many potential moments,

noting its computational advantages over Donald et al. (2009). Although some studies

employ the AB estimator to underpin their analyses or conduct simulations (e.g., Newey

and Windmeijer, 2009), none address the AB estimator directly, mainly because they assume
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temporal independence – an assumption invalidated in the AB context by the introduction

of temporal dependencies through first differences to remove unit fixed effects.

LASSO utilizes the ℓ1-norm to select the moment conditions. To show the validity of the

selector, we build on theoretical results achieving near-oracle rates for LASSO and related

estimators in Bickel et al. (2009), Belloni et al. (2011) and Belloni and Chernozhukov (2013).

An additional complication comes from the high dimensionality of the problem. As we

mentioned above, the number of moment conditions grows with T 2. Moreover, we allow for

high dimensional covariates including multiple lags of the dependent variable and strictly

exogenous covariates, which are common in modern applications, and unit and time fixed

effects, whose number grows with the two dimensions of the panel. While our method does

not suffer from shrinkage and model selection biases because the moment conditions of the

second step are Neyman-orthogonal with respect to the parameters estimated in the first

step, it is still subject to over-fitting bias. We deal with this problem by combining the two

steps of our procedure using cross-fitting (Chernozhukov et al., 2018). Thus, we partition

the panel in two parts. We select the moment conditions in the first part and estimate the

parameters in the second part. Then, we repeat the procedure reversing the roles of the two

parts and aggregate the results by averaging the estimates of the model parameters from the

two orderings. We show theoretically that this procedure removes asymptotic over-fitting

bias and improves small sample properties over the method that does not use cross-fitting

in various simulation settings.

There is an extensive recent literature on panel data with large T , including dynamic linear

models. Alvarez and Arellano (2003) studied the properties of AB and other estimators in

long panels. They showed that AB exhibits asymptotic bias when T/N tends to a constant.

Okui (2009) proposed a method to select instruments by characterizing the mean squared

error of the one-step AB estimator that uses the matrix of second moments of the instruments

as weighting matrix in models with homoskedastic errors and strictly exogenous regressors.

In the same setting, Carrasco and Nayihouba (2024) developed a version of the one-step AB

estimator that regularizes the weighting matrix building on Carrasco (2012). Our instrument

selection method is different and applies to both one-step and two-step AB estimators. It also

does not rely on homeskedastic errors and allows for weakly exogenous covariates. Chen et al.

(2019) developed a debiasing method for AB based on applying the split-panel idea of Dhaene

and Jochmans (2015) to the cross-section dimension of the panel. An alternative to debiasing

to deal with the many moments problem of GMM is the use of generalized empirical likelihood

(GEL) estimators (Newey and Smith, 2004; Newey and Windmeijer, 2009). While GEL

estimators have theoretical advantages over GMM, they are not commonly used in practice

due to their computational complexity. In that sense, our primary objective is to develop an

easily implementable approach for AB in moderately long panels. LASSO methods have also
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been combined with GMM and GEL in high dimensional models, but such combinations have

not been explored in panel settings. Examples include Chang et al. (2015); Shi (2016); Chang

et al. (2021), which considered relaxed/penalized empirical likelihood methods to address

the issue of many moment conditions with a fixed or diverging number of model parameters.

We refer to Belloni et al. (2018) for a recent review on high dimensional methods in GMM

settings. Finally, Kock and Tang (2019) and Semenova et al. (2023) applied LASSO methods

to dynamic panel models with sparsity in the unit fixed effects.

We make three main theoretical contributions. First, we demonstrate that the moment

conditions of AB have an approximately sparse structure under suitable temporal dependence

conditions and propose a LASSO version of AB that fruitfully exploits this structure. In

particular, the effective dimension of the non-zero coefficients in the first step estimation of

the selected instruments at each time period t is the minimum of logN and t, which is very

“low” relative to the cross-sectional size N . Second, we propose a cross-fitting procedure

based on sample-splitting, which removes the dependence between the generated errors of the

selected instruments and the errors in the main regression by conditioning on the sub-sample.

This enables us to remove the over-fitting bias and achieve a more favorable convergence

rate of the estimator under simple regularity conditions. It also opens the door to the use

of machine learning methods other than LASSO to select the most informative moment

conditions. Third, we consider models with high dimensional covariates. Here, we achieve

selection of moment conditions and covariates simultaneously by constructing orthogonal

conditions and employing regularized GMM with a sparse weighting matrix via Dantzig

selector, in order to partial out the effect of high dimensional nuisance parameters.

We apply our proposed method to study the effect of the opening of K-12 schools and

other policies on the spread of COVID-19 using a panel of 2, 510 US counties over 32 weeks,

extracted from the dataset used in Chernozhukov et al. (2021b). We estimate a panel

regression model with rich dynamics, incorporating four lags of the dependent variable and

several predetermined covariates. Due to the large number of instruments (m = 3, 402), the

small bias condition for AB of Chen et al. (2019), m2/(NT ) → 0, fails for the AB estimator

(m2/(NT ) ≈ 170).1 Using our proposed method, we find that policies such as the opening

of K-12 schools, college visits, mask mandates, and stay at home orders have larger short-

run effects but smaller long-run effects than those estimated using AB. The source of the

difference in this case is bias in the estimation of the autoregressive coefficients.

1In this calculation T = 27 because the first 5 observations are used as initial conditions of the dynamic

model.



AB-LASSO 5

Notation. For a vector v = (v1, ..., vd)
⊤ ∈ Rd and a constant r ≥ 1, we denote |v|r =

(
∑d

i=1 |vi|r)1/r and |v|∞ = max
1≤i≤d

|vi|. Define |v|0 as the zero norm, i.e. the number of non-

zero coordinates. For a matrix A = (aij)1≤i≤m,1≤j≤n, we define |A|max = max
1≤i≤m,1≤j≤n

|aij|,
|A|1 = max

1≤j≤n

∑m
i=1 |aij|, |A|∞ = max

1≤i≤m

∑n
j=1 |aij|, and |A|1,1 =

∑m
i=1

∑n
j=1 |aij|. For a random

variable Xit, we say Xit ∈ Lr if ∥Xit∥r
def
= (E |Xit|r)1/r < ∞ for some r > 0, and define

the sub-Gaussian norm as ∥Xit∥ψ1/2
= inf{s > 0 : E exp(X2

it/s
2) ≤ 2}, where E denotes the

expectation conditional on the unit and time effects. We denote cross-section averages of

Xit by Ē, that is ĒXit = lim
N→∞

N−1
∑N

i=1 EXit. Given two sequences of positive numbers an

and bn, we write an ≲ bn (resp. an ≍ bn) if there exists C > 0, which does not depend on

n, such that an/bn ≤ C (resp. 1/C ≤ an/bn ≤ C) for all large n. For a sequence of random

variables Xn, we use the notation Xn ≲P bn to denote Xn = OP(bn). For two real numbers,

set x ∨ y = max(x, y) and x ∧ y = min(x, y).

Outline. The rest of the paper is organized as follows. Section 2 introduces the model and

estimators. Section 3 presents the main theoretical results. Sections 4 and 5 report the

results of the simulation study and empirical application, respectively. Section 6 contains

some concluding remarks. Appendix collects the deferred proofs of the theoretical results

and supplementary tables with simulation results.

2. Model and Estimators

2.1. Basic Model. Let {(Yit, Dit, Cit) : 1 ≤ i ≤ N, 1 ≤ t ≤ T} be a panel dataset, where i

and t index unit and time period, respectively. Yit is a scalar outcome or response variable,

Dit is the policy variable or treatment of interest, and Cit is a vector of covariates of fixed

dimension including, for example, Yi,t−1 and other treatments. To measure the effect of Dit

on Yit, we consider a dynamic linear panel model:

Yit = αi + γt +X⊤
it θ

0 + εit, Xit := (Dit, C
⊤
it )

⊤, 1 ≤ t ≤ T, (1)

where θ0 is the parameter of interest, αi is an unobserved unit effect, γt is an unobserved time

effect, and εit is a zero-mean idiosyncratic error. We might also be interested in functions of

θ0 such as long-run effects in dynamic models that include lags of the dependent variable as

covariates. We refer to the empirical application in Section 5 for an example.

In the theoretical analysis, we shall treat the unobserved unit and time effects as fixed

parameters. This is equivalent to conditioning on the realization of all these effects.2 We

2Due to this conditioning, all probability statements should be qualified with almost surely. We shall omit

this qualifier for notational convenience.
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assume that {(Dit, Cit, εit) : 1 ≤ t ≤ T} are independent over i, and εit is an uncorre-

lated sequence over t. In addition, we assume that the treatment and covariates in Xit are

predetermined with respect to εit in the sense that

E(Xisεit) = 0, for all 1 ≤ s ≤ t, 1 ≤ t ≤ T.

We remove the unobserved effects by taking first differences over time and demeaning all

the variables at the unit level, namely

∆Ỹit = ∆X̃⊤
it θ

0 +∆ε̃it, 2 ≤ t ≤ T, (2)

where ∆Z̃it = ∆Zit −
∑N

j=1∆Zjt/N and ∆Zit = Zit − Zi,t−1, for Zit ∈ {Yit, Xit, εit}. The

transformed error, ∆ε̃it, satisfies the moment conditions

E(Xis∆ε̃it) = 0, for all 1 ≤ s ≤ t− 1, 2 ≤ t ≤ T.

AB uses these moment conditions to construct a GMM estimator of θ0. It should be

noted that AB is biased when T is large due to the large number of moment conditions, i.e.

m = (T − 2)(T − 1)/2 = O(T 2); see, e.g., Newey and Smith (2004) for more discussion.

We propose an alternative estimator that is computationally simple and has lower bias

when T is large. It is based on the application of LASSO to select the most informative

moment conditions to estimate the parameters. Thus, the estimator has two stages. It

first selects moment conditions using LASSO, and then estimates the parameters of interest

by instrumental variables, with the predicted values of the endogenous regressors obtained

from the selected moment conditions serving as instruments. We name the new estimator

as AB-LASSO as a shortcut for Arellano-Bond LASSO estimator.

Definition 2.1 (AB-LASSO). The AB-LASSO estimator consists of two steps:

1 For t = 2, . . . , T and Wit ∈ ∆X̃it, run the LASSO regressions:

Π̂t
def
= (π̂t0, π̂

⊤
t1, . . . , π̂

⊤
t,t−1)

⊤ ∈ arg min
πt0,...,πt,t−1

{ N∑
i=1

(
Wit − πt0 −

t−1∑
s=1

X⊤
isπts

)2

+ λt

t−1∑
s=1

ωts|πts|1
}
, (3)

where λt is a penalty tuning parameter and ωts is a non-negative weight that is a non-

increasing function of t− s, e.g., ωts = 1. Obtain the predicted values of the previous

regression, Ŵit ∈ ∆̂X̃it,

Ŵit = π̂t0 +
t−1∑
s=1

X⊤
is π̂ts.
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2 Estimate (2) by instrumental variable regression using ∆̂X̃it as the instrument for

∆X̃it, that is

θ̂ =

( N∑
i=1

T∑
t=2

∆̂X̃it∆X̃⊤
it

)−1 N∑
i=1

T∑
t=2

∆̂X̃it∆Ỹit. (4)

Remark 2.1 (Initial Conditions). We have implicitly assumed so far that the initial condi-

tions of Yit are observed in models that include lags of the dependent variable as covariates.

For example, we have assumed that Yi0 is observed when Cit includes Yi,t−1. If Yit is first

observed at t = 1, then the vector Xis in (3) needs to be modified to include only the

observed values of Cis. In models where Cit = Yi,t−1, for example, Xi1 = Di1 instead of

Xi1 = (Di1, Yi0).

Remark 2.2 (Neyman-Orthogonality). Let Vit = (1, X⊤
i1, . . . , X

⊤
i,t−1)

⊤ and

Πt = (πt0, π
⊤
t1, . . . , π

⊤
t,t−1)

⊤. The estimator given in (4) is a moment estimator with moment

function:

gi(θ,Π2, . . . ,ΠT ) =
T∑
t=2

Π⊤
t Vit(∆Ỹit −∆X̃⊤

it θ).

This moment function is Neyman-orthogonal with respect to each of the first stage parame-

ters Πt, t = 2, . . . , T , because

∂ E[gi(θ,Π2, . . . ,ΠT )]

∂Πt

∣∣∣
θ=θ0

= E[Vit(∆Ỹit −∆X̃⊤
it θ

0)] = 0, t = 2, . . . , T.

Note that the 2SLS (Two-Stage Least Squares) version of the second stage that replaces

∆X̃it by ∆̂X̃it in (4) does not satisfy this condition.

AB is an instrumental variable estimator. Its bias comes from overfitting because the

same observations are used to project the endogenous regressors on the instruments and to

estimate the parameters (Phillips and Hale, 1977; Angrist and Krueger, 1995; Angrist et al.,

1999). The order of the bias is m/n, where m is the number of moment conditions and n is

the sample size. In the case of AB, m = O(T 2) and n = NT , so that the order of the bias is

T/N . The order of the sampling noise is n−1/2 = (NT )−1/2, so that the small bias condition

of Chen et al. (2019) is m/n1/2 → 0 or equivalently m2/n = T 3/N → 0. AB-LASSO

reduces the overfitting bias by selecting moment conditions. Up to logarithmic terms, the

small bias condition for AB-LASSO becomes max
2≤t≤T

s∗t
√
T/N → 0 (s∗t is the dimension of

effective instruments for each t), see Remark 3.2. When T is moderately large relative to

N , AB-LASSO might still exhibit bias. The temporal dependence of the data can further

exacerbate the problem in finite samples. Indeed, we observe a more severe bias, compared

to the i.i.d. case studied in Belloni et al. (2012), in numerical simulations. To reduce this

bias, we develop a sample-splitting procedure over the cross-section dimension following the
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idea of the split-sample IV estimator of Angrist and Krueger (1995). We name the version

of AB-LASSO with sample splitting and cross-fitting as AB-LASSO-SS.

Definition 2.2 (AB-LASSO-SS). The AB-LASSO-SS estimator consists of the following

steps:

1 Partition the sample {(Yit, Dit, Cit) : 1 ≤ i ≤ N, 1 ≤ t ≤ T} along the cross-section

dimension into two parts or sub-samples A and B, corresponding to the indexes i ∈
{1, . . . , ⌊N/2⌋} =: IA and i ∈ {⌊N/2⌋+1, . . . , N} =: IB, where ⌊·⌋ denotes the integer
part.

2 Take first differences over time and demean at the unit level all the variables in

each sub-sample, namely ∆Z̃it,s = ∆Zit −
∑

j∈Is ∆Zjt/|Is|, i ∈ Is, s ∈ {A,B}, and
∆Zit = Zit − Zi,t−1, for Zit ∈ {Yit, Xit}.

3 For t = 2, . . . , T and Wit ∈ ∆X̃it,A, run step 1 of AB-LASSO in sub-sample A, that

is estimate the LASSO regressions:

Π̂t,A
def
= (π̂t0,A, π̂

⊤
t1,A, . . . , π̂

⊤
t,t−1,A)

⊤ ∈ arg min
πt0,...,πt,t−1

{∑
i∈IA

(
Wit − πt0 −

t−1∑
s=1

X⊤
isπts

)2

+ λt

t−1∑
s=1

ωts|πts|1
}
, (5)

where λt is a penalty tuning parameter and ωts is a non-negative weight that is a non-

increasing function of t− s, e.g., ωts = 1. Obtain the predicted values in sub-sample

B using the previous estimates from sub-sample A, Ŵit,BA ∈ ∆̂X̃it,BA,

Ŵit,BA = π̂t0,A +
t−1∑
s=1

X⊤
is π̂ts,A, i ∈ IB.

Run the second step of AB-LASSO in sub-sample B using the instruments ∆̂X̃it,BA,

θ̂B,A =

(∑
i∈IB

T∑
t=2

∆̂X̃it,BA∆X̃⊤
it,B

)−1∑
i∈IB

T∑
t=2

∆̂X̃it,BA∆Ỹit,B. (6)

4 Run step 3 reversing the roles of sub-samples A and B to obtain θ̂A,B.

5 Compute the cross-fitting estimator of θ0 as the average of the estimators in the two

orderings

θ̂SS = (θ̂A,B + θ̂B,A)/2. (7)

Remark 2.3 (K-Fold and Multiple Splitting). The above cross-fitting procedure can be

further generalized with K-fold sample splitting (e.g. K = 5). Each of the K sub-samples

is used as the main sample for estimating (6) while the rest form the auxiliary sample to

fit the LASSO estimate in (5). The resulting K estimates corresponding to the different
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partitions are averaged. The cross-section mean-difference is taken within the main and

auxiliary samples. Moreover, since the ordering of the cross-section units is arbitrary by the

independence assumption, we repeat the procedure for multiple splits by randomly permuting

the index i across units and aggregate the estimates by averaging across permutations. The

use of multiple sample splits makes the estimator invariant to the ordering of the cross-section

units.

Remark 2.4 (Comparison with SSIV). AB-LASSO-SS has two main differences with respect

to the split-sample IV (SSIV) estimator of Angrist and Krueger (1995) applied to a dynamic

panel model. First, we use LASSO instead of ordinary least squares (OLS) in the first step

to project the endogenous regressors on the instruments. In numerical simulations, we find

that using OLS in the first stage produces biased estimators of the parameters of interest,

even when we combine it with sample splitting, see Tables B.3 and B.4 in the Appendix.

Second, we use cross-fitting to improve efficiency and multiple sample splits to avoid the

temptation of data mining.

2.2. General Model with Many Exogenous Covariates. The basic model in (1) can

be extended by including additional covariates:

Yit = αi + γt +X⊤
it θ

0 + εit, Xit := (Dit, C
⊤
it , X

⊤
2,it)

⊤, (8)

where X2,it is a possibly high-dimensional vector of covariates that is independent over i and

satisfies

E(∆X2,it∆εit) = 0.

Examples of such covariates include strictly exogenous variables with respect to εit and lagged

predetermined covariates such as second and higher lags of the dependent variable. Denote

the dimension of X2,it by d2. The high-dimensional case arises when d2 is large relative to

the sample size n = NT such that it is more appropriate to treat d2 as increasing in the

asymptotic analysis. For this case, we propose a debiasing procedure to partial out the effect

of X2,it.

Remark 2.5 (Strictly Exogenous Covariates). If X2,it includes strictly exogenous covariates,

then there are additional moment conditions that can be used to estimate θ0. In particular,

E(Xse
2,is∆ε̃it) = 0, for all 1 ≤ s ≤ T, 2 ≤ t ≤ T,

where Xse
2,is ⊆ X2,it is the subset of strictly exogenous covariates of X2,it. These additional

moment conditions can be incorporated to step 1 of AB-LASSO.

To explain the partialling-out procedure, it is convenient to rewrite the extended model

(8) as:

Yit = αi + γt +X⊤
1,itθ

0
1 +X⊤

2,itθ
0
2 + εit, X1,it := (Dit, C

⊤
it )

⊤,
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where θ01 ∈ Rd1 and θ02 ∈ Rd2 . Denote d = d1 + d2, where d1 is fixed and d2 is growing with

n. Assume the sparsity assumption |θ02|0 = O(n). The moment functions are given by

git(θ1, θ2) = E
{
(∆Ỹit −∆X̃⊤

1,itθ1 −∆X̃⊤
2,itθ2)Uit

}
,

where Uit = (U0⊤
it ,∆X̃⊤

2,it)
⊤, U0

it (d1 × 1) contains the most informative IVs for ∆X̃1,it.

For each t, we wish to construct instruments for ∆X̃1,it from Uit that are orthogonal to

∆X̃2,it. We can achieve this goal by finding a weighting matrix Wt (d× d1) such that

E(∆X̃2,itU
⊤
it )Wt = 0,

and E(∆X̃1,itU
⊤
it )Wt is of the rank d1. This problem can be solved by Dantzig selector:

Ŵt = argmin
Wt

|Wt|1,1 subject to∣∣∣∣∣N−1

N∑
i=1

{(
∆X̃1,it

∆X̃2,it

)
Û⊤
it

}
Wt − Id×d1

∣∣∣∣∣
max

≤ ℓt, (9)

where we have replaced U0
it by the LASSO predictions, i.e. Ûit = (∆̂X̃1,it

⊤
,∆X̃⊤

2,it)
⊤, and

Id×d1 represents the d × d1 sub-matrix of the d × d identity matrix. Then, the instrument

for ∆X̃1,it is Ŵ⊤
t Ûit and the estimator of the parameters of interest becomes:3

θ̂1 =

( N∑
i=1

T∑
t=2

Ŵ⊤
t Ûit∆X̃

⊤
1,it

)−1( N∑
i=1

T∑
t=2

Ŵ⊤
t Ûit∆Ỹit

)
. (10)

The low-dimensional case arises when X2,it has few components such that we can treat d2

as fixed. In this scenario, regularization is not necessary when solving the weighting matrix

Wt, and the constraint in (9) becomes binding with ℓt = 0. Specifically, to partial out the

effect of the nuisance parameters that are not of interest, we can choose Wt in the form

of a co-projection matrix to ensure the orthogonality holds. We will not delve further into

discussing this case because it can be treated by partialling out X2,it together with the unit

and time effects in (2) using linear projections. In particular, we can define ∆Z̃it as the

residuals of the linear regression of ∆Zit on X2,it and a set of indicators for the time effects.

3. Main Theorems

In this section, we present the theoretical foundation of the proposed estimator. As a

special case of the general model in (8), we gain insights into the extended model by exploiting

the specific structure within the basic model (1). We will start by demonstrating some results

related to the basic model. In particular, we will first address the model without the time

3When X2it includes second or higher lags of the dependent variable the summation over t in (10) needs

to be modified to include only the observed values of Ûit. See Remark 2.1 for a related discussion.
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effect γt and then we discuss how the theory adapts in presence of γt. Throughout this

section, we impose the following conditions on the data generating processes.

Assumption 3.1 (Data Generating Processes). The processes Xit ∈ Rd and εit are sta-

tionary over t and i.i.d. over i, conditional on unobserved individual and time effects, and

admit the representations: Xit = Fit(. . . , ξi,t−1, ξit) and εit = git(. . . , ζi,t−1, ζit), where Fit(·) =
(fit,1(·), . . . , fit,d(·))⊤, Fit and git are measurable functions, and ξit, ζit for t ∈ Z, i ∈ N, are
i.i.d. random elements.4

We allow for overlap in the innovations ξit and ζit, as long as the exogeneity conditions

specified in Section 2 are satisfied, i.e., E(Xisεit) = 0, for all 1 ≤ s ≤ t. The following

definition, along with Assumptions 3.1 and 3.2(i) below, adapt the functional dependence

measure proposed by Wu (2005) for stationary time series processes to heterogeneous panel

data processes.

Definition 3.1 (Dependence Adjusted Norm). For each k = 1, . . . , d, let

X∗
it,k(ℓ) = fit,k(. . . , ξ

∗
i,t−ℓ, . . . , ξit),

where ξi,t−ℓ is replaced by an i.i.d. copy ξ∗i,t−ℓ. For r ≥ 1, define the functional dependence

measure δit,k,r(ℓ)
def
= ∥X∗

it,k(ℓ)−Xit,k∥r, which measures the dependency of ξi,t−ℓ on Xit,k. Ad-

ditionally, define ∆k,r,m
def
= max

1≤i≤N,1≤t≤T

∑∞
ℓ=m δit,k,r(ℓ), which measures the cumulative effects

for all ℓ ≥ m and is uniform over i and t. Moreover, the dependence adjusted norm of Xit,k

is introduced by ∥X·,k∥r,ς
def
= supm≥0(m+ 1)ς∆k,r,m, where ς > 0.

Assumption 3.2 (Data Generating Processes, Continued). (i) For each k = 1, . . . , d,

assume that ∥X·,k∥r,ς < ∞ for some r ≥ 4, ς > 0, and

∥X·,k∥ψν ,ς
def
= sup

r≥2
r−ν∥X·,k∥r,ς < ∞, for some ν ≥ 0, ς > 0.

Specifically, ∥X·,k∥ψν ,ς is the dependence adjusted sub-Gaussian or sub-exponential

norm, with ν taking values of 1/2 or 1, respectively.

(ii) εit is a martingale difference sequence (m.d.s.) over t, with respect to the filtration

Fit = {(Xis)
t
s=1, (Yis)

t−1
s=1}, i.e. E(εit | Fit) = 0. Analogous assumption to part (i) for

Xit,k holds for εit.

(iii) The sub-Gaussian norms max
1≤k≤d

∥Xit,k∥ψ1/2
< ∞, and ∥εit∥ψ1/2

< ∞, for all i =

1, . . . , N, t = 1, . . . , T .

4It is worth noting that in Assumption 3.1, we assume that conditional on the individual and time effects

{α1, . . . , αN , γ1, . . . , γT } is equivalent to conditional on {αi, γt}. As a result, in Definition 3.1, the functional

dependence measure δit,k,r(ℓ) is a random function of αi and γt, and we shall define ∆k,r,m (as well as the

dependence adjusted norm) as a uniform measure over i and t.
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Example 3.1 provides an heterogeneous linear process that satisfies Assumptions 3.2(i).

Example 3.1 (Heterogeneous Linear Process). Assume that Xit is univariate. For each

i = 1, . . . , N , consider the linear process:

Xit =
∑
ℓ≥0

aiℓξi,t−ℓ, 1 ≤ t ≤ T,

where the coefficients aiℓ can be heterogeneous over i and ℓ, and satisfy |aiℓ| ≤ |c|ℓ, for some

|c| < 1 and for all i and ℓ. The unobservable ξit’s are sub-Gaussian random variables that

are i.i.d. over i and t, and have finite rth-moment for some r ≥ 4. It follows that

δit,r(ℓ) = ∥X∗
it(ℓ)−Xit∥r = ∥aiℓξ∗i,t−ℓ − aiℓξi,t−ℓ∥r = |aiℓ|∥ξ∗i,t−ℓ − ξi,t−ℓ∥r,

∆r,m = max
1≤i≤N,1≤t≤T

∑
ℓ≥m

δit,r(ℓ) ≤ max
1≤i≤N,1≤t≤T

∑
ℓ≥m

|c|ℓ∥ξ∗i,t−ℓ − ξi,t−ℓ∥r ∝ |c|m,

∥X·∥r,ς = sup
m≥0

(m+ 1)ς∆r,m < ∞.

In the special case of a heterogenous over i and stationary over t AR(1) process:

Xit = βiXi,t−1 + ξit, |βi| < 1,

we have ait = βti , and ∆r,m ∝ max
1≤i≤N

|βi|m.

The m.d.s. condition in Assumption 3.2(ii) aligns with the standard large T panel litera-

ture; see, for example, Alvarez and Arellano (2003) and Arellano (2003, page 145). However,

it’s noteworthy that our theoretical analysis does not heavily rely on this assumption. With

some tedious but standard techniques, such as those demonstrated in Chen et al. (2022), we

could generalize the setting and achieve the same convergence rate without requiring any

additional theoretical insights.

Additionally, we note that for practitioners, the sub-Gaussian conditions in Assumption

3.2(iii) rule out heavy-tail distributions for Xit and εit. However, this assumption is not

critical for our analysis. They can be relaxed to a polynomial tail conditions with more

demanding rate assumptions.

3.1. Basic Model: Consistency of Step 1. We will first demonstrate the consistency

property of the LASSO estimator Π̂t, which is obtained in step 1 of AB-LASSO by (3). For

this purpose, a few definitions and assumptions are introduced as follows.

For each Wit ∈ ∆Xit, denote the N × 1 vector of (Wit)
N
i=1 by Wt. Recall that Vit =

(1, X⊤
i1, . . . , X

⊤
i,t−1)

⊤. Denote the dimension of Vit as mt, which is the number of instruments

for each time period t. We further stack V ⊤
it by rows for all i = 1, . . . , N , to create the
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N ×mt matrix Vt. For each t = 2, . . . , T , define the true model for step 1:

Wt = VtΠ
0
t + ηt,

with Π0
t

def
= Ē(VitV

⊤
it )

−1Ē(VitWit), and ηt is an N × 1 vector of the i.i.d. errors (ηit)
N
i=1.

Assumptions 3.1-3.2 guarantee that each component in Vit satisfies the finite moment condi-

tions E |Vit,k|2r < ∞ and E |Vit,kηit|r < ∞, for some r ≥ 2, where k = 1, . . . ,mt, i = 1, . . . , N ,

t = 2, . . . , T .

In addition to the true model, given 0 < s∗t ≤ mt, we consider a sparse approximation

Π∗
t = arg min

|Πt|0≤s∗t
Ē|V ⊤

it (Πt − Π0
t )|2. The oracle order of s∗t is determined by the degree of

temporal dependency in the data, which we will discuss in specific cases later. To quantify

the approximation error of Π∗
t with respect to Π0

t empirically, we consider the prediction

norm defined by

|Π∗
t − Π0

t |2,N
def
= N−1/2|Vt(Π∗

t − Π0
t )|2 =

[ 1
N

N∑
i=1

{V ⊤
it (Π

∗
t − Π0

t )}2
]1/2

=: Cs∗t . (11)

We shall express all the general rate of convergence results in terms of Cs∗t and provide

bounds for Cs∗t in specific examples (see Appendix A.2.2).

Let Π∗
t,k be the k-th element of Π∗

t , k = 1, . . . ,mt. Define the indices sets Jt
def
= {k ∈

{1, . . . ,mt} : Π∗
t,k ̸= 0} and J ct

def
= {k ∈ {1, . . . ,mt} : Π∗

t,k = 0}. For any δt ∈ Rmt , let

Jt,0 ⊆ {1, . . . ,mt} be a set of indices with cardinality |Jt,0| ≤ s∗t , and let Jt,1 ⊆ {1, . . . ,mt}
be the set of indices corresponding to the s∗t largest in absolute value coordinates of δt outside

of Jt,0. In the case of s∗t > mt/2, it corresponds to the mt−s∗t largest absolute values. Define

Jt,01
def
= Jt,0 ∪ Jt,1. Let δt,Jt be the sub-vector of δt corresponding to Jt, similarly for δt,Jc

t
and

δt,Jt,01 .

To show identification of Π∗
t , we consider two events (for each t) associated with the

restricted eigenvalue (RE) conditions, as outlined in Section 3 of Bickel et al. (2009). For

c0 > 0, define

A1t
def
=

{
min

δt ̸=0,|δt|0≤s∗t ,|δt,Jc
t
|1≤c0|δt,Jt |1

|Vtδt|2√
N |δt,Jt |2

≥ κt(c0, s
∗
t )
}
,

A′
1t

def
=

{
min

δt ̸=0,|δt|0≤s∗t ,|δt,Jc
t
|1≤c0|δt,Jt |1

|Vtδt|2√
N |δt,Jt,01|2

≥ κt(c0, s
∗
t , s

∗
t )
}
,

where κt(c0, s
∗
t ) and κt(c0, s

∗
t , s

∗
t ) are positive constants that depend on s∗t and c0. In Lemma

3.1, we will prove that these events occur with probabilities approaching to 1 as N → ∞,

for some κt(·) > 0 related to the RE condition in population, as per Assumption 3.3.

Assumption 3.3 (RE Condition). For any constant c0 > 0, define the subspace

Ωt(c0, s
∗
t )

def
= {δt/|δt|2 : δt ∈ Rmt , δt ̸= 0, |δt|0 ≤ s∗t , |δt,Jc

t
|1 ≤ c0|δt,Jt|1}.
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Assume that there exist some positive constants Cmin and Cmax such that

Cmin ≤ min
2≤t≤T

min
δt∈Ωt(c0,s∗t )

δ⊤t Ē(VitV
⊤
it )δt ≤ max

2≤t≤T
max

δt∈Ωt(c0,s∗t )
δ⊤t Ē(VitV

⊤
it )δt ≤ Cmax.

Lemma 3.1 (Identification). Under Assumptions 3.1-3.2, and Assumption 3.3 holding with

Cmin = min
2≤t≤T

κ2
t (c0, s

∗
t )−∆N,T and Cmax = max

2≤t≤T
κ2
t (c0, s

∗
t ) +∆N,T , where min

2≤t≤T
κt(c0, s

∗
t ) > 0

and ∆N,T
def
= max

2≤t≤T

√
s∗t/N logmt → 0 as N, T → ∞, then for each t,

min
δt ̸=0,|δt|0≤s∗t ,|δt,Jc

t
|1≤c0|δt,Jt |1

|Vtδt|2√
N |δt,Jt |2

≥ κt(c0, s
∗
t ),

holds with probability 1− O(1), as N → ∞.

Lemma 3.1 shows that P(A1t) → 1 as N → ∞ for each t, which is in line with Lemma 1

of Belloni and Chernozhukov (2013). We can similarly verify that P(A′
1t) → 1 as N → ∞.

These results establish the identification of the sparse solution Π∗
t within the subspace. In

Appendix A.2.2, we show that for a specific example, the oracle order of sparsity is bounded

as s∗t ≍ logN ∧ t.

Recall the LASSO estimator Π̂t obtained by (3). To achieve good prediction performance

of the estimator, properly chosen penalty tuning parameters and weights are necessary. For

each t = 2, . . . , T , let ωt be an mt×1 vector, with the first element being 1 and the remaining

elements collecting the non-negative penalty weights (ωts1s)
t−1
s=1, where 1s represents a vector

of ones with the same dimension as Xis.

Assumption 3.4 (Penalty Weights). Assume that |ωt|∞ is bounded by constant, |ωt,Jt |2 ≤√
s∗t , where ωt,Jt is the sub-vector of ωt corresponding to Jt.

According to the Karush-Kuhn-Tucker conditions of LASSO, the solution Π̂t satisfies

|{V ⊤
t (Wt − VtΠ̂t)} ⊘ ωt|∞ ≤ λt,

where ⊘ represents the Hadamard division, i.e. element-wise division. On the other hand,

to ensure the true Π0
t is feasible for the LASSO problem with high probability, we need the

event

A2t
def
= {c|V ⊤

t ηt ⊘ ωt|∞ ≤ λt}

to occur with high probability, where c > 2 is a constant. This suggests an ideal choice of

the tuning parameter λt is given by the tail quantile of the random variable c|V ⊤
t ηt⊘ωt|∞.

Furthermore, by relying on Assumptions 3.1-3.2 and 3.4, we can apply Lemma A.2, which

provides the maximal tail probability for the partial sum of the mt-dimensional process

ϖit
def
= Vitηit ⊘ ωt, to derive an upper bound for λt of the order

√
N logmt.
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Lastly, to conclude the consistency of the LASSO estimators, we present the prediction

performance bounds for δΠ,t
def
= Π̂t − Π∗

t in the following theorem. This will be combined

with the prediction norm of the approximation error in (11) to derive a performance bound

for Π̂t − Π0
t using the triangle inequality.

Theorem 3.1 (Prediction Performance Bounds of LASSO). Under the same assumptions as

in Lemma 3.1 and Assumption 3.4, on the event A2t for each t = 2, . . . , T , we can conclude,

with probability 1− O(1),

|δΠ,t|2,N ≤ 2Cs∗t + 2N−1
√

s∗tλt/κt(3, s
∗
t ),

|δΠ,t|1 ≤ 7
√
s∗t{2Cs∗t + 2N−1

√
s∗tλt/κt(3, s

∗
t )}/κt(3, s∗t ) + 56NC2

s∗t
/(3λt).

Based on these findings, in Corollary 3.1, we provide the joint prediction performance

bounds, where the ℓ2-norm bound is derived by following Theorem 7.2 of Bickel et al. (2009).

Corollary 3.1 (Joint Prediction Performance Bounds of LASSO). Under the same assump-

tions as in Theorem 3.1, if P
(⋂T

t=2(A1t ∩ A2t)
)
→ 1 as N, T → ∞, then with probability

1− O(1),

max
2≤t≤T

|δΠ,t|1 ≤ 7 max
2≤t≤T

√
s∗t{2Cs∗t + 2N−1

√
s∗tλt/κt(3, s

∗
t )}
/(

min
2≤t≤T

κt(3, s
∗
t )
)

+ 56N max
2≤t≤T

C2
s∗t

/(
3 min
2≤t≤T

λt

)
.

In addition, if P
(⋂T

t=2(A′
1t ∩ A2t)

)
→ 1 as N, T → ∞, then with probability 1− O(1),

max
2≤t≤T

|δΠ,t|2 ≤ 4 max
2≤t≤T

{2Cs∗t + 2N−1
√

s∗tλt/κt(3, s
∗
t , s

∗
t )}
/(

min
2≤t≤T

κt(3, s
∗
t , s

∗
t )
)
.

3.2. Basic Model: Inference Theory for Step 2. In this subsection, we establish the

asymptotic normality of the final estimator for both AB-LASSO and AB-LASSO-SS, which

will allow us to perform large sample inference on the parameter of interest and functions of

it.

Define Θ0
t (resp. Θ̂t) by stacking Π0

t (resp. Π̂t) by rows for all Wit ∈ ∆Xit. Specifically,

when the number of components in Xit is d, we have Θ0
t and Θ̂t with dimensions d ×

mt for each t = 2, . . . T . Recall the definition Vit = (1, X⊤
i1, . . . , X

⊤
i,t−1)

⊤. It follows that

∆̂Xit = Θ̂tVit, and the AB-LASSO estimator obtained in (4) (irrespective of the demeaning

transformation to remove the time effects) can be expressed by

θ̂ − θ0 =

( N∑
i=1

T∑
t=2

Θ̂tVit∆X⊤
it

)−1( N∑
i=1

T∑
t=2

Θ̂tVit∆εit

)
.

The asymptotic variance of θ̂ has the sandwich form. We impose the following assumptions

to derive the specific formula for it.
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Assumption 3.5 (Nonsingularity). Assume that as N, T → ∞, the limit matrix Q =

lim
N,T→∞

(NT )−1
∑N

i=1

∑T
t=2Θ

0
t E(Vit∆X⊤

it ) is nonsingular.

Assumption 3.2(ii) implies that E(εi,t−1εis | Vit) = 0, for 1 ≤ s < t−1, hence E(∆εit∆εi,t−ℓ |
Vit) = 0, for ℓ > 1. By defining Σ0,t

def
= lim

N→∞
N−1

∑N
i=1 E(VitV

⊤
it (∆εit)

2) and Σ1,t
def
=

lim
N→∞

N−1
∑N

i=1 E(VitV
⊤
i,t−1∆εit∆εi,t−1), we can express the asymptotic variance of θ̂ in the

form of

Ω = Q−1Σ(Q−1)⊤, (12)

where

Σ = lim
T→∞

( 1
T

T∑
t=2

Θ0
tΣ0,tΘ

0⊤
t +

1

T

T∑
t=3

Θ0
tΣ1,tΘ

0⊤
t−1 +

1

T

T∑
t=3

Θ0
t−1Σ

⊤
1,tΘ

0⊤
t

)
.

Accordingly, the empirical analog of Ω is

Ω̂ = Q̂−1Σ̂(Q̂−1)⊤, (13)

where Q̂ = (NT )−1
∑N

i=1

∑T
t=2 Θ̂tVit∆X⊤

it , and

Σ̂ =
1

T

T∑
t=2

Θ̂tΣ̂0,tΘ̂
⊤
t +

1

T

T∑
t=3

Θ̂tΣ̂1,tΘ̂
⊤
t−1 +

1

T

T∑
t=3

Θ̂t−1Σ̂
⊤
1,tΘ̂

⊤
t ,

with Σ̂0,t = N−1
∑N

i=1 VitV
⊤
it (∆ε̂it)

2 and Σ̂1,t = N−1
∑N

i=1 VitV
⊤
i,t−1∆ε̂it∆ε̂i,t−1.

Remark 3.1 (Consistency of Σ̂ and Q̂). The consistency property for Σ̂ and Q̂ is essential

for forming feasible confidence intervals for θ0 based on Ω̂. Such a requirement for Σ̂ can be

inferred from max
1≤i≤N,2≤t≤T

|ε̂it − εit| = OP(1) and max
2≤t≤T

|Θ̂t −Θ0
t |1,1 = OP(1).

To verify these conditions, consider ∆ε̂it = ∆Yit −∆X⊤
it θ̂:

max
1≤i≤N,2≤t≤T

|∆ε̂it −∆εit| = max
1≤i≤N,2≤t≤T

|∆X⊤
it (θ̂ − θ0)| ≤ max

1≤i≤N,2≤t≤T
|∆Xit|∞|(θ̂ − θ0)|1.

Under the conditions of Theorem 3.2, we have the above term of order
√

log(NT )/
√
NT .

Additionally, we have max
2≤t≤T

|Θ̂t −Θ0
t |1,1 ≲P max

2≤t≤T
s∗t logmt/

√
N , as shown in Corollary 3.1.

Concerning Q̂, we observe that∣∣∣∣(NT )−1

N∑
i=1

T∑
t=2

{Θ̂tVit∆X⊤
it −Θ0

t E(Vit∆X⊤
it )}
∣∣∣∣
max

≤
∣∣∣∣(NT )−1

N∑
i=1

T∑
t=2

(Θ̂t −Θ0
t )Vit∆X⊤

it

∣∣∣∣
max

+

∣∣∣∣(NT )−1

N∑
i=1

T∑
t=2

Θ0
t{Vit∆X⊤

it − E(Vit∆X⊤
it )}
∣∣∣∣
max

.
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As shown in the proof of Theorem 3.2, the first term is bounded by max
2≤t≤T

(s∗t logmt)
3/2/N ,

with probability tending to 1, and the second term is of order OP(1/
√
NT ). Hence, the

consistency for Q̂ follows.

Theorem 3.2 (Asymptotic Normality of AB-LASSO). Under Assumptions 3.1-3.5, assum-

ing the asymptotic variance Ω is a positive definite matrix, and max
2≤t≤T

s∗t logmt

√
T/N → 0,

the AB-LASSO θ̂ obtained by (4) is a consistent estimator of θ0, and

√
NT (θ̂ − θ0)

L→ N(0,Ω). (14)

Theorem 3.3 (Asymptotic Normality of AB-LASSO-SS). Under Assumptions 3.1-3.5, as-

suming the asymptotic variance Ω is a positive definite matrix, and max
2≤t≤T

√
s∗t logmt/

√
N →

0, the AB-LASSO-SS θ̂SS obtained by (7) is a consistent estimator of θ0, and

√
NT (θ̂SS − θ0)

L→ N(0,Ω). (15)

Remark 3.2 (Discussion of the Rates). It is important to note that the small bias condition

max
2≤t≤T

s∗t logmt

√
T/N → 0, as stated in Theorem 3.2, is relaxed in Theorem 3.3. This relax-

ation results in a more favorable convergence rate for the estimator when using AB-LASSO-

SS. This observation certifies that sample-splitting effectively mitigates the overfitting bias

by employing different sub-samples for instruments selection and parameter estimation.

More fundamentally, to prove the two theorems above, we require the term

(NT )−1/2

N∑
i=1

T∑
t=2

Q−1(Θ̂t −Θ0
t )Vit∆εit → 0,

as N, T → ∞. Without sample-splitting, the generated errors (Θ̂t−Θ0
t ) might be correlated

with the ordinary errors εit, and the order of this term is given by max
2≤t≤T

s∗t logmt

√
T/N .

While using sample-splitting, we achieve a smaller order of this term: max
2≤t≤T

√
s∗t logmt/

√
N .

Remark 3.3 (Time Effects). When time effects are included, the cross-sectional demeaning

of the variables introduces weak cross-sectional dependence to the data of order 1/N . This

dependence makes the asymptotic analysis much more cumbersome, but does not signifi-

cantly affect the results provided that T/N → 0, as N, T → ∞. Thus, the expressions of

the asymptotic variance only need to be adjusted by substituting the variables with their

demeaned counterparts. In Appendix A.3.3, we illustrate how the theorems outlined in this

section adapt in the presence of time effects in an example with a dynamic panel model with

one lagged dependent variable as a covariate, that is, a panel AR(1) model.
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3.3. General Model. Before concluding this section, we present the limiting distribution

of the estimator θ̂1 under the general model with many exogenous covariates, obtained by

(10), irrespective of the demeaning transformation to remove the time effects. Recall the

definition Uit = (U0⊤
it ,∆X⊤

2,it)
⊤, where U0

it contains the ideal IVs for ∆X1,it
5. The asymptotic

variance of θ̂1 takes the form of

Ω1 = Q−1
1 Σ1(Q

−1
1 )⊤,

where Q1 = lim
N,T→∞

(NT )−1
∑N

i=1

∑T
t=2 W⊤

t E(Uit∆X⊤
1,it) is assumed to be a nonsingular ma-

trix, and

Σ1 = lim
N,T→∞

{
(NT )−1

N∑
i=1

T∑
t=2

W⊤
t E(UitU

⊤
it (∆εit)

2)Wt

+ (NT )−1

N∑
i=1

T∑
t=3

W⊤
t E(UitU

⊤
i,t−1∆εit∆εi,t−1)Wt−1

+ (NT )−1

N∑
i=1

T∑
t=3

W⊤
t−1 E(Ui,t−1U

⊤
it∆εi,t−1∆εit)Wt

}
.

Define the moments Mt
def
= Ē

{(
∆X1,it

∆X2,it

)
U⊤
it

}
, and the empirical counterpart M̂t

def
=

N−1
∑N

i=1

{(
∆X1,it

∆X2,it

)
Û⊤
it

}
, where U0

it in Uit is replaced by the LASSO predictions, i.e. Ûit =

(∆̂X1,it

⊤
,∆X⊤

2,it)
⊤. Some additional assumptions on the moments Mt and the weighting

matrix Wt under the general model are made as follows.

Assumption 3.6 (Additional Assumptions on the General Model). (i) There exist se-

quences of constants cn, wn ≥ 0 (where n = NT ), such that max
2≤t≤T

(|Wt|1,1∨|M−1
t |∞) ≤

cn, and

max
2≤t≤T

d∑
i=1

d1∑
j=1

|Wt,ij|r ≲ wn, for some 0 ≤ r < 1,

where Wt,ij is the element in the i-th row and j-th column of Wt.

(ii) For each t = 2, . . . , T , assume that |Mt − M̂t|max ≲P ρN,t, with ρN,t → 0 as N → ∞.

(iii) Let vn
def
= log(N ∨ T ∨ d), and assume that

c2nwn(vn/N)
1−r
2

√
T + cn max

2≤t≤T
s∗t logmt

√
T/

√
N → 0, as N, T → ∞,

with the same r that makes part (i) hold.

5The ideal IVs for ∆X1,it are structured similarly to those for ∆Xit in the basic model, expressed asΘ0
tVit.

The covariates Vit are expanded by the additional moments arising from the strictly exogenous covariates in

X2,it, as commented in Remark 2.5.
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(iv) The tuning parameter ℓt ≥ 0 used in (9) satisfies max
2≤t≤T

ℓtϑn = O(1/
√
NT ), and

max
2≤t≤T

(ℓt + ρN,tcn) ≲ cn
√

vn/N , where ϑn
def
= |θ02|1.

The consistency condition stated in Assumption 3.6(ii) can be achieved by bounding |Mt−
M̂t|max using the concentration inequality provided in Lemma A.2, relying on Assumptions

3.1-3.2.

Moreover, the crucial rate condition in Assumption 3.6(iii) can be further improved to

c2nwn(vn/N)
1−r
2 +cn max

2≤t≤T

√
s∗t logmt/

√
N = O(1), if a sample-splitting procedure is employed.

Specifically, Ŵt by the Dantzig selector and instruments selection by LASSO are obtained

from a sub-sample that is cross-sectionally independent of the sub-sample used for computing

the final estimator in (10). More detailed explanations regarding this improvement can be

found in the proof of Theorem 3.4.

Theorem 3.4 (Asymptotic Normality for the General Model Estimator). Under Assump-

tions 3.1-3.6, assuming the asymptotic variance Ω1 is a positive definite matrix, we have the

general model estimator θ̂1 obtained by (10) is consistent, and

√
NT (θ̂1 − θ01)

L→ N(0,Ω1). (16)

4. Simulation Study

We illustrate the finite sample properties of the proposed AB-LASSO and AB-LASSO-SS

estimators, comparing them with other alternative methods based on AB. We consider the

following data generating process: for i = 1, . . . , N , t = 1, . . . , T ,

Yit = αi + γt + θ1Yi,t−1 + θ2Dit + εit,

Dit = ρDi,t−1 + vit,

where αi
i.i.d.∼ N(0, σ2

α) and γt
i.i.d.∼ N(0, σ2

γ) are mutually independent generated. For each i,(
εi,t−1

vit

)
i.i.d.∼ N2

((
0

0

)
,

(
1 0.5

0.5 1

))
,

such that Dit is predetermined with respect to εit, but it is not strictly exogenous. We set

ρ = 0.5, θ1 = 0.8, θ2 = 1, and σα = σγ = 1. To start the process, we set the initial values of

Y and D to zero for all the units and use the first 10 periods as burn-in sample.

As in the empirical application in Section 5, we assume that Yit is first observed at t = 1

and use all the available lags of Yit and Dit to construct the moment conditions, that is,

E(Zit∆ε̃it) = 0, Zit = (Yi,t−2, . . . , Yi1, Di,t−1, . . . , Di1)
⊤.
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See Remark 2.1 for a description of how the AB-LASSO and AB-LASSO-SS are modified

when we do not observe the initial condition Yi0. The LASSO fitting is carried out with post-

LASSO using a penalty (λ) that is independent of the design matrix. This approach is chosen

for its conservatism to prevent overfitting (Chernozhukov et al., 2021a). We set the penalty

weights equal to one, i.e., ωts = 1 for all t, s. For the AB-LASSO-SS estimator, we implement

a K-fold sample-splitting and cross-fitting procedure with K ∈ {2, 5}. According to the

formula for the asymptotic variance estimation shown in (13), we calculate the standard error

using the residuals based on the final estimate obtained after aggregation. We also repeat

the estimators 100 times using random sample splits and aggregate the results through the

medians. In addition to the conventional two-step AB, we compare the results with the

debiased AB of Chen et al. (2019) using one random split (i.e. 2 folds) along the cross-

section dimension. We refer this estimator as DAB-SS. For both comparison estimators, we

use the analytical standard error clustered at the individual level for AB, which are also

asymptotically valid for DAB-SS.

For each estimator, we report the root mean square error (RMSE), standard deviation

and bias in percent of the true parameter value, together with the length and empirical

coverage of confidence intervals (CI) with a nominal confidence level of 95%. Tables 4.1

and 4.2 display the results for the parameters θ1 and θ2, respectively, based on 500 simu-

lations for N = 200 and T ∈ {30; 40; 50}. These sample sizes lead to numbers of moment

conditions m ∈ {784; 1, 444; 2, 304} that are large relative to the corresponding sample sizes

n = NT ∈ {6, 000; 8, 000; 10, 000}. The resulting orders of the small bias condition are

m2/n ∈ {102; 261; 531}, which are not negligible.

We find that the performance of AB-LASSO-SS in terms of RMSE and CI coverage is

comparable to AB when T = 30. Thus, the bias reduction of AB-LASSO-SS relative to AB

is exactly compensated by an increase of dispersion in the RMSE. However, as T increases,

AB-LASSO-SS outperforms AB in all dimensions. For all the sample sizes considered, AB

has a bias of similar order of magnitude as the standard deviation and that grows with T as

the asymptotic theory predicts. It is evident that using LASSO to select the most relevant

moments followed by a sample-splitting procedure, significantly reduces the bias and results

in more accurate coverage rates. The confidence interval (CI) length of AB-LASSO-SS is

generally shorter than that for AB in most cases, suggesting that the bias reduction does

not come at the expense of more dispersion for sufficiently large T .

We also find that the AB-LASSO suffers from severe overfitting bias for both coefficients.

This bias can be even greater than the original bias of AB and highlights the necessity of

carrying out sample splitting. DAB-SS improves over AB in terms of the treatment coefficient

θ2 (when T is large) but not the autoregressive coefficient θ1. Overall, we find that the results
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for AB-LASSO-SS remain robust across different choices of K in terms of estimation, and

that using K = 5 split folds improves the inference accuracy with lower standard error and

coverage closer to the nominal level.

Table 4.1. Results for θ1 = 0.8 with N = 200

AB AB-LASSO AB-LASSO-SS AB-LASSO-SS DAB-SS

(K = 2) (K = 5)

T = 30

RMSE 0.04 0.16 0.04 0.04 0.15

std. dev. 0.02 0.02 0.04 0.04 0.07

bias -0.03 -0.16 0.00 0.00 0.13

CI length 0.14 0.09 0.23 0.14 0.14

coverage 0.97 0.00 0.99 0.95 0.21

T = 40

RMSE 0.10 0.16 0.04 0.04 0.33

std. dev. 0.05 0.02 0.04 0.04 0.12

bias -0.09 -0.16 0.00 0.00 0.31

CI length 0.25 0.07 0.20 0.13 0.25

coverage 0.81 0.00 0.99 0.93 0.06

T = 50

RMSE 0.26 0.16 0.04 0.03 0.36

std. dev. 0.08 0.02 0.04 0.03 0.17

bias -0.25 -0.16 0.00 0.00 0.32

CI length 0.30 0.05 0.15 0.11 0.30

coverage 0.22 0.00 0.99 0.93 0.21

Notes: The numbers in the table are divided by 0.8 for RMSE, standard deviation (std.

dev.), bias, and CI length. Superior results are indicated in bold.

We present some supplementary simulation results in Appendix B. In Tables B.1 and B.2,

the results for N = 400 are provided. With a relatively large N , the bias in AB estimation

is partially mitigated. However, when T ∈ {40; 50}, AB still produces considerably wider

confidence intervals compared to AB-LASSO-SS, which affects the credibility of the coverage

rate for inference purposes. Additionally, implementing AB demands a greater amount of

computational memory. For example, with N = 400 and T = 30, running AB for one

sample requires approximately 3.5 Gb of memory usage, whereas only 15 Mb are needed for

AB-LASSO-SS with a single partition of 5 folds. We track the RAM usage in R using the

package peakRAM.
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Table 4.2. Results for θ2 = 1 with N = 200

AB AB-LASSO AB-LASSO-SS AB-LASSO-SS DAB-SS

(K = 2) (K = 5)

T = 30

RMSE 0.07 0.18 0.05 0.05 0.12

std. dev. 0.04 0.03 0.05 0.05 0.10

bias -0.06 -0.18 0.00 0.01 0.08

CI length 0.28 0.11 0.28 0.18 0.28

coverage 0.97 0.00 0.99 0.95 0.76

T = 40

RMSE 0.16 0.18 0.05 0.04 0.15

std. dev. 0.07 0.03 0.05 0.04 0.14

bias -0.14 -0.18 0.00 0.00 0.04

CI length 0.45 0.10 0.25 0.15 0.45

coverage 0.88 0.00 0.99 0.94 0.83

T = 50

RMSE 0.24 0.19 0.04 0.04 0.18

std. dev. 0.09 0.02 0.04 0.04 0.18

bias -0.23 -0.18 0.00 0.00 0.00

CI length 0.53 0.09 0.23 0.17 0.53

coverage 0.68 0.00 1.00 0.95 0.86

Notes: Superior results are indicated in bold.

In Tables B.3 and B.4, we compare AB-LASSO and AB-LASSO-SS (5 folds) with other

naive approaches that fit the instruments through OLS regression rather than using LASSO,

for cases with N = 200 and T ∈ {30; 40; 50}. The results highlight the crucial role of

the moment selection in reducing bias. Utilizing LASSO to select the most informative

moments followed by a sample-splitting procedure, leads to narrower confidence intervals

and contributes to more efficient inference compared to AB-OLS-SS, which tends to overfit.

5. School Opening and COVID-19 Spread

We apply AB-LASSO-SS to study the effect of K-12 schools opening and other policies on

the spread of COVID-19 in the U.S. We use a balanced panel of 2,510 counties over 32 weeks

between April 1st and December 2nd, 2020. This panel was extracted from Chernozhukov

et al. (2021b), which constructed an unbalanced panel of U.S. counties including 7-day
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moving averages of daily observations for the same period. We aggregate the observations

at the week level to avoid spurious serial correlation coming from the moving averages.

In this application, Yit is the logarithm of the number of reported COVID-19 cases in

county i at week t, Dit is a measure of visits to K-12 schools from SafeGraph foot traffic

data, Cit contains other treatments and control variables, αi is a county fixed effect and γt

is a week fixed effect. We estimate the model:

Yit = αi + γt + θ0Di,t−1 + β1Yi,t−1 + β2Yi,t−2 + β3Yi,t−3 + β4Yi,t−4 + θ⊤1 C1i,t−1 + θ2C2it + εit,

where C1it includes measure of visits to colleges and policy indicators on mask mandates,

stay-at-home orders and the ban on gatherings of more than 50 persons, and C2it includes a

measure of the weekly growth rate in the number of tests. We assume that there is no serial

correlation in εit over t. The variables in Dit and C1it enter the model lagged one week to

account for the time lag between infection and case confirmation. Additionally, we assume

that Dit, C1it and C2it are predetermined with respect to εit and therefore use Yi,t−2, . . . , Yi1,

Di,t−1, . . . , Di1, C1i,t−1, . . . , C1i1 and C2i,t−1, . . . , C2i1 to construct moment conditions at each

t. This yields m = 3, 402 moment conditions and n = NT = 2, 510× 27 = 67, 770 observa-

tions.6 AB is likely to be biased in this case because m2/n ≈ 170.

Table 5.1 presents estimates and standard errors for AB, DAB-SS and AB-LASSO-SS

with K = 2 and K = 5. For the AB-LASSO-SS estimators, the penalty tuning parameter

λ and penalty weights ω are chosen in the same way as in the simulation study of Section

4. The coefficients of the model measure the short run effects of the covariates. In addition

to these coefficients, we report results for the long-run effects obtained as θk/(1−
∑4

j=1 βj)

where θk is the coefficient of the covariate of interest and β1, . . . , β4 are the coefficients of

Yi,t−1, . . . , Yi,t−4, respectively. All the methods reveal positive and significant effects of K-12

school and college visits on the spread of COVID-19. In particular, an increase in visits to

K-12 schools and colleges is associated with a higher number of cases in both the short and

long run. The estimated effects of mask mandates and stay-at-home orders are negative and

significant both in the short and long runs. The effect of banning gathering is found to be

negative and significant under AB and DAB-SS, but positive and barely significant under

AB-LASSO-SS.

Comparing AB-LASSO-SS with AB, AB-LASSO-SS produces similar estimates of short-

run effects but significantly smaller long-run effects in absolute value. AB-LASSO-SS also

produces more precise estimates of both effects than AB. The difference might be attributed

to the bias in the autoregressive coefficients in AB. In particular, AB-LASSO-SS gives signif-

icantly smaller estimates of the coefficient of Yi,t−1. In general, the results of AB-LASSO-SS

6The first 5 weeks are used as initial conditions.
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are not sensitive to the number of folds K. Debiasing the standard AB through half-splitting

the panel does not result in significant changes in the estimates.

According to AB-LASSO-SS, we conclude that the opening of K-12 schools one week is

associated with an increase in the number of covid-19 cases of about 50% the week after and

has a compounded long run increase of more than 100%. Mask mandates and stay-at-home

orders are associated with more modest effects. The reduction in the number of cases is

about 8% and 12% after a week and about 20% and 30% in the long run, respectively. These

effects are all statistically and economically relevant.

6. Concluding Remarks

We propose a LASSO and cross-fitting based estimator of dynamic linear panel models.

This estimator shows better large sample properties and finite-sample performance in sim-

ulations than the classical AB estimator in long panels. In an empirical application, our

estimator finds that policies such as the closure of K-12 schools, mask mandates and stay-at-

home orders reduced the spread of COVID-19 both in the short and long run. Our estimates

of the long run effects, however, are less optimistic than the estimates obtained with AB.

A potential avenue for future research is to analyze the performance of our method under

weak identification. This situation arises, for example, when the process of the outcome

Yit is very persistent such that lagged values of Yit might not strongly correlated with the

outcome in differences ∆Yit, see, for example, Blundell and Bond (1998). Here, we conjecture

that standard methods for dealing with weak instruments for cross-section data, such as the

use of the Anderson-Rubin statistics, can be fruitfully applied to our setting (Anderson and

Rubin, 1949). We leave this analysis to future research.
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Table 5.1. Short-run and long-run effects on COVID-19 Cases

AB-LASSO-SS AB-LASSO-SS AB DAB-SS

(K = 2) (K = 5)

Yi,t−1 0.63∗∗∗ 0.58∗∗∗ 0.78∗∗∗ 0.79∗∗∗

(0.02) (0.02) (0.01) (0.01)

Yi,t−2 -0.02∗∗ -0.02∗∗∗ 0.01 0.01

(0.01) (0.01) (0.01) (0.01)

Yi,t−3 0.04∗∗∗ 0.04∗∗∗ 0.06∗∗∗ 0.06∗∗∗

(0.01) (0.01) (0.01) (0.01)

Yi,t−4 -0.01∗ -0.01∗∗ 0.01 0.01

(0.01) (0.01) (0.01) (0.01)

K-12 school opening: Short-run 0.50∗∗∗ 0.48∗∗∗ 0.47∗∗∗ 0.44∗∗∗

(0.15) (0.14) (0.10) (0.10)

Long-run 1.44∗∗∗ 1.15∗∗∗ 3.17∗∗∗ 3.19∗∗∗

(0.42) (0.35) (0.69) (0.73)

College visits: Short-run 1.73∗∗∗ 1.85∗∗∗ 1.14∗∗∗ 1.03∗∗∗

(0.33) (0.33) (0.34) (0.34)

Long-run 5.02∗∗∗ 4.41∗∗∗ 7.69∗∗∗ 7.41∗∗∗

(1.01) (0.84) (2.32) (2.47)

Mask mandates: Short-run -0.09∗∗∗ -0.08∗∗∗ -0.10∗∗∗ -0.10∗∗∗

(0.02) (0.02) (0.01) (0.01)

Long-run -0.24∗∗∗ -0.19∗∗∗ -0.66∗∗∗ -0.69∗∗∗

(0.06) (0.05) (0.10) (0.10)

Stay-at-home orders: Short-run -0.12∗∗∗ -0.12∗∗∗ -0.08∗∗∗ -0.09∗∗∗

(0.03) (0.03) (0.02) (0.02)

Long-run -0.33∗∗∗ -0.28∗∗∗ -0.54∗∗∗ -0.62∗∗∗

(0.10) (0.08) (0.16) (0.17)

Banning gatherings: Short-run 0.06 0.06∗ -0.08∗∗∗ -0.08∗∗∗

(0.03) (0.03) (0.02) (0.02)

Long-run 0.16 0.14∗ -0.52∗∗∗ -0.58∗∗∗

(0.10) (0.08) (0.16) (0.17)

Tests weekly growth 0.003 0.003 0.01 0.01

(0.004) (0.004) (0.01) (0.01)

Notes: Analytical standard errors in parentheses. Significant codes: 0.01∗∗∗, 0.05∗∗, 0.1∗.
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Appendix

A. Technical Proofs

A.1. Some Useful Lemmas and Auxiliary Results. Define x = (x1, . . . , xn)
⊤,y =

(y1, . . . , yn)
⊤, where {xi}ni=1 and {yi}ni=1 are sequences of independent, mean-zero, unit vari-

ance, sub-Gaussian random variables. Let A be a class of n×m matrices. For A1, A2 ∈ A,

define the dq-metric as dq(A1, A2)
def
= ∥A1 − A2∥q, where ∥A∥q are the Schatten norms of

matrix A: ∥A∥q
def
=
(min(m,n)∑

i=1

σqi (A)
)1/q

for 1 ≤ q < ∞, and ∥A∥q
def
= σ1 for q = ∞, if A has

the singular values σ1 ≥ · · · ≥ σmin(m,n). For ϵ > 0, the ϵ-covering number of A with respect

to the dq-metric is denoted by N (ϵ,A, dq).

LEMMA A.1. Define E = sup
A∈A

max(E |A⊤x|22,E |A⊤y|22) + γ2
2(A, d∞) + ∆̄2(A)γ2(A, d∞),

V = ∆̄∞(A)
(
∆̄2(A)+γ2(A, d∞)

)
, U = ∆̄2

∞(A), where γp(A, dq) ≲
´∞
0

(
logN (ϵ,A, dq)

)1/p
dϵ,

∆̄q(A) = sup
A∈A

∥A∥q. For any u ≥ 0, there exists c1, c2 > 0 such that

P
(
sup
A∈A

|x⊤AA⊤y| ≥ c1E + u
)
≤ 2 exp

(
− c2min(u2/V, u/U)

)
.

A special case of Lemma A.1, with x = y, is stated in Theorem 6.2 of Dirksen (2015).

The applicability of the rate in a general context is evidently clear.

Given an s ∈ N, consider s probability spaces denoted as (Ω1,P1), . . . , (Ωs,Ps). Suppose

we have a parameter set T containing s-tuples τ = (τ1, . . . , τs). For each τ ∈ T , we have

an s-tuple Xτ = (Xτ1 , . . . , Xτs) of sub-exponential random variables Xτi : Ωi → R, and
define the sub-exponential norm as ∥Xτi∥ψ1 = inf{v > 0 : E exp(|Xτi |/v) ≤ 2}. Consider the
empirical process given by

Wτ =
1

s

s∑
i=1

(Xτi − EXτi),

Bernstein’s inequality (referenced, for instance, as Lemma 5.1 of Dirksen (2015)) implies that

the process (Wτ )τ∈T exhibits a mixed tail behavior with respect to the metrics (1
s
d1,

1√
s
d2),

where

d1(τ, τ
′) = max

1≤i≤s
∥Xτi −Xτ ′i

∥ψ1 , d2(τ, τ
′) =

(1
s

s∑
i=1

∥Xτi −Xτ ′i
∥2ψ1

)1/2
.

LEMMA A.2 (Corollary 5.2 of Dirksen (2015), Supremum of Empirical Processes). Let

σ,K > 0 be constants such that

sup
τ∈T

1

s

s∑
i=1

E |Xτi − EXτi |r ≤
r!

2
σ2Kr−2, r = 2, 3, . . . .
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Then, for any 1 ≤ q < ∞,(
E sup
τ∈T

|Wτ |q
)1/q

≲
( 1√

s
γ2(T , d2) +

1

s
γ1(T , d1)

)
+
√
q
σ√
s
+ q

K

s
.

In particular, there exist constants c, C > 0 such that for any u ≥ 1,

P
(
sup
τ∈T

|Wτ | ≥ C
( 1√

s
γ2(T , d2) +

1

s
γ1(T , d1)

)
+ c
( σ√

s

√
u+

K

s
u
))

≤ e−u.

LEMMA A.3 (Burkholder (1988); Rio (2009)). Let q > 1, q′ = min(q, 2). Let Mn =∑n
t=1 ξt, where ξt ∈ Lq (i.e., ∥ξt∥q < ∞) are martingale differences. Then

∥Mn∥q
′

q ≤ Kq′

q

n∑
t=1

∥ξt∥q
′

q where Kq = max((q − 1)−1,
√

q − 1).

LEMMA A.4 (Tail Probabilities for High-dimensional Partial Sums). For a mean zero

p-dimensional random variable Xt ∈ Rp (p > 1), let Tn =
∑n

t=1Xt and Tn,m =
∑n

t=1Xt,m,

where Xt,m = E(Xt | εt−m, . . . , εt). Assume that Φψν ,ς = max
1≤j≤p

sup
q≥2

q−ν∥Xj,·∥q,ς < ∞ for some

ν ≥ 0, and let γ = 2/(1 + 2ν). Then for all x > 0, we have

P(|Tn − Tn,m|∞ ≥ x) ≲ p exp{−Cγx
γmςγ/(

√
nΦψν ,ς)

γ},

where Cγ is a positive constant only depends on γ.

Lemma A.4 follows from Lemma C.3 of Zhang and Wu (2017) and applying the Bonferroni

inequality. In particular, ν = 1 corresponds to the sub-exponential case, and ν = 1/2

corresponds to the sub-Gaussian case.

A.1.1. Relaxing the Tail Assumption. Lemma A.1 primarily focuses on sub-Gaussian random

variables. Now, we explore ways to ease this assumption. Specifically, we examine the case

of m = 1, i.e., A is a vector of dimension n× 1.

THEOREM A.1. Assume that xi, yi ∈ Lq for some q > 2, supA∈A |A|2 ≲
√
ncn. Then, we

have with probability 1− O(1),

sup
A∈A

|x⊤AA⊤y| ≲ (E +
√
V + U)n2rγn + (n−(q−2)r/2+1cn)

2γn,

where E, V, U are defined in Lemma A.1, 0 < r ≤ 1/2, and γn is a slowly growing sequence

of positive constants.

Proof. We proceed without loss of generality by assuming x = y. Let z = (z1, . . . , zn)
⊤,

where zi = xi1(|xi| ≤ M) represents the truncated random variables, with M = cnr for
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constants c > 0 and 0 < r ≤ 1/2. Denote w = (w1, . . . , wn)
⊤, where wi = xi1(|xi| > M) =

xi − zi. It follows that

sup
A∈A

|x⊤AA⊤x| ≤ sup
A∈A

|z⊤AA⊤z|+ sup
A∈A

|w⊤AA⊤z|+ sup
A∈A

|x⊤AA⊤w|

≤ sup
A∈A

|z⊤AA⊤z|+ 2|w|2 sup
A∈A

|AA⊤x|2

≤ sup
A∈A

|z⊤AA⊤z|+ 2|w|2 sup
A∈A

|A|2 sup
A∈A

|A⊤x|.

Utilizing Lemma A.1, we bound the first term as supA∈A |z⊤AA⊤z| ≲P (E+
√
V +U)n2rγn,

where γn is a sequence of positive numbers growing slowly. Moreover, by Markov inequality,

we have

P(|w|22 > s2) ≤ nE[x2
i1(|xi| > M)]/s2 ≤ nE |xi|q/(s2M q−2),

Note that E |xi|q is bounded for some q > 2. By letting s2 = n−(q−2)r+1γn, we have the tail

probability tends to zero as n → ∞, that is |w|22 ≲P n−(q−2)r+1γn. Given supA∈A |A|2 ≲
√
ncn, it follows that

sup
A∈A

|x⊤AA⊤x| ≲P (E +
√
V + U)n2rγn + (n−(q−2)r/2+1cn)

2γn.

□

When r = log log n/ log n (implying nr = log n), the second term in the bound becomes

(log n)−(q−2)+2/rc2nγn. For sufficiently large q, this term would be dominated by the first term,

resulting in a similar rate as in the sub-Gaussian case, albeit subject to a scaling factor up

to a logarithmic order.

A.1.2. Relaxing the Independence Assumption. Consider two processes {xi}ni=1 and {yi}ni=1

(with xi, yi ∈ R), both of which are stationary with zero mean and unit variance, and admit

the representations: xi = f(Fi) and yi = g(Fi), where f, g are measurable functions, and

Fi
def
= {. . . , ηi−1, ηi}, with ηi for i ∈ Z being i.i.d. random elements.

Define the projector operator Pℓ(xiyj)
def
= E(xiyj | Fs−ℓ) − E(xiyj | Fs−ℓ−1), where s =

min(i, j). Note that Pℓ(xiyj) is m.d.s. with respect to Fs−1. For q ≥ 1, ς > 0, we introduce

the norm

Θq,ς
def
= sup

d≥0
(d+ 1)ς

∑
ℓ≥d

max
1≤i,j≤n

∥Pℓ(xiyj)∥q,

to measure the degree of dependence. This norm is directly linked to the dependence adjusted

norm for xiyj. Additionally, we denote a truncation argument as xmi
def
= E(xi | ηi−m, . . . , ηi).

Assumption A.1. (i) Assume that supq≥2 q
−νΘq,ς < ∞ for some ν ≥ 0, ς > 0.

(ii) The sub-Gaussian norm ∥xiyj∥ψ1/2
< ∞, for all i, j = 1, . . . , n.

(ii’) The sub-exponential norm ∥xiyj∥ψ1 < ∞, for all i, j = 1, . . . , n.
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(iii) There exists a finite set A = {δ ∈ Rn : |δ|∞ ≤ cmax}, for some cmax > 0, such thatˆ ∞

0

(
logN (ϵ,A, d∞)

)1/2
dϵ ≲ (logNn)

1/2,

where Nn is a sequence of positive constants greater than 1.

THEOREM A.2. Under Assumption A.1 with (ii), we have

sup
δ∈A

∣∣∣ n∑
i=1

n∑
j=1

δixiδjyj

∣∣∣/c2max ≲P n+ logNn +
√
n(logNn)

1/2 + nm−ς logNn.

Under Assumption A.1 with (ii’), we have

sup
δ∈A

∣∣∣ n∑
i=1

n∑
j=1

δixiδjyj

∣∣∣/c2max ≲P {n+ logNn +
√
n(logNn)

1/2}(log n)2γn + nm−ς(logNn)
3/2,

where γn is a slowly growing sequence of positive constants, see the proof of Theorem A.1.

Proof. Step 1: First, we need to prove that the deviation supδ∈A
∣∣∑n

i=1

∑n
j=1(δixiδjyj −

δix
m
i δjy

m
j )
∣∣, subject to the truncation error, is sufficiently small.

For each i = 1, . . . , n, define zi(δ)
def
=
∑n

j=1(δixiδjyj − δix
m
i δjy

m
j ). On Assumption A.1(i),

by applying Lemma A.4 on the summation
∑n

i=1 zi(δ), we obtain that

sup
δ∈A

∣∣∣ n∑
i=1

n∑
j=1

(δixiδjyj − δix
m
i δjy

m
j )
∣∣∣ ≲P nc2maxm

−ς(logNn)
1/γ,

where γ = 1 for the sub-Gaussian case, and γ = 2/3 for the sub-exponential case.

Step 2: Next, we shall bound the sum of the truncated terms. Divide the sample {1, . . . , n}
into L = ⌊n/m⌋ blocks: Al, l = 1, . . . , L, each of size m. Without loss of generality, assume

that L is an even number and let Bo, Be ⊆ {1, . . . , L} be the indices sets for the odd and

even blocks, respectively.

For each block l = 1, . . . , L, define x̃ml (δ)
def
=
∑

i∈Al
δix

m
i , ỹ

m
l (δ)

def
=
∑

i∈Al
δiy

m
i . It follows

that

n∑
i=1

n∑
j=1

δix
m
i δjy

m
j =

L∑
l=1

L∑
l′=1

∑
i∈Al

∑
j∈Al′

δix
m
i δjy

m
j

=
∑
l∈Bo

∑
l′∈Bo

x̃ml (δ)ỹ
m
l′ (δ) +

∑
l∈Bo

∑
l′∈Be

x̃ml (δ)ỹ
m
l′ (δ) +

∑
l∈Be

∑
l′∈Be

x̃ml (δ)ỹ
m
l′ (δ).

It is worth noting that {x̃ml (δ)}l∈Bo and {x̃ml (δ)}l∈Be are sequences of independent random

variables, similarly for {ỹml (δ)}l∈Bo and {ỹml (δ)}l∈Be . We shall apply Lemma A.1 to bound

each of the terms above. Taking the first term as an example, we denote a scaling constant

cl(δ) > 0 such that Var(x̃ml (δ)/cl(δ)) = Var(ỹml (δ)/cl(δ)) = 1, and stack them into a vector
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c(δ) = (cl(δ))l∈Bo . Using c(δ) as the weights in the quadratic form, it follows that for any

u ≥ 0, there exist c1, c2 > 0 such that

P
(
sup
δ∈A

∣∣∣∑
l∈Bo

∑
l′∈Bo

x̃ml (δ)ỹ
m
l′ (δ)

∣∣∣/c2max ≥ c1E + u
)
≤ 2 exp

(
− c2min(u2/V, u/U)

)
,

where E = n+ logNn +
√
n(logNn)

1/2, V = n+
√
n(logNn)

1/2, U = n.

To prove the case of (ii’), we just need to replace Lemma A.1 with Theorem A.1. In

particular, we choose r such that nr = log n and assume the moments condition holds with

a sufficiently high order to absorb the second term in the bound.

By combining the results of Step 1 and Step 2, we can conclude the proof. □

For a class of measurable functions G mapping to the real space R. let the d1-metric and

d2-metric be denoted as d1(f, g) = max1≤i≤n ∥f(xi) − g(xi)∥ψ1 and d2(f, g) = {E ∥f(xi) −
g(xi)∥2ψ1

}1/2, ∀f, g ∈ G. In the following theorem, we will derive a bound for the empirical

process supf∈G |n−1
∑n

i=1{f(xi)− E f(xi)}| under certain conditions.

Consider analogous definitions as mentioned earlier:

Pℓ(f(xi))
def
= E(f(xi) | Fi−ℓ)− E(f(xi) | Fi−ℓ−1), Θf,q,ς

def
= sup

d≥0
(d+ 1)ς

∑
ℓ≥d

max
1≤i≤n

∥Pℓ(f(xi))∥q,

fm(xi)
def
= E(f(xi) | ηi−m, . . . , ηi).

Assumption A.2. (i) The function class G is enveloped with F = supf∈G |f |, with

max1≤i≤n(E |F (xi)|2)1/2 < cn. Additionally, assume that there exists a sequence of

positive constants (greater than 1) Nn, such thatˆ ∞

0

logN (ϵ,G, d1)dϵ ≲ logNn,

ˆ ∞

0

(
logN (ϵ,G, d2)

)1/2
dϵ ≲ (logNn)

1/2.

(ii) For any f ∈ G, assume that supq≥1 q
−νΘf,q,ς < ∞ for some ν ≥ 0, ς > 0.

(iii) There exist constants σ,K > 0 such that

sup
f∈G

1

n

n∑
i=1

E |f(xi)− E f(xi)|q ≤
q!

2
σ2Kq−2, (q = 2, 3, . . .).

THEOREM A.3. Under Assumption A.2, we have

sup
f∈G

∣∣∣ 1
n

n∑
i=1

{f(xi)− E f(xi)}
∣∣∣/cn ≲P m−ς(logNn)

1/γ/
√
n+

√
(logNn)/n+

√
m(logNn)/n,

where γ = 1 for the sub-Gaussian case, and γ = 2/3 for the sub-exponential case.

Proof. To begin, we decompose the process as:

n−1

n∑
i=1

{f(xi)− E f(xi)} = n−1

n∑
i=1

{f(xi)− fm(xi) + fm(xi)− E fm(xi)}.
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In the subsequent two steps, we will analyze each part of the deviations.

Step 1: Given Assumptions A.2(i)-(ii), applying Lemma A.4 yields:

sup
f∈G

|n−1

n∑
i=1

{f(xi)− fm(xi)}| ≲P n−1/2m−ς(logNn)
1/γcn,

where γ = 1 for the sub-Gaussian case, and γ = 2/3 for the sub-exponential case.

Step 2: We partition the sample into blocks. The definitions of L, Al, Bo, and Be remain

consistent with those in the proof of Theorem A.2. For each block l = 1, . . . , L, define

zml,f
def
=
∑

i∈Al
{fm(xi)− E fm(xi)}. It follows that

n∑
i=1

{fm(xi)− E fm(xi)} =
L∑
l=1

zml,f =
∑
l∈Bo

zml,f +
∑
l∈Be

zml,f .

Note that {zml,f}l∈Bo and {zml,f}l∈Bo are sequences of independent random variables. We shall

apply Lemma A.2 to bound each of them.

Recalling the definition of the projector operation and utilizing Lemma A.3, we observe

that

∥zml,f∥q =
∥∥∥∑
ℓ≥0

Pℓ(zml,f )
∥∥∥
q

≤
∑
ℓ≥0

∥∥∥∑
i∈Al

Pℓ(fm(xi)− E fm(xi))
∥∥∥
q

≲
√
m
∑
ℓ≥0

max
1≤i≤n

∥Pℓ(fm(xi))∥q ≤
√
mΘf,q,ς .

Then, after proper scaling on the block sums, we can evoke Lemma A.2 to obtain that

sup
f∈G

∣∣∣n−1

L∑
l=1

zml,f

∣∣∣/cn ≲P

√
logNn/

√
n+

√
m logNn/n.

By combining the results of Step 1 and Step 2, we can conclude the proof. □

A.2. Proofs of Section 3.1.

A.2.1. The RE Condition.

Proof of Lemma 3.1. Recall that δt,Jt is a sub-vector of δt corresponding to the indices set

Jt. It suffices to show that the event

min
δt ̸=0,|δt|0≤s∗t ,|δt,Jc

t
|1≤c0|δt,Jt |1

|Vtδt|2√
N |δt|2

≥ κt(c0, s
∗
t )

occurs with probability 1 − O(1) as it is less likely to hold than the original event required

for identification.
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Consider the sphere Ωt(c0, s
∗
t ) defined in Assumption 3.3. To simplify notation, we will

henceforth refer to it as Ωt. Let Ωϵ
t be the ϵ-net of Ωt with respect to | · |2. According

to Rudelson and Zhou (2012), the cardinality of Ωϵ
t is bounded as |Ωϵ

t| ≲
(
mt

s∗t

)
(c/ϵ)s

∗
t ≤

{cemt/(s
∗
t ϵ)}s

∗
t , where mt is the dimension of Vit (i.e. the number of instruments for each

period t), and c > 0 is an absolute constant. Moreover, for any point δ ∈ Ωt, let π(δ) denote

the closest point to δ within Ωϵ
t.

We first observe that

min
δt∈Ωt

|Vtδt|22 ≥ min
δt∈Ωt

|Nδ⊤t Ē(VitV
⊤
it )δt| −max

δt∈Ωt

|δ⊤t {V ⊤
t Vt −N Ē(VitV

⊤
it )}δt|

≥ min
δt∈Ωt

|Nδ⊤t Ē(VitV
⊤
it )δt| −max

δt∈Ωt

|Vtδt|22 −max
δt∈Ωt

|Nδ⊤t Ē(VitV
⊤
it )δt|.

Next, we shall derive the upper bound for the second term. By defining Ct
def
= max

δt∈Ωt

|Vt(δt −

π(δt))|2, and Dt
def
= max

π(δt)∈Ωϵ
t

|Vtπ(δt)|2, we have the following inequalities

Dt − Ct ≤ max
δt∈Ωt

|Vtδt|2 ≤ Dt + Ct.

Since Ct ≤ ϵmax
δt∈Ωt

|Vtδt|2, we can further obtain that

Dt/(1 + ϵ) ≤ max
δt∈Ωt

|Vtδt|2 ≤ Dt/(1− ϵ).

To bound Dt, we apply the tail probability inequality in Lemma A.2 on the mean zero

random variable zit(δt)
def
= {π(δt)⊤Vit}2 − Ē{π(δt)⊤Vit}2, over all π(δt) ∈ Ωϵ

t. It follows that

D2
t ≲P

√
N{s∗t log(cemt/(s

∗
t ϵ))}1/2.

By choosing a sufficiently small ϵ, e.g., ϵ = 1/(log s∗t )
1/4, and given Assumption 3.3 with

the particular κt(·) specified in the conditions of the lemma, we have

min
δt∈Ωt

N−1/2|Vtδt|2 = min
δt ̸=0,|δt|0≤s∗t ,|δt,Jc

t
|1≤c0|δt,Jt |1

|Vtδt|2√
N |δt|2

≥ κt(c0, s
∗
t ),

which holds with probability 1− O(1), as N → ∞. □

A.2.2. Oracle Order of s∗t . Recall that Vit is a vector of length mt that gathers the instru-

ments for each t = 2, . . . , T . Let Jt ⊆ {1, . . . ,mt} be a set of indices with cardinality

|Jt| ≤ st ≤ mt, and let J ct = {k ∈ {1, . . . ,mt} : k /∈ Jt} be the complement set. Denote Vit,Jt
and Vit,Jc

t
as the sub-vectors of Vit corresponding to Jt and J ct , respectively. Consider the

true model

Wit = V ⊤
it Π

0
t + ηit = V ⊤

it,JtΠ
0
t,Jt + V ⊤

it,Jc
t
Π0
t,Jc

t
+ ηit︸ ︷︷ ︸

=:η̌it

,

where Π0
t

def
= Ē(VitV

⊤
it )

−1Ē(VitWit), Π
0
t,Jt

and Π0
t,Jc

t
are the sub-vectors of Π0

t corresponding

to Jt and J ct , respectively. Let δ0−Jt
def
= Π0

t − Π0
Jt
, where Π0

Jt
is a vector of length mt with
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elements corresponding to Jt being Π0
t,Jt

and zeros elsewhere. Moreover, define Π†
t,Jt

def
=

Ē(Vit,JtV
⊤
it,Jt

)−1Ē(Vit,JtWit), and Π̂t,Jt
def
=
(∑N

i=1 Vit,JtV
⊤
it,Jt

)−1(∑N
i=1 Vit,JtWit

)
.

To choose the optimal value of st, we consider the oracle risk minimization problem:

s∗t = argmin
st

{
min

Jt:|Jt|≤st
N−1

N∑
i=1

(V ⊤
it Π

0
t − V ⊤

it,JtΠ
†
t,Jt

)2 + stσ̌
2
t /N

}
, (A.1)

where σ̌2
t

def
= Ē(η̌2it | Vit,Jt). In the following theorem, we shall illustrate the oracle order of s∗t

for a specific case.

THEOREM A.4 (Oracle Order of s∗t ). Under Assumptions 3.1-3.2, and assuming that

Ē(V ⊤
it δ

0
−Jt) ≲ c−st for some constant c > 0, we can conclude that the optimal s∗t defined in

(A.1) is bounded as s∗t ≍ logN ∧ t.

Proof. Let eit
def
= V ⊤

it,Jt

(∑N
i=1 Vit,JtV

⊤
it,Jt

)−1(∑N
i=1 Vit,Jt η̌it

)
. Observe that

1

N

N∑
i=1

E{(V ⊤
it Π

0
t − V ⊤

it,JtΠ̂t,Jt)
2 | Vit,Jt}

=
1

N

N∑
i=1

E
([

V ⊤
it Π

0
t − V ⊤

it,Jt

( N∑
i=1

Vit,JtV
⊤
it,Jt

)−1( N∑
i=1

Vit,Jt(V
⊤
it,JtΠ

0
t,Jt + η̌it)

)]2
| Vit,Jt

)
=

1

N

N∑
i=1

δ0⊤−JtVitV
⊤
it δ

0
−Jt −

2

N

N∑
i=1

E(eitV
⊤
it δ

0
−Jt | Vit,Jt) +

1

N

N∑
i=1

E(e2it | Vit,Jt).

By applying the concentration inequality, we can bound the first term in probability by c−2st ,

and the second term as 1
N

∑N
i=1 E(eitV

⊤
it δ

0
−Jt | Vit,Jt) ≲P c−2st ∨ c−st

√
logmt/N . As for the

last term, under the cross-sectional independence assumption, we obtain that

1

N

N∑
i=1

E(e2it | Vit,Jt) =
1

N2

N∑
i=1

σ̌2
t tr
(( N∑

i=1

Vit,JtV
⊤
it,Jt

)−1

Vit,JtV
⊤
it,Jt

)
+ OP(1) ≲P N−1st.

Finally, to minimize the order of c−2st + c−st
√

logmt/N +N−1st, we find that the oracle

order of the optimal s∗t is approximately given by s∗t ≍ logN ∧ t. □

It is worth noting that the approximate sparse error, as quantified by (11), is bounded as

Cs∗t ≲P (c−2s∗t +c−s
∗
t

√
logmt/N+N−1s∗t )

1/2 is this particular case. Therefore, we can further

deduce the oracle bound for Cs∗t based on the optimal s∗t found above.

A.2.3. Prediction Performance of Π̂t.
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Proof of Theorem 3.1. First observe that

|Wt − VtΠ̂t|22 = |Vt(Π0
t − Π̂t) + ηt|22 = N |Π0

t − Π̂t|22,N + |ηt|22 + 2⟨Vt(Π0
t − Π̂t),ηt⟩,

|Wt − VtΠ
∗
t |22 = |Vt(Π0

t − Π∗
t ) + ηt|22 = N |Π0

t − Π∗
t |22,N + |ηt|22 + 2⟨Vt(Π0

t − Π∗
t ),ηt⟩.

By the definition of the LASSO estimator, we have

|Wt − VtΠ̂t|22 + λ|ωt ◦ Π̂t|1 ≤ |Wt − VtΠ
∗
t |22 + λ|ωt ◦ Π∗

t |1,

where ◦ denotes the Hadamard product. It follows that

|δΠ,t|22,N − 2Cs∗t |δΠ,t|2,N ≤ |Π0
t − Π̂t|22,N + |Π0

t − Π∗
t |22,N

= N−1|Wt − VtΠ̂t|22 −N−1|Wt − VtΠ
∗
t |22 + 2N−1⟨VtδΠ,t,ηt⟩

≤ 2N−1⟨VtδΠ,t,ηt⟩+N−1λt(|ωt ◦ Π∗
t |1 − |ωt ◦ Π̂t|1).

If |δΠ,t|22,N − 2Cs∗t |δΠ,t|2,N ≤ 0, then we have |δΠ,t|2,N ≤ 2Cs∗t and the desired bound in the

conclusion holds. In the following, we shall derive the bound for the case of |δΠ,t|22,N −
2Cs∗t |δΠ,t|2,N > 0.

On the event A2t (with c = 4), we have

⟨VtδΠ,t,ηt⟩ = ⟨η⊤
t Vt ⊘ ωt,ωt ◦ δΠ,t⟩ ≤ λt|ωt ◦ δΠ,t|1/4,

which implies that

|δΠ,t|22,N − 2Cs∗t |δΠ,t|2,N + (2N)−1λt|ωt ◦ δΠ,t|1
≤ N−1λt|ωt ◦ δΠ,t|1 +N−1λt(|ωt ◦ Π∗

t |1 − |ωt ◦ Π̂t|1). (A.2)

Recall that Jt is the indices set for nonzero elements in Π∗
t , and J ct is the complement set for

zero ones. Let δΠ,t,Jt and δΠ,t,Jc
t
denote the sub-vectors of δΠ,t corresponding to Jt and J ct ,

similarly for Π∗
t , Π̂t, and ωt. Then, by (A.2) we obtain that

|δΠ,t|22,N − 2Cs∗t |δΠ,t|2,N + (2N)−1λt|ωt ◦ δΠ,t|1
≤ N−1λt|ωt,Jt ◦ δΠ,t,Jt|1 +N−1λt|ωt,Jt ◦ Π∗

t,Jt |1 +N−1λt|ωt,Jt ◦ Π̂t,Jt|1
≤ 2N−1λt|ωt,Jt ◦ δΠ,t,Jt|1.

Without loss of generality, we set the penalty wights to be 1. Given |δΠ,t|22,N−2Cs∗t |δΠ,t|2,N ≥
0, (A.2) also implies that δΠ,t satisfies |δΠ,t,Jc

t
|1 ≤ 3|δΠ,t,Jt |1. On the event A1t, we get

|δΠ,t|2,N ≥ κt(3, s
∗
t )|δΠ,t,Jt|2. Therefore, on the events A1t and A2t, we have

|δΠ,t|22,N − 2Cs∗t |δΠ,t|2,N ≤ 2N−1
√
s∗tλt|δΠ,t,Jt|2 ≤ 2N−1

√
s∗tλt|δΠ,t|2,N/κ(3, s∗t ),

which gives the bound for prediction norm:

|δΠ,t|2,N ≤ 2Cs∗t + 2N−1
√
s∗tλt/κ(3, s

∗
t ).
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Next, we shall derive the bound for |δΠ,t|1. When |δΠ,t,Jc
t
|1 ≤ 6|δΠ,t,Jt|1 is satisfied, we have

|δΠ,t|1 ≤ 7|δΠ,t,Jt |1 ≤ 7
√
s∗t |δΠ,t,Jt|2 ≤ 7

√
s∗t |δΠ,t|2,N/κ(3, s∗t ).

When |δΠ,t,Jc
t
|1 > 6|δΠ,t,Jt|1, we have |δΠ,t|22,N − 2Cs∗t |δΠ,t|2,N < 0. Then, by (A.2) we can find

that C2
s∗t

≥ 1
16
N−1λt|δΠ,t,Jc

t
|1, and thus

|δΠ,t|1 <
7

6
|δΠ,t,Jc

t
|1 ≤

56

3
NC2

s∗t
/λt.

Overall, |δΠ,t|1 is bounded as

|δΠ,t|1 ≤ 7
√

s∗t{2Cs∗t + 2N−1
√

s∗tλt/κt(3, s
∗
t )}/κt(3, s∗t ) + 56NC2

s∗t
/(3λt).

□

A.3. Proofs of Section 3.2.

A.3.1. Asymptotic Normality of AB-LASSO.

Proof of Theorem 3.2. Recall the expression

θ̂ − θ0 =

(
1

NT

N∑
i=1

T∑
t=2

Θ̂tVit∆X⊤
it

)−1(
1

NT

N∑
i=1

T∑
t=2

Θ̂tVit∆εit

)
,

and rewrite the first summation as

(NT )−1

N∑
i=1

T∑
t=2

Θ̂tVit∆X⊤
it

= (NT )−1

N∑
i=1

T∑
t=2

(Θ̂t −Θ∗
t )Vit∆X⊤

it + (NT )−1

N∑
i=1

T∑
t=2

Θ∗
t{Vit∆X⊤

it − E(Vit∆X⊤
it )}

+(NT )−1

N∑
i=1

T∑
t=2

Θ∗
t E(Vit∆X⊤

it )

=: I1 + I2 + I3

To deal with the inverse of the sum, we consider the following expansion:

(I1 + I2 + I3)
−1 = [I3{Id×d + I−1

3 (I1 + I2)}]−1

=

[ ∞∑
k=0

{
− I−1

3 (I1 + I2)
}k]

I−1
3 = {Id×d − I−1

3 (I1 + I2) +Rn}I−1
3 ,

where Id×d represents the d × d identity matrix and Rn denotes the remainder of order

OP((NT )−1/2). We observe an approximate sparse error between Θ0
t and Θ∗

t , with the

average error rate being of a small order T−1
∑T

t=2 |Θ∗
t −Θ0

t |∞ = O(1). This generally holds

true under a decaying temporal dependence structure. The error is deemed negligible in the
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subsequent asymptotic analysis. Base on Assumption 3.5, we assert that I3 is inverterable

in the limit, with the presence of only a negligible error.

The second summation in the expression of (θ̂ − θ0) is rewritten as

(NT )−1

N∑
i=1

T∑
t=2

Θ̂tVit∆εit

= (NT )−1

N∑
i=1

T∑
t=2

(Θ̂t −Θ∗
t )Vit∆εit + (NT )−1

N∑
i=1

T∑
t=2

Θ∗
tVit∆εit =: P1 + P2

It follows that

θ̂ − θ0 = I−1
3 P2 + I−1

3 P1 − I−1
3 (I1 + I2)I

−1
3 (P1 + P2) + OP((NT )−1/2). (A.3)

We will prove that I−1
3 P2 is the leading term, with

√
NTI−1

3 P2 exhibiting asymptotic Gaus-

sianity and analyze the orders of the other terms.

We refer to a central limit theorem for stationary random field (Theorem 1 of El Machkouri

et al. (2013)) to establish asymptotic normality. To achieve this, we must verify the necessary

conditions outlined below.

Define an index set JN,T
def
= {(i, t) : 1 ≤ i ≤ N, 2 ≤ t ≤ T}. As N, T → ∞, it

follows that the cardinality |JN,T | → ∞, while the ratio |∂JN,T |/|JN,T | → 0, where ∂JN,T
contains the boundary points of JN,T . Under Assumption 3.1, the d-dimensional process

Z(i,t)
def
= Θ∗

tVit∆εit is stationary over t and i.i.d. across i. For k = 1, . . . , d, Z(i,t),k can be

represented as Z(i,t),k = h(i,t),k(. . . , η(i,t−1), η(i,t)), where h(i,t),k are measurable functions, and

η(i,t) for i ∈ N, t ∈ Z, are i.i.d. random elements. By Definition 3.1 and Assumption 3.2(i),

it follows that ∑
(i,t)∈JN,T

∥Z∗
(i,t),k − Z(i,t),k∥2 < ∞.

Moreover, Assumption 3.2(ii), along with the cross-sectional independence assumption, im-

plies that for k, k′ = 1, . . . , d, the variance

E

[( ∑
(i,t)∈JN,T

Z(i,t),k)

)( ∑
(i,t)∈JN,T

Z(i,t),k′

)]
=

∑
(i,t)∈JN,T

E(Z(i,t),kZ(i,t),k′) +
∑

(i,t)∈J ′
N,T

E(Z(i,t),kZ(i,t−1),k′) +
∑

(i,t)∈J ′
N,T

E(Z(i,t−1),kZ(i,t),k′)

is of order NT , where J ′
N,T

def
= {(i, t) : 1 ≤ i ≤ N, 3 ≤ t ≤ T}. Therefore, based on

Assumption 3.5, by applying Theorem 1 of El Machkouri et al. (2013) and Slutsky’s theorem,

we deduce that
√
NTI−1

3 P2
L→ N(0, Q−1Σ(Q−1)⊤).
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Recalling the subspace Ωt(c0, s
∗
t ) defined in Assumption 3.3, and considering the entropy

condition (with respect to the d2-metric):

ent
(
ϵ,
⋃

2≤t≤T
Ωt(c0, s

∗
t )
)
≲ T max

2≤t≤T
s∗t log(mt/ϵ), for all 0 < ϵ < 1,

by employing Theorem A.3 based on Assumptions 3.1-3.2, we obtain:

sup
δt∈Ωt(c0,s∗t ), t=2,...,T

∣∣∣∣(NT )−1

N∑
i=1

T∑
t=2

δ⊤t Vit∆εit

∣∣∣∣ ≲P

√
max
2≤t≤T

s∗t logmt/
√
N. (A.4)

Consequently, we bound |I−1
3 P1|∞ as:

|I−1
3 P1|∞ ≤ |I−1

3 |∞
∣∣∣∣(NT )−1

N∑
i=1

T∑
t=2

(Θ̂t −Θ∗
t )Vit∆εit

∣∣∣∣
∞

≲P max
2≤t≤T

s∗t logmt/N.

Next, we proceed to bound |I−1
3 (I1 + I2)I

−1
3 (P1 + P2)|∞. Observe that

|I−1
3 (I1 + I2)I

−1
3 (P1 + P2)|∞ ≤ |I−1

3 I1I
−1
3 P1|∞ + |I−1

3 I2I
−1
3 P1|∞

+ |I−1
3 I1I

−1
3 P2|∞ + |I−1

3 I2I
−1
3 P2|∞. (A.5)

We first look at the rate of |I−1
3 I1I

−1
3 P1|∞. By letting Dt

def
= Θ̂t −Θ∗

t , we have

I−1
3 I1I

−1
3 P1 = (NT )−2

N∑
i=1

T∑
t=2

N∑
i′=1

T∑
t′=2

I−1
3 ∆tVit∆X⊤

it I
−1
3 Dt′Vi′t′∆εi′t′ .

In particular, for k = 1, . . . , d, the kth element of I−1
3 I1I

−1
3 P1 is given by

(NT )−2

N∑
i=1

T∑
t=2

N∑
i′=1

T∑
t′=2

[I−1
3 ]k·DtVit∆X⊤

it I
−1
3 Dt′Vi′t′∆εi′t′

= (NT )−2

d∑
k′=1

N∑
i=1

T∑
t=2

N∑
i′=1

T∑
t′=2

[I−1
3 Dt]k·[Vit∆X⊤

it ]·k′ [I
−1
3 Dt′ ]k′·Vi′t′∆εi′t′

= (NT )−2

d∑
k′=1

N∑
i=1

T∑
t=2

N∑
i′=1

T∑
t′=2

[∆XitV
⊤
it ]k′·[I

−1
3 Dt]

⊤
k·[I

−1
3 Dt′ ]k′·Vi′t′∆εi′t′

= (NT )−2

d∑
k′=1

N∑
i=1

T∑
t=2

N∑
i′=1

T∑
t′=2

[∆XitV
⊤
it − E(∆XitV

⊤
it )]k′·[I

−1
3 Dt]

⊤
k·[I

−1
3 Dt′ ]k′·Vi′t′∆εi′t′

+ (NT )−2

d∑
k′=1

N∑
i=1

T∑
t=2

N∑
i′=1

T∑
t′=2

[E(∆XitV
⊤
it )]k′·[I

−1
3 Dt]

⊤
k·[I

−1
3 Dt′ ]k′·Vi′t′∆εi′t′ ,

where [·]k· denotes the kth row and [·]·k denotes the kth column of the matrix, respectively.

Consider the class of functions

At,t′
def
= {At,t′ = ata

⊤
t′ : at ∈ Ω(c0, s

∗
t ), at′ ∈ Ω(c0, s

∗
t′)},
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with the entropy condition (with respect to the d∞-metric):

ent
(
ϵ,
⋃

2≤t,t′≤T
At,t′

)
≲ T 2

{
max
2≤t≤T

s∗t log(mt/ϵ)
}2
, for all 0 < ϵ < 1.

Applying Theorem A.2 based on Assumptions 3.1-3.2, we find that

sup
At,t′∈At,t′ , t,t

′=2,...,T

∣∣∣∣(NT )−2

N∑
i=1

T∑
t=2

N∑
i′=1

T∑
t′=2

[∆XitV
⊤
it − E(∆XitV

⊤
it )]k′·At,t′Vi′t′∆εi′t′

∣∣∣∣
≲P (NT )−1 log3(NT ).

Moreover, combining (A.4) with the fact that

sup
at∈Ωt(c0,s∗t ), t=2,...,T

∣∣∣∣(NT )−1

N∑
i=1

T∑
t=2

[E(∆XitV
⊤
it )]k′·at

∣∣∣∣ ≲ max
2≤t≤T

s∗t logmt/
√
N,

we achieve:

sup
At,t′∈At,t′ , t,t

′=2,...,T

∣∣∣∣(NT )−2

N∑
i=1

T∑
t=2

N∑
i′=1

T∑
t′=2

[E(∆XitV
⊤
it )]k′·At,t′Vi′t′∆εi′t′

∣∣∣∣
≲P max

2≤t≤T
(s∗t logmt)

3/2/N.

As a result, we bound |I−1
3 I1I

−1
3 P1|∞ as

|I−1
3 I1I

−1
3 P1|∞ ≲P max

2≤t≤T
(s∗t logmt)

5/2/N2.

Regarding the other terms on the right-hand side of (A.5), note that |I−1
3 I2|∞ = OP(1/

√
NT )

and |I−1
3 P2|∞ = OP(1/

√
NT ), which imply that |I−1

3 I2I
−1
3 P2|∞ = OP(1/(NT )). Combin-

ing the bound for |I−1
3 P1|∞ we have found above, we also deduce that |I−1

3 I2I
−1
3 P1|∞ ≲P

max
2≤t≤T

s∗t logmt/
√
N3T . Lastly, as for |I−1

3 I1|∞, applying Theorem A.3 gives that

sup
δt∈Ωt(c0,s∗t ), t=2,...,T

∣∣∣∣(NT )−1

N∑
i=1

T∑
t=2

δ⊤t {Vit∆X⊤
it − E(Vit∆X⊤

it )}
∣∣∣∣
∞

≲P

√
max
2≤t≤T

s∗t logmt/
√
N.

Combining this with the fact that

sup
δt∈Ωt(c0,s∗t ), t=2,...,T

∣∣∣∣(NT )−1

N∑
i=1

T∑
t=2

δ⊤t E(Vit∆X⊤
it )

∣∣∣∣
∞

≲P max
2≤t≤T

s∗t logmt/
√
N,

we conclude that |I−1
3 I1|∞ ≲P max

2≤t≤T
(s∗t logmt)

3/2/N , which implies that |I−1
3 I1I

−1
3 P2|∞ ≲P

max
2≤t≤T

(s∗t logmt)
3/2/

√
N3T .

Under the condition max
2≤t≤T

s∗t logmt

√
T/

√
N → 0, we have

√
NT |I−1

3 P1|∞ = OP(1), as well

as
√
NT |I−1

3 (I1 + I2)I
−1
3 (P1 + P2)|∞ = OP(1). Thus, the proof is concluded. □



42 CHERNOZHUKOV, FERNÁNDEZ-VAL, HUANG AND WANG

A.3.2. Asymptotic Normality of AB-LASSO-SS.

Proof of Theorem 3.3. Analogous to (A.3), we derive expansions for θ̂A,B− θ0 and θ̂B,A− θ0,

respectively. With sample-splitting, a significant difference arises in the convergence rate

of (NT )−1/2
∑

i∈Is
∑T

t=2(Θ̂t − Θ∗
t )Vit∆εit, where s ∈ {A,B}. As Θ̂t is obtained from a

sub-sample uncorrelated with the one considered in the summation, we have

(NT )−1/2

∣∣∣∣∑
i∈Is

T∑
t=2

(Θ̂t −Θ∗
t )Vit∆εit

∣∣∣∣
∞

≲P max
2≤t≤T

√
s∗t logmt/

√
N.

Thus, the required condition reduces to max
2≤t≤T

√
s∗t logmt/

√
N → 0, as N, T → ∞. The

remainder of the proof follows that of Theorem 3.2 in a similar manner. □

A.3.3. Time Effects. In this subsection, we discuss how the inference theory, such as The-

orem 3.2, adapts in the presence of time effects γt. We illustrate this by considering an

example with a panel AR(1) model:

Yit = αi + γt + θ1Yi,t−1 + θ2Dit + εit, |θ1| < 1. (A.6)

We assume that E(Yisεit) = 0 for all 1 ≤ s < t, and E(∆Dit∆εit) = 0. In addition to

Assumptions 3.1-3.2, for simplicity, in this particular example, we assume that αi, γt, and

Dit have zero mean, Dit has no serial correlation over t. Let σ2
D denote the variance of Dit.

We also assume that the fourth moment of Dit is bounded by a constant.

By recursively substituting the lagged values, the model in (A.6) can be rewritten as:

Yit = αi
∑
ℓ≥0

θℓ1 +
∑
ℓ≥0

θℓ1γt−ℓ + θ2
∑
ℓ≥0

θℓ1Di,t−ℓ +
∑
ℓ≥0

θℓ1εi,t−ℓ. (A.7)

For Zit ∈ {Yit, Dit, εit}, let Z̄·t =
∑N

i=1 Zit/N (similarly, ᾱ· =
∑N

i=1 αi/N), Z̃it = Zit − Z̄·t,

and ∆Z̃it = ∆Zit −
∑N

i=1 ∆Zit/N . It follows that

Ȳ·t = ᾱ·
∑
ℓ≥0

θℓ1 +
∑
ℓ≥0

θℓ1γt−ℓ + θ2
∑
ℓ≥0

θℓ1D̄·,t−ℓ +
∑
ℓ≥0

θℓ1ε̄·,t−ℓ, (A.8)

Ỹit = (αi − ᾱ·)
∑
ℓ≥0

θℓ1 + θ2
∑
ℓ≥0

θℓ1D̃i,t−ℓ +
∑
ℓ≥0

θℓ1ε̃i,t−ℓ. (A.9)

Recall the definitions of Vit and Θ0
t as provided in Section 3. In this example, we have

Xit = (Dit, Yi,t−1)
⊤. Given the assumption E(∆Dit∆εit) = 0, we do not need to project

∆Dit onto the instruments. Hence, Θ0
t , which collects the coefficients in the reduced form,

is simply a vector of dimension 1×mt.

Similar to the proof of Theorem 3.2, we can show that terms involving Θ̂t − Θ0
t are

of smaller order. The cross-sectional demeaning would similarly affect the rate of these

terms, akin to the dominant ones. Therefore, our focus will be on examining the orders
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of the terms involving Θ0
t . Specifically, we will analyze the orders of

∑N
i=1

∑T
t=2Θ

0
tVit∆ε̃it

and
∑N

i=1

∑T
t=2Θ

0
tVit∆X̃it, which are pivotal in the rate analysis for proving asymptotic

normality.

Regarding
∑N

i=1

∑T
t=2Θ

0
tVit∆ε̃it, we observe that, provided T/N → 0, we have:

N∑
i=1

T∑
t=2

Θ0
tVit∆ε̃it =

N∑
i=1

T∑
t=2

Θ0
tVit∆εit −

N∑
i=1

T∑
t=2

Θ0
tVit∆ε̄it

=
N∑
i=1

T∑
t=2

Θ0
tVit∆εit −N−1

N∑
i=1

N∑
j=1

T∑
t=2

Θ0
tVit∆εjt = OP(

√
NT ).

Note that the covariance of the two components is of order T , which is negligible compared

to
√
NT if T/N → 0, as N, T → ∞.

Concerning
∑N

i=1

∑T
t=2 Θ

0
tVit∆X̃it, it consists of two components related to ∆Ỹi,t−1 and

∆D̃it. We will now elaborate on the order of
∑N

i=1

∑T
t=2Θ

0
tVit∆Ỹi,t−1. A similar analysis

applies to
∑N

i=1

∑T
t=2Θ

0
tVit∆D̃it.

By (A.7) and (A.8), we obtain:

∆Ỹi,t−1 = Yi,t−1 − Yi,t−2 − Ȳ·,t−1 − Ȳ·,t−2

= θ2
∑
ℓ≥0

θℓ1(Di,t−1−ℓ −Di,t−2−ℓ) +
∑
ℓ≥0

θℓ1(εi,t−1−ℓ − εi,t−2−ℓ)

− θ2
∑
ℓ≥0

θℓ1(D̄·,t−1−ℓ − D̄·,t−2−ℓ)− θ2
∑
ℓ≥0

θℓ1(ε̄·,t−1−ℓ − ε̄·,t−2−ℓ)

= θ2
∑
ℓ≥0

θℓ1(D̃i,t−1−ℓ − D̃i,t−2−ℓ) +
∑
ℓ≥0

θℓ1(ε̃i,t−1−ℓ − ε̃i,t−2−ℓ).

By letting SD̃it
def
=
∑

ℓ≥0 θ
ℓ
1D̃i,t−ℓ and S ε̃it

def
=
∑

ℓ≥0 θ
ℓ
1ε̃i,t−ℓ, it follows that

N∑
i=1

T∑
t=2

Θ0
tVit∆Ỹi,t−1 = θ2

N∑
i=1

T∑
t=2

Θ0
tVit(S

D̃
i,t−1 − SD̃i,t−2) +

N∑
i=1

T∑
t=2

Θ0
tVit(S

ε̃
i,t−1 − S ε̃i,t−2).

We will examine the first term more closely. Let Yt,Dt be two sets of indices from

{1, . . . ,mt}. For k = 1, . . . ,mt, if the k-th element in Vit, denoted as Vit,k, corresponds

to a lag of Yit, specifically Yi,t−l(k), where l(k) represents the corresponding lag order, then k

is included in Yt. Similarly, if Vit,k corresponds to a lag of Dit, namely Di,t−l(k), then k is part

of Dt. For simplicity, we exclude the intercept term from Vit. Additionally, let Θ0
t,k denote
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the k-th element in the vector Θ0
t . Using these notations, the first term can be expressed as:

θ2

N∑
i=1

T∑
t=2

Θ0
tVit(S

D̃
i,t−1 − SD̃i,t−2)

= θ2

N∑
i=1

T∑
t=2

{∑
k∈Yt

Θ0
t,kYi,t−l(k) +

∑
k∈Dt

Θ0
t,kDi,t−l(k)

}
(SD̃i,t−1 − SD̃i,t−2)

= θ2

N∑
i=1

T∑
t=2

∑
k∈Yt

Θ0
t,k

(
Yi,t−l(k) −

αi
1− θ1

)
(SD̃i,t−1 − SD̃i,t−2)

+ θ2

N∑
i=1

T∑
t=2

∑
k∈Yt

Θ0
t,k

αi
1− θ1

(SD̃i,t−1 − SD̃i,t−2)

+ θ2

N∑
i=1

T∑
t=2

∑
k∈Dt

Θ0
t,kDi,t−l(k)(S

D̃
i,t−1 − SD̃i,t−2)

=: I + II + III.

Next, we will analyze these three parts respectively. By inserting the representation given

in (A.7), we obtain that

I = θ2

N∑
i=1

T∑
t=2

∑
k∈Yt

Θ0
t,k

{∑
ℓ≥0

θℓ1γt−l(k)−ℓ+θ2
∑
ℓ≥0

θℓ1Di,t−l(k)−ℓ+
∑
ℓ≥0

θℓ1εi,t−l(k)−ℓ

}
(SD̃i,t−1−SD̃i,t−2).

We will particularly examine the term involvingDi,t−l(k)−ℓ, as the other terms follow a similar

pattern. Specifically, we decompose it into two parts:

θ22

N∑
i=1

T∑
t=2

∑
k∈Yt

Θ0
t,k

∑
ℓ≥0

θℓ1Di,t−l(k)−ℓ(S
D̃
i,t−1 − SD̃i,t−2)

= θ22

N∑
i=1

T∑
t=2

∑
k∈Yt

Θ0
t,k

∑
ℓ≥0

θℓ1Di,t−l(k)−ℓ

{∑
ℓ≥0

θℓ1(Di,t−1−ℓ −Di,t−2−ℓ)

}

+ θ22

N∑
i=1

T∑
t=2

∑
k∈Yt

Θ0
t,k

∑
ℓ≥0

θℓ1Di,t−l(k)−ℓ

{∑
ℓ≥0

θℓ1(D̄·,t−1−ℓ − D̄·,t−2−ℓ)

}

= θ22

N∑
i=1

T∑
t=2

∑
k∈Yt

Θ0
t,kS

D
i,t−l(k)(S

D
i,t−1 − SDi,t−2) + θ22N

T∑
t=2

∑
k∈Yt

Θ0
t,kS

D̄
·,t−l(k)(S

D̄
·,t−1 − SD̄·,t−2),
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where SDit
def
=
∑

ℓ≥0 θ
ℓ
1Di,t−ℓ and SD̄·t

def
=
∑

ℓ≥0 θ
ℓ
1D̄·,t−ℓ. Given the assumptions we imposed on

the process {Dit}, we can observe that:

N∑
i=1

T∑
t=2

∑
k∈Yt

Θ0
t,k E{SDi,t−l(k)(SDi,t−1 − SDi,t−2)} =

N∑
i=1

T∑
t=2

∑
k∈Yt

Θ0
t,kσ

2
Dθ

l(k)−2
1 /(1− θ1)

N

T∑
t=2

∑
k∈Yt

Θ0
t,k E{SD̄·,t−l(k)(SD̄·,t−1 − SD̄·,t−2)} =

T∑
t=2

∑
k∈Yt

Θ0
t,kσ

2
Dθ

l(k)−2
1 /(1− θ1).

Consequently, we can conclude that I = OP(NT ), if T/N → 0.

Similarly, we express term III as follows:

III = θ2

N∑
i=1

T∑
t=2

∑
k∈Dt

Θ0
t,kDi,t−l(k)

{∑
ℓ≥0

θℓ1(Di,t−1−ℓ −Di,t−2−ℓ)

}

+ θ2

N∑
i=1

T∑
t=2

∑
k∈Dt

Θ0
t,kDi,t−l(k)

{∑
ℓ≥0

θℓ1(D̄·,t−1−ℓ − D̄·,t−2−ℓ)

}

= θ2

N∑
i=1

T∑
t=2

∑
k∈Dt

Θ0
t,kDi,t−l(k)(S

D
i,t−1 − SDi,t−2) + θ2N

T∑
t=2

∑
k∈Dt

Θ0
t,kD̄·,t−l(k)(S

D̄
·,t−1 − SD̄·,t−2).

Furthermore, we find that:

N∑
i=1

T∑
t=2

∑
k∈Dt

Θ0
t,k E{Di,t−l(k)(S

D
i,t−1 − SDi,t−2)} =

N∑
i=1

T∑
t=2

∑
k∈Dt

Θ0
t,kσ

2
Dθ

l(k)−2
1 (θ1 + 1)

N
T∑
t=2

∑
k∈Yt

Θ0
t,k E{D̄·,t−l(k)(S

D̄
·,t−1 − SD̄·,t−2)} =

T∑
t=2

∑
k∈Dt

Θ0
t,kσ

2
Dθ

l(k)−2
1 (θ1 + 1),

which implies that III = OP(NT ), given T/N2 → 0. A similar argument applies to term

II.

In summary, in this specific panel AR(1) model, we find that
∑N

i=1

∑T
t=2Θ

0
tVit∆ε̃it =

OP(
√
NT ) and

∑N
i=1

∑T
t=2Θ

0
tVit∆X̃it = OP(NT ), if T/N → 0, as N, T → ∞. Therefore, we

conclude that when time effects are included, the cross-sectional demeaning of the variables

would not significantly affect the inference theory provided in Section 3.2.

A.3.4. Asymptotic Normality for the General Model Estimator.
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Proof of Theorem 3.4. Observe that the estimator θ̂1 obtained by (10), regardless of the

demeaning transformation due to the presence of time effects, can be expressed as

θ̂1 − θ01 =

(
1

NT

N∑
i=1

T∑
t=2

Ŵ⊤
t Ûit∆X⊤

1,it

)−1(
1

NT

N∑
i=1

T∑
t=2

Ŵ⊤
t Ûit∆X⊤

2,itθ
0
2

)

+

(
1

NT

N∑
i=1

T∑
t=2

Ŵ⊤
t Ûit∆X⊤

1,it

)−1(
1

NT

N∑
i=1

T∑
t=2

Ŵ⊤
t Ûit∆εit

)
=: L1 + L2.

We will demonstrate that |L1|∞ is negligible asymptotically, and that L2 approaches

(NT )−1
∑N

i=1

∑T
t=2W⊤

t Uit∆εit closely enough. This will lead to the conclusion upon appli-

cation of the central limit theorem.

Step 1: We first show that the Dantzig estimator Ŵt is close to the desired weighting matrix

Wt with respect to various norms. According to the definitions of Wt and Ŵt provided in

Section 2.2, we derive the following results:

|Ŵt −Wt|max = |M−1
t |∞|M̂tŴt + (Mt − M̂t)Ŵt −MtWt|max

≤ |M−1
t |∞{|M̂tŴt − Id×d1|max + |(Mt − M̂t)Ŵt|max}

≤ |M−1
t |∞(ℓt + |Mt − M̂t|max|Ŵt|1,1)

≤ |M−1
t |∞(ℓt + |Mt − M̂t|max|Wt|1,1).

By Assumption 3.6, it follows that

max
2≤t≤T

|Ŵt −Wt|max ≲P cn max
2≤t≤T

(ℓt + ρN,tcn) ≲ c2n
√
vn/N. (A.10)

The last inequality is implied by bounding |Mt− M̂t|max using the tail probability inequality

in Lemma A.2 based on Assumptions 3.1-3.2.

To analyze |Ŵt−Wt|1,1, we consider a truncation argument with τn =
√
vn/N . Specifically,

we have

|Ŵt −Wt|1,1 = |Ŵt −Wt|1,11(|Wt|max ≤ τn) + |Ŵt −Wt|1,11(|Wt|max > τn)

≤ 2|Wt|1,11(|Wt|max ≤ τn) +
d∑
i=1

d1∑
j=1

|Ŵt,ij −Wt,ij|1(|Wt|max > τn).
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Utilizing the bound in (A.10) and Assumption 3.6, it follows that

max
2≤t≤T

|Ŵt −Wt|1,1 ≲P 2 max
2≤t≤T

|Wt,ij|r1(|Wt|max ≤ τn)/|Wt,ij|r−1

+ c2n
√
vn/N

d∑
i=1

d1∑
j=1

|Wt,ij/τn|r1(|Wt|max > τn)

≤ 2τ 1−rn wn + τ−rn wnc
2
n

√
vn/N

≲ c2nwn(vn/N)
1−r
2 ,

where the parameter 0 ≤ r < 1 ensures that Assumption 3.6(i) holds.

Step 2: Next, we analyze the rate of |L1|∞. Note that the dimension of X1,it, i.e., d1,

is fixed. The max norm, spectral norm (denoted by | · |2), and infinity norm of a d1 × d1

matrix are equivalent up to a constant factor that depends on d1. Similarly, the ℓ1-norm

and ℓ∞-norm of a d1 × 1 vector exhibit the same relationship. Recall the constraints in the

Dantzig estimator in (9), we find that

∣∣∣∣N−1

N∑
i=1

Ŵ⊤
t Ûit∆X⊤

1,it − Id1×d1

∣∣∣∣
2

≲ ℓt,

∣∣∣∣N−1

N∑
i=1

Ŵ⊤
t Ûit∆X⊤

2,it

∣∣∣∣
max

≤ ℓt.

Denote the smallest and largest singular values of a matrix by σmin(·) and σmax(·), respec-
tively. Applying Weyl’s inequality for singular values, σmin(C + D) ≥ σmin(C) − σmax(D),

we can bound |L1|∞ as follows:

|L1|∞ ≤
∣∣∣∣( 1

NT

N∑
i=1

T∑
t=2

Ŵ⊤
t Ûit∆X⊤

1,it

)−1∣∣∣∣
∞

∣∣∣∣ 1

NT

N∑
i=1

T∑
t=2

Ŵ⊤
t Ûit∆X⊤

2,itθ
0
2

∣∣∣∣
∞

≲

∣∣∣∣( 1

NT

T∑
t=2

N∑
i=1

Ŵ⊤
t Ûit∆X⊤

1,it − Id1×d1 + Id1×d1

)−1∣∣∣∣
2

∣∣∣∣ 1

NT

N∑
i=1

T∑
t=2

Ŵ⊤
t Ûit∆X⊤

2,it

∣∣∣∣
max

|θ02|1

≤
{
σmin(Id1×d1)−

1

T

T∑
t=2

σmax

(
1

N

N∑
i=1

Ŵ⊤
t Ûit∆X⊤

1,it − Id1×d1

)}−1

max
2≤t≤T

ℓtϑn

≲ max
2≤t≤T

ℓtϑn = O(1/
√
NT ) (by Assumption 3.6(iv)).

Step 3: Lastly, we establish the asymptotic normality of the leading term L2. To achieve

this, we verify that L2 is sufficiently close to (NT )−1
∑N

i=1

∑T
t=2W⊤

t Uit∆εit. Based on the
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findings in Step 2, we observe that∣∣∣∣ 1

NT

N∑
i=1

T∑
t=2

W⊤
t Uit∆εit − L2

∣∣∣∣
∞

≤
∣∣∣∣( 1

NT

N∑
i=1

T∑
t=2

Ŵ⊤
t Ûit∆X⊤

1,it

)−1∣∣∣∣
max

∣∣∣∣ 1

NT

N∑
i=1

T∑
t=2

(Ŵ⊤
t Ûit∆εit −W⊤

t Uit∆εit)

∣∣∣∣
1

+

∣∣∣∣( 1

NT

N∑
i=1

T∑
t=2

Ŵ⊤
t Ûit∆X⊤

1,it

)−1

− Id1×d1

∣∣∣∣
max

∣∣∣∣ 1

NT

N∑
i=1

T∑
t=2

W⊤
t Uit∆εit

∣∣∣∣
1

≲

∣∣∣∣ 1

NT

N∑
i=1

T∑
t=2

(Ŵ⊤
t Ûit∆εit −W⊤

t Uit∆εit)

∣∣∣∣
∞
+ OP(1/

√
NT )

≤
∣∣∣∣ 1

NT

N∑
i=1

T∑
t=2

(Ŵt −Wt)
⊤Ûit∆εit)

∣∣∣∣
∞
+

∣∣∣∣ 1

NT

N∑
i=1

T∑
t=2

W⊤
t (Ûit − Uit)∆εit

∣∣∣∣
∞
+ OP(1/

√
NT ).

Using the results obtained in Step 1, we find that∣∣∣∣ 1

NT

N∑
i=1

T∑
t=2

(Ŵt −Wt)
⊤Ûit∆εit)

∣∣∣∣
∞

≲P c2nwn(vn/N)
1−r
2 /

√
N.

Furthermore, following similar steps as in bounding |I−1
3 P1|∞ in the proof of Theorem 3.2,

we obtain that ∣∣∣∣ 1

NT

N∑
i=1

T∑
t=2

W⊤
t (Ûit − Uit)∆εit

∣∣∣∣
∞

≲P cn max
2≤t≤T

s∗t logmt/N.

Combining these findings with Assumption 3.6(iii), we conclude that∣∣∣∣ 1

NT

N∑
i=1

T∑
t=2

W⊤
t Uit∆εit − L2

∣∣∣∣
∞

= OP(1/
√
NT ).

The proof is then completed by applying a central limit theorem to 1√
NT

N∑
i=1

T∑
t=2

W⊤
t Uit∆εit,

following a similar approach as in the proof of Theorem 3.2.

It is noteworthy that with the implementation of a sample-splitting procedure, where Ŵt

and Ûit are estimated from an auxiliary sub-sample, we could get sharper bounds as follows:∣∣∣∣ 1

NT

∑
i∈Is

T∑
t=2

(Ŵt −Wt)
⊤Ûit∆εit)

∣∣∣∣
∞

≲P c2nwn(vn/N)
1−r
2 /

√
NT,

∣∣∣∣ 1

NT

∑
i∈Is

T∑
t=2

W⊤
t (Ûit − Uit)∆εit

∣∣∣∣
∞

≲P cn max
2≤t≤T

√
s∗t logmt/(N

√
T ),

where s ∈ {A,B}. As a result, the required rate condition in Assumption 3.6(iii) can be

improved to c2nwn(vn/N)
1−r
2 + cn max

2≤t≤T

√
s∗t logmt/

√
N = O(1). □
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B. Supplementary Tables for Simulation Study

Table B.1. Results for θ1 = 0.8 with N = 400

AB AB-LASSO AB-LASSO-SS AB-LASSO-SS DAB-SS

(K = 2) (K = 5)

T = 30

RMSE 0.01 0.09 0.02 0.02 0.02

std. dev. 0.01 0.01 0.02 0.02 0.02

bias -0.01 -0.09 0.00 0.00 0.01

CI length 0.05 0.05 0.09 0.07 0.05

coverage 0.96 0.00 0.98 0.94 0.81

T = 40

RMSE 0.01 0.09 0.01 0.01 0.07

std. dev. 0.01 0.01 0.01 0.01 0.03

bias -0.01 -0.09 0.00 0.00 0.07

CI length 0.07 0.05 0.08 0.06 0.07

coverage 0.99 0.00 0.99 0.95 0.15

T = 50

RMSE 0.03 0.09 0.01 0.01 0.20

std. dev. 0.02 0.01 0.01 0.01 0.06

bias -0.03 -0.09 0.00 0.00 0.19

CI length 0.11 0.04 0.07 0.05 0.11

coverage 0.94 0.00 0.98 0.94 0.00

Notes: The numbers in the table are divided by 0.8 for RMSE, standard deviation

(std. dev.), bias, and CI length. Superior results are indicated in bold.
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Table B.2. Results for θ2 = 1 with N = 400

AB AB-LASSO AB-LASSO-SS AB-LASSO-SS DAB-SS

(K = 2) (K = 5)

T = 30

RMSE 0.02 0.11 0.02 0.02 0.05

std. dev. 0.01 0.02 0.02 0.02 0.03

bias -0.01 -0.10 0.00 0.00 0.04

CI length 0.08 0.07 0.15 0.09 0.14

coverage 1.00 0.00 0.99 0.95 0.47

T = 40

RMSE 0.04 0.11 0.02 0.02 0.09

std. dev. 0.02 0.02 0.02 0.02 0.05

bias -0.03 -0.10 0.00 0.00 0.08

CI length 0.15 0.06 0.09 0.07 0.15

coverage 0.96 0.00 0.98 0.94 0.47

T = 50

RMSE 0.09 0.11 0.02 0.02 0.10

std. dev. 0.03 0.01 0.02 0.02 0.07

bias -0.08 -0.11 0.00 0.00 0.07

CI length 0.24 0.05 0.08 0.06 0.24

coverage 0.86 0.00 0.98 0.96 0.76

Notes: Superior results are indicated in bold.
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Table B.3. Results for θ1 = 0.8 with N = 200

AB-LASSO AB-LASSO-SS AB-OLS AB-OLS-SS

(K = 5) (K = 5)

T = 30

RMSE 0.16 0.04 0.29 0.07

std. dev. 0.02 0.04 0.02 0.07

bias -0.16 0.00 -0.29 0.01

CI length 0.09 0.14 0.07 0.25

coverage 0.00 0.95 0.00 0.94

T = 40

RMSE 0.16 0.04 0.32 0.07

std. dev. 0.02 0.04 0.01 0.07

bias -0.16 0.00 -0.32 0.02

CI length 0.07 0.13 0.06 0.25

coverage 0.00 0.93 0.00 0.96

T = 50

RMSE 0.16 0.03 0.35 0.07

std. dev. 0.02 0.03 0.01 0.07

bias -0.16 0.00 -0.35 0.01

CI length 0.05 0.11 0.05 0.26

coverage 0.00 0.93 0.00 0.96

Notes: The numbers in the table are divided by 0.8 for RMSE, standard

deviation (std. dev.), bias, and CI length. Superior results are indicated

in bold.
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Table B.4. Results for θ2 = 1 with N = 200

AB-LASSO AB-LASSO-SS AB-OLS AB-OLS-SS

(K = 5) (K = 5)

T = 30

RMSE 0.18 0.05 0.35 0.11

std. dev. 0.03 0.05 0.03 0.10

bias -0.18 0.01 -0.35 0.02

CI length 0.11 0.18 0.10 0.38

coverage 0.00 0.95 0.00 0.95

T = 40

RMSE 0.18 0.04 0.37 0.11

std. dev. 0.03 0.04 0.02 0.10

bias -0.18 0.00 -0.37 0.03

CI length 0.10 0.15 0.08 0.39

coverage 0.00 0.94 0.00 0.96

T = 50

RMSE 0.19 0.04 0.38 0.11

std. dev. 0.02 0.04 0.02 0.11

bias -0.18 0.00 -0.38 0.02

CI length 0.09 0.17 0.07 0.42

coverage 0.00 0.95 0.00 0.96

Notes: Superior results are indicated in bold.
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